1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/exceptionHandlerTable.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/block.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/divnode.hpp"
  42 #include "opto/escape.hpp"
  43 #include "opto/idealGraphPrinter.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/macro.hpp"
  47 #include "opto/matcher.hpp"
  48 #include "opto/memnode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/node.hpp"
  51 #include "opto/opcodes.hpp"
  52 #include "opto/output.hpp"
  53 #include "opto/parse.hpp"
  54 #include "opto/phaseX.hpp"
  55 #include "opto/rootnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/stringopts.hpp"
  58 #include "opto/type.hpp"
  59 #include "opto/vectornode.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "utilities/copy.hpp"
  65 #ifdef TARGET_ARCH_MODEL_x86_32
  66 # include "adfiles/ad_x86_32.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_MODEL_x86_64
  69 # include "adfiles/ad_x86_64.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_MODEL_sparc
  72 # include "adfiles/ad_sparc.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_zero
  75 # include "adfiles/ad_zero.hpp"
  76 #endif
  77 
  78 /// Support for intrinsics.
  79 
  80 // Return the index at which m must be inserted (or already exists).
  81 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  82 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  83 #ifdef ASSERT
  84   for (int i = 1; i < _intrinsics->length(); i++) {
  85     CallGenerator* cg1 = _intrinsics->at(i-1);
  86     CallGenerator* cg2 = _intrinsics->at(i);
  87     assert(cg1->method() != cg2->method()
  88            ? cg1->method()     < cg2->method()
  89            : cg1->is_virtual() < cg2->is_virtual(),
  90            "compiler intrinsics list must stay sorted");
  91   }
  92 #endif
  93   // Binary search sorted list, in decreasing intervals [lo, hi].
  94   int lo = 0, hi = _intrinsics->length()-1;
  95   while (lo <= hi) {
  96     int mid = (uint)(hi + lo) / 2;
  97     ciMethod* mid_m = _intrinsics->at(mid)->method();
  98     if (m < mid_m) {
  99       hi = mid-1;
 100     } else if (m > mid_m) {
 101       lo = mid+1;
 102     } else {
 103       // look at minor sort key
 104       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 105       if (is_virtual < mid_virt) {
 106         hi = mid-1;
 107       } else if (is_virtual > mid_virt) {
 108         lo = mid+1;
 109       } else {
 110         return mid;  // exact match
 111       }
 112     }
 113   }
 114   return lo;  // inexact match
 115 }
 116 
 117 void Compile::register_intrinsic(CallGenerator* cg) {
 118   if (_intrinsics == NULL) {
 119     _intrinsics = new GrowableArray<CallGenerator*>(60);
 120   }
 121   // This code is stolen from ciObjectFactory::insert.
 122   // Really, GrowableArray should have methods for
 123   // insert_at, remove_at, and binary_search.
 124   int len = _intrinsics->length();
 125   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 126   if (index == len) {
 127     _intrinsics->append(cg);
 128   } else {
 129 #ifdef ASSERT
 130     CallGenerator* oldcg = _intrinsics->at(index);
 131     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 132 #endif
 133     _intrinsics->append(_intrinsics->at(len-1));
 134     int pos;
 135     for (pos = len-2; pos >= index; pos--) {
 136       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 137     }
 138     _intrinsics->at_put(index, cg);
 139   }
 140   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 141 }
 142 
 143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 144   assert(m->is_loaded(), "don't try this on unloaded methods");
 145   if (_intrinsics != NULL) {
 146     int index = intrinsic_insertion_index(m, is_virtual);
 147     if (index < _intrinsics->length()
 148         && _intrinsics->at(index)->method() == m
 149         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 150       return _intrinsics->at(index);
 151     }
 152   }
 153   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 154   if (m->intrinsic_id() != vmIntrinsics::_none &&
 155       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 156     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 157     if (cg != NULL) {
 158       // Save it for next time:
 159       register_intrinsic(cg);
 160       return cg;
 161     } else {
 162       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 163     }
 164   }
 165   return NULL;
 166 }
 167 
 168 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 169 // in library_call.cpp.
 170 
 171 
 172 #ifndef PRODUCT
 173 // statistics gathering...
 174 
 175 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 176 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 177 
 178 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 179   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 180   int oflags = _intrinsic_hist_flags[id];
 181   assert(flags != 0, "what happened?");
 182   if (is_virtual) {
 183     flags |= _intrinsic_virtual;
 184   }
 185   bool changed = (flags != oflags);
 186   if ((flags & _intrinsic_worked) != 0) {
 187     juint count = (_intrinsic_hist_count[id] += 1);
 188     if (count == 1) {
 189       changed = true;           // first time
 190     }
 191     // increment the overall count also:
 192     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 193   }
 194   if (changed) {
 195     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 196       // Something changed about the intrinsic's virtuality.
 197       if ((flags & _intrinsic_virtual) != 0) {
 198         // This is the first use of this intrinsic as a virtual call.
 199         if (oflags != 0) {
 200           // We already saw it as a non-virtual, so note both cases.
 201           flags |= _intrinsic_both;
 202         }
 203       } else if ((oflags & _intrinsic_both) == 0) {
 204         // This is the first use of this intrinsic as a non-virtual
 205         flags |= _intrinsic_both;
 206       }
 207     }
 208     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 209   }
 210   // update the overall flags also:
 211   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 212   return changed;
 213 }
 214 
 215 static char* format_flags(int flags, char* buf) {
 216   buf[0] = 0;
 217   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 218   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 219   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 220   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 221   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 222   if (buf[0] == 0)  strcat(buf, ",");
 223   assert(buf[0] == ',', "must be");
 224   return &buf[1];
 225 }
 226 
 227 void Compile::print_intrinsic_statistics() {
 228   char flagsbuf[100];
 229   ttyLocker ttyl;
 230   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 231   tty->print_cr("Compiler intrinsic usage:");
 232   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 233   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 234   #define PRINT_STAT_LINE(name, c, f) \
 235     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 236   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 237     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 238     int   flags = _intrinsic_hist_flags[id];
 239     juint count = _intrinsic_hist_count[id];
 240     if ((flags | count) != 0) {
 241       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 242     }
 243   }
 244   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 245   if (xtty != NULL)  xtty->tail("statistics");
 246 }
 247 
 248 void Compile::print_statistics() {
 249   { ttyLocker ttyl;
 250     if (xtty != NULL)  xtty->head("statistics type='opto'");
 251     Parse::print_statistics();
 252     PhaseCCP::print_statistics();
 253     PhaseRegAlloc::print_statistics();
 254     Scheduling::print_statistics();
 255     PhasePeephole::print_statistics();
 256     PhaseIdealLoop::print_statistics();
 257     if (xtty != NULL)  xtty->tail("statistics");
 258   }
 259   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 260     // put this under its own <statistics> element.
 261     print_intrinsic_statistics();
 262   }
 263 }
 264 #endif //PRODUCT
 265 
 266 // Support for bundling info
 267 Bundle* Compile::node_bundling(const Node *n) {
 268   assert(valid_bundle_info(n), "oob");
 269   return &_node_bundling_base[n->_idx];
 270 }
 271 
 272 bool Compile::valid_bundle_info(const Node *n) {
 273   return (_node_bundling_limit > n->_idx);
 274 }
 275 
 276 
 277 void Compile::gvn_replace_by(Node* n, Node* nn) {
 278   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 279     Node* use = n->last_out(i);
 280     bool is_in_table = initial_gvn()->hash_delete(use);
 281     uint uses_found = 0;
 282     for (uint j = 0; j < use->len(); j++) {
 283       if (use->in(j) == n) {
 284         if (j < use->req())
 285           use->set_req(j, nn);
 286         else
 287           use->set_prec(j, nn);
 288         uses_found++;
 289       }
 290     }
 291     if (is_in_table) {
 292       // reinsert into table
 293       initial_gvn()->hash_find_insert(use);
 294     }
 295     record_for_igvn(use);
 296     i -= uses_found;    // we deleted 1 or more copies of this edge
 297   }
 298 }
 299 
 300 
 301 
 302 
 303 // Identify all nodes that are reachable from below, useful.
 304 // Use breadth-first pass that records state in a Unique_Node_List,
 305 // recursive traversal is slower.
 306 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 307   int estimated_worklist_size = unique();
 308   useful.map( estimated_worklist_size, NULL );  // preallocate space
 309 
 310   // Initialize worklist
 311   if (root() != NULL)     { useful.push(root()); }
 312   // If 'top' is cached, declare it useful to preserve cached node
 313   if( cached_top_node() ) { useful.push(cached_top_node()); }
 314 
 315   // Push all useful nodes onto the list, breadthfirst
 316   for( uint next = 0; next < useful.size(); ++next ) {
 317     assert( next < unique(), "Unique useful nodes < total nodes");
 318     Node *n  = useful.at(next);
 319     uint max = n->len();
 320     for( uint i = 0; i < max; ++i ) {
 321       Node *m = n->in(i);
 322       if( m == NULL ) continue;
 323       useful.push(m);
 324     }
 325   }
 326 }
 327 
 328 // Disconnect all useless nodes by disconnecting those at the boundary.
