1 /*
   2  * Copyright (c) 2006, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 /*
  26  *    The NUMA-aware allocator (MutableNUMASpace) is basically a modification
  27  * of MutableSpace which preserves interfaces but implements different
  28  * functionality. The space is split into chunks for each locality group
  29  * (resizing for adaptive size policy is also supported). For each thread
  30  * allocations are performed in the chunk corresponding to the home locality
  31  * group of the thread. Whenever any chunk fills-in the young generation
  32  * collection occurs.
  33  *   The chunks can be also be adaptively resized. The idea behind the adaptive
  34  * sizing is to reduce the loss of the space in the eden due to fragmentation.
  35  * The main cause of fragmentation is uneven allocation rates of threads.
  36  * The allocation rate difference between locality groups may be caused either by
  37  * application specifics or by uneven LWP distribution by the OS. Besides,
  38  * application can have less threads then the number of locality groups.
  39  * In order to resize the chunk we measure the allocation rate of the
  40  * application between collections. After that we reshape the chunks to reflect
  41  * the allocation rate pattern. The AdaptiveWeightedAverage exponentially
  42  * decaying average is used to smooth the measurements. The NUMASpaceResizeRate
  43  * parameter is used to control the adaptation speed by restricting the number of
  44  * bytes that can be moved during the adaptation phase.
  45  *   Chunks may contain pages from a wrong locality group. The page-scanner has
  46  * been introduced to address the problem. Remote pages typically appear due to
  47  * the memory shortage in the target locality group. Besides Solaris would
  48  * allocate a large page from the remote locality group even if there are small
  49  * local pages available. The page-scanner scans the pages right after the
  50  * collection and frees remote pages in hope that subsequent reallocation would
  51  * be more successful. This approach proved to be useful on systems with high
  52  * load where multiple processes are competing for the memory.
  53  */
  54 
  55 class MutableNUMASpace : public MutableSpace {
  56   friend class VMStructs;
  57 
  58   class LGRPSpace : public CHeapObj {
  59     int _lgrp_id;
  60     MutableSpace* _space;
  61     MemRegion _invalid_region;
  62     AdaptiveWeightedAverage *_alloc_rate;
  63     bool _allocation_failed;
  64 
  65     struct SpaceStats {
  66       size_t _local_space, _remote_space, _unbiased_space, _uncommited_space;
  67       size_t _large_pages, _small_pages;
  68 
  69       SpaceStats() {
  70         _local_space = 0;
  71         _remote_space = 0;
  72         _unbiased_space = 0;
  73         _uncommited_space = 0;
  74         _large_pages = 0;
  75         _small_pages = 0;
  76       }
  77     };
  78 
  79     SpaceStats _space_stats;
  80 
  81     char* _last_page_scanned;
  82     char* last_page_scanned()            { return _last_page_scanned; }
  83     void set_last_page_scanned(char* p)  { _last_page_scanned = p;    }
  84    public:
  85     LGRPSpace(int l, size_t alignment) : _lgrp_id(l), _last_page_scanned(NULL), _allocation_failed(false) {
  86       _space = new MutableSpace(alignment);
  87       _alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
  88     }
  89     ~LGRPSpace() {
  90       delete _space;
  91       delete _alloc_rate;
  92     }
  93 
  94     void add_invalid_region(MemRegion r) {
  95       if (!_invalid_region.is_empty()) {
  96       _invalid_region.set_start(MIN2(_invalid_region.start(), r.start()));
  97       _invalid_region.set_end(MAX2(_invalid_region.end(), r.end()));
  98       } else {
  99       _invalid_region = r;
 100       }
 101     }
 102 
 103     static bool equals(void* lgrp_id_value, LGRPSpace* p) {
 104       return *(int*)lgrp_id_value == p->lgrp_id();
 105     }
 106 
 107     // Report a failed allocation.
 108     void set_allocation_failed() { _allocation_failed = true;  }
 109 
 110     void sample() {
 111       // If there was a failed allocation make allocation rate equal
 112       // to the size of the whole chunk. This ensures the progress of
 113       // the adaptation process.
