1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_parNewGeneration.cpp.incl"
  27 
  28 #ifdef _MSC_VER
  29 #pragma warning( push )
  30 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  31 #endif
  32 ParScanThreadState::ParScanThreadState(Space* to_space_,
  33                                        ParNewGeneration* gen_,
  34                                        Generation* old_gen_,
  35                                        int thread_num_,
  36                                        ObjToScanQueueSet* work_queue_set_,
  37                                        Stack<oop>* overflow_stacks_,
  38                                        size_t desired_plab_sz_,
  39                                        ParallelTaskTerminator& term_) :
  40   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  41   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  42   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  43   _ageTable(false), // false ==> not the global age table, no perf data.
  44   _to_space_alloc_buffer(desired_plab_sz_),
  45   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  46   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  47   _older_gen_closure(gen_, this),
  48   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  49                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  50                       work_queue_set_, &term_),
  51   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  52   _keep_alive_closure(&_scan_weak_ref_closure),
  53   _promotion_failure_size(0),
  54   _strong_roots_time(0.0), _term_time(0.0)
  55 {
  56   #if TASKQUEUE_STATS
  57   _term_attempts = 0;
  58   _overflow_refills = 0;
  59   _overflow_refill_objs = 0;
  60   #endif // TASKQUEUE_STATS
  61 
  62   _survivor_chunk_array =
  63     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  64   _hash_seed = 17;  // Might want to take time-based random value.
  65   _start = os::elapsedTime();
  66   _old_gen_closure.set_generation(old_gen_);
  67   _old_gen_root_closure.set_generation(old_gen_);
  68 }
  69 #ifdef _MSC_VER
  70 #pragma warning( pop )
  71 #endif
  72 
  73 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
  74                                               size_t plab_word_size) {
  75   ChunkArray* sca = survivor_chunk_array();
  76   if (sca != NULL) {
  77     // A non-null SCA implies that we want the PLAB data recorded.
  78     sca->record_sample(plab_start, plab_word_size);
  79   }
  80 }
  81 
  82 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
  83   return new_obj->is_objArray() &&
  84          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
  85          new_obj != old_obj;
  86 }
  87 
  88 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
  89   assert(old->is_objArray(), "must be obj array");
  90   assert(old->is_forwarded(), "must be forwarded");
  91   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  92   assert(!old_gen()->is_in(old), "must be in young generation.");
  93 
  94   objArrayOop obj = objArrayOop(old->forwardee());
  95   // Process ParGCArrayScanChunk elements now
  96   // and push the remainder back onto queue
  97   int start     = arrayOop(old)->length();
  98   int end       = obj->length();
  99   int remainder = end - start;
 100   assert(start <= end, "just checking");
 101   if (remainder > 2 * ParGCArrayScanChunk) {
 102     // Test above combines last partial chunk with a full chunk
 103     end = start + ParGCArrayScanChunk;
 104     arrayOop(old)->set_length(end);
 105     // Push remainder.
 106     bool ok = work_queue()->push(old);
 107     assert(ok, "just popped, push must be okay");
 108   } else {
 109     // Restore length so that it can be used if there
 110     // is a promotion failure and forwarding pointers
 111     // must be removed.
 112     arrayOop(old)->set_length(end);
 113   }
 114 
 115   // process our set of indices (include header in first chunk)
 116   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 117   if ((HeapWord *)obj < young_old_boundary()) {
 118     // object is in to_space
 119     obj->oop_iterate_range(&_to_space_closure, start, end);
 120   } else {
 121     // object is in old generation
 122     obj->oop_iterate_range(&_old_gen_closure, start, end);
 123   }
 124 }
 125 
 126 
 127 void ParScanThreadState::trim_queues(int max_size) {
 128   ObjToScanQueue* queue = work_queue();
 129   do {
 130     while (queue->size() > (juint)max_size) {
 131       oop obj_to_scan;
 132       if (queue->pop_local(obj_to_scan)) {
 133         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 134           if (obj_to_scan->is_objArray() &&
 135               obj_to_scan->is_forwarded() &&
 136               obj_to_scan->forwardee() != obj_to_scan) {
 137             scan_partial_array_and_push_remainder(obj_to_scan);
 138           } else {
 139             // object is in to_space
 140             obj_to_scan->oop_iterate(&_to_space_closure);
 141           }
 142         } else {
 143           // object is in old generation
 144           obj_to_scan->oop_iterate(&_old_gen_closure);
 145         }
 146       }
 147     }
 148     // For the  case of compressed oops, we have a private, non-shared
 149     // overflow stack, so we eagerly drain it so as to more evenly
 150     // distribute load early. Note: this may be good to do in
 151     // general rather than delay for the final stealing phase.
 152     // If applicable, we'll transfer a set of objects over to our
 153     // work queue, allowing them to be stolen and draining our
 154     // private overflow stack.
 155   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 156 }
 157 
 158 bool ParScanThreadState::take_from_overflow_stack() {
 159   assert(ParGCUseLocalOverflow, "Else should not call");
 160   assert(young_gen()->overflow_list() == NULL, "Error");
 161   ObjToScanQueue* queue = work_queue();
 162   Stack<oop>* const of_stack = overflow_stack();
 163   const size_t num_overflow_elems = of_stack->size();
 164   const size_t space_available = queue->max_elems() - queue->size();
 165   const size_t num_take_elems = MIN3(space_available / 4,
 166                                      ParGCDesiredObjsFromOverflowList,
 167                                      num_overflow_elems);
 168   // Transfer the most recent num_take_elems from the overflow
 169   // stack to our work queue.
 170   for (size_t i = 0; i != num_take_elems; i++) {
 171     oop cur = of_stack->pop();
 172     oop obj_to_push = cur->forwardee();
 173     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 174     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 175     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 176     if (should_be_partially_scanned(obj_to_push, cur)) {
 177       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 178       obj_to_push = cur;
 179     }
 180     bool ok = queue->push(obj_to_push);
 181     assert(ok, "Should have succeeded");
 182   }
 183   assert(young_gen()->overflow_list() == NULL, "Error");
 184   return num_take_elems > 0;  // was something transferred?
 185 }
 186 
 187 void ParScanThreadState::push_on_overflow_stack(oop p) {
 188   assert(ParGCUseLocalOverflow, "Else should not call");
 189   overflow_stack()->push(p);
 190   assert(young_gen()->overflow_list() == NULL, "Error");
 191 }
 192 
 193 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 194 
 195   // Otherwise, if the object is small enough, try to reallocate the
 196   // buffer.