 329 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 330   uint next = 0;
 331   while( next < useful.size() ) {
 332     Node *n = useful.at(next++);
 333     // Use raw traversal of out edges since this code removes out edges
 334     int max = n->outcnt();
 335     for (int j = 0; j < max; ++j ) {
 336       Node* child = n->raw_out(j);
 337       if( ! useful.member(child) ) {
 338         assert( !child->is_top() || child != top(),
 339                 "If top is cached in Compile object it is in useful list");
 340         // Only need to remove this out-edge to the useless node
 341         n->raw_del_out(j);
 342         --j;
 343         --max;
 344       }
 345     }
 346     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 347       record_for_igvn( n->unique_out() );
 348     }
 349   }
 350   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 351 }
 352 
 353 //------------------------------frame_size_in_words-----------------------------
 354 // frame_slots in units of words
 355 int Compile::frame_size_in_words() const {
 356   // shift is 0 in LP32 and 1 in LP64
 357   const int shift = (LogBytesPerWord - LogBytesPerInt);
 358   int words = _frame_slots >> shift;
 359   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 360   return words;
 361 }
 362 
 363 // ============================================================================
 364 //------------------------------CompileWrapper---------------------------------
 365 class CompileWrapper : public StackObj {
 366   Compile *const _compile;
 367  public:
 368   CompileWrapper(Compile* compile);
 369 
 370   ~CompileWrapper();
 371 };
 372 
 373 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 374   // the Compile* pointer is stored in the current ciEnv:
 375   ciEnv* env = compile->env();
 376   assert(env == ciEnv::current(), "must already be a ciEnv active");
 377   assert(env->compiler_data() == NULL, "compile already active?");
 378   env->set_compiler_data(compile);
 379   assert(compile == Compile::current(), "sanity");
 380 
 381   compile->set_type_dict(NULL);
 382   compile->set_type_hwm(NULL);
 383   compile->set_type_last_size(0);
 384   compile->set_last_tf(NULL, NULL);
 385   compile->set_indexSet_arena(NULL);
 386   compile->set_indexSet_free_block_list(NULL);
 387   compile->init_type_arena();
 388   Type::Initialize(compile);
 389   _compile->set_scratch_buffer_blob(NULL);
 390   _compile->begin_method();
 391 }
 392 CompileWrapper::~CompileWrapper() {
 393   _compile->end_method();
 394   if (_compile->scratch_buffer_blob() != NULL)
 395     BufferBlob::free(_compile->scratch_buffer_blob());
 396   _compile->env()->set_compiler_data(NULL);
 397 }
 398 
 399 
 400 //----------------------------print_compile_messages---------------------------
 401 void Compile::print_compile_messages() {
 402 #ifndef PRODUCT
 403   // Check if recompiling
 404   if (_subsume_loads == false && PrintOpto) {
 405     // Recompiling without allowing machine instructions to subsume loads
 406     tty->print_cr("*********************************************************");
 407     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 408     tty->print_cr("*********************************************************");
 409   }
 410   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 411     // Recompiling without escape analysis
 412     tty->print_cr("*********************************************************");
 413     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 414     tty->print_cr("*********************************************************");
 415   }
 416   if (env()->break_at_compile()) {
 417     // Open the debugger when compiling this method.
 418     tty->print("### Breaking when compiling: ");
 419     method()->print_short_name();
 420     tty->cr();
 421     BREAKPOINT;
 422   }
 423 
 424   if( PrintOpto ) {
 425     if (is_osr_compilation()) {
 426       tty->print("[OSR]%3d", _compile_id);
 427     } else {
 428       tty->print("%3d", _compile_id);
 429     }
 430   }
 431 #endif
 432 }
 433 
 434 
 435 void Compile::init_scratch_buffer_blob() {
 436   if( scratch_buffer_blob() != NULL )  return;
 437 
 438   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 439   // Cache this BufferBlob for this compile.
 440   ResourceMark rm;
 441   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 442   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 443   // Record the buffer blob for next time.
 444   set_scratch_buffer_blob(blob);
 445   // Have we run out of code space?
 446   if (scratch_buffer_blob() == NULL) {
 447     // Let CompilerBroker disable further compilations.
 448     record_failure("Not enough space for scratch buffer in CodeCache");
 449     return;
 450   }
 451 
 452   // Initialize the relocation buffers
 453   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 454   set_scratch_locs_memory(locs_buf);
 455 }
 456 
 457 
 458 //-----------------------scratch_emit_size-------------------------------------
 459 // Helper function that computes size by emitting code
 460 uint Compile::scratch_emit_size(const Node* n) {
 461   // Emit into a trash buffer and count bytes emitted.
 462   // This is a pretty expensive way to compute a size,
 463   // but it works well enough if seldom used.
 464   // All common fixed-size instructions are given a size
 465   // method by the AD file.
 466   // Note that the scratch buffer blob and locs memory are
 467   // allocated at the beginning of the compile task, and
 468   // may be shared by several calls to scratch_emit_size.
 469   // The allocation of the scratch buffer blob is particularly
 470   // expensive, since it has to grab the code cache lock.
 471   BufferBlob* blob = this->scratch_buffer_blob();
 472   assert(blob != NULL, "Initialize BufferBlob at start");
 473   assert(blob->size() > MAX_inst_size, "sanity");
 474   relocInfo* locs_buf = scratch_locs_memory();
 475   address blob_begin = blob->content_begin();
 476   address blob_end   = (address)locs_buf;
 477   assert(blob->content_contains(blob_end), "sanity");
 478   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 479   buf.initialize_consts_size(MAX_const_size);
 480   buf.initialize_stubs_size(MAX_stubs_size);
 481   assert(locs_buf != NULL, "sanity");
 482   int lsize = MAX_locs_size / 2;
 483   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 484   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 485   n->emit(buf, this->regalloc());
 486   return buf.insts_size();
 487 }
 488 
 489 
 490 // ============================================================================
 491 //------------------------------Compile standard-------------------------------
 492 debug_only( int Compile::_debug_idx = 100000; )
 493 
 494 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 495 // the continuation bci for on stack replacement.
 496 
 497 
 498 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 499                 : Phase(Compiler),
 500                   _env(ci_env),
 501                   _log(ci_env->log()),
 502                   _compile_id(ci_env->compile_id()),
 503                   _save_argument_registers(false),
 504                   _stub_name(NULL),
 505                   _stub_function(NULL),
 506                   _stub_entry_point(NULL),
 507                   _method(target),
 508                   _entry_bci(osr_bci),
 509                   _initial_gvn(NULL),
 510                   _for_igvn(NULL),
 511                   _warm_calls(NULL),
 512                   _subsume_loads(subsume_loads),
 513                   _do_escape_analysis(do_escape_analysis),
 514                   _failure_reason(NULL),
 515                   _code_buffer("Compile::Fill_buffer"),
 516                   _orig_pc_slot(0),
 517                   _orig_pc_slot_offset_in_bytes(0),
 518                   _has_method_handle_invokes(false),
 519                   _node_bundling_limit(0),
 520                   _node_bundling_base(NULL),
 521                   _java_calls(0),
 522                   _inner_loops(0),
 523 #ifndef PRODUCT
 524                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 525                   _printer(IdealGraphPrinter::printer()),
 526 #endif
 527                   _congraph(NULL) {
 528   C = this;
 529 
 530   CompileWrapper cw(this);
 531 #ifndef PRODUCT
 532   if (TimeCompiler2) {
 533     tty->print(" ");
 534     target->holder()->name()->print();
 535     tty->print(".");
 536     target->print_short_name();
 537     tty->print("  ");
 538   }
 539   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 540   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 541   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 542   if (!print_opto_assembly) {
 543     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 544     if (print_assembly && !Disassembler::can_decode()) {
 545       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 546       print_opto_assembly = true;
 547     }
 548   }
 549   set_print_assembly(print_opto_assembly);
 550   set_parsed_irreducible_loop(false);
 551 #endif
 552 
 553   if (ProfileTraps) {
 554     // Make sure the method being compiled gets its own MDO,
 555     // so we can at least track the decompile_count().
 556     method()->build_method_data();
 557   }
 558 
 559   Init(::AliasLevel);
 560 
 561 
 562   print_compile_messages();
 563 
 564   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 565     _ilt = InlineTree::build_inline_tree_root();
 566   else
 567     _ilt = NULL;
 568 
 569   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 570   assert(num_alias_types() >= AliasIdxRaw, "");
 571 
 572 #define MINIMUM_NODE_HASH  1023
 573   // Node list that Iterative GVN will start with
 574   Unique_Node_List for_igvn(comp_arena());
 575   set_for_igvn(&for_igvn);
 576 
 577   // GVN that will be run immediately on new nodes
 578   uint estimated_size = method()->code_size()*4+64;
 579   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 580   PhaseGVN gvn(node_arena(), estimated_size);
 581   set_initial_gvn(&gvn);
 582 
 583   { // Scope for timing the parser
 584     TracePhase t3("parse", &_t_parser, true);
 585 
 586     // Put top into the hash table ASAP.
 587     initial_gvn()->transform_no_reclaim(top());
 588 
 589     // Set up tf(), start(), and find a CallGenerator.
 590     CallGenerator* cg;
 591     if (is_osr_compilation()) {
 592       const TypeTuple *domain = StartOSRNode::osr_domain();
 593       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 594       init_tf(TypeFunc::make(domain, range));
 595       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 596       initial_gvn()->set_type_bottom(s);
 597       init_start(s);
 598       cg = CallGenerator::for_osr(method(), entry_bci());
 599     } else {
 600       // Normal case.
