1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/bytecodeStream.hpp"
  27 #include "oops/generateOopMap.hpp"
  28 #include "oops/oop.inline.hpp"
  29 #include "oops/symbolOop.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/java.hpp"
  32 #include "runtime/relocator.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 //
  36 //
  37 // Compute stack layouts for each instruction in method.
  38 //
  39 //  Problems:
  40 //  - What to do about jsr with different types of local vars?
  41 //  Need maps that are conditional on jsr path?
  42 //  - Jsr and exceptions should be done more efficiently (the retAddr stuff)
  43 //
  44 //  Alternative:
  45 //  - Could extend verifier to provide this information.
  46 //    For: one fewer abstract interpreter to maintain. Against: the verifier
  47 //    solves a bigger problem so slower (undesirable to force verification of
  48 //    everything?).
  49 //
  50 //  Algorithm:
  51 //    Partition bytecodes into basic blocks
  52 //    For each basic block: store entry state (vars, stack). For instructions
  53 //    inside basic blocks we do not store any state (instead we recompute it
  54 //    from state produced by previous instruction).
  55 //
  56 //    Perform abstract interpretation of bytecodes over this lattice:
  57 //
  58 //                _--'#'--_
  59 //               /  /  \   \
  60 //             /   /     \   \
  61 //            /    |     |     \
  62 //          'r'   'v'   'p'   ' '
  63 //           \     |     |     /
  64 //            \    \     /    /
  65 //              \   \   /    /
  66 //                -- '@' --
  67 //
  68 //    '#'  top, result of conflict merge
  69 //    'r'  reference type
  70 //    'v'  value type
  71 //    'p'  pc type for jsr/ret
  72 //    ' '  uninitialized; never occurs on operand stack in Java
  73 //    '@'  bottom/unexecuted; initial state each bytecode.
  74 //
  75 //    Basic block headers are the only merge points. We use this iteration to
  76 //    compute the information:
  77 //
  78 //    find basic blocks;
  79 //    initialize them with uninitialized state;
  80 //    initialize first BB according to method signature;
  81 //    mark first BB changed
  82 //    while (some BB is changed) do {
  83 //      perform abstract interpration of all bytecodes in BB;
  84 //      merge exit state of BB into entry state of all successor BBs,
  85 //      noting if any of these change;
  86 //    }
  87 //
  88 //  One additional complication is necessary. The jsr instruction pushes
  89 //  a return PC on the stack (a 'p' type in the abstract interpretation).
  90 //  To be able to process "ret" bytecodes, we keep track of these return
  91 //  PC's in a 'retAddrs' structure in abstract interpreter context (when
  92 //  processing a "ret" bytecodes, it is not sufficient to know that it gets
  93 //  an argument of the right type 'p'; we need to know which address it
  94 //  returns to).
  95 //
  96 // (Note this comment is borrowed form the original author of the algorithm)
  97 
  98 // ComputeCallStack
  99 //
 100 // Specialization of SignatureIterator - compute the effects of a call
 101 //
 102 class ComputeCallStack : public SignatureIterator {
 103   CellTypeState *_effect;
 104   int _idx;
 105 
 106   void setup();
 107   void set(CellTypeState state)         { _effect[_idx++] = state; }
 108   int  length()                         { return _idx; };
 109 
 110   virtual void do_bool  ()              { set(CellTypeState::value); };
 111   virtual void do_char  ()              { set(CellTypeState::value); };
 112   virtual void do_float ()              { set(CellTypeState::value); };
 113   virtual void do_byte  ()              { set(CellTypeState::value); };
 114   virtual void do_short ()              { set(CellTypeState::value); };
 115   virtual void do_int   ()              { set(CellTypeState::value); };
 116   virtual void do_void  ()              { set(CellTypeState::bottom);};
 117   virtual void do_object(int begin, int end)  { set(CellTypeState::ref); };
 118   virtual void do_array (int begin, int end)  { set(CellTypeState::ref); };
 119 
 120   void do_double()                      { set(CellTypeState::value);
 121                                           set(CellTypeState::value); }
 122   void do_long  ()                      { set(CellTypeState::value);
 123                                            set(CellTypeState::value); }
 124 
 125 public:
 126   ComputeCallStack(symbolOop signature) : SignatureIterator(signature) {};
 127 
 128   // Compute methods
 129   int compute_for_parameters(bool is_static, CellTypeState *effect) {
 130     _idx    = 0;
 131     _effect = effect;
 132 
 133     if (!is_static)
 134       effect[_idx++] = CellTypeState::ref;
 135 
 136     iterate_parameters();
 137 
 138     return length();
 139   };
 140 
 141   int compute_for_returntype(CellTypeState *effect) {
 142     _idx    = 0;
 143     _effect = effect;
 144     iterate_returntype();
 145     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
 146 
 147     return length();
 148   }
 149 };
 150 
 151 //=========================================================================================
 152 // ComputeEntryStack
 153 //
 154 // Specialization of SignatureIterator - in order to set up first stack frame
 155 //
 156 class ComputeEntryStack : public SignatureIterator {
 157   CellTypeState *_effect;
 158   int _idx;
 159 
 160   void setup();
 161   void set(CellTypeState state)         { _effect[_idx++] = state; }
 162   int  length()                         { return _idx; };
 163 
 164   virtual void do_bool  ()              { set(CellTypeState::value); };
 165   virtual void do_char  ()              { set(CellTypeState::value); };
 166   virtual void do_float ()              { set(CellTypeState::value); };
 167   virtual void do_byte  ()              { set(CellTypeState::value); };
 168   virtual void do_short ()              { set(CellTypeState::value); };
 169   virtual void do_int   ()              { set(CellTypeState::value); };
 170   virtual void do_void  ()              { set(CellTypeState::bottom);};
 171   virtual void do_object(int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
 172   virtual void do_array (int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
 173 
 174   void do_double()                      { set(CellTypeState::value);
 175                                           set(CellTypeState::value); }
 176   void do_long  ()                      { set(CellTypeState::value);
 177                                           set(CellTypeState::value); }
 178 
 179 public:
 180   ComputeEntryStack(symbolOop signature) : SignatureIterator(signature) {};
 181 
 182   // Compute methods
 183   int compute_for_parameters(bool is_static, CellTypeState *effect) {
 184     _idx    = 0;
 185     _effect = effect;
 186 
 187     if (!is_static)
 188       effect[_idx++] = CellTypeState::make_slot_ref(0);
 189 
 190     iterate_parameters();
 191 
 192     return length();
 193   };
 194 
 195   int compute_for_returntype(CellTypeState *effect) {
 196     _idx    = 0;
 197     _effect = effect;
 198     iterate_returntype();
 199     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
 200 
 201     return length();
 202   }
 203 };
 204 
 205 //=====================================================================================
 206 //
 207 // Implementation of RetTable/RetTableEntry
 208 //
 209 // Contains function to itereate through all bytecodes
 210 // and find all return entry points
 211 //
 212 int RetTable::_init_nof_entries = 10;
 213 int RetTableEntry::_init_nof_jsrs = 5;
 214 
 215 void RetTableEntry::add_delta(int bci, int delta) {
 216   if (_target_bci > bci) _target_bci += delta;
 217 
 218   for (int k = 0; k < _jsrs->length(); k++) {
 219     int jsr = _jsrs->at(k);
 220     if (jsr > bci) _jsrs->at_put(k, jsr+delta);
 221   }
 222 }
 223 
 224 void RetTable::compute_ret_table(methodHandle method) {
 225   BytecodeStream i(method);
 226   Bytecodes::Code bytecode;
 227 
 228   while( (bytecode = i.next()) >= 0) {
 229     switch (bytecode) {
 230       case Bytecodes::_jsr:
 231         add_jsr(i.next_bci(), i.dest());
 232         break;
 233       case Bytecodes::_jsr_w:
 234         add_jsr(i.next_bci(), i.dest_w());
 235         break;
 236     }
 237   }
 238 }
 239 
 240 void RetTable::add_jsr(int return_bci, int target_bci) {
 241   RetTableEntry* entry = _first;
 242 
 243   // Scan table for entry
 244   for (;entry && entry->target_bci() != target_bci; entry = entry->next());
 245 
 246   if (!entry) {
 247     // Allocate new entry and put in list
 248     entry = new RetTableEntry(target_bci, _first);
 249     _first = entry;
 250   }
 251 
 252   // Now "entry" is set.  Make sure that the entry is initialized
 253   // and has room for the new jsr.
 254   entry->add_jsr(return_bci);
 255 }
 256 
 257 RetTableEntry* RetTable::find_jsrs_for_target(int targBci) {
 258   RetTableEntry *cur = _first;
 259 
 260   while(cur) {
 261     assert(cur->target_bci() != -1, "sanity check");
 262     if (cur->target_bci() == targBci)  return cur;
 263     cur = cur->next();
 264   }
 265   ShouldNotReachHere();
 266   return NULL;
 267 }
 268 
 269 // The instruction at bci is changing size by "delta".  Update the return map.
 270 void RetTable::update_ret_table(int bci, int delta) {
 271   RetTableEntry *cur = _first;
 272   while(cur) {
 273     cur->add_delta(bci, delta);
 274     cur = cur->next();
 275   }
 276 }
 277 
 278 //
 279 // Celltype state
 280 //
 281 
 282 CellTypeState CellTypeState::bottom      = CellTypeState::make_bottom();
 283 CellTypeState CellTypeState::uninit      = CellTypeState::make_any(uninit_value);
 284 CellTypeState CellTypeState::ref         = CellTypeState::make_any(ref_conflict);
 285 CellTypeState CellTypeState::value       = CellTypeState::make_any(val_value);
 286 CellTypeState CellTypeState::refUninit   = CellTypeState::make_any(ref_conflict | uninit_value);
 287 CellTypeState CellTypeState::top         = CellTypeState::make_top();
 288 CellTypeState CellTypeState::addr        = CellTypeState::make_any(addr_conflict);
 289 
 290 // Commonly used constants
 291 static CellTypeState epsilonCTS[1] = { CellTypeState::bottom };
 292 static CellTypeState   refCTS   = CellTypeState::ref;
 293 static CellTypeState   valCTS   = CellTypeState::value;
 294 static CellTypeState    vCTS[2] = { CellTypeState::value, CellTypeState::bottom };
 295 static CellTypeState    rCTS[2] = { CellTypeState::ref,   CellTypeState::bottom };
 296 static CellTypeState   rrCTS[3] = { CellTypeState::ref,   CellTypeState::ref,   CellTypeState::bottom };
 297 static CellTypeState   vrCTS[3] = { CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 298 static CellTypeState   vvCTS[3] = { CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 299 static CellTypeState  rvrCTS[4] = { CellTypeState::ref,   CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 300 static CellTypeState  vvrCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 301 static CellTypeState  vvvCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 302 static CellTypeState vvvrCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 303 static CellTypeState vvvvCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 304 
 305 char CellTypeState::to_char() const {
 306   if (can_be_reference()) {
 307     if (can_be_value() || can_be_address())
 308       return '#';    // Conflict that needs to be rewritten
 309     else
 310       return 'r';
 311   } else if (can_be_value())
 312     return 'v';
 313   else if (can_be_address())
 314     return 'p';
 315   else if (can_be_uninit())
 316     return ' ';
 317   else
 318     return '@';
 319 }
 320 
 321 
 322 // Print a detailed CellTypeState.  Indicate all bits that are set.  If
 323 // the CellTypeState represents an address or a reference, print the
 324 // value of the additional information.
 325 void CellTypeState::print(outputStream *os) {
 326   if (can_be_address()) {
 327     os->print("(p");
 328   } else {
 329     os->print("( ");
 330   }
 331   if (can_be_reference()) {
 332     os->print("r");
 333   } else {
 334     os->print(" ");
 335   }
 336   if (can_be_value()) {
 337     os->print("v");
 338   } else {
 339     os->print(" ");
 340   }
 341   if (can_be_uninit()) {
 342     os->print("u|");
 343   } else {
 344     os->print(" |");
 345   }
 346   if (is_info_top()) {
 347     os->print("Top)");
 348   } else if (is_info_bottom()) {
 349     os->print("Bot)");
 350   } else {
 351     if (is_reference()) {
 352       int info = get_info();
 353       int data = info & ~(ref_not_lock_bit | ref_slot_bit);
 354       if (info & ref_not_lock_bit) {
 355         // Not a monitor lock reference.