 197   HeapWord* obj = NULL;
 198   if (!_to_space_full) {
 199     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 200     Space*            const sp   = to_space();
 201     if (word_sz * 100 <
 202         ParallelGCBufferWastePct * plab->word_sz()) {
 203       // Is small enough; abandon this buffer and start a new one.
 204       plab->retire(false, false);
 205       size_t buf_size = plab->word_sz();
 206       HeapWord* buf_space = sp->par_allocate(buf_size);
 207       if (buf_space == NULL) {
 208         const size_t min_bytes =
 209           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 210         size_t free_bytes = sp->free();
 211         while(buf_space == NULL && free_bytes >= min_bytes) {
 212           buf_size = free_bytes >> LogHeapWordSize;
 213           assert(buf_size == (size_t)align_object_size(buf_size),
 214                  "Invariant");
 215           buf_space  = sp->par_allocate(buf_size);
 216           free_bytes = sp->free();
 217         }
 218       }
 219       if (buf_space != NULL) {
 220         plab->set_word_size(buf_size);
 221         plab->set_buf(buf_space);
 222         record_survivor_plab(buf_space, buf_size);
 223         obj = plab->allocate(word_sz);
 224         // Note that we cannot compare buf_size < word_sz below
 225         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 226         assert(obj != NULL || plab->words_remaining() < word_sz,
 227                "Else should have been able to allocate");
 228         // It's conceivable that we may be able to use the
 229         // buffer we just grabbed for subsequent small requests
 230         // even if not for this one.
 231       } else {
 232         // We're used up.
 233         _to_space_full = true;
 234       }
 235 
 236     } else {
 237       // Too large; allocate the object individually.
 238       obj = sp->par_allocate(word_sz);
 239     }
 240   }
 241   return obj;
 242 }
 243 
 244 
 245 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 246                                                 size_t word_sz) {
 247   // Is the alloc in the current alloc buffer?
 248   if (to_space_alloc_buffer()->contains(obj)) {
 249     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 250            "Should contain whole object.");
 251     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 252   } else {
 253     CollectedHeap::fill_with_object(obj, word_sz);
 254   }
 255 }
 256 
 257 void ParScanThreadState::print_and_clear_promotion_failure_size() {
 258   if (_promotion_failure_size != 0) {
 259     if (PrintPromotionFailure) {
 260       gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 261         _thread_num, _promotion_failure_size);
 262     }
 263     _promotion_failure_size = 0;
 264   }
 265 }
 266 
 267 class ParScanThreadStateSet: private ResourceArray {
 268 public:
 269   // Initializes states for the specified number of threads;
 270   ParScanThreadStateSet(int                     num_threads,
 271                         Space&                  to_space,
 272                         ParNewGeneration&       gen,
 273                         Generation&             old_gen,
 274                         ObjToScanQueueSet&      queue_set,
 275                         Stack<oop>*             overflow_stacks_,
 276                         size_t                  desired_plab_sz,
 277                         ParallelTaskTerminator& term);
 278 
 279   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 280 
 281   inline ParScanThreadState& thread_state(int i);
 282 
 283   void reset(bool promotion_failed);
 284   void flush();
 285 
 286   #if TASKQUEUE_STATS
 287   static void
 288     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 289   void print_termination_stats(outputStream* const st = gclog_or_tty);
 290   static void
 291     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 292   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 293   void reset_stats();
 294   #endif // TASKQUEUE_STATS
 295 
 296 private:
 297   ParallelTaskTerminator& _term;
 298   ParNewGeneration&       _gen;
 299   Generation&             _next_gen;
 300 };
 301 
 302 
 303 ParScanThreadStateSet::ParScanThreadStateSet(
 304   int num_threads, Space& to_space, ParNewGeneration& gen,
 305   Generation& old_gen, ObjToScanQueueSet& queue_set,
 306   Stack<oop>* overflow_stacks,
 307   size_t desired_plab_sz, ParallelTaskTerminator& term)
 308   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 309     _gen(gen), _next_gen(old_gen), _term(term)
 310 {
 311   assert(num_threads > 0, "sanity check!");
 312   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 313          "overflow_stack allocation mismatch");
 314   // Initialize states.
 315   for (int i = 0; i < num_threads; ++i) {
 316     new ((ParScanThreadState*)_data + i)
 317         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 318                            overflow_stacks, desired_plab_sz, term);
 319   }
 320 }
 321 
 322 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 323 {
 324   assert(i >= 0 && i < length(), "sanity check!");
 325   return ((ParScanThreadState*)_data)[i];
 326 }
 327 
 328 
 329 void ParScanThreadStateSet::reset(bool promotion_failed)
 330 {
 331   _term.reset_for_reuse();
 332   if (promotion_failed) {
 333     for (int i = 0; i < length(); ++i) {
 334       thread_state(i).print_and_clear_promotion_failure_size();
 335     }
 336   }
 337 }
 338 
 339 #if TASKQUEUE_STATS
 340 void
 341 ParScanThreadState::reset_stats()
 342 {
 343   taskqueue_stats().reset();
 344   _term_attempts = 0;
 345   _overflow_refills = 0;
 346   _overflow_refill_objs = 0;
 347 }
 348 
 349 void ParScanThreadStateSet::reset_stats()
 350 {
 351   for (int i = 0; i < length(); ++i) {
 352     thread_state(i).reset_stats();
 353   }
 354 }
 355 
 356 void
 357 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 358 {
 359   st->print_raw_cr("GC Termination Stats");
 360   st->print_raw_cr("     elapsed  --strong roots-- "
 361                    "-------termination-------");
 362   st->print_raw_cr("thr     ms        ms       %   "
 363                    "    ms       %   attempts");
 364   st->print_raw_cr("--- --------- --------- ------ "
 365                    "--------- ------ --------");
 366 }
 367 
 368 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 369 {
 370   print_termination_stats_hdr(st);
 371 
 372   for (int i = 0; i < length(); ++i) {
 373     const ParScanThreadState & pss = thread_state(i);
 374     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 375     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 376     const double term_ms = pss.term_time() * 1000.0;
 377     st->print_cr("%3d %9.2f %9.2f %6.2f "
 378                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 379                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 380                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 381   }
 382 }
 383 
 384 // Print stats related to work queue activity.