 601       init_tf(TypeFunc::make(method()));
 602       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 603       initial_gvn()->set_type_bottom(s);
 604       init_start(s);
 605       float past_uses = method()->interpreter_invocation_count();
 606       float expected_uses = past_uses;
 607       cg = CallGenerator::for_inline(method(), expected_uses);
 608     }
 609     if (failing())  return;
 610     if (cg == NULL) {
 611       record_method_not_compilable_all_tiers("cannot parse method");
 612       return;
 613     }
 614     JVMState* jvms = build_start_state(start(), tf());
 615     if ((jvms = cg->generate(jvms)) == NULL) {
 616       record_method_not_compilable("method parse failed");
 617       return;
 618     }
 619     GraphKit kit(jvms);
 620 
 621     if (!kit.stopped()) {
 622       // Accept return values, and transfer control we know not where.
 623       // This is done by a special, unique ReturnNode bound to root.
 624       return_values(kit.jvms());
 625     }
 626 
 627     if (kit.has_exceptions()) {
 628       // Any exceptions that escape from this call must be rethrown
 629       // to whatever caller is dynamically above us on the stack.
 630       // This is done by a special, unique RethrowNode bound to root.
 631       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 632     }
 633 
 634     if (!failing() && has_stringbuilder()) {
 635       {
 636         // remove useless nodes to make the usage analysis simpler
 637         ResourceMark rm;
 638         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 639       }
 640 
 641       {
 642         ResourceMark rm;
 643         print_method("Before StringOpts", 3);
 644         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 645         print_method("After StringOpts", 3);
 646       }
 647 
 648       // now inline anything that we skipped the first time around
 649       while (_late_inlines.length() > 0) {
 650         CallGenerator* cg = _late_inlines.pop();
 651         cg->do_late_inline();
 652       }
 653     }
 654     assert(_late_inlines.length() == 0, "should have been processed");
 655 
 656     print_method("Before RemoveUseless", 3);
 657 
 658     // Remove clutter produced by parsing.
 659     if (!failing()) {
 660       ResourceMark rm;
 661       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 662     }
 663   }
 664 
 665   // Note:  Large methods are capped off in do_one_bytecode().
 666   if (failing())  return;
 667 
 668   // After parsing, node notes are no longer automagic.
 669   // They must be propagated by register_new_node_with_optimizer(),
 670   // clone(), or the like.
 671   set_default_node_notes(NULL);
 672 
 673   for (;;) {
 674     int successes = Inline_Warm();
 675     if (failing())  return;
 676     if (successes == 0)  break;
 677   }
 678 
 679   // Drain the list.
 680   Finish_Warm();
 681 #ifndef PRODUCT
 682   if (_printer) {
 683     _printer->print_inlining(this);
 684   }
 685 #endif
 686 
 687   if (failing())  return;
 688   NOT_PRODUCT( verify_graph_edges(); )
 689 
 690   // Now optimize
 691   Optimize();
 692   if (failing())  return;
 693   NOT_PRODUCT( verify_graph_edges(); )
 694 
 695 #ifndef PRODUCT
 696   if (PrintIdeal) {
 697     ttyLocker ttyl;  // keep the following output all in one block
 698     // This output goes directly to the tty, not the compiler log.
 699     // To enable tools to match it up with the compilation activity,
 700     // be sure to tag this tty output with the compile ID.
 701     if (xtty != NULL) {
 702       xtty->head("ideal compile_id='%d'%s", compile_id(),
 703                  is_osr_compilation()    ? " compile_kind='osr'" :
 704                  "");
 705     }
 706     root()->dump(9999);
 707     if (xtty != NULL) {
 708       xtty->tail("ideal");
 709     }
 710   }
 711 #endif
 712 
 713   // Now that we know the size of all the monitors we can add a fixed slot
 714   // for the original deopt pc.
 715 
 716   _orig_pc_slot =  fixed_slots();
 717   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 718   set_fixed_slots(next_slot);
 719 
 720   // Now generate code
 721   Code_Gen();
 722   if (failing())  return;
 723 
 724   // Check if we want to skip execution of all compiled code.
 725   {
 726 #ifndef PRODUCT
 727     if (OptoNoExecute) {
 728       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 729       return;
 730     }
 731     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 732 #endif
 733 
 734     if (is_osr_compilation()) {
 735       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 736       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 737     } else {
 738       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 739       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 740     }
 741 
 742     env()->register_method(_method, _entry_bci,
 743                            &_code_offsets,
 744                            _orig_pc_slot_offset_in_bytes,
 745                            code_buffer(),
 746                            frame_size_in_words(), _oop_map_set,
 747                            &_handler_table, &_inc_table,
 748                            compiler,
 749                            env()->comp_level(),
 750                            true, /*has_debug_info*/
 751                            has_unsafe_access()
 752                            );
 753   }
 754 }
 755 
 756 //------------------------------Compile----------------------------------------
 757 // Compile a runtime stub
 758 Compile::Compile( ciEnv* ci_env,
 759                   TypeFunc_generator generator,
 760                   address stub_function,
 761                   const char *stub_name,
 762                   int is_fancy_jump,
 763                   bool pass_tls,
 764                   bool save_arg_registers,
 765                   bool return_pc )
 766   : Phase(Compiler),
 767     _env(ci_env),
 768     _log(ci_env->log()),
 769     _compile_id(-1),
 770     _save_argument_registers(save_arg_registers),
 771     _method(NULL),
 772     _stub_name(stub_name),
 773     _stub_function(stub_function),
 774     _stub_entry_point(NULL),
 775     _entry_bci(InvocationEntryBci),
 776     _initial_gvn(NULL),
 777     _for_igvn(NULL),
 778     _warm_calls(NULL),
 779     _orig_pc_slot(0),
 780     _orig_pc_slot_offset_in_bytes(0),
 781     _subsume_loads(true),
 782     _do_escape_analysis(false),
 783     _failure_reason(NULL),
 784     _code_buffer("Compile::Fill_buffer"),
 785     _has_method_handle_invokes(false),
 786     _node_bundling_limit(0),
 787     _node_bundling_base(NULL),
 788     _java_calls(0),
 789     _inner_loops(0),
 790 #ifndef PRODUCT
 791     _trace_opto_output(TraceOptoOutput),
 792     _printer(NULL),
 793 #endif
 794     _congraph(NULL) {
 795   C = this;
 796 
 797 #ifndef PRODUCT
 798   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 799   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 800   set_print_assembly(PrintFrameConverterAssembly);
 801   set_parsed_irreducible_loop(false);
 802 #endif
 803   CompileWrapper cw(this);
 804   Init(/*AliasLevel=*/ 0);
 805   init_tf((*generator)());
 806 
 807   {
 808     // The following is a dummy for the sake of GraphKit::gen_stub
 809     Unique_Node_List for_igvn(comp_arena());
 810     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 811     PhaseGVN gvn(Thread::current()->resource_area(),255);
 812     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 813     gvn.transform_no_reclaim(top());
 814 
 815     GraphKit kit;
 816     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 817   }
 818 
 819   NOT_PRODUCT( verify_graph_edges(); )
 820   Code_Gen();
 821   if (failing())  return;
 822 
 823 
 824   // Entry point will be accessed using compile->stub_entry_point();
 825   if (code_buffer() == NULL) {
 826     Matcher::soft_match_failure();
 827   } else {
 828     if (PrintAssembly && (WizardMode || Verbose))
 829       tty->print_cr("### Stub::%s", stub_name);
 830 
 831     if (!failing()) {
 832       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 833 
 834       // Make the NMethod
 835       // For now we mark the frame as never safe for profile stackwalking
 836       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 837                                                       code_buffer(),
 838                                                       CodeOffsets::frame_never_safe,
 839                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 840                                                       frame_size_in_words(),
 841                                                       _oop_map_set,
 842                                                       save_arg_registers);
 843       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 844 
 845       _stub_entry_point = rs->entry_point();
 846     }
 847   }
 848 }
 849 
 850 #ifndef PRODUCT
 851 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 852   if(PrintOpto && Verbose) {
 853     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 854   }
 855 }
 856 #endif
 857 
 858 void Compile::print_codes() {
 859 }
 860 
 861 //------------------------------Init-------------------------------------------
 862 // Prepare for a single compilation
 863 void Compile::Init(int aliaslevel) {
 864   _unique  = 0;
 865   _regalloc = NULL;
 866 
 867   _tf      = NULL;  // filled in later
 868   _top     = NULL;  // cached later
 869   _matcher = NULL;  // filled in later
 870   _cfg     = NULL;  // filled in later
 871 
 872   set_24_bit_selection_and_mode(Use24BitFP, false);
 873 
 874   _node_note_array = NULL;
 875   _default_node_notes = NULL;
 876 
 877   _immutable_memory = NULL; // filled in at first inquiry
 878 
 879   // Globally visible Nodes
 880   // First set TOP to NULL to give safe behavior during creation of RootNode
 881   set_cached_top_node(NULL);
 882   set_root(new (this, 3) RootNode());
 883   // Now that you have a Root to point to, create the real TOP
 884   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 885   set_recent_alloc(NULL, NULL);
 886 
 887   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 888   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 889   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 890   env()->set_dependencies(new Dependencies(env()));
 891 
 892   _fixed_slots = 0;
 893   set_has_split_ifs(false);
 894   set_has_loops(has_method() && method()->has_loops()); // first approximation
 895   set_has_stringbuilder(false);
 896   _trap_can_recompile = false;  // no traps emitted yet
 897   _major_progress = true; // start out assuming good things will happen
 898   set_has_unsafe_access(false);
 899   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 900   set_decompile_count(0);
 901 
 902   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 903   set_num_loop_opts(LoopOptsCount);
 904   set_do_inlining(Inline);
 905   set_max_inline_size(MaxInlineSize);
 906   set_freq_inline_size(FreqInlineSize);
 907   set_do_scheduling(OptoScheduling);
 908   set_do_count_invocations(false);
 909   set_do_method_data_update(false);
 910 
 911   if (debug_info()->recording_non_safepoints()) {
 912     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 913                         (comp_arena(), 8, 0, NULL));
 914     set_default_node_notes(Node_Notes::make(this));
 915   }
 916 
 917   // // -- Initialize types before each compile --
 918   // // Update cached type information
 919   // if( _method && _method->constants() )
 920   //   Type::update_loaded_types(_method, _method->constants());
 921 
 922   // Init alias_type map.