 356         if (info & ref_slot_bit) {
 357           // slot
 358           os->print("slot%d)", data);
 359         } else {
 360           // line
 361           os->print("line%d)", data);
 362         }
 363       } else {
 364         // lock
 365         os->print("lock%d)", data);
 366       }
 367     } else {
 368       os->print("%d)", get_info());
 369     }
 370   }
 371 }
 372 
 373 //
 374 // Basicblock handling methods
 375 //
 376 
 377 void GenerateOopMap ::initialize_bb() {
 378   _gc_points = 0;
 379   _bb_count  = 0;
 380   _bb_hdr_bits.clear();
 381   _bb_hdr_bits.resize(method()->code_size());
 382 }
 383 
 384 void GenerateOopMap::bb_mark_fct(GenerateOopMap *c, int bci, int *data) {
 385   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
 386   if (c->is_bb_header(bci))
 387      return;
 388 
 389   if (TraceNewOopMapGeneration) {
 390      tty->print_cr("Basicblock#%d begins at: %d", c->_bb_count, bci);
 391   }
 392   c->set_bbmark_bit(bci);
 393   c->_bb_count++;
 394 }
 395 
 396 
 397 void GenerateOopMap::mark_bbheaders_and_count_gc_points() {
 398   initialize_bb();
 399 
 400   bool fellThrough = false;  // False to get first BB marked.
 401 
 402   // First mark all exception handlers as start of a basic-block
 403   typeArrayOop excps = method()->exception_table();
 404   for(int i = 0; i < excps->length(); i += 4) {
 405     int handler_pc_idx = i+2;
 406     bb_mark_fct(this, excps->int_at(handler_pc_idx), NULL);
 407   }
 408 
 409   // Then iterate through the code
 410   BytecodeStream bcs(_method);
 411   Bytecodes::Code bytecode;
 412 
 413   while( (bytecode = bcs.next()) >= 0) {
 414     int bci = bcs.bci();
 415 
 416     if (!fellThrough)
 417         bb_mark_fct(this, bci, NULL);
 418 
 419     fellThrough = jump_targets_do(&bcs, &GenerateOopMap::bb_mark_fct, NULL);
 420 
 421      /* We will also mark successors of jsr's as basic block headers. */
 422     switch (bytecode) {
 423       case Bytecodes::_jsr:
 424         assert(!fellThrough, "should not happen");
 425         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
 426         break;
 427       case Bytecodes::_jsr_w:
 428         assert(!fellThrough, "should not happen");
 429         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
 430         break;
 431     }
 432 
 433     if (possible_gc_point(&bcs))
 434       _gc_points++;
 435   }
 436 }
 437 
 438 void GenerateOopMap::reachable_basicblock(GenerateOopMap *c, int bci, int *data) {
 439   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
 440   BasicBlock* bb = c->get_basic_block_at(bci);
 441   if (bb->is_dead()) {
 442     bb->mark_as_alive();
 443     *data = 1; // Mark basicblock as changed
 444   }
 445 }
 446 
 447 
 448 void GenerateOopMap::mark_reachable_code() {
 449   int change = 1; // int to get function pointers to work
 450 
 451   // Mark entry basic block as alive and all exception handlers
 452   _basic_blocks[0].mark_as_alive();
 453   typeArrayOop excps = method()->exception_table();
 454   for(int i = 0; i < excps->length(); i += 4) {
 455     int handler_pc_idx = i+2;
 456     BasicBlock *bb = get_basic_block_at(excps->int_at(handler_pc_idx));
 457     // If block is not already alive (due to multiple exception handlers to same bb), then
 458     // make it alive
 459     if (bb->is_dead()) bb->mark_as_alive();
 460   }
 461 
 462   BytecodeStream bcs(_method);
 463 
 464   // Iterate through all basic blocks until we reach a fixpoint
 465   while (change) {
 466     change = 0;
 467 
 468     for (int i = 0; i < _bb_count; i++) {
 469       BasicBlock *bb = &_basic_blocks[i];
 470       if (bb->is_alive()) {
 471         // Position bytecodestream at last bytecode in basicblock
 472         bcs.set_start(bb->_end_bci);
 473         bcs.next();
 474         Bytecodes::Code bytecode = bcs.code();
 475         int bci = bcs.bci();
 476         assert(bci == bb->_end_bci, "wrong bci");
 477 
 478         bool fell_through = jump_targets_do(&bcs, &GenerateOopMap::reachable_basicblock, &change);
 479 
 480         // We will also mark successors of jsr's as alive.
 481         switch (bytecode) {
 482           case Bytecodes::_jsr:
 483           case Bytecodes::_jsr_w:
 484             assert(!fell_through, "should not happen");
 485             reachable_basicblock(this, bci + Bytecodes::length_for(bytecode), &change);
 486             break;
 487         }
 488         if (fell_through) {
 489           // Mark successor as alive
 490           if (bb[1].is_dead()) {
 491             bb[1].mark_as_alive();
 492             change = 1;
 493           }
 494         }
 495       }
 496     }
 497   }
 498 }
 499 
 500 /* If the current instruction in "c" has no effect on control flow,
 501    returns "true".  Otherwise, calls "jmpFct" one or more times, with
 502    "c", an appropriate "pcDelta", and "data" as arguments, then
 503    returns "false".  There is one exception: if the current
 504    instruction is a "ret", returns "false" without calling "jmpFct".
 505    Arrangements for tracking the control flow of a "ret" must be made
 506    externally. */
 507 bool GenerateOopMap::jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int *data) {
 508   int bci = bcs->bci();
 509 
 510   switch (bcs->code()) {
 511     case Bytecodes::_ifeq:
 512     case Bytecodes::_ifne:
 513     case Bytecodes::_iflt:
 514     case Bytecodes::_ifge:
 515     case Bytecodes::_ifgt:
 516     case Bytecodes::_ifle:
 517     case Bytecodes::_if_icmpeq:
 518     case Bytecodes::_if_icmpne:
 519     case Bytecodes::_if_icmplt:
 520     case Bytecodes::_if_icmpge:
 521     case Bytecodes::_if_icmpgt:
 522     case Bytecodes::_if_icmple:
 523     case Bytecodes::_if_acmpeq:
 524     case Bytecodes::_if_acmpne:
 525     case Bytecodes::_ifnull:
 526     case Bytecodes::_ifnonnull:
 527       (*jmpFct)(this, bcs->dest(), data);
 528       (*jmpFct)(this, bci + 3, data);
 529       break;
 530 
 531     case Bytecodes::_goto:
 532       (*jmpFct)(this, bcs->dest(), data);
 533       break;
 534     case Bytecodes::_goto_w:
 535       (*jmpFct)(this, bcs->dest_w(), data);
 536       break;
 537     case Bytecodes::_tableswitch:
 538       { Bytecode_tableswitch *tableswitch = Bytecode_tableswitch_at(bcs->bcp());
 539         int len = tableswitch->length();
 540 
 541         (*jmpFct)(this, bci + tableswitch->default_offset(), data); /* Default. jump address */
 542         while (--len >= 0) {
 543           (*jmpFct)(this, bci + tableswitch->dest_offset_at(len), data);
 544         }
 545         break;
 546       }
 547 
 548     case Bytecodes::_lookupswitch:
 549       { Bytecode_lookupswitch *lookupswitch = Bytecode_lookupswitch_at(bcs->bcp());
 550         int npairs = lookupswitch->number_of_pairs();
 551         (*jmpFct)(this, bci + lookupswitch->default_offset(), data); /* Default. */
 552         while(--npairs >= 0) {
 553           LookupswitchPair *pair = lookupswitch->pair_at(npairs);
 554           (*jmpFct)(this, bci + pair->offset(), data);
 555         }
 556         break;
 557       }
 558     case Bytecodes::_jsr:
 559       assert(bcs->is_wide()==false, "sanity check");
 560       (*jmpFct)(this, bcs->dest(), data);
 561 
 562 
 563 
 564       break;
 565     case Bytecodes::_jsr_w:
 566       (*jmpFct)(this, bcs->dest_w(), data);
 567       break;
 568     case Bytecodes::_wide:
 569       ShouldNotReachHere();
 570       return true;
 571       break;
 572     case Bytecodes::_athrow:
 573     case Bytecodes::_ireturn:
 574     case Bytecodes::_lreturn:
 575     case Bytecodes::_freturn:
 576     case Bytecodes::_dreturn:
 577     case Bytecodes::_areturn:
 578     case Bytecodes::_return:
 579     case Bytecodes::_ret:
 580       break;
 581     default:
 582       return true;
 583   }
 584   return false;
 585 }
 586 
 587 /* Requires "pc" to be the head of a basic block; returns that basic
 588    block. */
 589 BasicBlock *GenerateOopMap::get_basic_block_at(int bci) const {
 590   BasicBlock* bb = get_basic_block_containing(bci);
 591   assert(bb->_bci == bci, "should have found BB");
 592   return bb;
 593 }
 594 
 595 // Requires "pc" to be the start of an instruction; returns the basic
 596 //   block containing that instruction. */
 597 BasicBlock  *GenerateOopMap::get_basic_block_containing(int bci) const {
 598   BasicBlock *bbs = _basic_blocks;
 599   int lo = 0, hi = _bb_count - 1;
 600 
 601   while (lo <= hi) {
 602     int m = (lo + hi) / 2;
 603     int mbci = bbs[m]._bci;
 604     int nbci;
 605 
 606     if ( m == _bb_count-1) {
 607       assert( bci >= mbci && bci < method()->code_size(), "sanity check failed");
 608       return bbs+m;
 609     } else {
 610       nbci = bbs[m+1]._bci;
 611     }
 612 
 613     if ( mbci <= bci && bci < nbci) {
 614       return bbs+m;
 615     } else if (mbci < bci) {
 616       lo = m + 1;
 617     } else {
 618       assert(mbci > bci, "sanity check");
 619       hi = m - 1;
 620     }
 621   }
 622 
 623   fatal("should have found BB");
 624   return NULL;
 625 }
 626 
 627 void GenerateOopMap::restore_state(BasicBlock *bb)
 628 {
 629   memcpy(_state, bb->_state, _state_len*sizeof(CellTypeState));
 630   _stack_top = bb->_stack_top;
 631   _monitor_top = bb->_monitor_top;
 632 }
 633 
 634 int GenerateOopMap::next_bb_start_pc(BasicBlock *bb) {
 635  int bbNum = bb - _basic_blocks + 1;
 636  if (bbNum == _bb_count)
 637     return method()->code_size();
 638 
 639  return _basic_blocks[bbNum]._bci;
 640 }
 641 
 642 //
 643 // CellType handling methods
 644 //
 645 
 646 void GenerateOopMap::init_state() {
 647   _state_len     = _max_locals + _max_stack + _max_monitors;
 648   _state         = NEW_RESOURCE_ARRAY(CellTypeState, _state_len);
 649   memset(_state, 0, _state_len * sizeof(CellTypeState));
 650   _state_vec_buf = NEW_RESOURCE_ARRAY(char, MAX3(_max_locals, _max_stack, _max_monitors) + 1/*for null terminator char */);
 651 }
 652 
 653 void GenerateOopMap::make_context_uninitialized() {
 654   CellTypeState* vs = vars();
 655 
 656   for (int i = 0; i < _max_locals; i++)
 657       vs[i] = CellTypeState::uninit;
 658 
 659   _stack_top = 0;
 660   _monitor_top = 0;
 661 }
 662 
 663 int GenerateOopMap::methodsig_to_effect(symbolOop signature, bool is_static, CellTypeState* effect) {
 664   ComputeEntryStack ces(signature);
 665   return ces.compute_for_parameters(is_static, effect);
 666 }
 667 
 668 // Return result of merging cts1 and cts2.
 669 CellTypeState CellTypeState::merge(CellTypeState cts, int slot) const {
 670   CellTypeState result;
 671 
 672   assert(!is_bottom() && !cts.is_bottom(),
 673          "merge of bottom values is handled elsewhere");
 674 
 675   result._state = _state | cts._state;
 676 
 677   // If the top bit is set, we don't need to do any more work.
 678   if (!result.is_info_top()) {
 679     assert((result.can_be_address() || result.can_be_reference()),
 680            "only addresses and references have non-top info");
 681 
 682     if (!equal(cts)) {
 683       // The two values being merged are different.  Raise to top.
 684       if (result.is_reference()) {
 685         result = CellTypeState::make_slot_ref(slot);
 686       } else {
 687         result._state |= info_conflict;
 688       }
 689     }
 690   }
 691   assert(result.is_valid_state(), "checking that CTS merge maintains legal state");
 692 
 693   return result;
 694 }
 695 
 696 // Merge the variable state for locals and stack from cts into bbts.