 385 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 386 {
 387   st->print_raw_cr("GC Task Stats");
 388   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 389   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 390 }
 391 
 392 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 393 {
 394   print_taskqueue_stats_hdr(st);
 395 
 396   TaskQueueStats totals;
 397   for (int i = 0; i < length(); ++i) {
 398     const ParScanThreadState & pss = thread_state(i);
 399     const TaskQueueStats & stats = pss.taskqueue_stats();
 400     st->print("%3d ", i); stats.print(st); st->cr();
 401     totals += stats;
 402 
 403     if (pss.overflow_refills() > 0) {
 404       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 405                    SIZE_FORMAT_W(10) " overflow objects",
 406                    pss.overflow_refills(), pss.overflow_refill_objs());
 407     }
 408   }
 409   st->print("tot "); totals.print(st); st->cr();
 410 
 411   DEBUG_ONLY(totals.verify());
 412 }
 413 #endif // TASKQUEUE_STATS
 414 
 415 void ParScanThreadStateSet::flush()
 416 {
 417   // Work in this loop should be kept as lightweight as
 418   // possible since this might otherwise become a bottleneck
 419   // to scaling. Should we add heavy-weight work into this
 420   // loop, consider parallelizing the loop into the worker threads.
 421   for (int i = 0; i < length(); ++i) {
 422     ParScanThreadState& par_scan_state = thread_state(i);
 423 
 424     // Flush stats related to To-space PLAB activity and
 425     // retire the last buffer.
 426     par_scan_state.to_space_alloc_buffer()->
 427       flush_stats_and_retire(_gen.plab_stats(),
 428                              false /* !retain */);
 429 
 430     // Every thread has its own age table.  We need to merge
 431     // them all into one.
 432     ageTable *local_table = par_scan_state.age_table();
 433     _gen.age_table()->merge(local_table);
 434 
 435     // Inform old gen that we're done.
 436     _next_gen.par_promote_alloc_done(i);
 437     _next_gen.par_oop_since_save_marks_iterate_done(i);
 438   }
 439 
 440   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
 441     // We need to call this even when ResizeOldPLAB is disabled
 442     // so as to avoid breaking some asserts. While we may be able
 443     // to avoid this by reorganizing the code a bit, I am loathe
 444     // to do that unless we find cases where ergo leads to bad
 445     // performance.
 446     CFLS_LAB::compute_desired_plab_size();
 447   }
 448 }
 449 
 450 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 451                                ParScanThreadState* par_scan_state) :
 452   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 453 {
 454   assert(_g->level() == 0, "Optimized for youngest generation");
 455   _boundary = _g->reserved().end();
 456 }
 457 
 458 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 459 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 460 
 461 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 462 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 463 
 464 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 465 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 466 
 467 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 468 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 469 
 470 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 471                                              ParScanThreadState* par_scan_state)
 472   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 473 {}
 474 
 475 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 476 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 477 
 478 #ifdef WIN32
 479 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 480 #endif
 481 
 482 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 483     ParScanThreadState* par_scan_state_,
 484     ParScanWithoutBarrierClosure* to_space_closure_,
 485     ParScanWithBarrierClosure* old_gen_closure_,
 486     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 487     ParNewGeneration* par_gen_,
 488     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 489     ObjToScanQueueSet* task_queues_,
 490     ParallelTaskTerminator* terminator_) :
 491 
 492     _par_scan_state(par_scan_state_),
 493     _to_space_closure(to_space_closure_),
 494     _old_gen_closure(old_gen_closure_),
 495     _to_space_root_closure(to_space_root_closure_),
 496     _old_gen_root_closure(old_gen_root_closure_),
 497     _par_gen(par_gen_),
 498     _task_queues(task_queues_),
 499     _terminator(terminator_)
 500 {}
 501 
 502 void ParEvacuateFollowersClosure::do_void() {
 503   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 504 
 505   while (true) {
 506 
 507     // Scan to-space and old-gen objs until we run out of both.
 508     oop obj_to_scan;
 509     par_scan_state()->trim_queues(0);
 510 
 511     // We have no local work, attempt to steal from other threads.
 512 
 513     // attempt to steal work from promoted.
 514     if (task_queues()->steal(par_scan_state()->thread_num(),
 515                              par_scan_state()->hash_seed(),
 516                              obj_to_scan)) {
 517       bool res = work_q->push(obj_to_scan);
 518       assert(res, "Empty queue should have room for a push.");
 519 
 520       //   if successful, goto Start.
 521       continue;
 522 
 523       // try global overflow list.
 524     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 525       continue;
 526     }
 527 
 528     // Otherwise, offer termination.
 529     par_scan_state()->start_term_time();
 530     if (terminator()->offer_termination()) break;
 531     par_scan_state()->end_term_time();
 532   }
 533   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 534          "Broken overflow list?");
 535   // Finish the last termination pause.
 536   par_scan_state()->end_term_time();
 537 }
 538 
 539 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
 540                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 541     AbstractGangTask("ParNewGeneration collection"),
 542     _gen(gen), _next_gen(next_gen),
 543     _young_old_boundary(young_old_boundary),
 544     _state_set(state_set)
 545   {}
 546 
 547 void ParNewGenTask::work(int i) {
 548   GenCollectedHeap* gch = GenCollectedHeap::heap();
 549   // Since this is being done in a separate thread, need new resource
 550   // and handle marks.
 551   ResourceMark rm;
 552   HandleMark hm;
 553   // We would need multiple old-gen queues otherwise.
 554   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 555 
 556   Generation* old_gen = gch->next_gen(_gen);
 557 
 558   ParScanThreadState& par_scan_state = _state_set->thread_state(i);
 559   par_scan_state.set_young_old_boundary(_young_old_boundary);
 560 
 561   par_scan_state.start_strong_roots();
 562   gch->gen_process_strong_roots(_gen->level(),
 563                                 true,  // Process younger gens, if any,
 564                                        // as strong roots.
 565                                 false, // no scope; this is parallel code
 566                                 false, // not collecting perm generation.
 567                                 SharedHeap::SO_AllClasses,
 568                                 &par_scan_state.to_space_root_closure(),
 569                                 true,   // walk *all* scavengable nmethods
 570                                 &par_scan_state.older_gen_closure());
 571   par_scan_state.end_strong_roots();
 572 
 573   // "evacuate followers".