 923   if (!_do_escape_analysis && aliaslevel == 3)
 924     aliaslevel = 2;  // No unique types without escape analysis
 925   _AliasLevel = aliaslevel;
 926   const int grow_ats = 16;
 927   _max_alias_types = grow_ats;
 928   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 929   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 930   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 931   {
 932     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 933   }
 934   // Initialize the first few types.
 935   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 936   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 937   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 938   _num_alias_types = AliasIdxRaw+1;
 939   // Zero out the alias type cache.
 940   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 941   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 942   probe_alias_cache(NULL)->_index = AliasIdxTop;
 943 
 944   _intrinsics = NULL;
 945   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 946   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 947   register_library_intrinsics();
 948 }
 949 
 950 //---------------------------init_start----------------------------------------
 951 // Install the StartNode on this compile object.
 952 void Compile::init_start(StartNode* s) {
 953   if (failing())
 954     return; // already failing
 955   assert(s == start(), "");
 956 }
 957 
 958 StartNode* Compile::start() const {
 959   assert(!failing(), "");
 960   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 961     Node* start = root()->fast_out(i);
 962     if( start->is_Start() )
 963       return start->as_Start();
 964   }
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 //-------------------------------immutable_memory-------------------------------------
 970 // Access immutable memory
 971 Node* Compile::immutable_memory() {
 972   if (_immutable_memory != NULL) {
 973     return _immutable_memory;
 974   }
 975   StartNode* s = start();
 976   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 977     Node *p = s->fast_out(i);
 978     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 979       _immutable_memory = p;
 980       return _immutable_memory;
 981     }
 982   }
 983   ShouldNotReachHere();
 984   return NULL;
 985 }
 986 
 987 //----------------------set_cached_top_node------------------------------------
 988 // Install the cached top node, and make sure Node::is_top works correctly.
 989 void Compile::set_cached_top_node(Node* tn) {
 990   if (tn != NULL)  verify_top(tn);
 991   Node* old_top = _top;
 992   _top = tn;
 993   // Calling Node::setup_is_top allows the nodes the chance to adjust
 994   // their _out arrays.
 995   if (_top != NULL)     _top->setup_is_top();
 996   if (old_top != NULL)  old_top->setup_is_top();
 997   assert(_top == NULL || top()->is_top(), "");
 998 }
 999 
1000 #ifndef PRODUCT
1001 void Compile::verify_top(Node* tn) const {
1002   if (tn != NULL) {
1003     assert(tn->is_Con(), "top node must be a constant");
1004     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1005     assert(tn->in(0) != NULL, "must have live top node");
1006   }
1007 }
1008 #endif
1009 
1010 
1011 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1012 
1013 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1014   guarantee(arr != NULL, "");
1015   int num_blocks = arr->length();
1016   if (grow_by < num_blocks)  grow_by = num_blocks;
1017   int num_notes = grow_by * _node_notes_block_size;
1018   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1019   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1020   while (num_notes > 0) {
1021     arr->append(notes);
1022     notes     += _node_notes_block_size;
1023     num_notes -= _node_notes_block_size;
1024   }
1025   assert(num_notes == 0, "exact multiple, please");
1026 }
1027 
1028 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1029   if (source == NULL || dest == NULL)  return false;
1030 
1031   if (dest->is_Con())
1032     return false;               // Do not push debug info onto constants.
1033 
1034 #ifdef ASSERT
1035   // Leave a bread crumb trail pointing to the original node:
1036   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1037     dest->set_debug_orig(source);
1038   }
1039 #endif
1040 
1041   if (node_note_array() == NULL)
1042     return false;               // Not collecting any notes now.
1043 
1044   // This is a copy onto a pre-existing node, which may already have notes.
1045   // If both nodes have notes, do not overwrite any pre-existing notes.
1046   Node_Notes* source_notes = node_notes_at(source->_idx);
1047   if (source_notes == NULL || source_notes->is_clear())  return false;
1048   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1049   if (dest_notes == NULL || dest_notes->is_clear()) {
1050     return set_node_notes_at(dest->_idx, source_notes);
1051   }
1052 
1053   Node_Notes merged_notes = (*source_notes);
1054   // The order of operations here ensures that dest notes will win...
1055   merged_notes.update_from(dest_notes);
1056   return set_node_notes_at(dest->_idx, &merged_notes);
1057 }
1058 
1059 
1060 //--------------------------allow_range_check_smearing-------------------------
1061 // Gating condition for coalescing similar range checks.
1062 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1063 // single covering check that is at least as strong as any of them.
1064 // If the optimization succeeds, the simplified (strengthened) range check
1065 // will always succeed.  If it fails, we will deopt, and then give up
1066 // on the optimization.
1067 bool Compile::allow_range_check_smearing() const {
1068   // If this method has already thrown a range-check,
1069   // assume it was because we already tried range smearing
1070   // and it failed.
1071   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1072   return !already_trapped;
1073 }
1074 
1075 
1076 //------------------------------flatten_alias_type-----------------------------
1077 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1078   int offset = tj->offset();
1079   TypePtr::PTR ptr = tj->ptr();
1080 
1081   // Known instance (scalarizable allocation) alias only with itself.
1082   bool is_known_inst = tj->isa_oopptr() != NULL &&
1083                        tj->is_oopptr()->is_known_instance();
1084 
1085   // Process weird unsafe references.
1086   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1087     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1088     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1089     tj = TypeOopPtr::BOTTOM;
1090     ptr = tj->ptr();
1091     offset = tj->offset();
1092   }
1093 
1094   // Array pointers need some flattening
1095   const TypeAryPtr *ta = tj->isa_aryptr();
1096   if( ta && is_known_inst ) {
1097     if ( offset != Type::OffsetBot &&
1098          offset > arrayOopDesc::length_offset_in_bytes() ) {
1099       offset = Type::OffsetBot; // Flatten constant access into array body only
1100       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1101     }
1102   } else if( ta && _AliasLevel >= 2 ) {
1103     // For arrays indexed by constant indices, we flatten the alias
1104     // space to include all of the array body.  Only the header, klass
1105     // and array length can be accessed un-aliased.
1106     if( offset != Type::OffsetBot ) {
1107       if( ta->const_oop() ) { // methodDataOop or methodOop
1108         offset = Type::OffsetBot;   // Flatten constant access into array body
1109         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1110       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1111         // range is OK as-is.
1112         tj = ta = TypeAryPtr::RANGE;
1113       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1114         tj = TypeInstPtr::KLASS; // all klass loads look alike
1115         ta = TypeAryPtr::RANGE; // generic ignored junk
1116         ptr = TypePtr::BotPTR;
1117       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1118         tj = TypeInstPtr::MARK;
1119         ta = TypeAryPtr::RANGE; // generic ignored junk
1120         ptr = TypePtr::BotPTR;
1121       } else {                  // Random constant offset into array body
1122         offset = Type::OffsetBot;   // Flatten constant access into array body
1123         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1124       }
1125     }
1126     // Arrays of fixed size alias with arrays of unknown size.
1127     if (ta->size() != TypeInt::POS) {
1128       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1129       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1130     }
1131     // Arrays of known objects become arrays of unknown objects.
1132     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1133       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1134       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1135     }
1136     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1137       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1138       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1139     }
1140     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1141     // cannot be distinguished by bytecode alone.
1142     if (ta->elem() == TypeInt::BOOL) {
1143       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1144       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1145       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1146     }
1147     // During the 2nd round of IterGVN, NotNull castings are removed.
1148     // Make sure the Bottom and NotNull variants alias the same.
1149     // Also, make sure exact and non-exact variants alias the same.
1150     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1151       if (ta->const_oop()) {
1152         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1153       } else {
1154         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1155       }
1156     }
1157   }
1158 
1159   // Oop pointers need some flattening
1160   const TypeInstPtr *to = tj->isa_instptr();
1161   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1162     if( ptr == TypePtr::Constant ) {
1163       // No constant oop pointers (such as Strings); they alias with
1164       // unknown strings.
1165       assert(!is_known_inst, "not scalarizable allocation");
1166       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1167     } else if( is_known_inst ) {
1168       tj = to; // Keep NotNull and klass_is_exact for instance type
1169     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1170       // During the 2nd round of IterGVN, NotNull castings are removed.
1171       // Make sure the Bottom and NotNull variants alias the same.
1172       // Also, make sure exact and non-exact variants alias the same.
1173       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1174     }
1175     // Canonicalize the holder of this field
1176     ciInstanceKlass *k = to->klass()->as_instance_klass();
1177     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1178       // First handle header references such as a LoadKlassNode, even if the
1179       // object's klass is unloaded at compile time (4965979).
1180       if (!is_known_inst) { // Do it only for non-instance types
1181         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1182       }
1183     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1184       to = NULL;
1185       tj = TypeOopPtr::BOTTOM;
1186       offset = tj->offset();
1187     } else {
1188       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1189       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1190         if( is_known_inst ) {
1191           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1192         } else {
1193           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1194         }
1195       }
1196     }
1197   }
1198 
1199   // Klass pointers to object array klasses need some flattening
1200   const TypeKlassPtr *tk = tj->isa_klassptr();
1201   if( tk ) {
1202     // If we are referencing a field within a Klass, we need
1203     // to assume the worst case of an Object.  Both exact and
1204     // inexact types must flatten to the same alias class.