 697 bool GenerateOopMap::merge_local_state_vectors(CellTypeState* cts,
 698                                                CellTypeState* bbts) {
 699   int i;
 700   int len = _max_locals + _stack_top;
 701   bool change = false;
 702 
 703   for (i = len - 1; i >= 0; i--) {
 704     CellTypeState v = cts[i].merge(bbts[i], i);
 705     change = change || !v.equal(bbts[i]);
 706     bbts[i] = v;
 707   }
 708 
 709   return change;
 710 }
 711 
 712 // Merge the monitor stack state from cts into bbts.
 713 bool GenerateOopMap::merge_monitor_state_vectors(CellTypeState* cts,
 714                                                  CellTypeState* bbts) {
 715   bool change = false;
 716   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
 717     // If there are no monitors in the program, or there has been
 718     // a monitor matching error before this point in the program,
 719     // then we do not merge in the monitor state.
 720 
 721     int base = _max_locals + _max_stack;
 722     int len = base + _monitor_top;
 723     for (int i = len - 1; i >= base; i--) {
 724       CellTypeState v = cts[i].merge(bbts[i], i);
 725 
 726       // Can we prove that, when there has been a change, it will already
 727       // have been detected at this point?  That would make this equal
 728       // check here unnecessary.
 729       change = change || !v.equal(bbts[i]);
 730       bbts[i] = v;
 731     }
 732   }
 733 
 734   return change;
 735 }
 736 
 737 void GenerateOopMap::copy_state(CellTypeState *dst, CellTypeState *src) {
 738   int len = _max_locals + _stack_top;
 739   for (int i = 0; i < len; i++) {
 740     if (src[i].is_nonlock_reference()) {
 741       dst[i] = CellTypeState::make_slot_ref(i);
 742     } else {
 743       dst[i] = src[i];
 744     }
 745   }
 746   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
 747     int base = _max_locals + _max_stack;
 748     len = base + _monitor_top;
 749     for (int i = base; i < len; i++) {
 750       dst[i] = src[i];
 751     }
 752   }
 753 }
 754 
 755 
 756 // Merge the states for the current block and the next.  As long as a
 757 // block is reachable the locals and stack must be merged.  If the
 758 // stack heights don't match then this is a verification error and
 759 // it's impossible to interpret the code.  Simultaneously monitor
 760 // states are being check to see if they nest statically.  If monitor
 761 // depths match up then their states are merged.  Otherwise the
 762 // mismatch is simply recorded and interpretation continues since
 763 // monitor matching is purely informational and doesn't say anything
 764 // about the correctness of the code.
 765 void GenerateOopMap::merge_state_into_bb(BasicBlock *bb) {
 766   assert(bb->is_alive(), "merging state into a dead basicblock");
 767 
 768   if (_stack_top == bb->_stack_top) {
 769     // always merge local state even if monitors don't match.
 770     if (merge_local_state_vectors(_state, bb->_state)) {
 771       bb->set_changed(true);
 772     }
 773     if (_monitor_top == bb->_monitor_top) {
 774       // monitors still match so continue merging monitor states.
 775       if (merge_monitor_state_vectors(_state, bb->_state)) {
 776         bb->set_changed(true);
 777       }
 778     } else {
 779       if (TraceMonitorMismatch) {
 780         report_monitor_mismatch("monitor stack height merge conflict");
 781       }
 782       // When the monitor stacks are not matched, we set _monitor_top to
 783       // bad_monitors.  This signals that, from here on, the monitor stack cannot
 784       // be trusted.  In particular, monitorexit bytecodes may throw
 785       // exceptions.  We mark this block as changed so that the change
 786       // propagates properly.
 787       bb->_monitor_top = bad_monitors;
 788       bb->set_changed(true);
 789       _monitor_safe = false;
 790     }
 791   } else if (!bb->is_reachable()) {
 792     // First time we look at this  BB
 793     copy_state(bb->_state, _state);
 794     bb->_stack_top = _stack_top;
 795     bb->_monitor_top = _monitor_top;
 796     bb->set_changed(true);
 797   } else {
 798     verify_error("stack height conflict: %d vs. %d",  _stack_top, bb->_stack_top);
 799   }
 800 }
 801 
 802 void GenerateOopMap::merge_state(GenerateOopMap *gom, int bci, int* data) {
 803    gom->merge_state_into_bb(gom->get_basic_block_at(bci));
 804 }
 805 
 806 void GenerateOopMap::set_var(int localNo, CellTypeState cts) {
 807   assert(cts.is_reference() || cts.is_value() || cts.is_address(),
 808          "wrong celltypestate");
 809   if (localNo < 0 || localNo > _max_locals) {
 810     verify_error("variable write error: r%d", localNo);
 811     return;
 812   }
 813   vars()[localNo] = cts;
 814 }
 815 
 816 CellTypeState GenerateOopMap::get_var(int localNo) {
 817   assert(localNo < _max_locals + _nof_refval_conflicts, "variable read error");
 818   if (localNo < 0 || localNo > _max_locals) {
 819     verify_error("variable read error: r%d", localNo);
 820     return valCTS; // just to pick something;
 821   }
 822   return vars()[localNo];
 823 }
 824 
 825 CellTypeState GenerateOopMap::pop() {
 826   if ( _stack_top <= 0) {
 827     verify_error("stack underflow");
 828     return valCTS; // just to pick something
 829   }
 830   return  stack()[--_stack_top];
 831 }
 832 
 833 void GenerateOopMap::push(CellTypeState cts) {
 834   if ( _stack_top >= _max_stack) {
 835     verify_error("stack overflow");
 836     return;
 837   }
 838   stack()[_stack_top++] = cts;
 839 }
 840 
 841 CellTypeState GenerateOopMap::monitor_pop() {
 842   assert(_monitor_top != bad_monitors, "monitor_pop called on error monitor stack");
 843   if (_monitor_top == 0) {
 844     // We have detected a pop of an empty monitor stack.
 845     _monitor_safe = false;
 846      _monitor_top = bad_monitors;
 847 
 848     if (TraceMonitorMismatch) {
 849       report_monitor_mismatch("monitor stack underflow");
 850     }
 851     return CellTypeState::ref; // just to keep the analysis going.
 852   }
 853   return  monitors()[--_monitor_top];
 854 }
 855 
 856 void GenerateOopMap::monitor_push(CellTypeState cts) {
 857   assert(_monitor_top != bad_monitors, "monitor_push called on error monitor stack");
 858   if (_monitor_top >= _max_monitors) {
 859     // Some monitorenter is being executed more than once.
 860     // This means that the monitor stack cannot be simulated.
 861     _monitor_safe = false;
 862     _monitor_top = bad_monitors;
 863 
 864     if (TraceMonitorMismatch) {
 865       report_monitor_mismatch("monitor stack overflow");
 866     }
 867     return;
 868   }
 869   monitors()[_monitor_top++] = cts;
 870 }
 871 
 872 //
 873 // Interpretation handling methods
 874 //
 875 
 876 void GenerateOopMap::do_interpretation()
 877 {
 878   // "i" is just for debugging, so we can detect cases where this loop is
 879   // iterated more than once.
 880   int i = 0;
 881   do {
 882 #ifndef PRODUCT
 883     if (TraceNewOopMapGeneration) {
 884       tty->print("\n\nIteration #%d of do_interpretation loop, method:\n", i);
 885       method()->print_name(tty);
 886       tty->print("\n\n");
 887     }
 888 #endif
 889     _conflict = false;
 890     _monitor_safe = true;
 891     // init_state is now called from init_basic_blocks.  The length of a
 892     // state vector cannot be determined until we have made a pass through
 893     // the bytecodes counting the possible monitor entries.
 894     if (!_got_error) init_basic_blocks();
 895     if (!_got_error) setup_method_entry_state();
 896     if (!_got_error) interp_all();
 897     if (!_got_error) rewrite_refval_conflicts();
 898     i++;
 899   } while (_conflict && !_got_error);
 900 }
 901 
 902 void GenerateOopMap::init_basic_blocks() {
 903   // Note: Could consider reserving only the needed space for each BB's state
 904   // (entry stack may not be of maximal height for every basic block).
 905   // But cumbersome since we don't know the stack heights yet.  (Nor the
 906   // monitor stack heights...)
 907 
 908   _basic_blocks = NEW_RESOURCE_ARRAY(BasicBlock, _bb_count);
 909 
 910   // Make a pass through the bytecodes.  Count the number of monitorenters.
 911   // This can be used an upper bound on the monitor stack depth in programs
 912   // which obey stack discipline with their monitor usage.  Initialize the
 913   // known information about basic blocks.
 914   BytecodeStream j(_method);
 915   Bytecodes::Code bytecode;
 916 
 917   int bbNo = 0;
 918   int monitor_count = 0;
 919   int prev_bci = -1;
 920   while( (bytecode = j.next()) >= 0) {
 921     if (j.code() == Bytecodes::_monitorenter) {
 922       monitor_count++;
 923     }
 924 
 925     int bci = j.bci();
 926     if (is_bb_header(bci)) {
 927       // Initialize the basicblock structure
 928       BasicBlock *bb   = _basic_blocks + bbNo;
 929       bb->_bci         = bci;
 930       bb->_max_locals  = _max_locals;
 931       bb->_max_stack   = _max_stack;
 932       bb->set_changed(false);
 933       bb->_stack_top   = BasicBlock::_dead_basic_block; // Initialize all basicblocks are dead.
 934       bb->_monitor_top = bad_monitors;
 935 
 936       if (bbNo > 0) {
 937         _basic_blocks[bbNo - 1]._end_bci = prev_bci;
 938       }
 939 
 940       bbNo++;
 941     }
 942     // Remember prevous bci.
 943     prev_bci = bci;
 944   }
 945   // Set
 946   _basic_blocks[bbNo-1]._end_bci = prev_bci;
 947 
 948 
 949   // Check that the correct number of basicblocks was found
 950   if (bbNo !=_bb_count) {
 951     if (bbNo < _bb_count) {
 952       verify_error("jump into the middle of instruction?");
 953       return;
 954     } else {
 955       verify_error("extra basic blocks - should not happen?");
 956       return;
 957     }
 958   }
 959 
 960   _max_monitors = monitor_count;
 961 
 962   // Now that we have a bound on the depth of the monitor stack, we can
 963   // initialize the CellTypeState-related information.
 964   init_state();
 965 
 966   // We allocate space for all state-vectors for all basicblocks in one huge chuck.
 967   // Then in the next part of the code, we set a pointer in each _basic_block that
 968   // points to each piece.
 969   CellTypeState *basicBlockState = NEW_RESOURCE_ARRAY(CellTypeState, bbNo * _state_len);
 970   memset(basicBlockState, 0, bbNo * _state_len * sizeof(CellTypeState));
 971 
 972   // Make a pass over the basicblocks and assign their state vectors.
 973   for (int blockNum=0; blockNum < bbNo; blockNum++) {
 974     BasicBlock *bb = _basic_blocks + blockNum;
 975     bb->_state = basicBlockState + blockNum * _state_len;
 976 
 977 #ifdef ASSERT
 978     if (blockNum + 1 < bbNo) {
 979       address bcp = _method->bcp_from(bb->_end_bci);
 980       int bc_len = Bytecodes::java_length_at(bcp);
 981       assert(bb->_end_bci + bc_len == bb[1]._bci, "unmatched bci info in basicblock");
 982     }
 983 #endif
 984   }
 985 #ifdef ASSERT
 986   { BasicBlock *bb = &_basic_blocks[bbNo-1];
 987     address bcp = _method->bcp_from(bb->_end_bci);
 988     int bc_len = Bytecodes::java_length_at(bcp);
 989     assert(bb->_end_bci + bc_len == _method->code_size(), "wrong end bci");
 990   }
 991 #endif
 992 
 993   // Mark all alive blocks
 994   mark_reachable_code();
 995 }
 996 
 997 void GenerateOopMap::setup_method_entry_state() {
 998 
 999     // Initialize all locals to 'uninit' and set stack-height to 0
1000     make_context_uninitialized();
1001 
1002     // Initialize CellState type of arguments
1003     methodsig_to_effect(method()->signature(), method()->is_static(), vars());
1004 
1005     // If some references must be pre-assigned to null, then set that up
1006     initialize_vars();
1007 
1008     // This is the start state
1009     merge_state_into_bb(&_basic_blocks[0]);
1010 
1011     assert(_basic_blocks[0].changed(), "we are not getting off the ground");
1012 }
1013 
1014 // The instruction at bci is changing size by "delta".  Update the basic blocks.