 574   par_scan_state.evacuate_followers_closure().do_void();
 575 }
 576 
 577 #ifdef _MSC_VER
 578 #pragma warning( push )
 579 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 580 #endif
 581 ParNewGeneration::
 582 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 583   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 584   _overflow_list(NULL),
 585   _is_alive_closure(this),
 586   _plab_stats(YoungPLABSize, PLABWeight)
 587 {
 588   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 589   NOT_PRODUCT(_num_par_pushes = 0;)
 590   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 591   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 592 
 593   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 594     ObjToScanQueue *q = new ObjToScanQueue();
 595     guarantee(q != NULL, "work_queue Allocation failure.");
 596     _task_queues->register_queue(i1, q);
 597   }
 598 
 599   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 600     _task_queues->queue(i2)->initialize();
 601 
 602   _overflow_stacks = NULL;
 603   if (ParGCUseLocalOverflow) {
 604     _overflow_stacks = NEW_C_HEAP_ARRAY(Stack<oop>, ParallelGCThreads);
 605     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 606       new (_overflow_stacks + i) Stack<oop>();
 607     }
 608   }
 609 
 610   if (UsePerfData) {
 611     EXCEPTION_MARK;
 612     ResourceMark rm;
 613 
 614     const char* cname =
 615          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 616     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 617                                      ParallelGCThreads, CHECK);
 618   }
 619 }
 620 #ifdef _MSC_VER
 621 #pragma warning( pop )
 622 #endif
 623 
 624 // ParNewGeneration::
 625 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 626   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 627 
 628 template <class T>
 629 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 630 #ifdef ASSERT
 631   {
 632     assert(!oopDesc::is_null(*p), "expected non-null ref");
 633     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 634     // We never expect to see a null reference being processed
 635     // as a weak reference.
 636     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 637   }
 638 #endif // ASSERT
 639 
 640   _par_cl->do_oop_nv(p);
 641 
 642   if (Universe::heap()->is_in_reserved(p)) {
 643     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 644     _rs->write_ref_field_gc_par(p, obj);
 645   }
 646 }
 647 
 648 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 649 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 650 
 651 // ParNewGeneration::
 652 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 653   DefNewGeneration::KeepAliveClosure(cl) {}
 654 
 655 template <class T>
 656 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 657 #ifdef ASSERT
 658   {
 659     assert(!oopDesc::is_null(*p), "expected non-null ref");
 660     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 661     // We never expect to see a null reference being processed
 662     // as a weak reference.
 663     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 664   }
 665 #endif // ASSERT
 666 
 667   _cl->do_oop_nv(p);
 668 
 669   if (Universe::heap()->is_in_reserved(p)) {
 670     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 671     _rs->write_ref_field_gc_par(p, obj);
 672   }
 673 }
 674 
 675 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 676 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 677 
 678 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 679   T heap_oop = oopDesc::load_heap_oop(p);
 680   if (!oopDesc::is_null(heap_oop)) {
 681     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 682     if ((HeapWord*)obj < _boundary) {
 683       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 684       oop new_obj = obj->is_forwarded()
 685                       ? obj->forwardee()
 686                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 687       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 688     }
 689     if (_gc_barrier) {
 690       // If p points to a younger generation, mark the card.
 691       if ((HeapWord*)obj < _gen_boundary) {
 692         _rs->write_ref_field_gc_par(p, obj);
 693       }
 694     }
 695   }
 696 }
 697 
 698 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 699 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 700 
 701 class ParNewRefProcTaskProxy: public AbstractGangTask {
 702   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 703 public:
 704   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 705                          Generation& next_gen,
 706                          HeapWord* young_old_boundary,
 707                          ParScanThreadStateSet& state_set);
 708 
 709 private:
 710   virtual void work(int i);
 711 
 712 private:
 713   ParNewGeneration&      _gen;
 714   ProcessTask&           _task;
 715   Generation&            _next_gen;
 716   HeapWord*              _young_old_boundary;
 717   ParScanThreadStateSet& _state_set;
 718 };
 719 
 720 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
 721     ProcessTask& task, ParNewGeneration& gen,
 722     Generation& next_gen,
 723     HeapWord* young_old_boundary,
 724     ParScanThreadStateSet& state_set)
 725   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 726     _gen(gen),
 727     _task(task),
 728     _next_gen(next_gen),
 729     _young_old_boundary(young_old_boundary),
 730     _state_set(state_set)
 731 {
 732 }
 733 
 734 void ParNewRefProcTaskProxy::work(int i)
 735 {
 736   ResourceMark rm;
 737   HandleMark hm;
 738   ParScanThreadState& par_scan_state = _state_set.thread_state(i);
 739   par_scan_state.set_young_old_boundary(_young_old_boundary);
 740   _task.work(i, par_scan_state.is_alive_closure(),
 741              par_scan_state.keep_alive_closure(),
 742              par_scan_state.evacuate_followers_closure());
 743 }
 744 
 745 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 746   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 747   EnqueueTask& _task;
 748 
 749 public:
 750   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 751     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 752       _task(task)
 753   { }
 754 
 755   virtual void work(int i)
 756   {
 757     _task.work(i);
 758   }
 759 };
 760 
 761 
 762 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 763 {
 764   GenCollectedHeap* gch = GenCollectedHeap::heap();
 765   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 766          "not a generational heap");
 767   WorkGang* workers = gch->workers();
 768   assert(workers != NULL, "Need parallel worker threads.");
 769   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 770                                  _generation.reserved().end(), _state_set);
 771   workers->run_task(&rp_task);
 772   _state_set.reset(_generation.promotion_failed());
 773 }
 774 
 775 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 776 {
 777   GenCollectedHeap* gch = GenCollectedHeap::heap();
 778   WorkGang* workers = gch->workers();
 779   assert(workers != NULL, "Need parallel worker threads.");
 780   ParNewRefEnqueueTaskProxy enq_task(task);
 781   workers->run_task(&enq_task);
 782 }
 783 
 784 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 785 {
 786   _state_set.flush();
 787   GenCollectedHeap* gch = GenCollectedHeap::heap();
 788   gch->set_par_threads(0);  // 0 ==> non-parallel.
 789   gch->save_marks();
 790 }
 791 
 792 ScanClosureWithParBarrier::
 793 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 794   ScanClosure(g, gc_barrier) {}
 795 
 796 EvacuateFollowersClosureGeneral::
 797 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 798                                 OopsInGenClosure* cur,
 799                                 OopsInGenClosure* older) :
 800   _gch(gch), _level(level),
 801   _scan_cur_or_nonheap(cur), _scan_older(older)
 802 {}
 803 
 804 void EvacuateFollowersClosureGeneral::do_void() {
 805   do {
 806     // Beware: this call will lead to closure applications via virtual
 807     // calls.
 808     _gch->oop_since_save_marks_iterate(_level,
 809                                        _scan_cur_or_nonheap,
 810                                        _scan_older);
 811   } while (!_gch->no_allocs_since_save_marks(_level));
 812 }
 813 
 814 
 815 bool ParNewGeneration::_avoid_promotion_undo = false;
 816 
 817 void ParNewGeneration::adjust_desired_tenuring_threshold() {
 818   // Set the desired survivor size to half the real survivor space
 819   _tenuring_threshold =
 820     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 821 }
 822 
 823 // A Generation that does parallel young-gen collection.