1205     // Since the flattened result for a klass is defined to be
1206     // precisely java.lang.Object, use a constant ptr.
1207     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1208 
1209       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1210                                    TypeKlassPtr::OBJECT->klass(),
1211                                    offset);
1212     }
1213 
1214     ciKlass* klass = tk->klass();
1215     if( klass->is_obj_array_klass() ) {
1216       ciKlass* k = TypeAryPtr::OOPS->klass();
1217       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1218         k = TypeInstPtr::BOTTOM->klass();
1219       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1220     }
1221 
1222     // Check for precise loads from the primary supertype array and force them
1223     // to the supertype cache alias index.  Check for generic array loads from
1224     // the primary supertype array and also force them to the supertype cache
1225     // alias index.  Since the same load can reach both, we need to merge
1226     // these 2 disparate memories into the same alias class.  Since the
1227     // primary supertype array is read-only, there's no chance of confusion
1228     // where we bypass an array load and an array store.
1229     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1230     if( offset == Type::OffsetBot ||
1231         off2 < Klass::primary_super_limit()*wordSize ) {
1232       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1233       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1234     }
1235   }
1236 
1237   // Flatten all Raw pointers together.
1238   if (tj->base() == Type::RawPtr)
1239     tj = TypeRawPtr::BOTTOM;
1240 
1241   if (tj->base() == Type::AnyPtr)
1242     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1243 
1244   // Flatten all to bottom for now
1245   switch( _AliasLevel ) {
1246   case 0:
1247     tj = TypePtr::BOTTOM;
1248     break;
1249   case 1:                       // Flatten to: oop, static, field or array
1250     switch (tj->base()) {
1251     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1252     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1253     case Type::AryPtr:   // do not distinguish arrays at all
1254     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1255     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1256     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1257     default: ShouldNotReachHere();
1258     }
1259     break;
1260   case 2:                       // No collapsing at level 2; keep all splits
1261   case 3:                       // No collapsing at level 3; keep all splits
1262     break;
1263   default:
1264     Unimplemented();
1265   }
1266 
1267   offset = tj->offset();
1268   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1269 
1270   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1271           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1272           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1273           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1274           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1275           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1276           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1277           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1278   assert( tj->ptr() != TypePtr::TopPTR &&
1279           tj->ptr() != TypePtr::AnyNull &&
1280           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1281 //    assert( tj->ptr() != TypePtr::Constant ||
1282 //            tj->base() == Type::RawPtr ||
1283 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1284 
1285   return tj;
1286 }
1287 
1288 void Compile::AliasType::Init(int i, const TypePtr* at) {
1289   _index = i;
1290   _adr_type = at;
1291   _field = NULL;
1292   _is_rewritable = true; // default
1293   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1294   if (atoop != NULL && atoop->is_known_instance()) {
1295     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1296     _general_index = Compile::current()->get_alias_index(gt);
1297   } else {
1298     _general_index = 0;
1299   }
1300 }
1301 
1302 //---------------------------------print_on------------------------------------
1303 #ifndef PRODUCT
1304 void Compile::AliasType::print_on(outputStream* st) {
1305   if (index() < 10)
1306         st->print("@ <%d> ", index());
1307   else  st->print("@ <%d>",  index());
1308   st->print(is_rewritable() ? "   " : " RO");
1309   int offset = adr_type()->offset();
1310   if (offset == Type::OffsetBot)
1311         st->print(" +any");
1312   else  st->print(" +%-3d", offset);
1313   st->print(" in ");
1314   adr_type()->dump_on(st);
1315   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1316   if (field() != NULL && tjp) {
1317     if (tjp->klass()  != field()->holder() ||
1318         tjp->offset() != field()->offset_in_bytes()) {
1319       st->print(" != ");
1320       field()->print();
1321       st->print(" ***");
1322     }
1323   }
1324 }
1325 
1326 void print_alias_types() {
1327   Compile* C = Compile::current();
1328   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1329   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1330     C->alias_type(idx)->print_on(tty);
1331     tty->cr();
1332   }
1333 }
1334 #endif
1335 
1336 
1337 //----------------------------probe_alias_cache--------------------------------
1338 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1339   intptr_t key = (intptr_t) adr_type;
1340   key ^= key >> logAliasCacheSize;
1341   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1342 }
1343 
1344 
1345 //-----------------------------grow_alias_types--------------------------------
1346 void Compile::grow_alias_types() {
1347   const int old_ats  = _max_alias_types; // how many before?
1348   const int new_ats  = old_ats;          // how many more?
1349   const int grow_ats = old_ats+new_ats;  // how many now?
1350   _max_alias_types = grow_ats;
1351   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1352   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1353   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1354   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1355 }
1356 
1357 
1358 //--------------------------------find_alias_type------------------------------
1359 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1360   if (_AliasLevel == 0)
1361     return alias_type(AliasIdxBot);
1362 
1363   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1364   if (ace->_adr_type == adr_type) {
1365     return alias_type(ace->_index);
1366   }
1367 
1368   // Handle special cases.
1369   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1370   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1371 
1372   // Do it the slow way.
1373   const TypePtr* flat = flatten_alias_type(adr_type);
1374 
1375 #ifdef ASSERT
1376   assert(flat == flatten_alias_type(flat), "idempotent");
1377   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1378   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1379     const TypeOopPtr* foop = flat->is_oopptr();
1380     // Scalarizable allocations have exact klass always.
1381     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1382     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1383     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1384   }
1385   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1386 #endif
1387 
1388   int idx = AliasIdxTop;
1389   for (int i = 0; i < num_alias_types(); i++) {
1390     if (alias_type(i)->adr_type() == flat) {
1391       idx = i;
1392       break;
1393     }
1394   }
1395 
1396   if (idx == AliasIdxTop) {
1397     if (no_create)  return NULL;
1398     // Grow the array if necessary.
1399     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1400     // Add a new alias type.
1401     idx = _num_alias_types++;
1402     _alias_types[idx]->Init(idx, flat);
1403     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1404     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1405     if (flat->isa_instptr()) {
1406       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1407           && flat->is_instptr()->klass() == env()->Class_klass())
1408         alias_type(idx)->set_rewritable(false);
1409     }
1410     if (flat->isa_klassptr()) {
1411       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1412         alias_type(idx)->set_rewritable(false);
1413       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1414         alias_type(idx)->set_rewritable(false);
1415       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1416         alias_type(idx)->set_rewritable(false);
1417       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1418         alias_type(idx)->set_rewritable(false);
1419     }
1420     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1421     // but the base pointer type is not distinctive enough to identify
1422     // references into JavaThread.)
1423 
1424     // Check for final instance fields.
1425     const TypeInstPtr* tinst = flat->isa_instptr();
1426     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1427       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1428       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1429       // Set field() and is_rewritable() attributes.
1430       if (field != NULL)  alias_type(idx)->set_field(field);
1431     }
1432     const TypeKlassPtr* tklass = flat->isa_klassptr();
1433     // Check for final static fields.
1434     if (tklass && tklass->klass()->is_instance_klass()) {
1435       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1436       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1437       // Set field() and is_rewritable() attributes.
1438       if (field != NULL)   alias_type(idx)->set_field(field);
1439     }
1440   }
1441 
1442   // Fill the cache for next time.
1443   ace->_adr_type = adr_type;
1444   ace->_index    = idx;
1445   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1446 
1447   // Might as well try to fill the cache for the flattened version, too.
1448   AliasCacheEntry* face = probe_alias_cache(flat);
1449   if (face->_adr_type == NULL) {
1450     face->_adr_type = flat;
1451     face->_index    = idx;
1452     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1453   }
1454 
1455   return alias_type(idx);
1456 }
1457 
1458 
1459 Compile::AliasType* Compile::alias_type(ciField* field) {
1460   const TypeOopPtr* t;
1461   if (field->is_static())
1462     t = TypeKlassPtr::make(field->holder());
1463   else
1464     t = TypeOopPtr::make_from_klass_raw(field->holder());
1465   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1466   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1467   return atp;
1468 }
1469 
1470 
1471 //------------------------------have_alias_type--------------------------------
1472 bool Compile::have_alias_type(const TypePtr* adr_type) {
1473   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1474   if (ace->_adr_type == adr_type) {
1475     return true;
1476   }
1477 
1478   // Handle special cases.
1479   if (adr_type == NULL)             return true;
1480   if (adr_type == TypePtr::BOTTOM)  return true;
1481 
1482   return find_alias_type(adr_type, true) != NULL;
1483 }
1484 
1485 //-----------------------------must_alias--------------------------------------
1486 // True if all values of the given address type are in the given alias category.
1487 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1488   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1489   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1490   if (alias_idx == AliasIdxTop)         return false; // the empty category
1491   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1492 
1493   // the only remaining possible overlap is identity
1494   int adr_idx = get_alias_index(adr_type);
1495   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1496   assert(adr_idx == alias_idx ||
1497          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1498           && adr_type                       != TypeOopPtr::BOTTOM),
1499          "should not be testing for overlap with an unsafe pointer");
1500   return adr_idx == alias_idx;
1501 }
1502 
1503 //------------------------------can_alias--------------------------------------
1504 // True if any values of the given address type are in the given alias category.
