1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableRS.hpp"
  28 #include "memory/genCollectedHeap.hpp"
  29 #include "memory/generation.hpp"
  30 #include "memory/space.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/os.hpp"
  34 #ifndef SERIALGC
  35 #include "gc_implementation/g1/concurrentMark.hpp"
  36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  37 #endif
  38 
  39 CardTableRS::CardTableRS(MemRegion whole_heap,
  40                          int max_covered_regions) :
  41   GenRemSet(),
  42   _cur_youngergen_card_val(youngergenP1_card),
  43   _regions_to_iterate(max_covered_regions - 1)
  44 {
  45 #ifndef SERIALGC
  46   if (UseG1GC) {
  47       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
  48                                                   max_covered_regions);
  49   } else {
  50     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  51   }
  52 #else
  53   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  54 #endif
  55   set_bs(_ct_bs);
  56   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
  57   if (_last_cur_val_in_gen == NULL) {
  58     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
  59   }
  60   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
  61     _last_cur_val_in_gen[i] = clean_card_val();
  62   }
  63   _ct_bs->set_CTRS(this);
  64 }
  65 
  66 void CardTableRS::resize_covered_region(MemRegion new_region) {
  67   _ct_bs->resize_covered_region(new_region);
  68 }
  69 
  70 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  71   for (jbyte v = youngergenP1_card;
  72        v < cur_youngergen_and_prev_nonclean_card;
  73        v++) {
  74     bool seen = false;
  75     for (int g = 0; g < _regions_to_iterate; g++) {
  76       if (_last_cur_val_in_gen[g] == v) {
  77         seen = true;
  78         break;
  79       }
  80     }
  81     if (!seen) return v;
  82   }
  83   ShouldNotReachHere();
  84   return 0;
  85 }
  86 
  87 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
  88   // Parallel or sequential, we must always set the prev to equal the
  89   // last one written.
  90   if (parallel) {
  91     // Find a parallel value to be used next.
  92     jbyte next_val = find_unused_youngergenP_card_value();
  93     set_cur_youngergen_card_val(next_val);
  94 
  95   } else {
  96     // In an sequential traversal we will always write youngergen, so that
  97     // the inline barrier is  correct.
  98     set_cur_youngergen_card_val(youngergen_card);
  99   }
 100 }
 101 
 102 void CardTableRS::younger_refs_iterate(Generation* g,
 103                                        OopsInGenClosure* blk) {
 104   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
 105   g->younger_refs_iterate(blk);
 106 }
 107 
 108 class ClearNoncleanCardWrapper: public MemRegionClosure {
 109   MemRegionClosure* _dirty_card_closure;
 110   CardTableRS* _ct;
 111   bool _is_par;
 112 private:
 113   // Clears the given card, return true if the corresponding card should be
 114   // processed.
 115   bool clear_card(jbyte* entry) {
 116     if (_is_par) {
 117       while (true) {
 118         // In the parallel case, we may have to do this several times.
 119         jbyte entry_val = *entry;
 120         assert(entry_val != CardTableRS::clean_card_val(),
 121                "We shouldn't be looking at clean cards, and this should "
 122                "be the only place they get cleaned.");
 123         if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 124             || _ct->is_prev_youngergen_card_val(entry_val)) {
 125           jbyte res =
 126             Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 127           if (res == entry_val) {
 128             break;
 129           } else {
 130             assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 131                    "The CAS above should only fail if another thread did "
 132                    "a GC write barrier.");
 133           }
 134         } else if (entry_val ==
 135                    CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 136           // Parallelism shouldn't matter in this case.  Only the thread
 137           // assigned to scan the card should change this value.
 138           *entry = _ct->cur_youngergen_card_val();
 139           break;
 140         } else {
 141           assert(entry_val == _ct->cur_youngergen_card_val(),
 142                  "Should be the only possibility.");
 143           // In this case, the card was clean before, and become
 144           // cur_youngergen only because of processing of a promoted object.
 145           // We don't have to look at the card.
 146           return false;
 147         }
 148       }
 149       return true;
 150     } else {
 151       jbyte entry_val = *entry;
 152       assert(entry_val != CardTableRS::clean_card_val(),
 153              "We shouldn't be looking at clean cards, and this should "
 154              "be the only place they get cleaned.");
 155       assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 156              "This should be possible in the sequential case.");
 157       *entry = CardTableRS::clean_card_val();
 158       return true;
 159     }
 160   }
 161 
 162 public:
 163   ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
 164                            CardTableRS* ct) :
 165     _dirty_card_closure(dirty_card_closure), _ct(ct) {
 166     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
 167   }
 168   void do_MemRegion(MemRegion mr) {
 169     // We start at the high end of "mr", walking backwards
 170     // while accumulating a contiguous dirty range of cards in
 171     // [start_of_non_clean, end_of_non_clean) which we then
 172     // process en masse.