1015 void GenerateOopMap::update_basic_blocks(int bci, int delta,
1016                                          int new_method_size) {
1017   assert(new_method_size >= method()->code_size() + delta,
1018          "new method size is too small");
1019 
1020   BitMap::bm_word_t* new_bb_hdr_bits =
1021     NEW_RESOURCE_ARRAY(BitMap::bm_word_t,
1022                        BitMap::word_align_up(new_method_size));
1023   _bb_hdr_bits.set_map(new_bb_hdr_bits);
1024   _bb_hdr_bits.set_size(new_method_size);
1025   _bb_hdr_bits.clear();
1026 
1027 
1028   for(int k = 0; k < _bb_count; k++) {
1029     if (_basic_blocks[k]._bci > bci) {
1030       _basic_blocks[k]._bci     += delta;
1031       _basic_blocks[k]._end_bci += delta;
1032     }
1033     _bb_hdr_bits.at_put(_basic_blocks[k]._bci, true);
1034   }
1035 }
1036 
1037 //
1038 // Initvars handling
1039 //
1040 
1041 void GenerateOopMap::initialize_vars() {
1042   for (int k = 0; k < _init_vars->length(); k++)
1043     _state[_init_vars->at(k)] = CellTypeState::make_slot_ref(k);
1044 }
1045 
1046 void GenerateOopMap::add_to_ref_init_set(int localNo) {
1047 
1048   if (TraceNewOopMapGeneration)
1049     tty->print_cr("Added init vars: %d", localNo);
1050 
1051   // Is it already in the set?
1052   if (_init_vars->contains(localNo) )
1053     return;
1054 
1055    _init_vars->append(localNo);
1056 }
1057 
1058 //
1059 // Interpreration code
1060 //
1061 
1062 void GenerateOopMap::interp_all() {
1063   bool change = true;
1064 
1065   while (change && !_got_error) {
1066     change = false;
1067     for (int i = 0; i < _bb_count && !_got_error; i++) {
1068       BasicBlock *bb = &_basic_blocks[i];
1069       if (bb->changed()) {
1070          if (_got_error) return;
1071          change = true;
1072          bb->set_changed(false);
1073          interp_bb(bb);
1074       }
1075     }
1076   }
1077 }
1078 
1079 void GenerateOopMap::interp_bb(BasicBlock *bb) {
1080 
1081   // We do not want to do anything in case the basic-block has not been initialized. This
1082   // will happen in the case where there is dead-code hang around in a method.
1083   assert(bb->is_reachable(), "should be reachable or deadcode exist");
1084   restore_state(bb);
1085 
1086   BytecodeStream itr(_method);
1087 
1088   // Set iterator interval to be the current basicblock
1089   int lim_bci = next_bb_start_pc(bb);
1090   itr.set_interval(bb->_bci, lim_bci);
1091   assert(lim_bci != bb->_bci, "must be at least one instruction in a basicblock");
1092   itr.next(); // read first instruction
1093 
1094   // Iterates through all bytecodes except the last in a basic block.
1095   // We handle the last one special, since there is controlflow change.
1096   while(itr.next_bci() < lim_bci && !_got_error) {
1097     if (_has_exceptions || _monitor_top != 0) {
1098       // We do not need to interpret the results of exceptional
1099       // continuation from this instruction when the method has no
1100       // exception handlers and the monitor stack is currently
1101       // empty.
1102       do_exception_edge(&itr);
1103     }
1104     interp1(&itr);
1105     itr.next();
1106   }
1107 
1108   // Handle last instruction.
1109   if (!_got_error) {
1110     assert(itr.next_bci() == lim_bci, "must point to end");
1111     if (_has_exceptions || _monitor_top != 0) {
1112       do_exception_edge(&itr);
1113     }
1114     interp1(&itr);
1115 
1116     bool fall_through = jump_targets_do(&itr, GenerateOopMap::merge_state, NULL);
1117     if (_got_error)  return;
1118 
1119     if (itr.code() == Bytecodes::_ret) {
1120       assert(!fall_through, "cannot be set if ret instruction");
1121       // Automatically handles 'wide' ret indicies
1122       ret_jump_targets_do(&itr, GenerateOopMap::merge_state, itr.get_index(), NULL);
1123     } else if (fall_through) {
1124      // Hit end of BB, but the instr. was a fall-through instruction,
1125      // so perform transition as if the BB ended in a "jump".
1126      if (lim_bci != bb[1]._bci) {
1127        verify_error("bytecodes fell through last instruction");
1128        return;
1129      }
1130      merge_state_into_bb(bb + 1);
1131     }
1132   }
1133 }
1134 
1135 void GenerateOopMap::do_exception_edge(BytecodeStream* itr) {
1136   // Only check exception edge, if bytecode can trap
1137   if (!Bytecodes::can_trap(itr->code())) return;
1138   switch (itr->code()) {
1139     case Bytecodes::_aload_0:
1140       // These bytecodes can trap for rewriting.  We need to assume that
1141       // they do not throw exceptions to make the monitor analysis work.
1142       return;
1143 
1144     case Bytecodes::_ireturn:
1145     case Bytecodes::_lreturn:
1146     case Bytecodes::_freturn:
1147     case Bytecodes::_dreturn:
1148     case Bytecodes::_areturn:
1149     case Bytecodes::_return:
1150       // If the monitor stack height is not zero when we leave the method,
1151       // then we are either exiting with a non-empty stack or we have
1152       // found monitor trouble earlier in our analysis.  In either case,
1153       // assume an exception could be taken here.
1154       if (_monitor_top == 0) {
1155         return;
1156       }
1157       break;
1158 
1159     case Bytecodes::_monitorexit:
1160       // If the monitor stack height is bad_monitors, then we have detected a
1161       // monitor matching problem earlier in the analysis.  If the
1162       // monitor stack height is 0, we are about to pop a monitor
1163       // off of an empty stack.  In either case, the bytecode
1164       // could throw an exception.
1165       if (_monitor_top != bad_monitors && _monitor_top != 0) {
1166         return;
1167       }
1168       break;
1169   }
1170 
1171   if (_has_exceptions) {
1172     int bci = itr->bci();
1173     typeArrayOop exct  = method()->exception_table();
1174     for(int i = 0; i< exct->length(); i+=4) {
1175       int start_pc   = exct->int_at(i);
1176       int end_pc     = exct->int_at(i+1);
1177       int handler_pc = exct->int_at(i+2);
1178       int catch_type = exct->int_at(i+3);
1179 
1180       if (start_pc <= bci && bci < end_pc) {
1181         BasicBlock *excBB = get_basic_block_at(handler_pc);
1182         CellTypeState *excStk = excBB->stack();
1183         CellTypeState *cOpStck = stack();
1184         CellTypeState cOpStck_0 = cOpStck[0];
1185         int cOpStackTop = _stack_top;
1186 
1187         // Exception stacks are always the same.
1188         assert(method()->max_stack() > 0, "sanity check");
1189 
1190         // We remembered the size and first element of "cOpStck"
1191         // above; now we temporarily set them to the appropriate
1192         // values for an exception handler. */
1193         cOpStck[0] = CellTypeState::make_slot_ref(_max_locals);
1194         _stack_top = 1;
1195 
1196         merge_state_into_bb(excBB);
1197 
1198         // Now undo the temporary change.
1199         cOpStck[0] = cOpStck_0;
1200         _stack_top = cOpStackTop;
1201 
1202         // If this is a "catch all" handler, then we do not need to
1203         // consider any additional handlers.
1204         if (catch_type == 0) {
1205           return;
1206         }
1207       }
1208     }
1209   }
1210 
1211   // It is possible that none of the exception handlers would have caught
1212   // the exception.  In this case, we will exit the method.  We must
1213   // ensure that the monitor stack is empty in this case.
1214   if (_monitor_top == 0) {
1215     return;
1216   }
1217 
1218   // We pessimistically assume that this exception can escape the
1219   // method. (It is possible that it will always be caught, but
1220   // we don't care to analyse the types of the catch clauses.)
1221 
1222   // We don't set _monitor_top to bad_monitors because there are no successors
1223   // to this exceptional exit.
1224 
1225   if (TraceMonitorMismatch && _monitor_safe) {
1226     // We check _monitor_safe so that we only report the first mismatched
1227     // exceptional exit.
1228     report_monitor_mismatch("non-empty monitor stack at exceptional exit");
1229   }
1230   _monitor_safe = false;
1231 
1232 }
1233 
1234 void GenerateOopMap::report_monitor_mismatch(const char *msg) {
1235 #ifndef PRODUCT
1236   tty->print("    Monitor mismatch in method ");
1237   method()->print_short_name(tty);
1238   tty->print_cr(": %s", msg);
1239 #endif
1240 }
1241 
1242 void GenerateOopMap::print_states(outputStream *os,
1243                                   CellTypeState* vec, int num) {
1244   for (int i = 0; i < num; i++) {
1245     vec[i].print(tty);
1246   }
1247 }
1248 
1249 // Print the state values at the current bytecode.
1250 void GenerateOopMap::print_current_state(outputStream   *os,
1251                                          BytecodeStream *currentBC,
1252                                          bool            detailed) {
1253 
1254   if (detailed) {
1255     os->print("     %4d vars     = ", currentBC->bci());
1256     print_states(os, vars(), _max_locals);
1257     os->print("    %s", Bytecodes::name(currentBC->code()));
1258     switch(currentBC->code()) {
1259       case Bytecodes::_invokevirtual:
1260       case Bytecodes::_invokespecial:
1261       case Bytecodes::_invokestatic:
1262       case Bytecodes::_invokedynamic:
1263       case Bytecodes::_invokeinterface:
1264         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2();
1265         constantPoolOop cp    = method()->constants();
1266         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
1267         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
1268         symbolOop signature   = cp->symbol_at(signatureIdx);
1269         os->print("%s", signature->as_C_string());
1270     }
1271     os->cr();
1272     os->print("          stack    = ");
1273     print_states(os, stack(), _stack_top);
1274     os->cr();
1275     if (_monitor_top != bad_monitors) {
1276       os->print("          monitors = ");
1277       print_states(os, monitors(), _monitor_top);
1278     } else {
1279       os->print("          [bad monitor stack]");
1280     }
1281     os->cr();
1282   } else {
1283     os->print("    %4d  vars = '%s' ", currentBC->bci(),  state_vec_to_string(vars(), _max_locals));
1284     os->print("     stack = '%s' ", state_vec_to_string(stack(), _stack_top));
1285     if (_monitor_top != bad_monitors) {
1286       os->print("  monitors = '%s'  \t%s", state_vec_to_string(monitors(), _monitor_top), Bytecodes::name(currentBC->code()));
1287     } else {
1288       os->print("  [bad monitor stack]");
1289     }
1290     switch(currentBC->code()) {
1291       case Bytecodes::_invokevirtual:
1292       case Bytecodes::_invokespecial:
1293       case Bytecodes::_invokestatic:
1294       case Bytecodes::_invokedynamic:
1295       case Bytecodes::_invokeinterface:
1296         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2();
1297         constantPoolOop cp    = method()->constants();
1298         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
1299         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
1300         symbolOop signature   = cp->symbol_at(signatureIdx);
1301         os->print("%s", signature->as_C_string());
1302     }
1303     os->cr();
1304   }
1305 }
1306 
1307 // Sets the current state to be the state after executing the
1308 // current instruction, starting in the current state.
1309 void GenerateOopMap::interp1(BytecodeStream *itr) {
1310   if (TraceNewOopMapGeneration) {
1311     print_current_state(tty, itr, TraceNewOopMapGenerationDetailed);
1312   }
1313 
1314   // Should we report the results? Result is reported *before* the instruction at the current bci is executed.
1315   // However, not for calls. For calls we do not want to include the arguments, so we postpone the reporting until
1316   // they have been popped (in method ppl).