1505 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1506   if (alias_idx == AliasIdxTop)         return false; // the empty category
1507   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1508   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1509   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1510 
1511   // the only remaining possible overlap is identity
1512   int adr_idx = get_alias_index(adr_type);
1513   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1514   return adr_idx == alias_idx;
1515 }
1516 
1517 
1518 
1519 //---------------------------pop_warm_call-------------------------------------
1520 WarmCallInfo* Compile::pop_warm_call() {
1521   WarmCallInfo* wci = _warm_calls;
1522   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1523   return wci;
1524 }
1525 
1526 //----------------------------Inline_Warm--------------------------------------
1527 int Compile::Inline_Warm() {
1528   // If there is room, try to inline some more warm call sites.
1529   // %%% Do a graph index compaction pass when we think we're out of space?
1530   if (!InlineWarmCalls)  return 0;
1531 
1532   int calls_made_hot = 0;
1533   int room_to_grow   = NodeCountInliningCutoff - unique();
1534   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1535   int amount_grown   = 0;
1536   WarmCallInfo* call;
1537   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1538     int est_size = (int)call->size();
1539     if (est_size > (room_to_grow - amount_grown)) {
1540       // This one won't fit anyway.  Get rid of it.
1541       call->make_cold();
1542       continue;
1543     }
1544     call->make_hot();
1545     calls_made_hot++;
1546     amount_grown   += est_size;
1547     amount_to_grow -= est_size;
1548   }
1549 
1550   if (calls_made_hot > 0)  set_major_progress();
1551   return calls_made_hot;
1552 }
1553 
1554 
1555 //----------------------------Finish_Warm--------------------------------------
1556 void Compile::Finish_Warm() {
1557   if (!InlineWarmCalls)  return;
1558   if (failing())  return;
1559   if (warm_calls() == NULL)  return;
1560 
1561   // Clean up loose ends, if we are out of space for inlining.
1562   WarmCallInfo* call;
1563   while ((call = pop_warm_call()) != NULL) {
1564     call->make_cold();
1565   }
1566 }
1567 
1568 //---------------------cleanup_loop_predicates-----------------------
1569 // Remove the opaque nodes that protect the predicates so that all unused
1570 // checks and uncommon_traps will be eliminated from the ideal graph
1571 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1572   if (predicate_count()==0) return;
1573   for (int i = predicate_count(); i > 0; i--) {
1574     Node * n = predicate_opaque1_node(i-1);
1575     assert(n->Opcode() == Op_Opaque1, "must be");
1576     igvn.replace_node(n, n->in(1));
1577   }
1578   assert(predicate_count()==0, "should be clean!");
1579   igvn.optimize();
1580 }
1581 
1582 //------------------------------Optimize---------------------------------------
1583 // Given a graph, optimize it.
1584 void Compile::Optimize() {
1585   TracePhase t1("optimizer", &_t_optimizer, true);
1586 
1587 #ifndef PRODUCT
1588   if (env()->break_at_compile()) {
1589     BREAKPOINT;
1590   }
1591 
1592 #endif
1593 
1594   ResourceMark rm;
1595   int          loop_opts_cnt;
1596 
1597   NOT_PRODUCT( verify_graph_edges(); )
1598 
1599   print_method("After Parsing");
1600 
1601  {
1602   // Iterative Global Value Numbering, including ideal transforms
1603   // Initialize IterGVN with types and values from parse-time GVN
1604   PhaseIterGVN igvn(initial_gvn());
1605   {
1606     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1607     igvn.optimize();
1608   }
1609 
1610   print_method("Iter GVN 1", 2);
1611 
1612   if (failing())  return;
1613 
1614   // Perform escape analysis
1615   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1616     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1617     ConnectionGraph::do_analysis(this, &igvn);
1618 
1619     if (failing())  return;
1620 
1621     igvn.optimize();
1622     print_method("Iter GVN 3", 2);
1623 
1624     if (failing())  return;
1625 
1626   }
1627 
1628   // Loop transforms on the ideal graph.  Range Check Elimination,
1629   // peeling, unrolling, etc.
1630 
1631   // Set loop opts counter
1632   loop_opts_cnt = num_loop_opts();
1633   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1634     {
1635       TracePhase t2("idealLoop", &_t_idealLoop, true);
1636       PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1637       loop_opts_cnt--;
1638       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1639       if (failing())  return;
1640     }
1641     // Loop opts pass if partial peeling occurred in previous pass
1642     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1643       TracePhase t3("idealLoop", &_t_idealLoop, true);
1644       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1645       loop_opts_cnt--;
1646       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1647       if (failing())  return;
1648     }
1649     // Loop opts pass for loop-unrolling before CCP
1650     if(major_progress() && (loop_opts_cnt > 0)) {
1651       TracePhase t4("idealLoop", &_t_idealLoop, true);
1652       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1653       loop_opts_cnt--;
1654       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1655     }
1656     if (!failing()) {
1657       // Verify that last round of loop opts produced a valid graph
1658       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1659       PhaseIdealLoop::verify(igvn);
1660     }
1661   }
1662   if (failing())  return;
1663 
1664   // Conditional Constant Propagation;
1665   PhaseCCP ccp( &igvn );
1666   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1667   {
1668     TracePhase t2("ccp", &_t_ccp, true);
1669     ccp.do_transform();
1670   }
1671   print_method("PhaseCPP 1", 2);
1672 
1673   assert( true, "Break here to ccp.dump_old2new_map()");
1674 
1675   // Iterative Global Value Numbering, including ideal transforms
1676   {
1677     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1678     igvn = ccp;
1679     igvn.optimize();
1680   }
1681 
1682   print_method("Iter GVN 2", 2);
1683 
1684   if (failing())  return;
1685 
1686   // Loop transforms on the ideal graph.  Range Check Elimination,
1687   // peeling, unrolling, etc.
1688   if(loop_opts_cnt > 0) {
1689     debug_only( int cnt = 0; );
1690     bool loop_predication = UseLoopPredicate;
1691     while(major_progress() && (loop_opts_cnt > 0)) {
1692       TracePhase t2("idealLoop", &_t_idealLoop, true);
1693       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1694       PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1695       loop_opts_cnt--;
1696       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1697       if (failing())  return;
1698       // Perform loop predication optimization during first iteration after CCP.
1699       // After that switch it off and cleanup unused loop predicates.
1700       if (loop_predication) {
1701         loop_predication = false;
1702         cleanup_loop_predicates(igvn);
1703         if (failing())  return;
1704       }
1705     }
1706   }
1707 
1708   {
1709     // Verify that all previous optimizations produced a valid graph
1710     // at least to this point, even if no loop optimizations were done.
1711     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1712     PhaseIdealLoop::verify(igvn);
1713   }
1714 
1715   {
1716     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1717     PhaseMacroExpand  mex(igvn);
1718     if (mex.expand_macro_nodes()) {
1719       assert(failing(), "must bail out w/ explicit message");
1720       return;
1721     }
1722   }
1723 
1724  } // (End scope of igvn; run destructor if necessary for asserts.)
1725 
1726   // A method with only infinite loops has no edges entering loops from root
1727   {
1728     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1729     if (final_graph_reshaping()) {
1730       assert(failing(), "must bail out w/ explicit message");
1731       return;
1732     }
1733   }
1734 
1735   print_method("Optimize finished", 2);
1736 }
1737 
1738 
1739 //------------------------------Code_Gen---------------------------------------
1740 // Given a graph, generate code for it
1741 void Compile::Code_Gen() {
1742   if (failing())  return;
1743 
1744   // Perform instruction selection.  You might think we could reclaim Matcher
1745   // memory PDQ, but actually the Matcher is used in generating spill code.
1746   // Internals of the Matcher (including some VectorSets) must remain live
1747   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1748   // set a bit in reclaimed memory.
1749 
1750   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1751   // nodes.  Mapping is only valid at the root of each matched subtree.
1752   NOT_PRODUCT( verify_graph_edges(); )
1753 
1754   Node_List proj_list;
1755   Matcher m(proj_list);
1756   _matcher = &m;
1757   {
1758     TracePhase t2("matcher", &_t_matcher, true);
1759     m.match();
1760   }
1761   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1762   // nodes.  Mapping is only valid at the root of each matched subtree.
1763   NOT_PRODUCT( verify_graph_edges(); )
1764 
1765   // If you have too many nodes, or if matching has failed, bail out
1766   check_node_count(0, "out of nodes matching instructions");
1767   if (failing())  return;
1768 
1769   // Build a proper-looking CFG
1770   PhaseCFG cfg(node_arena(), root(), m);
1771   _cfg = &cfg;
1772   {
1773     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1774     cfg.Dominators();
1775     if (failing())  return;
1776 
1777     NOT_PRODUCT( verify_graph_edges(); )
1778 
1779     cfg.Estimate_Block_Frequency();
1780     cfg.GlobalCodeMotion(m,unique(),proj_list);
1781 
1782     print_method("Global code motion", 2);
1783 
1784     if (failing())  return;
1785     NOT_PRODUCT( verify_graph_edges(); )
1786 
1787     debug_only( cfg.verify(); )
1788   }
1789   NOT_PRODUCT( verify_graph_edges(); )
1790 
1791   PhaseChaitin regalloc(unique(),cfg,m);
1792   _regalloc = &regalloc;
1793   {
1794     TracePhase t2("regalloc", &_t_registerAllocation, true);
1795     // Perform any platform dependent preallocation actions.  This is used,
1796     // for example, to avoid taking an implicit null pointer exception
1797     // using the frame pointer on win95.