 173     HeapWord* end_of_non_clean = mr.end();
 174     HeapWord* start_of_non_clean = end_of_non_clean;
 175     jbyte*       entry = _ct->byte_for(mr.last());
 176     const jbyte* first_entry = _ct->byte_for(mr.start());
 177     while (entry >= first_entry) {
 178       HeapWord* cur = _ct->addr_for(entry);
 179       if (!clear_card(entry)) {
 180         // We hit a clean card; process any non-empty
 181         // dirty range accumulated so far.
 182         if (start_of_non_clean < end_of_non_clean) {
 183           MemRegion mr2(start_of_non_clean, end_of_non_clean);
 184           _dirty_card_closure->do_MemRegion(mr2);
 185         }
 186         // Reset the dirty window while continuing to
 187         // look for the next dirty window to process.
 188         end_of_non_clean = cur;
 189         start_of_non_clean = end_of_non_clean;
 190       }
 191       // Open the left end of the window one card to the left.
 192       start_of_non_clean = cur;
 193       // Note that "entry" leads "start_of_non_clean" in
 194       // its leftward excursion after this point
 195       // in the loop and, when we hit the left end of "mr",
 196       // will point off of the left end of the card-table
 197       // for "mr".
 198       entry--;
 199     }
 200     // If the first card of "mr" was dirty, we will have
 201     // been left with a dirty window, co-initial with "mr",
 202     // which we now process.
 203     if (start_of_non_clean < end_of_non_clean) {
 204       MemRegion mr2(start_of_non_clean, end_of_non_clean);
 205       _dirty_card_closure->do_MemRegion(mr2);
 206     }
 207   }
 208 };
 209 // clean (by dirty->clean before) ==> cur_younger_gen
 210 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 211 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 212 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 213 // cur-younger-gen                ==> cur_younger_gen
 214 // cur_youngergen_and_prev_nonclean_card ==> no change.
 215 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 216   jbyte* entry = ct_bs()->byte_for(field);
 217   do {
 218     jbyte entry_val = *entry;
 219     // We put this first because it's probably the most common case.
 220     if (entry_val == clean_card_val()) {
 221       // No threat of contention with cleaning threads.
 222       *entry = cur_youngergen_card_val();
 223       return;
 224     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 225                || is_prev_youngergen_card_val(entry_val)) {
 226       // Mark it as both cur and prev youngergen; card cleaning thread will
 227       // eventually remove the previous stuff.
 228       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 229       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 230       // Did the CAS succeed?
 231       if (res == entry_val) return;
 232       // Otherwise, retry, to see the new value.
 233       continue;
 234     } else {
 235       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 236              || entry_val == cur_youngergen_card_val(),
 237              "should be only possibilities.");
 238       return;
 239     }
 240   } while (true);
 241 }
 242 
 243 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 244                                                 OopsInGenClosure* cl) {
 245   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
 246                                                    cl->gen_boundary());
 247   ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
 248 
 249   _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
 250                                 dcto_cl, &clear_cl, false);
 251 }
 252 
 253 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
 254   GenCollectedHeap* gch = GenCollectedHeap::heap();
 255   // Generations younger than gen have been evacuated. We can clear
 256   // card table entries for gen (we know that it has no pointers
 257   // to younger gens) and for those below. The card tables for
 258   // the youngest gen need never be cleared, and those for perm gen
 259   // will be cleared based on the parameter clear_perm.
 260   // There's a bit of subtlety in the clear() and invalidate()
 261   // methods that we exploit here and in invalidate_or_clear()
 262   // below to avoid missing cards at the fringes. If clear() or
 263   // invalidate() are changed in the future, this code should
 264   // be revisited. 20040107.ysr
 265   Generation* g = gen;
 266   for(Generation* prev_gen = gch->prev_gen(g);
 267       prev_gen != NULL;
 268       g = prev_gen, prev_gen = gch->prev_gen(g)) {
 269     MemRegion to_be_cleared_mr = g->prev_used_region();
 270     clear(to_be_cleared_mr);
 271   }
 272   // Clear perm gen cards if asked to do so.
 273   if (clear_perm) {
 274     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
 275     clear(to_be_cleared_mr);
 276   }
 277 }
 278 
 279 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
 280                                       bool perm) {
 281   GenCollectedHeap* gch = GenCollectedHeap::heap();
 282   // For each generation gen (and younger and/or perm)
 283   // invalidate the cards for the currently occupied part
 284   // of that generation and clear the cards for the
 285   // unoccupied part of the generation (if any, making use
 286   // of that generation's prev_used_region to determine that
 287   // region). No need to do anything for the youngest
 288   // generation. Also see note#20040107.ysr above.
