1 /*
   2  * Copyright (c) 2002, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_gcUtil.cpp.incl"
  27 
  28 // Catch-all file for utility classes
  29 
  30 float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
  31                                                         float average) {
  32   // We smooth the samples by not using weight() directly until we've
  33   // had enough data to make it meaningful. We'd like the first weight
  34   // used to be 1, the second to be 1/2, etc until we have 100/weight
  35   // samples.
  36   unsigned count_weight = 100/count();
  37   unsigned adaptive_weight = (MAX2(weight(), count_weight));
  38 
  39   float new_avg = exp_avg(average, new_sample, adaptive_weight);
  40 
  41   return new_avg;
  42 }
  43 
  44 void AdaptiveWeightedAverage::sample(float new_sample) {
  45   increment_count();
  46   assert(count() != 0,
  47          "Wraparound -- history would be incorrectly discarded");
  48 
  49   // Compute the new weighted average
  50   float new_avg = compute_adaptive_average(new_sample, average());
  51   set_average(new_avg);
  52   _last_sample = new_sample;
  53 }
  54 
  55 void AdaptiveWeightedAverage::print() const {
  56   print_on(tty);
  57 }
  58 
  59 void AdaptiveWeightedAverage::print_on(outputStream* st) const {
  60   guarantee(false, "NYI");
  61 }
  62 
  63 void AdaptivePaddedAverage::print() const {
  64   print_on(tty);
  65 }
  66 
  67 void AdaptivePaddedAverage::print_on(outputStream* st) const {
  68   guarantee(false, "NYI");
  69 }
  70 
  71 void AdaptivePaddedNoZeroDevAverage::print() const {
  72   print_on(tty);
  73 }
  74 
  75 void AdaptivePaddedNoZeroDevAverage::print_on(outputStream* st) const {
  76   guarantee(false, "NYI");
  77 }
  78 
  79 void AdaptivePaddedAverage::sample(float new_sample) {
  80   // Compute new adaptive weighted average based on new sample.
  81   AdaptiveWeightedAverage::sample(new_sample);
  82 
  83   // Now update the deviation and the padded average.
  84   float new_avg = average();
  85   float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
  86                                            deviation());
  87   set_deviation(new_dev);
  88   set_padded_average(new_avg + padding() * new_dev);
  89   _last_sample = new_sample;
  90 }
  91 
  92 void AdaptivePaddedNoZeroDevAverage::sample(float new_sample) {
  93   // Compute our parent classes sample information
  94   AdaptiveWeightedAverage::sample(new_sample);
  95 
  96   float new_avg = average();
  97   if (new_sample != 0) {
  98     // We only create a new deviation if the sample is non-zero
  99     float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
 100                                              deviation());
 101 
 102     set_deviation(new_dev);
 103   }
 104   set_padded_average(new_avg + padding() * deviation());
 105   _last_sample = new_sample;
 106 }
 107 
 108 LinearLeastSquareFit::LinearLeastSquareFit(unsigned weight) :
 109   _sum_x(0), _sum_y(0), _sum_xy(0),
 110   _mean_x(weight), _mean_y(weight) {}
 111 
 112 void LinearLeastSquareFit::update(double x, double y) {
 113   _sum_x = _sum_x + x;
 114   _sum_x_squared = _sum_x_squared + x * x;
 115   _sum_y = _sum_y + y;
 116   _sum_xy = _sum_xy + x * y;
 117   _mean_x.sample(x);
 118   _mean_y.sample(y);
 119   assert(_mean_x.count() == _mean_y.count(), "Incorrect count");
 120   if ( _mean_x.count() > 1 ) {
 121     double slope_denominator;
 122     slope_denominator = (_mean_x.count() * _sum_x_squared - _sum_x * _sum_x);
 123     // Some tolerance should be injected here.  A denominator that is
 124     // nearly 0 should be avoided.
 125 
 126     if (slope_denominator != 0.0) {
 127       double slope_numerator;
 128       slope_numerator = (_mean_x.count() * _sum_xy - _sum_x * _sum_y);
 129       _slope = slope_numerator / slope_denominator;
 130 
 131       // The _mean_y and _mean_x are decaying averages and can
 132       // be used to discount earlier data.  If they are used,
 133       // first consider whether all the quantities should be
 134       // kept as decaying averages.
 135       // _intercept = _mean_y.average() - _slope * _mean_x.average();
 136       _intercept = (_sum_y - _slope * _sum_x) / ((double) _mean_x.count());
 137     }
 138   }
 139 }
 140 
 141 double LinearLeastSquareFit::y(double x) {
 142   double new_y;
 143 
 144   if ( _mean_x.count() > 1 ) {
 145     new_y = (_intercept + _slope * x);
 146     return new_y;
 147   } else {
 148     return _mean_y.average();
 149   }
 150 }
 151 
 152 // Both decrement_will_decrease() and increment_will_decrease() return
 153 // true for a slope of 0.  That is because a change is necessary before
 154 // a slope can be calculated and a 0 slope will, in general, indicate
 155 // that no calculation of the slope has yet been done.  Returning true
 156 // for a slope equal to 0 reflects the intuitive expectation of the
 157 // dependence on the slope.  Don't use the complement of these functions
 158 // since that untuitive expectation is not built into the complement.
 159 bool LinearLeastSquareFit::decrement_will_decrease() {
 160   return (_slope >= 0.00);
 161 }
 162 
 163 bool LinearLeastSquareFit::increment_will_decrease() {
 164   return (_slope <= 0.00);
 165 }