1798     _regalloc->pd_preallocate_hook();
1799 
1800     // Perform register allocation.  After Chaitin, use-def chains are
1801     // no longer accurate (at spill code) and so must be ignored.
1802     // Node->LRG->reg mappings are still accurate.
1803     _regalloc->Register_Allocate();
1804 
1805     // Bail out if the allocator builds too many nodes
1806     if (failing())  return;
1807   }
1808 
1809   // Prior to register allocation we kept empty basic blocks in case the
1810   // the allocator needed a place to spill.  After register allocation we
1811   // are not adding any new instructions.  If any basic block is empty, we
1812   // can now safely remove it.
1813   {
1814     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1815     cfg.remove_empty();
1816     if (do_freq_based_layout()) {
1817       PhaseBlockLayout layout(cfg);
1818     } else {
1819       cfg.set_loop_alignment();
1820     }
1821     cfg.fixup_flow();
1822   }
1823 
1824   // Perform any platform dependent postallocation verifications.
1825   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1826 
1827   // Apply peephole optimizations
1828   if( OptoPeephole ) {
1829     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1830     PhasePeephole peep( _regalloc, cfg);
1831     peep.do_transform();
1832   }
1833 
1834   // Convert Nodes to instruction bits in a buffer
1835   {
1836     // %%%% workspace merge brought two timers together for one job
1837     TracePhase t2a("output", &_t_output, true);
1838     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1839     Output();
1840   }
1841 
1842   print_method("Final Code");
1843 
1844   // He's dead, Jim.
1845   _cfg     = (PhaseCFG*)0xdeadbeef;
1846   _regalloc = (PhaseChaitin*)0xdeadbeef;
1847 }
1848 
1849 
1850 //------------------------------dump_asm---------------------------------------
1851 // Dump formatted assembly
1852 #ifndef PRODUCT
1853 void Compile::dump_asm(int *pcs, uint pc_limit) {
1854   bool cut_short = false;
1855   tty->print_cr("#");
1856   tty->print("#  ");  _tf->dump();  tty->cr();
1857   tty->print_cr("#");
1858 
1859   // For all blocks
1860   int pc = 0x0;                 // Program counter
1861   char starts_bundle = ' ';
1862   _regalloc->dump_frame();
1863 
1864   Node *n = NULL;
1865   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1866     if (VMThread::should_terminate()) { cut_short = true; break; }
1867     Block *b = _cfg->_blocks[i];
1868     if (b->is_connector() && !Verbose) continue;
1869     n = b->_nodes[0];
1870     if (pcs && n->_idx < pc_limit)
1871       tty->print("%3.3x   ", pcs[n->_idx]);
1872     else
1873       tty->print("      ");
1874     b->dump_head( &_cfg->_bbs );
1875     if (b->is_connector()) {
1876       tty->print_cr("        # Empty connector block");
1877     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1878       tty->print_cr("        # Block is sole successor of call");
1879     }
1880 
1881     // For all instructions
1882     Node *delay = NULL;
1883     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1884       if (VMThread::should_terminate()) { cut_short = true; break; }
1885       n = b->_nodes[j];
1886       if (valid_bundle_info(n)) {
1887         Bundle *bundle = node_bundling(n);
1888         if (bundle->used_in_unconditional_delay()) {
1889           delay = n;
1890           continue;
1891         }
1892         if (bundle->starts_bundle())
1893           starts_bundle = '+';
1894       }
1895 
1896       if (WizardMode) n->dump();
1897 
1898       if( !n->is_Region() &&    // Dont print in the Assembly
1899           !n->is_Phi() &&       // a few noisely useless nodes
1900           !n->is_Proj() &&
1901           !n->is_MachTemp() &&
1902           !n->is_SafePointScalarObject() &&
1903           !n->is_Catch() &&     // Would be nice to print exception table targets
1904           !n->is_MergeMem() &&  // Not very interesting
1905           !n->is_top() &&       // Debug info table constants
1906           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1907           ) {
1908         if (pcs && n->_idx < pc_limit)
1909           tty->print("%3.3x", pcs[n->_idx]);
1910         else
1911           tty->print("   ");
1912         tty->print(" %c ", starts_bundle);
1913         starts_bundle = ' ';
1914         tty->print("\t");
1915         n->format(_regalloc, tty);
1916         tty->cr();
1917       }
1918 
1919       // If we have an instruction with a delay slot, and have seen a delay,
1920       // then back up and print it
1921       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1922         assert(delay != NULL, "no unconditional delay instruction");
1923         if (WizardMode) delay->dump();
1924 
1925         if (node_bundling(delay)->starts_bundle())
1926           starts_bundle = '+';
1927         if (pcs && n->_idx < pc_limit)
1928           tty->print("%3.3x", pcs[n->_idx]);
1929         else
1930           tty->print("   ");
1931         tty->print(" %c ", starts_bundle);
1932         starts_bundle = ' ';
1933         tty->print("\t");
1934         delay->format(_regalloc, tty);
1935         tty->print_cr("");
1936         delay = NULL;
1937       }
1938 
1939       // Dump the exception table as well
1940       if( n->is_Catch() && (Verbose || WizardMode) ) {
1941         // Print the exception table for this offset
1942         _handler_table.print_subtable_for(pc);
1943       }
1944     }
1945 
1946     if (pcs && n->_idx < pc_limit)
1947       tty->print_cr("%3.3x", pcs[n->_idx]);
1948     else
1949       tty->print_cr("");
1950 
1951     assert(cut_short || delay == NULL, "no unconditional delay branch");
1952 
1953   } // End of per-block dump
1954   tty->print_cr("");
1955 
1956   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1957 }
1958 #endif
1959 
1960 //------------------------------Final_Reshape_Counts---------------------------
1961 // This class defines counters to help identify when a method
1962 // may/must be executed using hardware with only 24-bit precision.
1963 struct Final_Reshape_Counts : public StackObj {
1964   int  _call_count;             // count non-inlined 'common' calls
1965   int  _float_count;            // count float ops requiring 24-bit precision
1966   int  _double_count;           // count double ops requiring more precision
1967   int  _java_call_count;        // count non-inlined 'java' calls
1968   int  _inner_loop_count;       // count loops which need alignment
1969   VectorSet _visited;           // Visitation flags
1970   Node_List _tests;             // Set of IfNodes & PCTableNodes
1971 
1972   Final_Reshape_Counts() :
1973     _call_count(0), _float_count(0), _double_count(0),
1974     _java_call_count(0), _inner_loop_count(0),
1975     _visited( Thread::current()->resource_area() ) { }
1976 
1977   void inc_call_count  () { _call_count  ++; }
1978   void inc_float_count () { _float_count ++; }
1979   void inc_double_count() { _double_count++; }
1980   void inc_java_call_count() { _java_call_count++; }
1981   void inc_inner_loop_count() { _inner_loop_count++; }
1982 
1983   int  get_call_count  () const { return _call_count  ; }
1984   int  get_float_count () const { return _float_count ; }
1985   int  get_double_count() const { return _double_count; }
1986   int  get_java_call_count() const { return _java_call_count; }
1987   int  get_inner_loop_count() const { return _inner_loop_count; }
1988 };
1989 
1990 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1991   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1992   // Make sure the offset goes inside the instance layout.
1993   return k->contains_field_offset(tp->offset());
1994   // Note that OffsetBot and OffsetTop are very negative.
1995 }
1996 
1997 //------------------------------final_graph_reshaping_impl----------------------
1998 // Implement items 1-5 from final_graph_reshaping below.
1999 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
2000 
2001   if ( n->outcnt() == 0 ) return; // dead node
2002   uint nop = n->Opcode();
2003 
2004   // Check for 2-input instruction with "last use" on right input.
2005   // Swap to left input.  Implements item (2).
2006   if( n->req() == 3 &&          // two-input instruction
2007       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2008       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2009       n->in(2)->outcnt() == 1 &&// right use IS a last use
2010       !n->in(2)->is_Con() ) {   // right use is not a constant
2011     // Check for commutative opcode
2012     switch( nop ) {
2013     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2014     case Op_MaxI:  case Op_MinI:
2015     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2016     case Op_AndL:  case Op_XorL:  case Op_OrL:
2017     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2018       // Move "last use" input to left by swapping inputs
2019       n->swap_edges(1, 2);
2020       break;
2021     }
2022     default:
2023       break;
2024     }
2025   }
2026 
2027 #ifdef ASSERT
2028   if( n->is_Mem() ) {
2029     Compile* C = Compile::current();
2030     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
2031     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2032             // oop will be recorded in oop map if load crosses safepoint
2033             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2034                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2035             "raw memory operations should have control edge");
2036   }
2037 #endif
2038   // Count FPU ops and common calls, implements item (3)
2039   switch( nop ) {
2040   // Count all float operations that may use FPU
2041   case Op_AddF:
2042   case Op_SubF:
2043   case Op_MulF:
2044   case Op_DivF:
2045   case Op_NegF:
2046   case Op_ModF:
2047   case Op_ConvI2F:
2048   case Op_ConF:
2049   case Op_CmpF:
2050   case Op_CmpF3:
2051   // case Op_ConvL2F: // longs are split into 32-bit halves
2052     frc.inc_float_count();
2053     break;
2054 
2055   case Op_ConvF2D:
2056   case Op_ConvD2F:
2057     frc.inc_float_count();
2058     frc.inc_double_count();
2059     break;
2060 
2061   // Count all double operations that may use FPU
2062   case Op_AddD:
2063   case Op_SubD:
2064   case Op_MulD:
2065   case Op_DivD:
2066   case Op_NegD:
2067   case Op_ModD:
2068   case Op_ConvI2D:
2069   case Op_ConvD2I:
2070   // case Op_ConvL2D: // handled by leaf call
2071   // case Op_ConvD2L: // handled by leaf call
2072   case Op_ConD:
2073   case Op_CmpD:
2074   case Op_CmpD3:
2075     frc.inc_double_count();
2076     break;
2077   case Op_Opaque1:              // Remove Opaque Nodes before matching
2078   case Op_Opaque2:              // Remove Opaque Nodes before matching
2079     n->subsume_by(n->in(1));
2080     break;
2081   case Op_CallStaticJava:
2082   case Op_CallJava:
2083   case Op_CallDynamicJava:
2084     frc.inc_java_call_count(); // Count java call site;
2085   case Op_CallRuntime:
2086   case Op_CallLeaf:
2087   case Op_CallLeafNoFP: {
2088     assert( n->is_Call(), "" );
2089     CallNode *call = n->as_Call();
2090     // Count call sites where the FP mode bit would have to be flipped.