 289   Generation* g = gen;
 290   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
 291       g = prev_gen, prev_gen = gch->prev_gen(g))  {
 292     MemRegion used_mr = g->used_region();
 293     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 294     if (!to_be_cleared_mr.is_empty()) {
 295       clear(to_be_cleared_mr);
 296     }
 297     invalidate(used_mr);
 298     if (!younger) break;
 299   }
 300   // Clear perm gen cards if asked to do so.
 301   if (perm) {
 302     g = gch->perm_gen();
 303     MemRegion used_mr = g->used_region();
 304     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 305     if (!to_be_cleared_mr.is_empty()) {
 306       clear(to_be_cleared_mr);
 307     }
 308     invalidate(used_mr);
 309   }
 310 }
 311 
 312 
 313 class VerifyCleanCardClosure: public OopClosure {
 314 private:
 315   HeapWord* _boundary;
 316   HeapWord* _begin;
 317   HeapWord* _end;
 318 protected:
 319   template <class T> void do_oop_work(T* p) {
 320     HeapWord* jp = (HeapWord*)p;
 321     if (jp >= _begin && jp < _end) {
 322       oop obj = oopDesc::load_decode_heap_oop(p);
 323       guarantee(obj == NULL ||
 324                 (HeapWord*)p < _boundary ||
 325                 (HeapWord*)obj >= _boundary,
 326                 "pointer on clean card crosses boundary");
 327     }
 328   }
 329 public:
 330   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 331     _boundary(b), _begin(begin), _end(end) {}
 332   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 333   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 334 };
 335 
 336 class VerifyCTSpaceClosure: public SpaceClosure {
 337 private:
 338   CardTableRS* _ct;
 339   HeapWord* _boundary;
 340 public:
 341   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 342     _ct(ct), _boundary(boundary) {}
 343   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 344 };
 345 
 346 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 347   CardTableRS* _ct;
 348 public:
 349   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 350   void do_generation(Generation* gen) {
 351     // Skip the youngest generation.
 352     if (gen->level() == 0) return;
 353     // Normally, we're interested in pointers to younger generations.
 354     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 355     gen->space_iterate(&blk, true);
 356   }
 357 };
 358 
 359 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 360   // We don't need to do young-gen spaces.
 361   if (s->end() <= gen_boundary) return;
 362   MemRegion used = s->used_region();
 363 
 364   jbyte* cur_entry = byte_for(used.start());
 365   jbyte* limit = byte_after(used.last());
 366   while (cur_entry < limit) {
 367     if (*cur_entry == CardTableModRefBS::clean_card) {
 368       jbyte* first_dirty = cur_entry+1;
 369       while (first_dirty < limit &&
 370              *first_dirty == CardTableModRefBS::clean_card) {
 371         first_dirty++;
 372       }
 373       // If the first object is a regular object, and it has a
 374       // young-to-old field, that would mark the previous card.
 375       HeapWord* boundary = addr_for(cur_entry);
 376       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 377       HeapWord* boundary_block = s->block_start(boundary);
 378       HeapWord* begin = boundary;             // Until proven otherwise.
 379       HeapWord* start_block = boundary_block; // Until proven otherwise.
 380       if (boundary_block < boundary) {
 381         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 382           oop boundary_obj = oop(boundary_block);
 383           if (!boundary_obj->is_objArray() &&
 384               !boundary_obj->is_typeArray()) {
 385             guarantee(cur_entry > byte_for(used.start()),
 386                       "else boundary would be boundary_block");
 387             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
 388               begin = boundary_block + s->block_size(boundary_block);
 389               start_block = begin;
 390             }
 391           }
 392         }
 393       }
 394       // Now traverse objects until end.
 395       HeapWord* cur = start_block;
 396       VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 397       while (cur < end) {
 398         if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 399           oop(cur)->oop_iterate(&verify_blk);
 400         }
 401         cur += s->block_size(cur);
 402       }
 403       cur_entry = first_dirty;
 404     } else {
 405       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 406       // is a transient value, that cannot be in the card table
 407       // except during GC, and thus assert that:
 408       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 409       //        "Illegal CT value");
 410       // That however, need not hold, as will become clear in the
 411       // following...
