1 /*
   2  * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_allocation.cpp.incl"
  27 
  28 void* CHeapObj::operator new(size_t size){
  29   return (void *) AllocateHeap(size, "CHeapObj-new");
  30 }
  31 
  32 void CHeapObj::operator delete(void* p){
  33  FreeHeap(p);
  34 }
  35 
  36 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  37 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
  38 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  39 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
  40 
  41 void* ResourceObj::operator new(size_t size, allocation_type type) {
  42   address res;
  43   switch (type) {
  44    case C_HEAP:
  45     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
  46     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
  47     break;
  48    case RESOURCE_AREA:
  49     // new(size) sets allocation type RESOURCE_AREA.
  50     res = (address)operator new(size);
  51     break;
  52    default:
  53     ShouldNotReachHere();
  54   }
  55   return res;
  56 }
  57 
  58 void ResourceObj::operator delete(void* p) {
  59   assert(((ResourceObj *)p)->allocated_on_C_heap(),
  60          "delete only allowed for C_HEAP objects");
  61   DEBUG_ONLY(((ResourceObj *)p)->_allocation = (uintptr_t)badHeapOopVal;)
  62   FreeHeap(p);
  63 }
  64 
  65 #ifdef ASSERT
  66 void ResourceObj::set_allocation_type(address res, allocation_type type) {
  67     // Set allocation type in the resource object
  68     uintptr_t allocation = (uintptr_t)res;
  69     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
  70     assert(type <= allocation_mask, "incorrect allocation type");
  71     ((ResourceObj *)res)->_allocation = ~(allocation + type);
  72 }
  73 
  74 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
  75     assert(~(_allocation | allocation_mask) == (uintptr_t)this, "lost resource object");
  76     return (allocation_type)((~_allocation) & allocation_mask);
  77 }
  78 
  79 ResourceObj::ResourceObj() { // default constructor
  80     if (~(_allocation | allocation_mask) != (uintptr_t)this) {
  81       set_allocation_type((address)this, STACK_OR_EMBEDDED);
  82     } else if (allocated_on_stack()) {
  83       // For some reason we got a value which looks like an allocation on stack.
  84       // Pass if it is really allocated on stack.
  85       assert(Thread::current()->on_local_stack((address)this),"should be on stack");
  86     } else {
  87       assert(allocated_on_res_area() || allocated_on_C_heap() || allocated_on_arena(),
  88              "allocation_type should be set by operator new()");
  89     }
  90 }
  91 
  92 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
  93     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
  94     set_allocation_type((address)this, STACK_OR_EMBEDDED);
  95 }
  96 
  97 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
  98     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
  99     assert(allocated_on_stack(), "copy only into local");
 100     // Keep current _allocation value;
 101     return *this;
 102 }
 103 
 104 ResourceObj::~ResourceObj() {
 105     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
 106     if (!allocated_on_C_heap()) {  // ResourceObj::delete() zaps _allocation for C_heap.
 107       _allocation = (uintptr_t)badHeapOopVal; // zap type
 108     }
 109 }
 110 #endif // ASSERT
 111 
 112 
 113 void trace_heap_malloc(size_t size, const char* name, void* p) {
 114   // A lock is not needed here - tty uses a lock internally
 115   tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name);
 116 }
 117 
 118 
 119 void trace_heap_free(void* p) {
 120   // A lock is not needed here - tty uses a lock internally
 121   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
 122 }
 123 
 124 bool warn_new_operator = false; // see vm_main
 125 
 126 //--------------------------------------------------------------------------------------
 127 // ChunkPool implementation
 128 
 129 // MT-safe pool of chunks to reduce malloc/free thrashing
 130 // NB: not using Mutex because pools are used before Threads are initialized
 131 class ChunkPool {
 132   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
 133   size_t       _num_chunks;   // number of unused chunks in pool
 134   size_t       _num_used;     // number of chunks currently checked out
 135   const size_t _size;         // size of each chunk (must be uniform)
 136 
 137   // Our three static pools
 138   static ChunkPool* _large_pool;
 139   static ChunkPool* _medium_pool;
 140   static ChunkPool* _small_pool;
 141 
 142   // return first element or null
 143   void* get_first() {
 144     Chunk* c = _first;
 145     if (_first) {
 146       _first = _first->next();
 147       _num_chunks--;
 148     }
 149     return c;