 114       size_t alloc_rate_sample;
 115       if (_allocation_failed) {
 116         alloc_rate_sample = space()->capacity_in_bytes();
 117         _allocation_failed = false;
 118       } else {
 119         alloc_rate_sample = space()->used_in_bytes();
 120       }
 121       alloc_rate()->sample(alloc_rate_sample);
 122     }
 123 
 124     MemRegion invalid_region() const                { return _invalid_region;      }
 125     void set_invalid_region(MemRegion r)            { _invalid_region = r;         }
 126     int lgrp_id() const                             { return _lgrp_id;             }
 127     MutableSpace* space() const                     { return _space;               }
 128     AdaptiveWeightedAverage* alloc_rate() const     { return _alloc_rate;          }
 129     void clear_alloc_rate()                         { _alloc_rate->clear();        }
 130     SpaceStats* space_stats()                       { return &_space_stats;        }
 131     void clear_space_stats()                        { _space_stats = SpaceStats(); }
 132 
 133     void accumulate_statistics(size_t page_size);
 134     void scan_pages(size_t page_size, size_t page_count);
 135   };
 136 
 137   GrowableArray<LGRPSpace*>* _lgrp_spaces;
 138   size_t _page_size;
 139   unsigned _adaptation_cycles, _samples_count;
 140 
 141   void set_page_size(size_t psz)                     { _page_size = psz;          }
 142   size_t page_size() const                           { return _page_size;         }
 143 
 144   unsigned adaptation_cycles()                       { return _adaptation_cycles; }
 145   void set_adaptation_cycles(int v)                  { _adaptation_cycles = v;    }
 146 
 147   unsigned samples_count()                           { return _samples_count;     }
 148   void increment_samples_count()                     { ++_samples_count;          }
 149 
 150   size_t _base_space_size;
 151   void set_base_space_size(size_t v)                 { _base_space_size = v;      }
 152   size_t base_space_size() const                     { return _base_space_size;   }
 153 
 154   // Check if the NUMA topology has changed. Add and remove spaces if needed.
 155   // The update can be forced by setting the force parameter equal to true.
 156   bool update_layout(bool force);
 157   // Bias region towards the lgrp.
 158   void bias_region(MemRegion mr, int lgrp_id);
 159   // Free pages in a given region.
 160   void free_region(MemRegion mr);
 161   // Get current chunk size.
 162   size_t current_chunk_size(int i);
 163   // Get default chunk size (equally divide the space).
 164   size_t default_chunk_size();
 165   // Adapt the chunk size to follow the allocation rate.
 166   size_t adaptive_chunk_size(int i, size_t limit);
 167   // Scan and free invalid pages.
 168   void scan_pages(size_t page_count);
 169   // Return the bottom_region and the top_region. Align them to page_size() boundary.
 170   // |------------------new_region---------------------------------|
 171   // |----bottom_region--|---intersection---|------top_region------|
 172   void select_tails(MemRegion new_region, MemRegion intersection,
 173                     MemRegion* bottom_region, MemRegion *top_region);
 174   // Try to merge the invalid region with the bottom or top region by decreasing
 175   // the intersection area. Return the invalid_region aligned to the page_size()
 176   // boundary if it's inside the intersection. Return non-empty invalid_region
 177   // if it lies inside the intersection (also page-aligned).
 178   // |------------------new_region---------------------------------|
 179   // |----------------|-------invalid---|--------------------------|
 180   // |----bottom_region--|---intersection---|------top_region------|
 181   void merge_regions(MemRegion new_region, MemRegion* intersection,
 182                      MemRegion *invalid_region);
 183 
 184  public:
 185   GrowableArray<LGRPSpace*>* lgrp_spaces() const     { return _lgrp_spaces;       }
 186   MutableNUMASpace(size_t alignment);
 187   virtual ~MutableNUMASpace();
 188   // Space initialization.
 189   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space, bool setup_pages = SetupPages);
 190   // Update space layout if necessary. Do all adaptive resizing job.
 191   virtual void update();
 192   // Update allocation rate averages.
 193   virtual void accumulate_statistics();
 194 
 195   virtual void clear(bool mangle_space);
 196   virtual void mangle_unused_area() PRODUCT_RETURN;
 197   virtual void mangle_unused_area_complete() PRODUCT_RETURN;
 198   virtual void mangle_region(MemRegion mr) PRODUCT_RETURN;
 199   virtual void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 200   virtual void check_mangled_unused_area_complete() PRODUCT_RETURN;
 201   virtual void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 202   virtual void set_top_for_allocations() PRODUCT_RETURN;
 203 
 204   virtual void ensure_parsability();
 205   virtual size_t used_in_words() const;
 206   virtual size_t free_in_words() const;
 207 
 208   using MutableSpace::capacity_in_words;
 209   virtual size_t capacity_in_words(Thread* thr) const;
 210   virtual size_t tlab_capacity(Thread* thr) const;
 211   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 212 
 213   // Allocation (return NULL if full)
 214   virtual HeapWord* allocate(size_t word_size);
 215   virtual HeapWord* cas_allocate(size_t word_size);
 216 
 217   // Debugging
 218   virtual void print_on(outputStream* st) const;
 219   virtual void print_short_on(outputStream* st) const;
 220   virtual void verify(bool allow_dirty);
 221 
 222   virtual void set_top(HeapWord* value);
 223 };