 412 
 413       // We'd normally expect that if we are in the parallel case,
 414       // we can't have left a prev value (which would be different
 415       // from the current value) in the card table, and so we'd like to
 416       // assert that:
 417       // guarantee(cur_youngergen_card_val() == youngergen_card
 418       //           || !is_prev_youngergen_card_val(*cur_entry),
 419       //           "Illegal CT value");
 420       // That, however, may not hold occasionally, because of
 421       // CMS or MSC in the old gen. To wit, consider the
 422       // following two simple illustrative scenarios:
 423       // (a) CMS: Consider the case where a large object L
 424       //     spanning several cards is allocated in the old
 425       //     gen, and has a young gen reference stored in it, dirtying
 426       //     some interior cards. A young collection scans the card,
 427       //     finds a young ref and installs a youngergenP_n value.
 428       //     L then goes dead. Now a CMS collection starts,
 429       //     finds L dead and sweeps it up. Assume that L is
 430       //     abutting _unallocated_blk, so _unallocated_blk is
 431       //     adjusted down to (below) L. Assume further that
 432       //     no young collection intervenes during this CMS cycle.
 433       //     The next young gen cycle will not get to look at this
 434       //     youngergenP_n card since it lies in the unoccupied
 435       //     part of the space.
 436       //     Some young collections later the blocks on this
 437       //     card can be re-allocated either due to direct allocation
 438       //     or due to absorbing promotions. At this time, the
 439       //     before-gc verification will fail the above assert.
 440       // (b) MSC: In this case, an object L with a young reference
 441       //     is on a card that (therefore) holds a youngergen_n value.
 442       //     Suppose also that L lies towards the end of the used
 443       //     the used space before GC. An MSC collection
 444       //     occurs that compacts to such an extent that this
 445       //     card is no longer in the occupied part of the space.
 446       //     Since current code in MSC does not always clear cards
 447       //     in the unused part of old gen, this stale youngergen_n
 448       //     value is left behind and can later be covered by
 449       //     an object when promotion or direct allocation
 450       //     re-allocates that part of the heap.
 451       //
 452       // Fortunately, the presence of such stale card values is
 453       // "only" a minor annoyance in that subsequent young collections
 454       // might needlessly scan such cards, but would still never corrupt
 455       // the heap as a result. However, it's likely not to be a significant
 456       // performance inhibitor in practice. For instance,
 457       // some recent measurements with unoccupied cards eagerly cleared
 458       // out to maintain this invariant, showed next to no
 459       // change in young collection times; of course one can construct
 460       // degenerate examples where the cost can be significant.)
 461       // Note, in particular, that if the "stale" card is modified
 462       // after re-allocation, it would be dirty, not "stale". Thus,
 463       // we can never have a younger ref in such a card and it is
 464       // safe not to scan that card in any collection. [As we see
 465       // below, we do some unnecessary scanning
 466       // in some cases in the current parallel scanning algorithm.]
 467       //
 468       // The main point below is that the parallel card scanning code
 469       // deals correctly with these stale card values. There are two main
 470       // cases to consider where we have a stale "younger gen" value and a
 471       // "derivative" case to consider, where we have a stale
 472       // "cur_younger_gen_and_prev_non_clean" value, as will become
 473       // apparent in the case analysis below.
 474       // o Case 1. If the stale value corresponds to a younger_gen_n
 475       //   value other than the cur_younger_gen value then the code
 476       //   treats this as being tantamount to a prev_younger_gen
 477       //   card. This means that the card may be unnecessarily scanned.
 478       //   There are two sub-cases to consider:
 479       //   o Case 1a. Let us say that the card is in the occupied part
 480       //     of the generation at the time the collection begins. In
 481       //     that case the card will be either cleared when it is scanned
 482       //     for young pointers, or will be set to cur_younger_gen as a
 483       //     result of promotion. (We have elided the normal case where
 484       //     the scanning thread and the promoting thread interleave
 485       //     possibly resulting in a transient
 486       //     cur_younger_gen_and_prev_non_clean value before settling
 487       //     to cur_younger_gen. [End Case 1a.]
 488       //   o Case 1b. Consider now the case when the card is in the unoccupied
 489       //     part of the space which becomes occupied because of promotions
 490       //     into it during the current young GC. In this case the card
 491       //     will never be scanned for young references. The current
 492       //     code will set the card value to either
 493       //     cur_younger_gen_and_prev_non_clean or leave
 494       //     it with its stale value -- because the promotions didn't
 495       //     result in any younger refs on that card. Of these two
 496       //     cases, the latter will be covered in Case 1a during
 497       //     a subsequent scan. To deal with the former case, we need
 498       //     to further consider how we deal with a stale value of
 499       //     cur_younger_gen_and_prev_non_clean in our case analysis
 500       //     below. This we do in Case 3 below. [End Case 1b]
 501       //   [End Case 1]
 502       // o Case 2. If the stale value corresponds to cur_younger_gen being
 503       //   a value not necessarily written by a current promotion, the
 504       //   card will not be scanned by the younger refs scanning code.
