1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/vmGCOperations.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/init.hpp"
  32 #include "services/heapDumper.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "thread_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "thread_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "thread_windows.inline.hpp"
  41 #endif
  42 
  43 
  44 #ifdef ASSERT
  45 int CollectedHeap::_fire_out_of_memory_count = 0;
  46 #endif
  47 
  48 size_t CollectedHeap::_filler_array_max_size = 0;
  49 
  50 // Memory state functions.
  51 
  52 
  53 CollectedHeap::CollectedHeap() : _n_par_threads(0)
  54 
  55 {
  56   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  57   const size_t elements_per_word = HeapWordSize / sizeof(jint);
  58   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
  59                                              max_len * elements_per_word);
  60 
  61   _barrier_set = NULL;
  62   _is_gc_active = false;
  63   _total_collections = _total_full_collections = 0;
  64   _gc_cause = _gc_lastcause = GCCause::_no_gc;
  65   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  66   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
  67 
  68   if (UsePerfData) {
  69     EXCEPTION_MARK;
  70 
  71     // create the gc cause jvmstat counters
  72     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
  73                              80, GCCause::to_string(_gc_cause), CHECK);
  74 
  75     _perf_gc_lastcause =
  76                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
  77                              80, GCCause::to_string(_gc_lastcause), CHECK);
  78   }
  79   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  80 }
  81 
  82 void CollectedHeap::pre_initialize() {
  83   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  84   // otherwise remains unused.
  85 #ifdef COMPILER2
  86   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
  87                              && (DeferInitialCardMark || card_mark_must_follow_store());
  88 #else
  89   assert(_defer_initial_card_mark == false, "Who would set it?");
  90 #endif
  91 }
  92 
  93 #ifndef PRODUCT
  94 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  95   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
  96     for (size_t slot = 0; slot < size; slot += 1) {
  97       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
  98              "Found badHeapWordValue in post-allocation check");
  99     }
 100   }
 101 }
 102 
 103 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 104  {
 105   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 106     for (size_t slot = 0; slot < size; slot += 1) {
 107       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 108              "Found non badHeapWordValue in pre-allocation check");
 109     }
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifdef ASSERT
 115 void CollectedHeap::check_for_valid_allocation_state() {
 116   Thread *thread = Thread::current();
 117   // How to choose between a pending exception and a potential
 118   // OutOfMemoryError?  Don't allow pending exceptions.
 119   // This is a VM policy failure, so how do we exhaustively test it?
 120   assert(!thread->has_pending_exception(),
 121          "shouldn't be allocating with pending exception");
 122   if (StrictSafepointChecks) {
 123     assert(thread->allow_allocation(),
 124            "Allocation done by thread for which allocation is blocked "
 125            "by No_Allocation_Verifier!");
 126     // Allocation of an oop can always invoke a safepoint,
 127     // hence, the true argument
 128     thread->check_for_valid_safepoint_state(true);
 129   }
 130 }
 131 #endif
 132 
 133 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
 134 
 135   // Retain tlab and allocate object in shared space if
 136   // the amount free in the tlab is too large to discard.
 137   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 138     thread->tlab().record_slow_allocation(size);
 139     return NULL;
 140   }
 141 
 142   // Discard tlab and allocate a new one.
 143   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 144   size_t new_tlab_size = thread->tlab().compute_size(size);
 145 
 146   thread->tlab().clear_before_allocation();
 147 
 148   if (new_tlab_size == 0) {
 149     return NULL;
 150   }
 151 
 152   // Allocate a new TLAB...
 153   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 154   if (obj == NULL) {
 155     return NULL;
 156   }
 157   if (ZeroTLAB) {
 158     // ..and clear it.
 159     Copy::zero_to_words(obj, new_tlab_size);
 160   } else {
 161     // ...and clear just the allocated object.