1317   if (_report_result == true) {
1318     switch(itr->code()) {
1319       case Bytecodes::_invokevirtual:
1320       case Bytecodes::_invokespecial:
1321       case Bytecodes::_invokestatic:
1322       case Bytecodes::_invokedynamic:
1323       case Bytecodes::_invokeinterface:
1324         _itr_send = itr;
1325         _report_result_for_send = true;
1326         break;
1327       default:
1328        fill_stackmap_for_opcodes(itr, vars(), stack(), _stack_top);
1329        break;
1330     }
1331   }
1332 
1333   // abstract interpretation of current opcode
1334   switch(itr->code()) {
1335     case Bytecodes::_nop:                                           break;
1336     case Bytecodes::_goto:                                          break;
1337     case Bytecodes::_goto_w:                                        break;
1338     case Bytecodes::_iinc:                                          break;
1339     case Bytecodes::_return:            do_return_monitor_check();
1340                                         break;
1341 
1342     case Bytecodes::_aconst_null:
1343     case Bytecodes::_new:               ppush1(CellTypeState::make_line_ref(itr->bci()));
1344                                         break;
1345 
1346     case Bytecodes::_iconst_m1:
1347     case Bytecodes::_iconst_0:
1348     case Bytecodes::_iconst_1:
1349     case Bytecodes::_iconst_2:
1350     case Bytecodes::_iconst_3:
1351     case Bytecodes::_iconst_4:
1352     case Bytecodes::_iconst_5:
1353     case Bytecodes::_fconst_0:
1354     case Bytecodes::_fconst_1:
1355     case Bytecodes::_fconst_2:
1356     case Bytecodes::_bipush:
1357     case Bytecodes::_sipush:            ppush1(valCTS);             break;
1358 
1359     case Bytecodes::_lconst_0:
1360     case Bytecodes::_lconst_1:
1361     case Bytecodes::_dconst_0:
1362     case Bytecodes::_dconst_1:          ppush(vvCTS);               break;
1363 
1364     case Bytecodes::_ldc2_w:            ppush(vvCTS);               break;
1365 
1366     case Bytecodes::_ldc:               do_ldc(itr->get_index(),    itr->bci()); break;
1367     case Bytecodes::_ldc_w:             do_ldc(itr->get_index_u2(), itr->bci()); break;
1368 
1369     case Bytecodes::_iload:
1370     case Bytecodes::_fload:             ppload(vCTS, itr->get_index()); break;
1371 
1372     case Bytecodes::_lload:
1373     case Bytecodes::_dload:             ppload(vvCTS,itr->get_index()); break;
1374 
1375     case Bytecodes::_aload:             ppload(rCTS, itr->get_index()); break;
1376 
1377     case Bytecodes::_iload_0:
1378     case Bytecodes::_fload_0:           ppload(vCTS, 0);            break;
1379     case Bytecodes::_iload_1:
1380     case Bytecodes::_fload_1:           ppload(vCTS, 1);            break;
1381     case Bytecodes::_iload_2:
1382     case Bytecodes::_fload_2:           ppload(vCTS, 2);            break;
1383     case Bytecodes::_iload_3:
1384     case Bytecodes::_fload_3:           ppload(vCTS, 3);            break;
1385 
1386     case Bytecodes::_lload_0:
1387     case Bytecodes::_dload_0:           ppload(vvCTS, 0);           break;
1388     case Bytecodes::_lload_1:
1389     case Bytecodes::_dload_1:           ppload(vvCTS, 1);           break;
1390     case Bytecodes::_lload_2:
1391     case Bytecodes::_dload_2:           ppload(vvCTS, 2);           break;
1392     case Bytecodes::_lload_3:
1393     case Bytecodes::_dload_3:           ppload(vvCTS, 3);           break;
1394 
1395     case Bytecodes::_aload_0:           ppload(rCTS, 0);            break;
1396     case Bytecodes::_aload_1:           ppload(rCTS, 1);            break;
1397     case Bytecodes::_aload_2:           ppload(rCTS, 2);            break;
1398     case Bytecodes::_aload_3:           ppload(rCTS, 3);            break;
1399 
1400     case Bytecodes::_iaload:
1401     case Bytecodes::_faload:
1402     case Bytecodes::_baload:
1403     case Bytecodes::_caload:
1404     case Bytecodes::_saload:            pp(vrCTS, vCTS); break;
1405 
1406     case Bytecodes::_laload:            pp(vrCTS, vvCTS);  break;
1407     case Bytecodes::_daload:            pp(vrCTS, vvCTS); break;
1408 
1409     case Bytecodes::_aaload:            pp_new_ref(vrCTS, itr->bci()); break;
1410 
1411     case Bytecodes::_istore:
1412     case Bytecodes::_fstore:            ppstore(vCTS, itr->get_index()); break;
1413 
1414     case Bytecodes::_lstore:
1415     case Bytecodes::_dstore:            ppstore(vvCTS, itr->get_index()); break;
1416 
1417     case Bytecodes::_astore:            do_astore(itr->get_index());     break;
1418 
1419     case Bytecodes::_istore_0:
1420     case Bytecodes::_fstore_0:          ppstore(vCTS, 0);           break;
1421     case Bytecodes::_istore_1:
1422     case Bytecodes::_fstore_1:          ppstore(vCTS, 1);           break;
1423     case Bytecodes::_istore_2:
1424     case Bytecodes::_fstore_2:          ppstore(vCTS, 2);           break;
1425     case Bytecodes::_istore_3:
1426     case Bytecodes::_fstore_3:          ppstore(vCTS, 3);           break;
1427 
1428     case Bytecodes::_lstore_0:
1429     case Bytecodes::_dstore_0:          ppstore(vvCTS, 0);          break;
1430     case Bytecodes::_lstore_1:
1431     case Bytecodes::_dstore_1:          ppstore(vvCTS, 1);          break;
1432     case Bytecodes::_lstore_2:
1433     case Bytecodes::_dstore_2:          ppstore(vvCTS, 2);          break;
1434     case Bytecodes::_lstore_3:
1435     case Bytecodes::_dstore_3:          ppstore(vvCTS, 3);          break;
1436 
1437     case Bytecodes::_astore_0:          do_astore(0);               break;
1438     case Bytecodes::_astore_1:          do_astore(1);               break;
1439     case Bytecodes::_astore_2:          do_astore(2);               break;
1440     case Bytecodes::_astore_3:          do_astore(3);               break;
1441 
1442     case Bytecodes::_iastore:
1443     case Bytecodes::_fastore:
1444     case Bytecodes::_bastore:
1445     case Bytecodes::_castore:
1446     case Bytecodes::_sastore:           ppop(vvrCTS);               break;
1447     case Bytecodes::_lastore:
1448     case Bytecodes::_dastore:           ppop(vvvrCTS);              break;
1449     case Bytecodes::_aastore:           ppop(rvrCTS);               break;
1450 
1451     case Bytecodes::_pop:               ppop_any(1);                break;
1452     case Bytecodes::_pop2:              ppop_any(2);                break;
1453 
1454     case Bytecodes::_dup:               ppdupswap(1, "11");         break;
1455     case Bytecodes::_dup_x1:            ppdupswap(2, "121");        break;
1456     case Bytecodes::_dup_x2:            ppdupswap(3, "1321");       break;
1457     case Bytecodes::_dup2:              ppdupswap(2, "2121");       break;
1458     case Bytecodes::_dup2_x1:           ppdupswap(3, "21321");      break;
1459     case Bytecodes::_dup2_x2:           ppdupswap(4, "214321");     break;
1460     case Bytecodes::_swap:              ppdupswap(2, "12");         break;
1461 
1462     case Bytecodes::_iadd:
1463     case Bytecodes::_fadd:
1464     case Bytecodes::_isub:
1465     case Bytecodes::_fsub:
1466     case Bytecodes::_imul:
1467     case Bytecodes::_fmul:
1468     case Bytecodes::_idiv:
1469     case Bytecodes::_fdiv:
1470     case Bytecodes::_irem:
1471     case Bytecodes::_frem:
1472     case Bytecodes::_ishl:
1473     case Bytecodes::_ishr:
1474     case Bytecodes::_iushr:
1475     case Bytecodes::_iand:
1476     case Bytecodes::_ior:
1477     case Bytecodes::_ixor:
1478     case Bytecodes::_l2f:
1479     case Bytecodes::_l2i:
1480     case Bytecodes::_d2f:
1481     case Bytecodes::_d2i:
1482     case Bytecodes::_fcmpl:
1483     case Bytecodes::_fcmpg:             pp(vvCTS, vCTS); break;
1484 
1485     case Bytecodes::_ladd:
1486     case Bytecodes::_dadd:
1487     case Bytecodes::_lsub:
1488     case Bytecodes::_dsub:
1489     case Bytecodes::_lmul:
1490     case Bytecodes::_dmul:
1491     case Bytecodes::_ldiv:
1492     case Bytecodes::_ddiv:
1493     case Bytecodes::_lrem:
1494     case Bytecodes::_drem:
1495     case Bytecodes::_land:
1496     case Bytecodes::_lor:
1497     case Bytecodes::_lxor:              pp(vvvvCTS, vvCTS); break;
1498 
1499     case Bytecodes::_ineg:
1500     case Bytecodes::_fneg:
1501     case Bytecodes::_i2f:
1502     case Bytecodes::_f2i:
1503     case Bytecodes::_i2c:
1504     case Bytecodes::_i2s:
1505     case Bytecodes::_i2b:               pp(vCTS, vCTS); break;
1506 
1507     case Bytecodes::_lneg:
1508     case Bytecodes::_dneg:
1509     case Bytecodes::_l2d:
1510     case Bytecodes::_d2l:               pp(vvCTS, vvCTS); break;
1511 
1512     case Bytecodes::_lshl:
1513     case Bytecodes::_lshr:
1514     case Bytecodes::_lushr:             pp(vvvCTS, vvCTS); break;
1515 
1516     case Bytecodes::_i2l:
1517     case Bytecodes::_i2d:
1518     case Bytecodes::_f2l:
1519     case Bytecodes::_f2d:               pp(vCTS, vvCTS); break;
1520 
1521     case Bytecodes::_lcmp:              pp(vvvvCTS, vCTS); break;
1522     case Bytecodes::_dcmpl:
1523     case Bytecodes::_dcmpg:             pp(vvvvCTS, vCTS); break;
1524 
1525     case Bytecodes::_ifeq:
1526     case Bytecodes::_ifne:
1527     case Bytecodes::_iflt:
1528     case Bytecodes::_ifge:
1529     case Bytecodes::_ifgt:
1530     case Bytecodes::_ifle:
1531     case Bytecodes::_tableswitch:       ppop1(valCTS);
1532                                         break;
1533     case Bytecodes::_ireturn:
1534     case Bytecodes::_freturn:           do_return_monitor_check();
1535                                         ppop1(valCTS);
1536                                         break;
1537     case Bytecodes::_if_icmpeq:
1538     case Bytecodes::_if_icmpne:
1539     case Bytecodes::_if_icmplt:
1540     case Bytecodes::_if_icmpge:
1541     case Bytecodes::_if_icmpgt:
1542     case Bytecodes::_if_icmple:         ppop(vvCTS);
1543                                         break;
1544 
1545     case Bytecodes::_lreturn:           do_return_monitor_check();
1546                                         ppop(vvCTS);
1547                                         break;
1548 
1549     case Bytecodes::_dreturn:           do_return_monitor_check();
1550                                         ppop(vvCTS);
1551                                         break;
1552 
1553     case Bytecodes::_if_acmpeq:
1554     case Bytecodes::_if_acmpne:         ppop(rrCTS);                 break;
1555 
1556     case Bytecodes::_jsr:               do_jsr(itr->dest());         break;
1557     case Bytecodes::_jsr_w:             do_jsr(itr->dest_w());       break;
1558 
1559     case Bytecodes::_getstatic:         do_field(true,  true,
1560                                                  itr->get_index_u2_cpcache(),
1561                                                  itr->bci()); break;
1562     case Bytecodes::_putstatic:         do_field(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
1563     case Bytecodes::_getfield:          do_field(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
1564     case Bytecodes::_putfield:          do_field(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
1565 
1566     case Bytecodes::_invokevirtual:
1567     case Bytecodes::_invokespecial:     do_method(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
1568     case Bytecodes::_invokestatic:      do_method(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
1569     case Bytecodes::_invokedynamic:     do_method(true,  false, itr->get_index_u4(),         itr->bci()); break;
1570     case Bytecodes::_invokeinterface:   do_method(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
1571     case Bytecodes::_newarray:
1572     case Bytecodes::_anewarray:         pp_new_ref(vCTS, itr->bci()); break;
1573     case Bytecodes::_checkcast:         do_checkcast(); break;
1574     case Bytecodes::_arraylength:
1575     case Bytecodes::_instanceof:        pp(rCTS, vCTS); break;
1576     case Bytecodes::_monitorenter:      do_monitorenter(itr->bci()); break;
1577     case Bytecodes::_monitorexit:       do_monitorexit(itr->bci()); break;
1578 
1579     case Bytecodes::_athrow:            // handled by do_exception_edge() BUT ...