 505       //   (This is OK since as we argued above such cards cannot contain
 506       //   any younger refs.) The result is that this value will be
 507       //   treated as a prev_younger_gen value in a subsequent collection,
 508       //   which is addressed in Case 1 above. [End Case 2]
 509       // o Case 3. We here consider the "derivative" case from Case 1b. above
 510       //   because of which we may find a stale
 511       //   cur_younger_gen_and_prev_non_clean card value in the table.
 512       //   Once again, as in Case 1, we consider two subcases, depending
 513       //   on whether the card lies in the occupied or unoccupied part
 514       //   of the space at the start of the young collection.
 515       //   o Case 3a. Let us say the card is in the occupied part of
 516       //     the old gen at the start of the young collection. In that
 517       //     case, the card will be scanned by the younger refs scanning
 518       //     code which will set it to cur_younger_gen. In a subsequent
 519       //     scan, the card will be considered again and get its final
 520       //     correct value. [End Case 3a]
 521       //   o Case 3b. Now consider the case where the card is in the
 522       //     unoccupied part of the old gen, and is occupied as a result
 523       //     of promotions during thus young gc. In that case,
 524       //     the card will not be scanned for younger refs. The presence
 525       //     of newly promoted objects on the card will then result in
 526       //     its keeping the value cur_younger_gen_and_prev_non_clean
 527       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 528       //   [End Case 3]
 529       //
 530       // (Please refer to the code in the helper class
 531       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 532       //
 533       // The informal arguments above can be tightened into a formal
 534       // correctness proof and it behooves us to write up such a proof,
 535       // or to use model checking to prove that there are no lingering
 536       // concerns.
 537       //
 538       // Clearly because of Case 3b one cannot bound the time for
 539       // which a card will retain what we have called a "stale" value.
 540       // However, one can obtain a Loose upper bound on the redundant
 541       // work as a result of such stale values. Note first that any
 542       // time a stale card lies in the occupied part of the space at
 543       // the start of the collection, it is scanned by younger refs
 544       // code and we can define a rank function on card values that
 545       // declines when this is so. Note also that when a card does not
 546       // lie in the occupied part of the space at the beginning of a
 547       // young collection, its rank can either decline or stay unchanged.
 548       // In this case, no extra work is done in terms of redundant
 549       // younger refs scanning of that card.
 550       // Then, the case analysis above reveals that, in the worst case,
 551       // any such stale card will be scanned unnecessarily at most twice.
 552       //
 553       // It is nonethelss advisable to try and get rid of some of this
 554       // redundant work in a subsequent (low priority) re-design of
 555       // the card-scanning code, if only to simplify the underlying
 556       // state machine analysis/proof. ysr 1/28/2002. XXX
 557       cur_entry++;
 558     }
 559   }
 560 }
 561 
 562 void CardTableRS::verify() {
 563   // At present, we only know how to verify the card table RS for
 564   // generational heaps.
 565   VerifyCTGenClosure blk(this);
 566   CollectedHeap* ch = Universe::heap();
 567   // We will do the perm-gen portion of the card table, too.
 568   Generation* pg = SharedHeap::heap()->perm_gen();
 569   HeapWord* pg_boundary = pg->reserved().start();
 570 
 571   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
 572     GenCollectedHeap::heap()->generation_iterate(&blk, false);
 573     _ct_bs->verify();
 574 
 575     // If the old gen collections also collect perm, then we are only
 576     // interested in perm-to-young pointers, not perm-to-old pointers.
 577     GenCollectedHeap* gch = GenCollectedHeap::heap();
 578     CollectorPolicy* cp = gch->collector_policy();
 579     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
 580       pg_boundary = gch->get_gen(1)->reserved().start();
 581     }
 582   }
 583   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
 584   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
 585 }
 586 
 587 
 588 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
 589   if (!mr.is_empty()) {
 590     jbyte* cur_entry = byte_for(mr.start());
 591     jbyte* limit = byte_after(mr.last());
 592     // The region mr may not start on a card boundary so
 593     // the first card may reflect a write to the space
 594     // just prior to mr.
 595     if (!is_aligned(mr.start())) {
 596       cur_entry++;
 597     }
 598     for (;cur_entry < limit; cur_entry++) {
 599       guarantee(*cur_entry == CardTableModRefBS::clean_card,
 600                 "Unexpected dirty card found");
 601     }
 602   }
 603 }