 150   }
 151 
 152  public:
 153   // All chunks in a ChunkPool has the same size
 154    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
 155 
 156   // Allocate a new chunk from the pool (might expand the pool)
 157   void* allocate(size_t bytes) {
 158     assert(bytes == _size, "bad size");
 159     void* p = NULL;
 160     { ThreadCritical tc;
 161       _num_used++;
 162       p = get_first();
 163       if (p == NULL) p = os::malloc(bytes);
 164     }
 165     if (p == NULL)
 166       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
 167 
 168     return p;
 169   }
 170 
 171   // Return a chunk to the pool
 172   void free(Chunk* chunk) {
 173     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
 174     ThreadCritical tc;
 175     _num_used--;
 176 
 177     // Add chunk to list
 178     chunk->set_next(_first);
 179     _first = chunk;
 180     _num_chunks++;
 181   }
 182 
 183   // Prune the pool
 184   void free_all_but(size_t n) {
 185     // if we have more than n chunks, free all of them
 186     ThreadCritical tc;
 187     if (_num_chunks > n) {
 188       // free chunks at end of queue, for better locality
 189       Chunk* cur = _first;
 190       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
 191 
 192       if (cur != NULL) {
 193         Chunk* next = cur->next();
 194         cur->set_next(NULL);
 195         cur = next;
 196 
 197         // Free all remaining chunks
 198         while(cur != NULL) {
 199           next = cur->next();
 200           os::free(cur);
 201           _num_chunks--;
 202           cur = next;
 203         }
 204       }
 205     }
 206   }
 207 
 208   // Accessors to preallocated pool's
 209   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
 210   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
 211   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
 212 
 213   static void initialize() {
 214     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
 215     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
 216     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
 217   }
 218 
 219   static void clean() {
 220     enum { BlocksToKeep = 5 };
 221      _small_pool->free_all_but(BlocksToKeep);
 222      _medium_pool->free_all_but(BlocksToKeep);
 223      _large_pool->free_all_but(BlocksToKeep);
 224   }
 225 };
 226 
 227 ChunkPool* ChunkPool::_large_pool  = NULL;
 228 ChunkPool* ChunkPool::_medium_pool = NULL;
 229 ChunkPool* ChunkPool::_small_pool  = NULL;
 230 
 231 void chunkpool_init() {
 232   ChunkPool::initialize();
 233 }
 234 
 235 void
 236 Chunk::clean_chunk_pool() {
 237   ChunkPool::clean();
 238 }
 239 
 240 
 241 //--------------------------------------------------------------------------------------
 242 // ChunkPoolCleaner implementation
 243 //
 244 
 245 class ChunkPoolCleaner : public PeriodicTask {
 246   enum { CleaningInterval = 5000 };      // cleaning interval in ms
 247 
 248  public:
 249    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
 250    void task() {
 251      ChunkPool::clean();
 252    }
 253 };
 254 
 255 //--------------------------------------------------------------------------------------
 256 // Chunk implementation
 257 
 258 void* Chunk::operator new(size_t requested_size, size_t length) {
 259   // requested_size is equal to sizeof(Chunk) but in order for the arena
 260   // allocations to come out aligned as expected the size must be aligned
 261   // to expected arean alignment.
 262   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
 263   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
 264   size_t bytes = ARENA_ALIGN(requested_size) + length;
 265   switch (length) {
 266    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
 267    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
 268    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
 269    default: {
 270      void *p =  os::malloc(bytes);
 271      if (p == NULL)
 272        vm_exit_out_of_memory(bytes, "Chunk::new");
 273      return p;
 274    }
 275   }
 276 }
 277 
 278 void Chunk::operator delete(void* p) {
 279   Chunk* c = (Chunk*)p;
 280   switch (c->length()) {
 281    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
 282    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
 283    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
 284    default:                 os::free(c);
 285   }
 286 }
 287 
 288 Chunk::Chunk(size_t length) : _len(length) {
 289   _next = NULL;         // Chain on the linked list
 290 }
 291 
 292 
 293 void Chunk::chop() {
 294   Chunk *k = this;
 295   while( k ) {
 296     Chunk *tmp = k->next();
 297     // clear out this chunk (to detect allocation bugs)
 298     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