 162     Copy::zero_to_words(obj, size);
 163   }
 164   thread->tlab().fill(obj, obj + size, new_tlab_size);
 165   return obj;
 166 }
 167 
 168 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 169   MemRegion deferred = thread->deferred_card_mark();
 170   if (!deferred.is_empty()) {
 171     assert(_defer_initial_card_mark, "Otherwise should be empty");
 172     {
 173       // Verify that the storage points to a parsable object in heap
 174       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 175       assert(is_in(old_obj), "Not in allocated heap");
 176       assert(!can_elide_initializing_store_barrier(old_obj),
 177              "Else should have been filtered in new_store_pre_barrier()");
 178       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 179       assert(old_obj->is_oop(true), "Not an oop");
 180       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 181       assert(deferred.word_size() == (size_t)(old_obj->size()),
 182              "Mismatch: multiple objects?");
 183     }
 184     BarrierSet* bs = barrier_set();
 185     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 186     bs->write_region(deferred);
 187     // "Clear" the deferred_card_mark field
 188     thread->set_deferred_card_mark(MemRegion());
 189   }
 190   assert(thread->deferred_card_mark().is_empty(), "invariant");
 191 }
 192 
 193 // Helper for ReduceInitialCardMarks. For performance,
 194 // compiled code may elide card-marks for initializing stores
 195 // to a newly allocated object along the fast-path. We
 196 // compensate for such elided card-marks as follows:
 197 // (a) Generational, non-concurrent collectors, such as
 198 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 199 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 200 //     need the card-mark if and only if the region is
 201 //     in the old gen, and do not care if the card-mark
 202 //     succeeds or precedes the initializing stores themselves,
 203 //     so long as the card-mark is completed before the next
 204 //     scavenge. For all these cases, we can do a card mark
 205 //     at the point at which we do a slow path allocation
 206 //     in the old gen, i.e. in this call.
 207 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 208 //     in addition that the card-mark for an old gen allocated
 209 //     object strictly follow any associated initializing stores.
 210 //     In these cases, the memRegion remembered below is
 211 //     used to card-mark the entire region either just before the next
 212 //     slow-path allocation by this thread or just before the next scavenge or
 213 //     CMS-associated safepoint, whichever of these events happens first.
 214 //     (The implicit assumption is that the object has been fully
 215 //     initialized by this point, a fact that we assert when doing the
 216 //     card-mark.)
 217 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 218 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 219 //     is used to remember the pre-value of any store. Initializing
 220 //     stores will not need this barrier, so we need not worry about
 221 //     compensating for the missing pre-barrier here. Turning now
 222 //     to the post-barrier, we note that G1 needs a RS update barrier
 223 //     which simply enqueues a (sequence of) dirty cards which may
 224 //     optionally be refined by the concurrent update threads. Note
 225 //     that this barrier need only be applied to a non-young write,
 226 //     but, like in CMS, because of the presence of concurrent refinement
 227 //     (much like CMS' precleaning), must strictly follow the oop-store.
 228 //     Thus, using the same protocol for maintaining the intended
 229 //     invariants turns out, serendepitously, to be the same for both
 230 //     G1 and CMS.
 231 //
 232 // For any future collector, this code should be reexamined with
 233 // that specific collector in mind, and the documentation above suitably
 234 // extended and updated.
 235 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 236   // If a previous card-mark was deferred, flush it now.
 237   flush_deferred_store_barrier(thread);
 238   if (can_elide_initializing_store_barrier(new_obj)) {
 239     // The deferred_card_mark region should be empty
 240     // following the flush above.
 241     assert(thread->deferred_card_mark().is_empty(), "Error");
 242   } else {
 243     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 244     assert(!mr.is_empty(), "Error");
 245     if (_defer_initial_card_mark) {
 246       // Defer the card mark
 247       thread->set_deferred_card_mark(mr);
 248     } else {
 249       // Do the card mark
 250       BarrierSet* bs = barrier_set();
 251       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 252       bs->write_region(mr);
 253     }
 254   }
 255   return new_obj;
 256 }
 257 
 258 size_t CollectedHeap::filler_array_hdr_size() {
 259   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 260 }
 261 
 262 size_t CollectedHeap::filler_array_min_size() {
 263   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 264 }
 265 
 266 size_t CollectedHeap::filler_array_max_size() {
 267   return _filler_array_max_size;
 268 }
 269 
 270 #ifdef ASSERT
 271 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 272 {
 273   assert(words >= min_fill_size(), "too small to fill");
 274   assert(words % MinObjAlignment == 0, "unaligned size");
 275   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 276   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 277 }
 278 
 279 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 280 {
 281   if (ZapFillerObjects && zap) {
 282     Copy::fill_to_words(start + filler_array_hdr_size(),
 283                         words - filler_array_hdr_size(), 0XDEAFBABE);
 284   }
 285 }
 286 #endif // ASSERT
 287 
 288 void
 289 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 290 {
 291   assert(words >= filler_array_min_size(), "too small for an array");
 292   assert(words <= filler_array_max_size(), "too big for a single object");
 293 
 294   const size_t payload_size = words - filler_array_hdr_size();
 295   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 296 
 297   // Set the length first for concurrent GC.