 824 
 825 void ParNewGeneration::collect(bool   full,
 826                                bool   clear_all_soft_refs,
 827                                size_t size,
 828                                bool   is_tlab) {
 829   assert(full || size > 0, "otherwise we don't want to collect");
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 832     "not a CMS generational heap");
 833   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 834   WorkGang* workers = gch->workers();
 835   _next_gen = gch->next_gen(this);
 836   assert(_next_gen != NULL,
 837     "This must be the youngest gen, and not the only gen");
 838   assert(gch->n_gens() == 2,
 839          "Par collection currently only works with single older gen.");
 840   // Do we have to avoid promotion_undo?
 841   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
 842     set_avoid_promotion_undo(true);
 843   }
 844 
 845   // If the next generation is too full to accomodate worst-case promotion
 846   // from this generation, pass on collection; let the next generation
 847   // do it.
 848   if (!collection_attempt_is_safe()) {
 849     gch->set_incremental_collection_will_fail();
 850     return;
 851   }
 852   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 853 
 854   init_assuming_no_promotion_failure();
 855 
 856   if (UseAdaptiveSizePolicy) {
 857     set_survivor_overflow(false);
 858     size_policy->minor_collection_begin();
 859   }
 860 
 861   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
 862   // Capture heap used before collection (for printing).
 863   size_t gch_prev_used = gch->used();
 864 
 865   SpecializationStats::clear();
 866 
 867   age_table()->clear();
 868   to()->clear(SpaceDecorator::Mangle);
 869 
 870   gch->save_marks();
 871   assert(workers != NULL, "Need parallel worker threads.");
 872   ParallelTaskTerminator _term(workers->total_workers(), task_queues());
 873   ParScanThreadStateSet thread_state_set(workers->total_workers(),
 874                                          *to(), *this, *_next_gen, *task_queues(),
 875                                          _overflow_stacks, desired_plab_sz(), _term);
 876 
 877   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
 878   int n_workers = workers->total_workers();
 879   gch->set_par_threads(n_workers);
 880   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 881   // It turns out that even when we're using 1 thread, doing the work in a
 882   // separate thread causes wide variance in run times.  We can't help this
 883   // in the multi-threaded case, but we special-case n=1 here to get
 884   // repeatable measurements of the 1-thread overhead of the parallel code.
 885   if (n_workers > 1) {
 886     GenCollectedHeap::StrongRootsScope srs(gch);
 887     workers->run_task(&tsk);
 888   } else {
 889     GenCollectedHeap::StrongRootsScope srs(gch);
 890     tsk.work(0);
 891   }
 892   thread_state_set.reset(promotion_failed());
 893 
 894   // Process (weak) reference objects found during scavenge.
 895   ReferenceProcessor* rp = ref_processor();
 896   IsAliveClosure is_alive(this);
 897   ScanWeakRefClosure scan_weak_ref(this);
 898   KeepAliveClosure keep_alive(&scan_weak_ref);
 899   ScanClosure               scan_without_gc_barrier(this, false);
 900   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 901   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 902   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
 903     &scan_without_gc_barrier, &scan_with_gc_barrier);
 904   rp->setup_policy(clear_all_soft_refs);
 905   if (rp->processing_is_mt()) {
 906     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
 907     rp->process_discovered_references(&is_alive, &keep_alive,
 908                                       &evacuate_followers, &task_executor);
 909   } else {
 910     thread_state_set.flush();
 911     gch->set_par_threads(0);  // 0 ==> non-parallel.
 912     gch->save_marks();
 913     rp->process_discovered_references(&is_alive, &keep_alive,
 914                                       &evacuate_followers, NULL);
 915   }
 916   if (!promotion_failed()) {
 917     // Swap the survivor spaces.
 918     eden()->clear(SpaceDecorator::Mangle);
 919     from()->clear(SpaceDecorator::Mangle);
 920     if (ZapUnusedHeapArea) {
 921       // This is now done here because of the piece-meal mangling which
 922       // can check for valid mangling at intermediate points in the
 923       // collection(s).  When a minor collection fails to collect
 924       // sufficient space resizing of the young generation can occur
 925       // an redistribute the spaces in the young generation.  Mangle
 926       // here so that unzapped regions don't get distributed to
 927       // other spaces.
 928       to()->mangle_unused_area();
 929     }
 930     swap_spaces();
 931 
 932     // A successful scavenge should restart the GC time limit count which is
 933     // for full GC's.
 934     size_policy->reset_gc_overhead_limit_count();
 935 
 936     assert(to()->is_empty(), "to space should be empty now");
 937   } else {
 938     assert(HandlePromotionFailure,
 939       "Should only be here if promotion failure handling is on");
 940     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 941     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 942 
 943     remove_forwarding_pointers();
 944     if (PrintGCDetails) {
 945       gclog_or_tty->print(" (promotion failed)");
 946     }
 947     // All the spaces are in play for mark-sweep.
 948     swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 949     from()->set_next_compaction_space(to());
 950     gch->set_incremental_collection_will_fail();
 951     // Inform the next generation that a promotion failure occurred.
 952     _next_gen->promotion_failure_occurred();
 953 
 954     // Reset the PromotionFailureALot counters.
 955     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 956   }
 957   // set new iteration safe limit for the survivor spaces
 958   from()->set_concurrent_iteration_safe_limit(from()->top());
 959   to()->set_concurrent_iteration_safe_limit(to()->top());
 960 
 961   adjust_desired_tenuring_threshold();
 962   if (ResizePLAB) {
 963     plab_stats()->adjust_desired_plab_sz();
 964   }
 965 
 966   if (PrintGC && !PrintGCDetails) {
 967     gch->print_heap_change(gch_prev_used);
 968   }
 969 
 970   if (PrintGCDetails && ParallelGCVerbose) {
 971     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
 972     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
 973   }
 974 
 975   if (UseAdaptiveSizePolicy) {
 976     size_policy->minor_collection_end(gch->gc_cause());
 977     size_policy->avg_survived()->sample(from()->used());
 978   }
 979 
 980   update_time_of_last_gc(os::javaTimeMillis());
 981 
 982   SpecializationStats::print();
 983 
 984   rp->set_enqueuing_is_done(true);
 985   if (rp->processing_is_mt()) {
 986     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
 987     rp->enqueue_discovered_references(&task_executor);
 988   } else {
 989     rp->enqueue_discovered_references(NULL);
 990   }
 991   rp->verify_no_references_recorded();
 992 }
 993 
 994 static int sum;
 995 void ParNewGeneration::waste_some_time() {
 996   for (int i = 0; i < 100; i++) {
 997     sum += i;
 998   }
 999 }
1000 
1001 static const oop ClaimedForwardPtr = oop(0x4);
1002 
1003 // Because of concurrency, there are times where an object for which
1004 // "is_forwarded()" is true contains an "interim" forwarding pointer
1005 // value.  Such a value will soon be overwritten with a real value.