1580                                         // vlh(apple): do_exception_edge() does not get
1581                                         // called if method has no exception handlers
1582                                         if ((!_has_exceptions) && (_monitor_top > 0)) {
1583                                           _monitor_safe = false;
1584                                         }
1585                                         break;
1586 
1587     case Bytecodes::_areturn:           do_return_monitor_check();
1588                                         ppop1(refCTS);
1589                                         break;
1590     case Bytecodes::_ifnull:
1591     case Bytecodes::_ifnonnull:         ppop1(refCTS); break;
1592     case Bytecodes::_multianewarray:    do_multianewarray(*(itr->bcp()+3), itr->bci()); break;
1593 
1594     case Bytecodes::_wide:              fatal("Iterator should skip this bytecode"); break;
1595     case Bytecodes::_ret:                                           break;
1596 
1597     // Java opcodes
1598     case Bytecodes::_lookupswitch:      ppop1(valCTS);             break;
1599 
1600     default:
1601          tty->print("unexpected opcode: %d\n", itr->code());
1602          ShouldNotReachHere();
1603     break;
1604   }
1605 }
1606 
1607 void GenerateOopMap::check_type(CellTypeState expected, CellTypeState actual) {
1608   if (!expected.equal_kind(actual)) {
1609     verify_error("wrong type on stack (found: %c expected: %c)", actual.to_char(), expected.to_char());
1610   }
1611 }
1612 
1613 void GenerateOopMap::ppstore(CellTypeState *in, int loc_no) {
1614   while(!(*in).is_bottom()) {
1615     CellTypeState expected =*in++;
1616     CellTypeState actual   = pop();
1617     check_type(expected, actual);
1618     assert(loc_no >= 0, "sanity check");
1619     set_var(loc_no++, actual);
1620   }
1621 }
1622 
1623 void GenerateOopMap::ppload(CellTypeState *out, int loc_no) {
1624   while(!(*out).is_bottom()) {
1625     CellTypeState out1 = *out++;
1626     CellTypeState vcts = get_var(loc_no);
1627     assert(out1.can_be_reference() || out1.can_be_value(),
1628            "can only load refs. and values.");
1629     if (out1.is_reference()) {
1630       assert(loc_no>=0, "sanity check");
1631       if (!vcts.is_reference()) {
1632         // We were asked to push a reference, but the type of the
1633         // variable can be something else
1634         _conflict = true;
1635         if (vcts.can_be_uninit()) {
1636           // It is a ref-uninit conflict (at least). If there are other
1637           // problems, we'll get them in the next round
1638           add_to_ref_init_set(loc_no);
1639           vcts = out1;
1640         } else {
1641           // It wasn't a ref-uninit conflict. So must be a
1642           // ref-val or ref-pc conflict. Split the variable.
1643           record_refval_conflict(loc_no);
1644           vcts = out1;
1645         }
1646         push(out1); // recover...
1647       } else {
1648         push(vcts); // preserve reference.
1649       }
1650       // Otherwise it is a conflict, but one that verification would
1651       // have caught if illegal. In particular, it can't be a topCTS
1652       // resulting from mergeing two difference pcCTS's since the verifier
1653       // would have rejected any use of such a merge.
1654     } else {
1655       push(out1); // handle val/init conflict
1656     }
1657     loc_no++;
1658   }
1659 }
1660 
1661 void GenerateOopMap::ppdupswap(int poplen, const char *out) {
1662   CellTypeState actual[5];
1663   assert(poplen < 5, "this must be less than length of actual vector");
1664 
1665   // pop all arguments
1666   for(int i = 0; i < poplen; i++) actual[i] = pop();
1667 
1668   // put them back
1669   char push_ch = *out++;
1670   while (push_ch != '\0') {
1671     int idx = push_ch - '1';
1672     assert(idx >= 0 && idx < poplen, "wrong arguments");
1673     push(actual[idx]);
1674     push_ch = *out++;
1675   }
1676 }
1677 
1678 void GenerateOopMap::ppop1(CellTypeState out) {
1679   CellTypeState actual = pop();
1680   check_type(out, actual);
1681 }
1682 
1683 void GenerateOopMap::ppop(CellTypeState *out) {
1684   while (!(*out).is_bottom()) {
1685     ppop1(*out++);
1686   }
1687 }
1688 
1689 void GenerateOopMap::ppush1(CellTypeState in) {
1690   assert(in.is_reference() | in.is_value(), "sanity check");
1691   push(in);
1692 }
1693 
1694 void GenerateOopMap::ppush(CellTypeState *in) {
1695   while (!(*in).is_bottom()) {
1696     ppush1(*in++);
1697   }
1698 }
1699 
1700 void GenerateOopMap::pp(CellTypeState *in, CellTypeState *out) {
1701   ppop(in);
1702   ppush(out);
1703 }
1704 
1705 void GenerateOopMap::pp_new_ref(CellTypeState *in, int bci) {
1706   ppop(in);
1707   ppush1(CellTypeState::make_line_ref(bci));
1708 }
1709 
1710 void GenerateOopMap::ppop_any(int poplen) {
1711   if (_stack_top >= poplen) {
1712     _stack_top -= poplen;
1713   } else {
1714     verify_error("stack underflow");
1715   }
1716 }
1717 
1718 // Replace all occurences of the state 'match' with the state 'replace'
1719 // in our current state vector.
1720 void GenerateOopMap::replace_all_CTS_matches(CellTypeState match,
1721                                              CellTypeState replace) {
1722   int i;
1723   int len = _max_locals + _stack_top;
1724   bool change = false;
1725 
1726   for (i = len - 1; i >= 0; i--) {
1727     if (match.equal(_state[i])) {
1728       _state[i] = replace;
1729     }
1730   }
1731 
1732   if (_monitor_top > 0) {
1733     int base = _max_locals + _max_stack;
1734     len = base + _monitor_top;
1735     for (i = len - 1; i >= base; i--) {
1736       if (match.equal(_state[i])) {
1737         _state[i] = replace;
1738       }
1739     }
1740   }
1741 }
1742 
1743 void GenerateOopMap::do_checkcast() {
1744   CellTypeState actual = pop();
1745   check_type(refCTS, actual);
1746   push(actual);
1747 }
1748 
1749 void GenerateOopMap::do_monitorenter(int bci) {
1750   CellTypeState actual = pop();
1751   if (_monitor_top == bad_monitors) {
1752     return;
1753   }
1754 
1755   // Bail out when we get repeated locks on an identical monitor.  This case
1756   // isn't too hard to handle and can be made to work if supporting nested
1757   // redundant synchronized statements becomes a priority.
1758   //
1759   // See also "Note" in do_monitorexit(), below.
1760   if (actual.is_lock_reference()) {
1761     _monitor_top = bad_monitors;
1762     _monitor_safe = false;
1763 
1764     if (TraceMonitorMismatch) {
1765       report_monitor_mismatch("nested redundant lock -- bailout...");
1766     }
1767     return;
1768   }
1769 
1770   CellTypeState lock = CellTypeState::make_lock_ref(bci);
1771   check_type(refCTS, actual);
1772   if (!actual.is_info_top()) {
1773     replace_all_CTS_matches(actual, lock);
1774     monitor_push(lock);
1775   }
1776 }
1777 
1778 void GenerateOopMap::do_monitorexit(int bci) {
1779   CellTypeState actual = pop();
1780   if (_monitor_top == bad_monitors) {
1781     return;
1782   }
1783   check_type(refCTS, actual);
1784   CellTypeState expected = monitor_pop();
1785   if (!actual.is_lock_reference() || !expected.equal(actual)) {
1786     // The monitor we are exiting is not verifiably the one
1787     // on the top of our monitor stack.  This causes a monitor
1788     // mismatch.
1789     _monitor_top = bad_monitors;
1790     _monitor_safe = false;
1791 
1792     // We need to mark this basic block as changed so that
1793     // this monitorexit will be visited again.  We need to
1794     // do this to ensure that we have accounted for the
1795     // possibility that this bytecode will throw an
1796     // exception.
1797     BasicBlock* bb = get_basic_block_containing(bci);
1798     bb->set_changed(true);
1799     bb->_monitor_top = bad_monitors;
1800 
1801     if (TraceMonitorMismatch) {
1802       report_monitor_mismatch("improper monitor pair");
1803     }
1804   } else {
1805     // This code is a fix for the case where we have repeated
1806     // locking of the same object in straightline code.  We clear
1807     // out the lock when it is popped from the monitor stack
1808     // and replace it with an unobtrusive reference value that can
1809     // be locked again.
1810     //
1811     // Note: when generateOopMap is fixed to properly handle repeated,
1812     //       nested, redundant locks on the same object, then this
1813     //       fix will need to be removed at that time.
1814     replace_all_CTS_matches(actual, CellTypeState::make_line_ref(bci));
1815   }
1816 }
1817 
1818 void GenerateOopMap::do_return_monitor_check() {
1819   if (_monitor_top > 0) {
1820     // The monitor stack must be empty when we leave the method
1821     // for the monitors to be properly matched.
1822     _monitor_safe = false;
1823 
1824     // Since there are no successors to the *return bytecode, it
1825     // isn't necessary to set _monitor_top to bad_monitors.
1826 
1827     if (TraceMonitorMismatch) {
1828       report_monitor_mismatch("non-empty monitor stack at return");
1829     }
1830   }
1831 }
1832 
1833 void GenerateOopMap::do_jsr(int targ_bci) {
1834   push(CellTypeState::make_addr(targ_bci));
1835 }
1836 
1837 
1838 
1839 void GenerateOopMap::do_ldc(int idx, int bci) {
1840   constantPoolOop cp  = method()->constants();
1841   CellTypeState   cts = cp->is_pointer_entry(idx) ? CellTypeState::make_line_ref(bci) : valCTS;
1842   ppush1(cts);
1843 }
1844 
1845 void GenerateOopMap::do_multianewarray(int dims, int bci) {
1846   assert(dims >= 1, "sanity check");
1847   for(int i = dims -1; i >=0; i--) {
1848     ppop1(valCTS);
1849   }
1850   ppush1(CellTypeState::make_line_ref(bci));
1851 }
1852 
1853 void GenerateOopMap::do_astore(int idx) {
1854   CellTypeState r_or_p = pop();
1855   if (!r_or_p.is_address() && !r_or_p.is_reference()) {
1856     // We actually expected ref or pc, but we only report that we expected a ref. It does not
1857     // really matter (at least for now)
1858     verify_error("wrong type on stack (found: %c, expected: {pr})", r_or_p.to_char());
1859     return;
1860   }
1861   set_var(idx, r_or_p);
1862 }
1863 
1864 // Copies bottom/zero terminated CTS string from "src" into "dst".
1865 //   Does NOT terminate with a bottom. Returns the number of cells copied.
1866 int GenerateOopMap::copy_cts(CellTypeState *dst, CellTypeState *src) {
1867   int idx = 0;
1868   while (!src[idx].is_bottom()) {
1869     dst[idx] = src[idx];
1870     idx++;
1871   }
1872   return idx;
1873 }
1874 
1875 void GenerateOopMap::do_field(int is_get, int is_static, int idx, int bci) {
1876   // Dig up signature for field in constant pool
1877   constantPoolOop cp     = method()->constants();
1878   int nameAndTypeIdx     = cp->name_and_type_ref_index_at(idx);
1879   int signatureIdx       = cp->signature_ref_index_at(nameAndTypeIdx);
1880   symbolOop signature    = cp->symbol_at(signatureIdx);
1881 
1882   // Parse signature (espcially simple for fields)
1883   assert(signature->utf8_length() > 0, "field signatures cannot have zero length");
1884   // The signature is UFT8 encoded, but the first char is always ASCII for signatures.
1885   char sigch = (char)*(signature->base());
1886   CellTypeState temp[4];
1887   CellTypeState *eff  = sigchar_to_effect(sigch, bci, temp);
1888 
1889   CellTypeState in[4];
1890   CellTypeState *out;
1891   int i =  0;
1892 
1893   if (is_get) {
1894     out = eff;
1895   } else {
1896     out = epsilonCTS;
1897     i   = copy_cts(in, eff);
1898   }
1899   if (!is_static) in[i++] = CellTypeState::ref;
1900   in[i] = CellTypeState::bottom;
1901   assert(i<=3, "sanity check");
1902   pp(in, out);
1903 }
1904 
1905 void GenerateOopMap::do_method(int is_static, int is_interface, int idx, int bci) {
1906  // Dig up signature for field in constant pool
1907   constantPoolOop cp  = _method->constants();
1908   symbolOop signature = cp->signature_ref_at(idx);
1909 
1910   // Parse method signature
1911   CellTypeState out[4];
1912   CellTypeState in[MAXARGSIZE+1];   // Includes result
1913   ComputeCallStack cse(signature);
1914 
1915   // Compute return type
1916   int res_length=  cse.compute_for_returntype(out);
1917 
1918   // Temporary hack.