 299     delete k;                   // Free chunk (was malloc'd)
 300     k = tmp;
 301   }
 302 }
 303 
 304 void Chunk::next_chop() {
 305   _next->chop();
 306   _next = NULL;
 307 }
 308 
 309 
 310 void Chunk::start_chunk_pool_cleaner_task() {
 311 #ifdef ASSERT
 312   static bool task_created = false;
 313   assert(!task_created, "should not start chuck pool cleaner twice");
 314   task_created = true;
 315 #endif
 316   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
 317   cleaner->enroll();
 318 }
 319 
 320 //------------------------------Arena------------------------------------------
 321 
 322 Arena::Arena(size_t init_size) {
 323   size_t round_size = (sizeof (char *)) - 1;
 324   init_size = (init_size+round_size) & ~round_size;
 325   _first = _chunk = new (init_size) Chunk(init_size);
 326   _hwm = _chunk->bottom();      // Save the cached hwm, max
 327   _max = _chunk->top();
 328   set_size_in_bytes(init_size);
 329 }
 330 
 331 Arena::Arena() {
 332   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
 333   _hwm = _chunk->bottom();      // Save the cached hwm, max
 334   _max = _chunk->top();
 335   set_size_in_bytes(Chunk::init_size);
 336 }
 337 
 338 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
 339   set_size_in_bytes(a->size_in_bytes());
 340 }
 341 
 342 Arena *Arena::move_contents(Arena *copy) {
 343   copy->destruct_contents();
 344   copy->_chunk = _chunk;
 345   copy->_hwm   = _hwm;
 346   copy->_max   = _max;
 347   copy->_first = _first;
 348   copy->set_size_in_bytes(size_in_bytes());
 349   // Destroy original arena
 350   reset();
 351   return copy;            // Return Arena with contents
 352 }
 353 
 354 Arena::~Arena() {
 355   destruct_contents();
 356 }
 357 
 358 // Destroy this arenas contents and reset to empty
 359 void Arena::destruct_contents() {
 360   if (UseMallocOnly && _first != NULL) {
 361     char* end = _first->next() ? _first->top() : _hwm;
 362     free_malloced_objects(_first, _first->bottom(), end, _hwm);
 363   }
 364   _first->chop();
 365   reset();
 366 }
 367 
 368 
 369 // Total of all Chunks in arena
 370 size_t Arena::used() const {
 371   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
 372   register Chunk *k = _first;
 373   while( k != _chunk) {         // Whilst have Chunks in a row
 374     sum += k->length();         // Total size of this Chunk
 375     k = k->next();              // Bump along to next Chunk
 376   }
 377   return sum;                   // Return total consumed space.
 378 }
 379 
 380 
 381 // Grow a new Chunk
 382 void* Arena::grow( size_t x ) {
 383   // Get minimal required size.  Either real big, or even bigger for giant objs
 384   size_t len = MAX2(x, (size_t) Chunk::size);
 385 
 386   Chunk *k = _chunk;            // Get filled-up chunk address
 387   _chunk = new (len) Chunk(len);
 388 
 389   if (_chunk == NULL)
 390       vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
 391 
 392   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
 393   else _first = _chunk;
 394   _hwm  = _chunk->bottom();     // Save the cached hwm, max
 395   _max =  _chunk->top();
 396   set_size_in_bytes(size_in_bytes() + len);
 397   void* result = _hwm;
 398   _hwm += x;
 399   return result;
 400 }
 401 
 402 
 403 
 404 // Reallocate storage in Arena.
 405 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
 406   assert(new_size >= 0, "bad size");
 407   if (new_size == 0) return NULL;
 408 #ifdef ASSERT
 409   if (UseMallocOnly) {
 410     // always allocate a new object  (otherwise we'll free this one twice)
 411     char* copy = (char*)Amalloc(new_size);
 412     size_t n = MIN2(old_size, new_size);
 413     if (n > 0) memcpy(copy, old_ptr, n);
 414     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
 415     return copy;
 416   }
 417 #endif
 418   char *c_old = (char*)old_ptr; // Handy name
 419   // Stupid fast special case
 420   if( new_size <= old_size ) {  // Shrink in-place
 421     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
 422       _hwm = c_old+new_size;    // Adjust hwm
 423     return c_old;
 424   }
 425 
 426   // make sure that new_size is legal
 427   size_t corrected_new_size = ARENA_ALIGN(new_size);
 428 
 429   // See if we can resize in-place
 430   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
 431       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
 432     _hwm = c_old+corrected_new_size;      // Adjust hwm
 433     return c_old;               // Return old pointer
 434   }
 435 
 436   // Oops, got to relocate guts
 437   void *new_ptr = Amalloc(new_size);
 438   memcpy( new_ptr, c_old, old_size );
 439   Afree(c_old,old_size);        // Mostly done to keep stats accurate
 440   return new_ptr;
 441 }
 442 
 443 
 444 // Determine if pointer belongs to this Arena or not.