1006 // This method requires "obj" to have a forwarding pointer, and waits, if
1007 // necessary for a real one to be inserted, and returns it.
1008 
1009 oop ParNewGeneration::real_forwardee(oop obj) {
1010   oop forward_ptr = obj->forwardee();
1011   if (forward_ptr != ClaimedForwardPtr) {
1012     return forward_ptr;
1013   } else {
1014     return real_forwardee_slow(obj);
1015   }
1016 }
1017 
1018 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1019   // Spin-read if it is claimed but not yet written by another thread.
1020   oop forward_ptr = obj->forwardee();
1021   while (forward_ptr == ClaimedForwardPtr) {
1022     waste_some_time();
1023     assert(obj->is_forwarded(), "precondition");
1024     forward_ptr = obj->forwardee();
1025   }
1026   return forward_ptr;
1027 }
1028 
1029 #ifdef ASSERT
1030 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1031   return
1032     (_avoid_promotion_undo && p == ClaimedForwardPtr)
1033     || Universe::heap()->is_in_reserved(p);
1034 }
1035 #endif
1036 
1037 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1038   if ((m != markOopDesc::prototype()) &&
1039       (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
1040     MutexLocker ml(ParGCRareEvent_lock);
1041     DefNewGeneration::preserve_mark_if_necessary(obj, m);
1042   }
1043 }
1044 
1045 // Multiple GC threads may try to promote an object.  If the object
1046 // is successfully promoted, a forwarding pointer will be installed in
1047 // the object in the young generation.  This method claims the right
1048 // to install the forwarding pointer before it copies the object,
1049 // thus avoiding the need to undo the copy as in
1050 // copy_to_survivor_space_avoiding_with_undo.
1051 
1052 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1053         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1054   // In the sequential version, this assert also says that the object is
1055   // not forwarded.  That might not be the case here.  It is the case that
1056   // the caller observed it to be not forwarded at some time in the past.
1057   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1058 
1059   // The sequential code read "old->age()" below.  That doesn't work here,
1060   // since the age is in the mark word, and that might be overwritten with
1061   // a forwarding pointer by a parallel thread.  So we must save the mark
1062   // word in a local and then analyze it.
1063   oopDesc dummyOld;
1064   dummyOld.set_mark(m);
1065   assert(!dummyOld.is_forwarded(),
1066          "should not be called with forwarding pointer mark word.");
1067 
1068   oop new_obj = NULL;
1069   oop forward_ptr;
1070 
1071   // Try allocating obj in to-space (unless too old)
1072   if (dummyOld.age() < tenuring_threshold()) {
1073     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1074     if (new_obj == NULL) {
1075       set_survivor_overflow(true);
1076     }
1077   }
1078 
1079   if (new_obj == NULL) {
1080     // Either to-space is full or we decided to promote
1081     // try allocating obj tenured
1082 
1083     // Attempt to install a null forwarding pointer (atomically),
1084     // to claim the right to install the real forwarding pointer.
1085     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1086     if (forward_ptr != NULL) {
1087       // someone else beat us to it.
1088         return real_forwardee(old);
1089     }
1090 
1091     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1092                                        old, m, sz);
1093 
1094     if (new_obj == NULL) {
1095       if (!HandlePromotionFailure) {
1096         // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
1097         // is incorrectly set. In any case, its seriously wrong to be here!
1098         vm_exit_out_of_memory(sz*wordSize, "promotion");
1099       }
1100       // promotion failed, forward to self
1101       _promotion_failed = true;
1102       new_obj = old;
1103 
1104       preserve_mark_if_necessary(old, m);
1105       // Log the size of the maiden promotion failure
1106       par_scan_state->log_promotion_failure(sz);
1107     }
1108 
1109     old->forward_to(new_obj);
1110     forward_ptr = NULL;
1111   } else {
1112     // Is in to-space; do copying ourselves.
1113     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1114     forward_ptr = old->forward_to_atomic(new_obj);
1115     // Restore the mark word copied above.
1116     new_obj->set_mark(m);
1117     // Increment age if obj still in new generation
1118     new_obj->incr_age();
1119     par_scan_state->age_table()->add(new_obj, sz);
1120   }
1121   assert(new_obj != NULL, "just checking");
1122 
1123   if (forward_ptr == NULL) {
1124     oop obj_to_push = new_obj;
1125     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1126       // Length field used as index of next element to be scanned.
1127       // Real length can be obtained from real_forwardee()
1128       arrayOop(old)->set_length(0);
1129       obj_to_push = old;
1130       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1131              "push forwarded object");
1132     }
1133     // Push it on one of the queues of to-be-scanned objects.
1134     bool simulate_overflow = false;
1135     NOT_PRODUCT(
1136       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1137         // simulate a stack overflow
1138         simulate_overflow = true;
1139       }
1140     )
1141     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1142       // Add stats for overflow pushes.
1143       if (Verbose && PrintGCDetails) {
1144         gclog_or_tty->print("queue overflow!\n");
1145       }
1146       push_on_overflow_list(old, par_scan_state);
1147       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1148     }
1149 
1150     return new_obj;
1151   }
1152 
1153   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1154   // allocate it?
1155   if (is_in_reserved(new_obj)) {
1156     // Must be in to_space.
1157     assert(to()->is_in_reserved(new_obj), "Checking");
1158     if (forward_ptr == ClaimedForwardPtr) {
1159       // Wait to get the real forwarding pointer value.
1160       forward_ptr = real_forwardee(old);
1161     }
1162     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1163   }
1164 
1165   return forward_ptr;
1166 }
1167 
1168 
1169 // Multiple GC threads may try to promote the same object.  If two
1170 // or more GC threads copy the object, only one wins the race to install
1171 // the forwarding pointer.  The other threads have to undo their copy.
1172 
1173 oop ParNewGeneration::copy_to_survivor_space_with_undo(
1174         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1175 
1176   // In the sequential version, this assert also says that the object is
1177   // not forwarded.  That might not be the case here.  It is the case that
1178   // the caller observed it to be not forwarded at some time in the past.