1919   if (out[0].equal(CellTypeState::ref) && out[1].equal(CellTypeState::bottom)) {
1920     out[0] = CellTypeState::make_line_ref(bci);
1921   }
1922 
1923   assert(res_length<=4, "max value should be vv");
1924 
1925   // Compute arguments
1926   int arg_length = cse.compute_for_parameters(is_static != 0, in);
1927   assert(arg_length<=MAXARGSIZE, "too many locals");
1928 
1929   // Pop arguments
1930   for (int i = arg_length - 1; i >= 0; i--) ppop1(in[i]);// Do args in reverse order.
1931 
1932   // Report results
1933   if (_report_result_for_send == true) {
1934      fill_stackmap_for_opcodes(_itr_send, vars(), stack(), _stack_top);
1935      _report_result_for_send = false;
1936   }
1937 
1938   // Push return address
1939   ppush(out);
1940 }
1941 
1942 // This is used to parse the signature for fields, since they are very simple...
1943 CellTypeState *GenerateOopMap::sigchar_to_effect(char sigch, int bci, CellTypeState *out) {
1944   // Object and array
1945   if (sigch=='L' || sigch=='[') {
1946     out[0] = CellTypeState::make_line_ref(bci);
1947     out[1] = CellTypeState::bottom;
1948     return out;
1949   }
1950   if (sigch == 'J' || sigch == 'D' ) return vvCTS;  // Long and Double
1951   if (sigch == 'V' ) return epsilonCTS;             // Void
1952   return vCTS;                                      // Otherwise
1953 }
1954 
1955 long GenerateOopMap::_total_byte_count = 0;
1956 elapsedTimer GenerateOopMap::_total_oopmap_time;
1957 
1958 // This function assumes "bcs" is at a "ret" instruction and that the vars
1959 // state is valid for that instruction. Furthermore, the ret instruction
1960 // must be the last instruction in "bb" (we store information about the
1961 // "ret" in "bb").
1962 void GenerateOopMap::ret_jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int varNo, int *data) {
1963   CellTypeState ra = vars()[varNo];
1964   if (!ra.is_good_address()) {
1965     verify_error("ret returns from two jsr subroutines?");
1966     return;
1967   }
1968   int target = ra.get_info();
1969 
1970   RetTableEntry* rtEnt = _rt.find_jsrs_for_target(target);
1971   int bci = bcs->bci();
1972   for (int i = 0; i < rtEnt->nof_jsrs(); i++) {
1973     int target_bci = rtEnt->jsrs(i);
1974     // Make sure a jrtRet does not set the changed bit for dead basicblock.
1975     BasicBlock* jsr_bb    = get_basic_block_containing(target_bci - 1);
1976     debug_only(BasicBlock* target_bb = &jsr_bb[1];)
1977     assert(target_bb  == get_basic_block_at(target_bci), "wrong calc. of successor basicblock");
1978     bool alive = jsr_bb->is_alive();
1979     if (TraceNewOopMapGeneration) {
1980       tty->print("pc = %d, ret -> %d alive: %s\n", bci, target_bci, alive ? "true" : "false");
1981     }
1982     if (alive) jmpFct(this, target_bci, data);
1983   }
1984 }
1985 
1986 //
1987 // Debug method
1988 //
1989 char* GenerateOopMap::state_vec_to_string(CellTypeState* vec, int len) {
1990 #ifdef ASSERT
1991   int checklen = MAX3(_max_locals, _max_stack, _max_monitors) + 1;
1992   assert(len < checklen, "state_vec_buf overflow");
1993 #endif
1994   for (int i = 0; i < len; i++) _state_vec_buf[i] = vec[i].to_char();
1995   _state_vec_buf[len] = 0;
1996   return _state_vec_buf;
1997 }
1998 
1999 void GenerateOopMap::print_time() {
2000   tty->print_cr ("Accumulated oopmap times:");
2001   tty->print_cr ("---------------------------");
2002   tty->print_cr ("  Total : %3.3f sec.", GenerateOopMap::_total_oopmap_time.seconds());
2003   tty->print_cr ("  (%3.0f bytecodes per sec) ",
2004   GenerateOopMap::_total_byte_count / GenerateOopMap::_total_oopmap_time.seconds());
2005 }
2006 
2007 //
2008 //  ============ Main Entry Point ===========
2009 //
2010 GenerateOopMap::GenerateOopMap(methodHandle method) {
2011   // We have to initialize all variables here, that can be queried directly
2012   _method = method;
2013   _max_locals=0;
2014   _init_vars = NULL;
2015 
2016 #ifndef PRODUCT
2017   // If we are doing a detailed trace, include the regular trace information.
2018   if (TraceNewOopMapGenerationDetailed) {
2019     TraceNewOopMapGeneration = true;
2020   }
2021 #endif
2022 }
2023 
2024 void GenerateOopMap::compute_map(TRAPS) {
2025 #ifndef PRODUCT
2026   if (TimeOopMap2) {
2027     method()->print_short_name(tty);
2028     tty->print("  ");
2029   }
2030   if (TimeOopMap) {
2031     _total_byte_count += method()->code_size();
2032   }
2033 #endif
2034   TraceTime t_single("oopmap time", TimeOopMap2);
2035   TraceTime t_all(NULL, &_total_oopmap_time, TimeOopMap);
2036 
2037   // Initialize values
2038   _got_error      = false;
2039   _conflict       = false;
2040   _max_locals     = method()->max_locals();
2041   _max_stack      = method()->max_stack();
2042   _has_exceptions = (method()->exception_table()->length() > 0);
2043   _nof_refval_conflicts = 0;
2044   _init_vars      = new GrowableArray<intptr_t>(5);  // There are seldom more than 5 init_vars
2045   _report_result  = false;
2046   _report_result_for_send = false;
2047   _new_var_map    = NULL;
2048   _ret_adr_tos    = new GrowableArray<intptr_t>(5);  // 5 seems like a good number;
2049   _did_rewriting  = false;
2050   _did_relocation = false;
2051 
2052   if (TraceNewOopMapGeneration) {
2053     tty->print("Method name: %s\n", method()->name()->as_C_string());
2054     if (Verbose) {
2055       _method->print_codes();
2056       tty->print_cr("Exception table:");
2057       typeArrayOop excps = method()->exception_table();
2058       for(int i = 0; i < excps->length(); i += 4) {
2059         tty->print_cr("[%d - %d] -> %d", excps->int_at(i + 0), excps->int_at(i + 1), excps->int_at(i + 2));
2060       }
2061     }
2062   }
2063 
2064   // if no code - do nothing
2065   // compiler needs info
2066   if (method()->code_size() == 0 || _max_locals + method()->max_stack() == 0) {
2067     fill_stackmap_prolog(0);
2068     fill_stackmap_epilog();
2069     return;
2070   }
2071   // Step 1: Compute all jump targets and their return value
2072   if (!_got_error)
2073     _rt.compute_ret_table(_method);
2074 
2075   // Step 2: Find all basic blocks and count GC points
2076   if (!_got_error)
2077     mark_bbheaders_and_count_gc_points();
2078 
2079   // Step 3: Calculate stack maps
2080   if (!_got_error)
2081     do_interpretation();
2082 
2083   // Step 4:Return results
2084   if (!_got_error && report_results())
2085      report_result();
2086 
2087   if (_got_error) {
2088     THROW_HANDLE(_exception);
2089   }
2090 }
2091 
2092 // Error handling methods
2093 // These methods create an exception for the current thread which is thrown
2094 // at the bottom of the call stack, when it returns to compute_map().  The
2095 // _got_error flag controls execution.  NOT TODO: The VM exception propagation
2096 // mechanism using TRAPS/CHECKs could be used here instead but it would need
2097 // to be added as a parameter to every function and checked for every call.
2098 // The tons of extra code it would generate didn't seem worth the change.
2099 //
2100 void GenerateOopMap::error_work(const char *format, va_list ap) {
2101   _got_error = true;
2102   char msg_buffer[512];
2103   vsnprintf(msg_buffer, sizeof(msg_buffer), format, ap);
2104   // Append method name
2105   char msg_buffer2[512];
2106   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg_buffer, method()->name()->as_C_string());
2107   _exception = Exceptions::new_exception(Thread::current(),
2108                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
2109 }
2110 
2111 void GenerateOopMap::report_error(const char *format, ...) {
2112   va_list ap;
2113   va_start(ap, format);
2114   error_work(format, ap);
2115 }
2116 
2117 void GenerateOopMap::verify_error(const char *format, ...) {
2118   // We do not distinguish between different types of errors for verification
2119   // errors.  Let the verifier give a better message.
2120   const char *msg = "Illegal class file encountered. Try running with -Xverify:all";
2121   _got_error = true;
2122   // Append method name
2123   char msg_buffer2[512];
2124   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg,
2125                method()->name()->as_C_string());
2126   _exception = Exceptions::new_exception(Thread::current(),
2127                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
2128 }
2129 
2130 //
2131 // Report result opcodes
2132 //
2133 void GenerateOopMap::report_result() {
2134 
2135   if (TraceNewOopMapGeneration) tty->print_cr("Report result pass");
2136 
2137   // We now want to report the result of the parse
2138   _report_result = true;
2139 
2140   // Prolog code
2141   fill_stackmap_prolog(_gc_points);
2142 
2143    // Mark everything changed, then do one interpretation pass.
2144   for (int i = 0; i<_bb_count; i++) {
2145     if (_basic_blocks[i].is_reachable()) {
2146       _basic_blocks[i].set_changed(true);
2147       interp_bb(&_basic_blocks[i]);
2148     }
2149   }
2150 
2151   // Note: Since we are skipping dead-code when we are reporting results, then
2152   // the no. of encountered gc-points might be fewer than the previously number
2153   // we have counted. (dead-code is a pain - it should be removed before we get here)
2154   fill_stackmap_epilog();
2155 
2156   // Report initvars
2157   fill_init_vars(_init_vars);
2158 
2159   _report_result = false;
2160 }
2161 
2162 void GenerateOopMap::result_for_basicblock(int bci) {
2163  if (TraceNewOopMapGeneration) tty->print_cr("Report result pass for basicblock");
2164 
2165   // We now want to report the result of the parse
2166   _report_result = true;
2167 
2168   // Find basicblock and report results
2169   BasicBlock* bb = get_basic_block_containing(bci);
2170   assert(bb->is_reachable(), "getting result from unreachable basicblock");
2171   bb->set_changed(true);
2172   interp_bb(bb);
2173 }
2174 
2175 //
2176 // Conflict handling code
2177 //
2178 
2179 void GenerateOopMap::record_refval_conflict(int varNo) {
2180   assert(varNo>=0 && varNo< _max_locals, "index out of range");
2181 
2182   if (TraceOopMapRewrites) {
2183      tty->print("### Conflict detected (local no: %d)\n", varNo);
2184   }
2185 
2186   if (!_new_var_map) {
2187     _new_var_map = NEW_RESOURCE_ARRAY(int, _max_locals);
2188     for (int k = 0; k < _max_locals; k++)  _new_var_map[k] = k;
2189   }
2190 
2191   if ( _new_var_map[varNo] == varNo) {
2192     // Check if max. number of locals has been reached
2193     if (_max_locals + _nof_refval_conflicts >= MAX_LOCAL_VARS) {
2194       report_error("Rewriting exceeded local variable limit");
2195       return;
2196     }
2197     _new_var_map[varNo] = _max_locals + _nof_refval_conflicts;
2198     _nof_refval_conflicts++;
2199   }
2200 }
2201 
2202 void GenerateOopMap::rewrite_refval_conflicts()
2203 {
2204   // We can get here two ways: Either a rewrite conflict was detected, or
2205   // an uninitialize reference was detected. In the second case, we do not
2206   // do any rewriting, we just want to recompute the reference set with the
2207   // new information
2208 
2209   int nof_conflicts = 0;              // Used for debugging only
2210 
2211   if ( _nof_refval_conflicts == 0 )
2212      return;
2213 
2214   // Check if rewrites are allowed in this parse.
2215   if (!allow_rewrites() && !IgnoreRewrites) {
2216     fatal("Rewriting method not allowed at this stage");
2217   }
2218 
2219 
2220   // This following flag is to tempoary supress rewrites. The locals that might conflict will
2221   // all be set to contain values. This is UNSAFE - however, until the rewriting has been completely
2222   // tested it is nice to have.