 445 bool Arena::contains( const void *ptr ) const {
 446 #ifdef ASSERT
 447   if (UseMallocOnly) {
 448     // really slow, but not easy to make fast
 449     if (_chunk == NULL) return false;
 450     char** bottom = (char**)_chunk->bottom();
 451     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
 452       if (*p == ptr) return true;
 453     }
 454     for (Chunk *c = _first; c != NULL; c = c->next()) {
 455       if (c == _chunk) continue;  // current chunk has been processed
 456       char** bottom = (char**)c->bottom();
 457       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
 458         if (*p == ptr) return true;
 459       }
 460     }
 461     return false;
 462   }
 463 #endif
 464   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
 465     return true;                // Check for in this chunk
 466   for (Chunk *c = _first; c; c = c->next()) {
 467     if (c == _chunk) continue;  // current chunk has been processed
 468     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
 469       return true;              // Check for every chunk in Arena
 470     }
 471   }
 472   return false;                 // Not in any Chunk, so not in Arena
 473 }
 474 
 475 
 476 #ifdef ASSERT
 477 void* Arena::malloc(size_t size) {
 478   assert(UseMallocOnly, "shouldn't call");
 479   // use malloc, but save pointer in res. area for later freeing
 480   char** save = (char**)internal_malloc_4(sizeof(char*));
 481   return (*save = (char*)os::malloc(size));
 482 }
 483 
 484 // for debugging with UseMallocOnly
 485 void* Arena::internal_malloc_4(size_t x) {
 486   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 487   if (_hwm + x > _max) {
 488     return grow(x);
 489   } else {
 490     char *old = _hwm;
 491     _hwm += x;
 492     return old;
 493   }
 494 }
 495 #endif
 496 
 497 
 498 //--------------------------------------------------------------------------------------
 499 // Non-product code
 500 
 501 #ifndef PRODUCT
 502 // The global operator new should never be called since it will usually indicate
 503 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
 504 // that they're allocated on the C heap.
 505 // Commented out in product version to avoid conflicts with third-party C++ native code.
 506 // %% note this is causing a problem on solaris debug build. the global
 507 // new is being called from jdk source and causing data corruption.
 508 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
 509 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
 510 #ifdef CATCH_OPERATOR_NEW_USAGE
 511 void* operator new(size_t size){
 512   static bool warned = false;
 513   if (!warned && warn_new_operator)
 514     warning("should not call global (default) operator new");
 515   warned = true;
 516   return (void *) AllocateHeap(size, "global operator new");
 517 }
 518 #endif
 519 
 520 void AllocatedObj::print() const       { print_on(tty); }
 521 void AllocatedObj::print_value() const { print_value_on(tty); }
 522 
 523 void AllocatedObj::print_on(outputStream* st) const {
 524   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
 525 }
 526 
 527 void AllocatedObj::print_value_on(outputStream* st) const {
 528   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
 529 }
 530 
 531 size_t Arena::_bytes_allocated = 0;
 532 
 533 AllocStats::AllocStats() {
 534   start_mallocs = os::num_mallocs;
 535   start_frees = os::num_frees;
 536   start_malloc_bytes = os::alloc_bytes;
 537   start_res_bytes = Arena::_bytes_allocated;
 538 }
 539 
 540 int     AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
 541 size_t  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
 542 size_t  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
 543 int     AllocStats::num_frees() { return os::num_frees - start_frees; }
 544 void    AllocStats::print() {
 545   tty->print("%d mallocs (%ldK), %d frees, %ldK resrc",
 546              num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K);
 547 }
 548 
 549 
 550 // debugging code
 551 inline void Arena::free_all(char** start, char** end) {
 552   for (char** p = start; p < end; p++) if (*p) os::free(*p);
 553 }
 554 
 555 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
 556   assert(UseMallocOnly, "should not call");
 557   // free all objects malloced since resource mark was created; resource area
 558   // contains their addresses
 559   if (chunk->next()) {
 560     // this chunk is full, and some others too
 561     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
 562       char* top = c->top();
 563       if (c->next() == NULL) {
 564         top = hwm2;     // last junk is only used up to hwm2
 565         assert(c->contains(hwm2), "bad hwm2");
 566       }
 567       free_all((char**)c->bottom(), (char**)top);
 568     }
 569     assert(chunk->contains(hwm), "bad hwm");
 570     assert(chunk->contains(max), "bad max");
 571     free_all((char**)hwm, (char**)max);
 572   } else {
 573     // this chunk was partially used
 574     assert(chunk->contains(hwm), "bad hwm");
 575     assert(chunk->contains(hwm2), "bad hwm2");
 576     free_all((char**)hwm, (char**)hwm2);
 577   }
 578 }
 579 
 580 
 581 ReallocMark::ReallocMark() {
 582 #ifdef ASSERT
 583   Thread *thread = ThreadLocalStorage::get_thread_slow();
 584   _nesting = thread->resource_area()->nesting();
 585 #endif
 586 }
 587 
 588 void ReallocMark::check() {
 589 #ifdef ASSERT
 590   if (_nesting != Thread::current()->resource_area()->nesting()) {
 591     fatal("allocation bug: array could grow within nested ResourceMark");
 592   }
 593 #endif
 594 }
 595 
 596 #endif // Non-product