 298   ((arrayOop)start)->set_length((int)len);
 299   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
 300   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 301 }
 302 
 303 void
 304 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 305 {
 306   assert(words <= filler_array_max_size(), "too big for a single object");
 307 
 308   if (words >= filler_array_min_size()) {
 309     fill_with_array(start, words, zap);
 310   } else if (words > 0) {
 311     assert(words == min_fill_size(), "unaligned size");
 312     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
 313                                  words);
 314   }
 315 }
 316 
 317 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 318 {
 319   DEBUG_ONLY(fill_args_check(start, words);)
 320   HandleMark hm;  // Free handles before leaving.
 321   fill_with_object_impl(start, words, zap);
 322 }
 323 
 324 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 325 {
 326   DEBUG_ONLY(fill_args_check(start, words);)
 327   HandleMark hm;  // Free handles before leaving.
 328 
 329 #ifdef _LP64
 330   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 331   // First fill with arrays, ensuring that any remaining space is big enough to
 332   // fill.  The remainder is filled with a single object.
 333   const size_t min = min_fill_size();
 334   const size_t max = filler_array_max_size();
 335   while (words > max) {
 336     const size_t cur = words - max >= min ? max : max - min;
 337     fill_with_array(start, cur, zap);
 338     start += cur;
 339     words -= cur;
 340   }
 341 #endif
 342 
 343   fill_with_object_impl(start, words, zap);
 344 }
 345 
 346 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 347   guarantee(false, "thread-local allocation buffers not supported");
 348   return NULL;
 349 }
 350 
 351 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 352   // The second disjunct in the assertion below makes a concession
 353   // for the start-up verification done while the VM is being
 354   // created. Callers be careful that you know that mutators
 355   // aren't going to interfere -- for instance, this is permissible
 356   // if we are still single-threaded and have either not yet
 357   // started allocating (nothing much to verify) or we have
 358   // started allocating but are now a full-fledged JavaThread
 359   // (and have thus made our TLAB's) available for filling.
 360   assert(SafepointSynchronize::is_at_safepoint() ||
 361          !is_init_completed(),
 362          "Should only be called at a safepoint or at start-up"
 363          " otherwise concurrent mutator activity may make heap "
 364          " unparsable again");
 365   const bool use_tlab = UseTLAB;
 366   const bool deferred = _defer_initial_card_mark;
 367   // The main thread starts allocating via a TLAB even before it
 368   // has added itself to the threads list at vm boot-up.
 369   assert(!use_tlab || Threads::first() != NULL,
 370          "Attempt to fill tlabs before main thread has been added"
 371          " to threads list is doomed to failure!");
 372   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 373      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 374 #ifdef COMPILER2
 375      // The deferred store barriers must all have been flushed to the
 376      // card-table (or other remembered set structure) before GC starts
 377      // processing the card-table (or other remembered set).
 378      if (deferred) flush_deferred_store_barrier(thread);
 379 #else
 380      assert(!deferred, "Should be false");
 381      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 382 #endif
 383   }
 384 }
 385 
 386 void CollectedHeap::accumulate_statistics_all_tlabs() {
 387   if (UseTLAB) {
 388     assert(SafepointSynchronize::is_at_safepoint() ||
 389          !is_init_completed(),
 390          "should only accumulate statistics on tlabs at safepoint");
 391 
 392     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 393   }
 394 }
 395 
 396 void CollectedHeap::resize_all_tlabs() {
 397   if (UseTLAB) {
 398     assert(SafepointSynchronize::is_at_safepoint() ||
 399          !is_init_completed(),
 400          "should only resize tlabs at safepoint");
 401 
 402     ThreadLocalAllocBuffer::resize_all_tlabs();
 403   }
 404 }
 405 
 406 void CollectedHeap::pre_full_gc_dump() {
 407   if (HeapDumpBeforeFullGC) {
 408     TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
 409     // We are doing a "major" collection and a heap dump before
 410     // major collection has been requested.
 411     HeapDumper::dump_heap();
 412   }
 413   if (PrintClassHistogramBeforeFullGC) {
 414     TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
 415     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 416     inspector.doit();
 417   }
 418 }
 419 
 420 void CollectedHeap::post_full_gc_dump() {
 421   if (HeapDumpAfterFullGC) {
 422     TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
 423     HeapDumper::dump_heap();
 424   }
 425   if (PrintClassHistogramAfterFullGC) {
 426     TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
 427     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 428     inspector.doit();
 429   }
 430 }