1179   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1180 
1181   // The sequential code read "old->age()" below.  That doesn't work here,
1182   // since the age is in the mark word, and that might be overwritten with
1183   // a forwarding pointer by a parallel thread.  So we must save the mark
1184   // word here, install it in a local oopDesc, and then analyze it.
1185   oopDesc dummyOld;
1186   dummyOld.set_mark(m);
1187   assert(!dummyOld.is_forwarded(),
1188          "should not be called with forwarding pointer mark word.");
1189 
1190   bool failed_to_promote = false;
1191   oop new_obj = NULL;
1192   oop forward_ptr;
1193 
1194   // Try allocating obj in to-space (unless too old)
1195   if (dummyOld.age() < tenuring_threshold()) {
1196     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1197     if (new_obj == NULL) {
1198       set_survivor_overflow(true);
1199     }
1200   }
1201 
1202   if (new_obj == NULL) {
1203     // Either to-space is full or we decided to promote
1204     // try allocating obj tenured
1205     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1206                                        old, m, sz);
1207 
1208     if (new_obj == NULL) {
1209       if (!HandlePromotionFailure) {
1210         // A failed promotion likely means the MaxLiveObjectEvacuationRatio
1211         // flag is incorrectly set. In any case, its seriously wrong to be
1212         // here!
1213         vm_exit_out_of_memory(sz*wordSize, "promotion");
1214       }
1215       // promotion failed, forward to self
1216       forward_ptr = old->forward_to_atomic(old);
1217       new_obj = old;
1218 
1219       if (forward_ptr != NULL) {
1220         return forward_ptr;   // someone else succeeded
1221       }
1222 
1223       _promotion_failed = true;
1224       failed_to_promote = true;
1225 
1226       preserve_mark_if_necessary(old, m);
1227       // Log the size of the maiden promotion failure
1228       par_scan_state->log_promotion_failure(sz);
1229     }
1230   } else {
1231     // Is in to-space; do copying ourselves.
1232     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1233     // Restore the mark word copied above.
1234     new_obj->set_mark(m);
1235     // Increment age if new_obj still in new generation
1236     new_obj->incr_age();
1237     par_scan_state->age_table()->add(new_obj, sz);
1238   }
1239   assert(new_obj != NULL, "just checking");
1240 
1241   // Now attempt to install the forwarding pointer (atomically).
1242   // We have to copy the mark word before overwriting with forwarding
1243   // ptr, so we can restore it below in the copy.
1244   if (!failed_to_promote) {
1245     forward_ptr = old->forward_to_atomic(new_obj);
1246   }
1247 
1248   if (forward_ptr == NULL) {
1249     oop obj_to_push = new_obj;
1250     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1251       // Length field used as index of next element to be scanned.
1252       // Real length can be obtained from real_forwardee()
1253       arrayOop(old)->set_length(0);
1254       obj_to_push = old;
1255       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1256              "push forwarded object");
1257     }
1258     // Push it on one of the queues of to-be-scanned objects.
1259     bool simulate_overflow = false;
1260     NOT_PRODUCT(
1261       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1262         // simulate a stack overflow
1263         simulate_overflow = true;
1264       }
1265     )
1266     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1267       // Add stats for overflow pushes.
1268       push_on_overflow_list(old, par_scan_state);
1269       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1270     }
1271 
1272     return new_obj;
1273   }
1274 
1275   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1276   // allocate it?
1277   if (is_in_reserved(new_obj)) {
1278     // Must be in to_space.
1279     assert(to()->is_in_reserved(new_obj), "Checking");
1280     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1281   } else {
1282     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1283     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1284                                       (HeapWord*)new_obj, sz);
1285   }
1286 
1287   return forward_ptr;
1288 }
1289 
1290 #ifndef PRODUCT
1291 // It's OK to call this multi-threaded;  the worst thing
1292 // that can happen is that we'll get a bunch of closely
1293 // spaced simulated oveflows, but that's OK, in fact
1294 // probably good as it would exercise the overflow code
1295 // under contention.
1296 bool ParNewGeneration::should_simulate_overflow() {
1297   if (_overflow_counter-- <= 0) { // just being defensive
1298     _overflow_counter = ParGCWorkQueueOverflowInterval;
1299     return true;
1300   } else {
1301     return false;
1302   }
1303 }
1304 #endif
1305 
1306 // In case we are using compressed oops, we need to be careful.
1307 // If the object being pushed is an object array, then its length
1308 // field keeps track of the "grey boundary" at which the next
1309 // incremental scan will be done (see ParGCArrayScanChunk).
1310 // When using compressed oops, this length field is kept in the
1311 // lower 32 bits of the erstwhile klass word and cannot be used
1312 // for the overflow chaining pointer (OCP below). As such the OCP
1313 // would itself need to be compressed into the top 32-bits in this
1314 // case. Unfortunately, see below, in the event that we have a
1315 // promotion failure, the node to be pushed on the list can be
1316 // outside of the Java heap, so the heap-based pointer compression
1317 // would not work (we would have potential aliasing between C-heap
1318 // and Java-heap pointers). For this reason, when using compressed
1319 // oops, we simply use a worker-thread-local, non-shared overflow
1320 // list in the form of a growable array, with a slightly different
1321 // overflow stack draining strategy. If/when we start using fat
1322 // stacks here, we can go back to using (fat) pointer chains
1323 // (although some performance comparisons would be useful since
1324 // single global lists have their own performance disadvantages
1325 // as we were made painfully aware not long ago, see 6786503).
1326 #define BUSY (oop(0x1aff1aff))
1327 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1328   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1329   if (ParGCUseLocalOverflow) {
1330     // In the case of compressed oops, we use a private, not-shared
1331     // overflow stack.
1332     par_scan_state->push_on_overflow_stack(from_space_obj);
1333   } else {
1334     assert(!UseCompressedOops, "Error");
1335     // if the object has been forwarded to itself, then we cannot
1336     // use the klass pointer for the linked list.  Instead we have
1337     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1338     // XXX This is horribly inefficient when a promotion failure occurs
1339     // and should be fixed. XXX FIX ME !!!