2223   if (IgnoreRewrites) {
2224     if (Verbose) {
2225        tty->print("rewrites suppressed for local no. ");
2226        for (int l = 0; l < _max_locals; l++) {
2227          if (_new_var_map[l] != l) {
2228            tty->print("%d ", l);
2229            vars()[l] = CellTypeState::value;
2230          }
2231        }
2232        tty->cr();
2233     }
2234 
2235     // That was that...
2236     _new_var_map = NULL;
2237     _nof_refval_conflicts = 0;
2238     _conflict = false;
2239 
2240     return;
2241   }
2242 
2243   // Tracing flag
2244   _did_rewriting = true;
2245 
2246   if (TraceOopMapRewrites) {
2247     tty->print_cr("ref/value conflict for method %s - bytecodes are getting rewritten", method()->name()->as_C_string());
2248     method()->print();
2249     method()->print_codes();
2250   }
2251 
2252   assert(_new_var_map!=NULL, "nothing to rewrite");
2253   assert(_conflict==true, "We should not be here");
2254 
2255   compute_ret_adr_at_TOS();
2256   if (!_got_error) {
2257     for (int k = 0; k < _max_locals && !_got_error; k++) {
2258       if (_new_var_map[k] != k) {
2259         if (TraceOopMapRewrites) {
2260           tty->print_cr("Rewriting: %d -> %d", k, _new_var_map[k]);
2261         }
2262         rewrite_refval_conflict(k, _new_var_map[k]);
2263         if (_got_error) return;
2264         nof_conflicts++;
2265       }
2266     }
2267   }
2268 
2269   assert(nof_conflicts == _nof_refval_conflicts, "sanity check");
2270 
2271   // Adjust the number of locals
2272   method()->set_max_locals(_max_locals+_nof_refval_conflicts);
2273   _max_locals += _nof_refval_conflicts;
2274 
2275   // That was that...
2276   _new_var_map = NULL;
2277   _nof_refval_conflicts = 0;
2278 }
2279 
2280 void GenerateOopMap::rewrite_refval_conflict(int from, int to) {
2281   bool startOver;
2282   do {
2283     // Make sure that the BytecodeStream is constructed in the loop, since
2284     // during rewriting a new method oop is going to be used, and the next time
2285     // around we want to use that.
2286     BytecodeStream bcs(_method);
2287     startOver = false;
2288 
2289     while( bcs.next() >=0 && !startOver && !_got_error) {
2290       startOver = rewrite_refval_conflict_inst(&bcs, from, to);
2291     }
2292   } while (startOver && !_got_error);
2293 }
2294 
2295 /* If the current instruction is one that uses local variable "from"
2296    in a ref way, change it to use "to". There's a subtle reason why we
2297    renumber the ref uses and not the non-ref uses: non-ref uses may be
2298    2 slots wide (double, long) which would necessitate keeping track of
2299    whether we should add one or two variables to the method. If the change
2300    affected the width of some instruction, returns "TRUE"; otherwise, returns "FALSE".
2301    Another reason for moving ref's value is for solving (addr, ref) conflicts, which
2302    both uses aload/astore methods.
2303 */
2304 bool GenerateOopMap::rewrite_refval_conflict_inst(BytecodeStream *itr, int from, int to) {
2305   Bytecodes::Code bc = itr->code();
2306   int index;
2307   int bci = itr->bci();
2308 
2309   if (is_aload(itr, &index) && index == from) {
2310     if (TraceOopMapRewrites) {
2311       tty->print_cr("Rewriting aload at bci: %d", bci);
2312     }
2313     return rewrite_load_or_store(itr, Bytecodes::_aload, Bytecodes::_aload_0, to);
2314   }
2315 
2316   if (is_astore(itr, &index) && index == from) {
2317     if (!stack_top_holds_ret_addr(bci)) {
2318       if (TraceOopMapRewrites) {
2319         tty->print_cr("Rewriting astore at bci: %d", bci);
2320       }
2321       return rewrite_load_or_store(itr, Bytecodes::_astore, Bytecodes::_astore_0, to);
2322     } else {
2323       if (TraceOopMapRewrites) {
2324         tty->print_cr("Supress rewriting of astore at bci: %d", bci);
2325       }
2326     }
2327   }
2328 
2329   return false;
2330 }
2331 
2332 // The argument to this method is:
2333 // bc : Current bytecode
2334 // bcN : either _aload or _astore
2335 // bc0 : either _aload_0 or _astore_0
2336 bool GenerateOopMap::rewrite_load_or_store(BytecodeStream *bcs, Bytecodes::Code bcN, Bytecodes::Code bc0, unsigned int varNo) {
2337   assert(bcN == Bytecodes::_astore   || bcN == Bytecodes::_aload,   "wrong argument (bcN)");
2338   assert(bc0 == Bytecodes::_astore_0 || bc0 == Bytecodes::_aload_0, "wrong argument (bc0)");
2339   int ilen = Bytecodes::length_at(bcs->bcp());
2340   int newIlen;
2341 
2342   if (ilen == 4) {
2343     // Original instruction was wide; keep it wide for simplicity
2344     newIlen = 4;
2345   } else if (varNo < 4)
2346      newIlen = 1;
2347   else if (varNo >= 256)
2348      newIlen = 4;
2349   else
2350      newIlen = 2;
2351 
2352   // If we need to relocate in order to patch the byte, we
2353   // do the patching in a temp. buffer, that is passed to the reloc.
2354   // The patching of the bytecode stream is then done by the Relocator.
2355   // This is neccesary, since relocating the instruction at a certain bci, might
2356   // also relocate that instruction, e.g., if a _goto before it gets widen to a _goto_w.
2357   // Hence, we do not know which bci to patch after relocation.
2358 
2359   assert(newIlen <= 4, "sanity check");
2360   u_char inst_buffer[4]; // Max. instruction size is 4.
2361   address bcp;
2362 
2363   if (newIlen != ilen) {
2364     // Relocation needed do patching in temp. buffer
2365     bcp = (address)inst_buffer;
2366   } else {
2367     bcp = _method->bcp_from(bcs->bci());
2368   }
2369 
2370   // Patch either directly in methodOop or in temp. buffer
2371   if (newIlen == 1) {
2372     assert(varNo < 4, "varNo too large");
2373     *bcp = bc0 + varNo;
2374   } else if (newIlen == 2) {
2375     assert(varNo < 256, "2-byte index needed!");
2376     *(bcp + 0) = bcN;
2377     *(bcp + 1) = varNo;
2378   } else {
2379     assert(newIlen == 4, "Wrong instruction length");
2380     *(bcp + 0) = Bytecodes::_wide;
2381     *(bcp + 1) = bcN;
2382     Bytes::put_Java_u2(bcp+2, varNo);
2383   }
2384 
2385   if (newIlen != ilen) {
2386     expand_current_instr(bcs->bci(), ilen, newIlen, inst_buffer);
2387   }
2388 
2389 
2390   return (newIlen != ilen);
2391 }
2392 
2393 class RelocCallback : public RelocatorListener {
2394  private:
2395   GenerateOopMap* _gom;
2396  public:
2397    RelocCallback(GenerateOopMap* gom) { _gom = gom; };
2398 
2399   // Callback method
2400   virtual void relocated(int bci, int delta, int new_code_length) {
2401     _gom->update_basic_blocks  (bci, delta, new_code_length);
2402     _gom->update_ret_adr_at_TOS(bci, delta);
2403     _gom->_rt.update_ret_table (bci, delta);
2404   }
2405 };
2406 
2407 // Returns true if expanding was succesful. Otherwise, reports an error and
2408 // returns false.
2409 void GenerateOopMap::expand_current_instr(int bci, int ilen, int newIlen, u_char inst_buffer[]) {
2410   Thread *THREAD = Thread::current();  // Could really have TRAPS argument.
2411   RelocCallback rcb(this);
2412   Relocator rc(_method, &rcb);
2413   methodHandle m= rc.insert_space_at(bci, newIlen, inst_buffer, THREAD);
2414   if (m.is_null() || HAS_PENDING_EXCEPTION) {
2415     report_error("could not rewrite method - exception occurred or bytecode buffer overflow");
2416     return;
2417   }
2418 
2419   // Relocator returns a new method oop.
2420   _did_relocation = true;
2421   _method = m;
2422 }
2423 
2424 
2425 bool GenerateOopMap::is_astore(BytecodeStream *itr, int *index) {
2426   Bytecodes::Code bc = itr->code();
2427   switch(bc) {
2428     case Bytecodes::_astore_0:
2429     case Bytecodes::_astore_1:
2430     case Bytecodes::_astore_2:
2431     case Bytecodes::_astore_3:
2432       *index = bc - Bytecodes::_astore_0;
2433       return true;
2434     case Bytecodes::_astore:
2435       *index = itr->get_index();
2436       return true;
2437   }
2438   return false;
2439 }
2440 
2441 bool GenerateOopMap::is_aload(BytecodeStream *itr, int *index) {
2442   Bytecodes::Code bc = itr->code();
2443   switch(bc) {
2444     case Bytecodes::_aload_0:
2445     case Bytecodes::_aload_1:
2446     case Bytecodes::_aload_2:
2447     case Bytecodes::_aload_3:
2448       *index = bc - Bytecodes::_aload_0;
2449       return true;
2450 
2451     case Bytecodes::_aload:
2452       *index = itr->get_index();
2453       return true;
2454   }
2455   return false;
2456 }
2457 
2458 
2459 // Return true iff the top of the operand stack holds a return address at
2460 // the current instruction
2461 bool GenerateOopMap::stack_top_holds_ret_addr(int bci) {
2462   for(int i = 0; i < _ret_adr_tos->length(); i++) {
2463     if (_ret_adr_tos->at(i) == bci)
2464       return true;
2465   }
2466 
2467   return false;
2468 }
2469 
2470 void GenerateOopMap::compute_ret_adr_at_TOS() {
2471   assert(_ret_adr_tos != NULL, "must be initialized");
2472   _ret_adr_tos->clear();
2473 
2474   for (int i = 0; i < bb_count(); i++) {
2475     BasicBlock* bb = &_basic_blocks[i];
2476 
2477     // Make sure to only check basicblocks that are reachable
2478     if (bb->is_reachable()) {
2479 
2480       // For each Basic block we check all instructions
2481       BytecodeStream bcs(_method);
2482       bcs.set_interval(bb->_bci, next_bb_start_pc(bb));
2483 
2484       restore_state(bb);
2485 
2486       while (bcs.next()>=0 && !_got_error) {
2487         // TDT: should this be is_good_address() ?
2488         if (_stack_top > 0 && stack()[_stack_top-1].is_address()) {
2489           _ret_adr_tos->append(bcs.bci());
2490           if (TraceNewOopMapGeneration) {
2491             tty->print_cr("Ret_adr TOS at bci: %d", bcs.bci());
2492           }
2493         }
2494         interp1(&bcs);
2495       }
2496     }
2497   }
2498 }
2499 
2500 void GenerateOopMap::update_ret_adr_at_TOS(int bci, int delta) {
2501   for(int i = 0; i < _ret_adr_tos->length(); i++) {
2502     int v = _ret_adr_tos->at(i);
2503     if (v > bci)  _ret_adr_tos->at_put(i, v + delta);
2504   }
2505 }
2506 
2507 // ===================================================================
2508 
2509 #ifndef PRODUCT
2510 int ResolveOopMapConflicts::_nof_invocations  = 0;
2511 int ResolveOopMapConflicts::_nof_rewrites     = 0;
2512 int ResolveOopMapConflicts::_nof_relocations  = 0;
2513 #endif
2514 
2515 methodHandle ResolveOopMapConflicts::do_potential_rewrite(TRAPS) {
2516   compute_map(CHECK_(methodHandle()));
2517 
2518 #ifndef PRODUCT
2519   // Tracking and statistics
2520   if (PrintRewrites) {
2521     _nof_invocations++;
2522     if (did_rewriting()) {
2523       _nof_rewrites++;
2524       if (did_relocation()) _nof_relocations++;
2525       tty->print("Method was rewritten %s: ", (did_relocation()) ? "and relocated" : "");
2526       method()->print_value(); tty->cr();
2527       tty->print_cr("Cand.: %d rewrts: %d (%d%%) reloc.: %d (%d%%)",
2528           _nof_invocations,
2529           _nof_rewrites,    (_nof_rewrites    * 100) / _nof_invocations,
2530           _nof_relocations, (_nof_relocations * 100) / _nof_invocations);
2531     }
2532   }
2533 #endif
2534   return methodHandle(THREAD, method());
2535 }