1340 #ifndef PRODUCT
1341     Atomic::inc_ptr(&_num_par_pushes);
1342     assert(_num_par_pushes > 0, "Tautology");
1343 #endif
1344     if (from_space_obj->forwardee() == from_space_obj) {
1345       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
1346       listhead->forward_to(from_space_obj);
1347       from_space_obj = listhead;
1348     }
1349     oop observed_overflow_list = _overflow_list;
1350     oop cur_overflow_list;
1351     do {
1352       cur_overflow_list = observed_overflow_list;
1353       if (cur_overflow_list != BUSY) {
1354         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1355       } else {
1356         from_space_obj->set_klass_to_list_ptr(NULL);
1357       }
1358       observed_overflow_list =
1359         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1360     } while (cur_overflow_list != observed_overflow_list);
1361   }
1362 }
1363 
1364 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1365   bool res;
1366 
1367   if (ParGCUseLocalOverflow) {
1368     res = par_scan_state->take_from_overflow_stack();
1369   } else {
1370     assert(!UseCompressedOops, "Error");
1371     res = take_from_overflow_list_work(par_scan_state);
1372   }
1373   return res;
1374 }
1375 
1376 
1377 // *NOTE*: The overflow list manipulation code here and
1378 // in CMSCollector:: are very similar in shape,
1379 // except that in the CMS case we thread the objects
1380 // directly into the list via their mark word, and do
1381 // not need to deal with special cases below related
1382 // to chunking of object arrays and promotion failure
1383 // handling.
1384 // CR 6797058 has been filed to attempt consolidation of
1385 // the common code.
1386 // Because of the common code, if you make any changes in
1387 // the code below, please check the CMS version to see if
1388 // similar changes might be needed.
1389 // See CMSCollector::par_take_from_overflow_list() for
1390 // more extensive documentation comments.
1391 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1392   ObjToScanQueue* work_q = par_scan_state->work_queue();
1393   // How many to take?
1394   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1395                                  (size_t)ParGCDesiredObjsFromOverflowList);
1396 
1397   assert(!UseCompressedOops, "Error");
1398   assert(par_scan_state->overflow_stack() == NULL, "Error");
1399   if (_overflow_list == NULL) return false;
1400 
1401   // Otherwise, there was something there; try claiming the list.
1402   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1403   // Trim off a prefix of at most objsFromOverflow items
1404   Thread* tid = Thread::current();
1405   size_t spin_count = (size_t)ParallelGCThreads;
1406   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1407   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1408     // someone grabbed it before we did ...
1409     // ... we spin for a short while...
1410     os::sleep(tid, sleep_time_millis, false);
1411     if (_overflow_list == NULL) {
1412       // nothing left to take
1413       return false;
1414     } else if (_overflow_list != BUSY) {
1415      // try and grab the prefix
1416      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1417     }
1418   }
1419   if (prefix == NULL || prefix == BUSY) {
1420      // Nothing to take or waited long enough
1421      if (prefix == NULL) {
1422        // Write back the NULL in case we overwrote it with BUSY above
1423        // and it is still the same value.
1424        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1425      }
1426      return false;
1427   }
1428   assert(prefix != NULL && prefix != BUSY, "Error");
1429   size_t i = 1;
1430   oop cur = prefix;
1431   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1432     i++; cur = oop(cur->klass());
1433   }
1434 
1435   // Reattach remaining (suffix) to overflow list
1436   if (cur->klass_or_null() == NULL) {
1437     // Write back the NULL in lieu of the BUSY we wrote
1438     // above and it is still the same value.
1439     if (_overflow_list == BUSY) {
1440       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1441     }
1442   } else {
1443     assert(cur->klass_or_null() != BUSY, "Error");
1444     oop suffix = oop(cur->klass());       // suffix will be put back on global list
1445     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1446     // It's possible that the list is still in the empty(busy) state
1447     // we left it in a short while ago; in that case we may be
1448     // able to place back the suffix.
1449     oop observed_overflow_list = _overflow_list;
1450     oop cur_overflow_list = observed_overflow_list;
1451     bool attached = false;
1452     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1453       observed_overflow_list =
1454         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1455       if (cur_overflow_list == observed_overflow_list) {
1456         attached = true;
1457         break;
1458       } else cur_overflow_list = observed_overflow_list;
1459     }
1460     if (!attached) {
1461       // Too bad, someone else got in in between; we'll need to do a splice.
1462       // Find the last item of suffix list
1463       oop last = suffix;
1464       while (last->klass_or_null() != NULL) {
1465         last = oop(last->klass());
1466       }
1467       // Atomically prepend suffix to current overflow list
1468       observed_overflow_list = _overflow_list;
1469       do {
1470         cur_overflow_list = observed_overflow_list;
1471         if (cur_overflow_list != BUSY) {
1472           // Do the splice ...
1473           last->set_klass_to_list_ptr(cur_overflow_list);
1474         } else { // cur_overflow_list == BUSY
1475           last->set_klass_to_list_ptr(NULL);
1476         }
1477         observed_overflow_list =
1478           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1479       } while (cur_overflow_list != observed_overflow_list);
1480     }
1481   }
1482 
1483   // Push objects on prefix list onto this thread's work queue
1484   assert(prefix != NULL && prefix != BUSY, "program logic");
1485   cur = prefix;
1486   ssize_t n = 0;
1487   while (cur != NULL) {
1488     oop obj_to_push = cur->forwardee();
1489     oop next        = oop(cur->klass_or_null());
1490     cur->set_klass(obj_to_push->klass());
1491     // This may be an array object that is self-forwarded. In that case, the list pointer
1492     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1493     if (!is_in_reserved(cur)) {
1494       // This can become a scaling bottleneck when there is work queue overflow coincident
1495       // with promotion failure.
1496       oopDesc* f = cur;
1497       FREE_C_HEAP_ARRAY(oopDesc, f);
1498     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1499       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1500       obj_to_push = cur;
1501     }
1502     bool ok = work_q->push(obj_to_push);
1503     assert(ok, "Should have succeeded");
1504     cur = next;
1505     n++;
1506   }
1507   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1508 #ifndef PRODUCT
1509   assert(_num_par_pushes >= n, "Too many pops?");
1510   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1511 #endif
1512   return true;
1513 }
1514 #undef BUSY
1515 
1516 void ParNewGeneration::ref_processor_init()
1517 {
1518   if (_ref_processor == NULL) {
1519     // Allocate and initialize a reference processor
1520     _ref_processor = ReferenceProcessor::create_ref_processor(
1521         _reserved,                  // span
1522         refs_discovery_is_atomic(), // atomic_discovery
1523         refs_discovery_is_mt(),     // mt_discovery
1524         NULL,                       // is_alive_non_header
1525         ParallelGCThreads,
1526         ParallelRefProcEnabled);
1527   }
1528 }
1529 
1530 const char* ParNewGeneration::name() const {
1531   return "par new generation";
1532 }
1533 
1534 bool ParNewGeneration::in_use() {
1535   return UseParNewGC && ParallelGCThreads > 0;
1536 }