2091     // Do not count uncommon runtime calls:
2092     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2093     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2094     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2095       frc.inc_call_count();   // Count the call site
2096     } else {                  // See if uncommon argument is shared
2097       Node *n = call->in(TypeFunc::Parms);
2098       int nop = n->Opcode();
2099       // Clone shared simple arguments to uncommon calls, item (1).
2100       if( n->outcnt() > 1 &&
2101           !n->is_Proj() &&
2102           nop != Op_CreateEx &&
2103           nop != Op_CheckCastPP &&
2104           nop != Op_DecodeN &&
2105           !n->is_Mem() ) {
2106         Node *x = n->clone();
2107         call->set_req( TypeFunc::Parms, x );
2108       }
2109     }
2110     break;
2111   }
2112 
2113   case Op_StoreD:
2114   case Op_LoadD:
2115   case Op_LoadD_unaligned:
2116     frc.inc_double_count();
2117     goto handle_mem;
2118   case Op_StoreF:
2119   case Op_LoadF:
2120     frc.inc_float_count();
2121     goto handle_mem;
2122 
2123   case Op_StoreB:
2124   case Op_StoreC:
2125   case Op_StoreCM:
2126   case Op_StorePConditional:
2127   case Op_StoreI:
2128   case Op_StoreL:
2129   case Op_StoreIConditional:
2130   case Op_StoreLConditional:
2131   case Op_CompareAndSwapI:
2132   case Op_CompareAndSwapL:
2133   case Op_CompareAndSwapP:
2134   case Op_CompareAndSwapN:
2135   case Op_StoreP:
2136   case Op_StoreN:
2137   case Op_LoadB:
2138   case Op_LoadUB:
2139   case Op_LoadUS:
2140   case Op_LoadI:
2141   case Op_LoadUI2L:
2142   case Op_LoadKlass:
2143   case Op_LoadNKlass:
2144   case Op_LoadL:
2145   case Op_LoadL_unaligned:
2146   case Op_LoadPLocked:
2147   case Op_LoadLLocked:
2148   case Op_LoadP:
2149   case Op_LoadN:
2150   case Op_LoadRange:
2151   case Op_LoadS: {
2152   handle_mem:
2153 #ifdef ASSERT
2154     if( VerifyOptoOopOffsets ) {
2155       assert( n->is_Mem(), "" );
2156       MemNode *mem  = (MemNode*)n;
2157       // Check to see if address types have grounded out somehow.
2158       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2159       assert( !tp || oop_offset_is_sane(tp), "" );
2160     }
2161 #endif
2162     break;
2163   }
2164 
2165   case Op_AddP: {               // Assert sane base pointers
2166     Node *addp = n->in(AddPNode::Address);
2167     assert( !addp->is_AddP() ||
2168             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2169             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2170             "Base pointers must match" );
2171 #ifdef _LP64
2172     if (UseCompressedOops &&
2173         addp->Opcode() == Op_ConP &&
2174         addp == n->in(AddPNode::Base) &&
2175         n->in(AddPNode::Offset)->is_Con()) {
2176       // Use addressing with narrow klass to load with offset on x86.
2177       // On sparc loading 32-bits constant and decoding it have less
2178       // instructions (4) then load 64-bits constant (7).
2179       // Do this transformation here since IGVN will convert ConN back to ConP.
2180       const Type* t = addp->bottom_type();
2181       if (t->isa_oopptr()) {
2182         Node* nn = NULL;
2183 
2184         // Look for existing ConN node of the same exact type.
2185         Compile* C = Compile::current();
2186         Node* r  = C->root();
2187         uint cnt = r->outcnt();
2188         for (uint i = 0; i < cnt; i++) {
2189           Node* m = r->raw_out(i);
2190           if (m!= NULL && m->Opcode() == Op_ConN &&
2191               m->bottom_type()->make_ptr() == t) {
2192             nn = m;
2193             break;
2194           }
2195         }
2196         if (nn != NULL) {
2197           // Decode a narrow oop to match address
2198           // [R12 + narrow_oop_reg<<3 + offset]
2199           nn = new (C,  2) DecodeNNode(nn, t);
2200           n->set_req(AddPNode::Base, nn);
2201           n->set_req(AddPNode::Address, nn);
2202           if (addp->outcnt() == 0) {
2203             addp->disconnect_inputs(NULL);
2204           }
2205         }
2206       }
2207     }
2208 #endif
2209     break;
2210   }
2211 
2212 #ifdef _LP64
2213   case Op_CastPP:
2214     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2215       Compile* C = Compile::current();
2216       Node* in1 = n->in(1);
2217       const Type* t = n->bottom_type();
2218       Node* new_in1 = in1->clone();
2219       new_in1->as_DecodeN()->set_type(t);
2220 
2221       if (!Matcher::narrow_oop_use_complex_address()) {
2222         //
2223         // x86, ARM and friends can handle 2 adds in addressing mode
2224         // and Matcher can fold a DecodeN node into address by using
2225         // a narrow oop directly and do implicit NULL check in address:
2226         //
2227         // [R12 + narrow_oop_reg<<3 + offset]
2228         // NullCheck narrow_oop_reg
2229         //
2230         // On other platforms (Sparc) we have to keep new DecodeN node and
2231         // use it to do implicit NULL check in address:
2232         //
2233         // decode_not_null narrow_oop_reg, base_reg
2234         // [base_reg + offset]
2235         // NullCheck base_reg
2236         //
2237         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2238         // to keep the information to which NULL check the new DecodeN node
2239         // corresponds to use it as value in implicit_null_check().
2240         //
2241         new_in1->set_req(0, n->in(0));
2242       }
2243 
2244       n->subsume_by(new_in1);
2245       if (in1->outcnt() == 0) {
2246         in1->disconnect_inputs(NULL);
2247       }
2248     }
2249     break;
2250 
2251   case Op_CmpP:
2252     // Do this transformation here to preserve CmpPNode::sub() and
2253     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2254     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2255       Node* in1 = n->in(1);
2256       Node* in2 = n->in(2);
2257       if (!in1->is_DecodeN()) {
2258         in2 = in1;
2259         in1 = n->in(2);
2260       }
2261       assert(in1->is_DecodeN(), "sanity");
2262 
2263       Compile* C = Compile::current();
2264       Node* new_in2 = NULL;
2265       if (in2->is_DecodeN()) {
2266         new_in2 = in2->in(1);
2267       } else if (in2->Opcode() == Op_ConP) {
2268         const Type* t = in2->bottom_type();
2269         if (t == TypePtr::NULL_PTR) {
2270           // Don't convert CmpP null check into CmpN if compressed
2271           // oops implicit null check is not generated.
2272           // This will allow to generate normal oop implicit null check.
2273           if (Matcher::gen_narrow_oop_implicit_null_checks())
2274             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2275           //
2276           // This transformation together with CastPP transformation above
2277           // will generated code for implicit NULL checks for compressed oops.
2278           //
2279           // The original code after Optimize()
2280           //
2281           //    LoadN memory, narrow_oop_reg
2282           //    decode narrow_oop_reg, base_reg
2283           //    CmpP base_reg, NULL
2284           //    CastPP base_reg // NotNull
2285           //    Load [base_reg + offset], val_reg
2286           //
2287           // after these transformations will be
2288           //
2289           //    LoadN memory, narrow_oop_reg
2290           //    CmpN narrow_oop_reg, NULL
2291           //    decode_not_null narrow_oop_reg, base_reg
2292           //    Load [base_reg + offset], val_reg
2293           //
2294           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2295           // since narrow oops can be used in debug info now (see the code in
2296           // final_graph_reshaping_walk()).
2297           //
2298           // At the end the code will be matched to
2299           // on x86:
2300           //
2301           //    Load_narrow_oop memory, narrow_oop_reg
2302           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2303           //    NullCheck narrow_oop_reg
2304           //
2305           // and on sparc:
2306           //
2307           //    Load_narrow_oop memory, narrow_oop_reg
2308           //    decode_not_null narrow_oop_reg, base_reg
2309           //    Load [base_reg + offset], val_reg
2310           //    NullCheck base_reg
2311           //
2312         } else if (t->isa_oopptr()) {
2313           new_in2 = ConNode::make(C, t->make_narrowoop());
2314         }
2315       }
2316       if (new_in2 != NULL) {
2317         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2318         n->subsume_by( cmpN );
2319         if (in1->outcnt() == 0) {
2320           in1->disconnect_inputs(NULL);
2321         }
2322         if (in2->outcnt() == 0) {
2323           in2->disconnect_inputs(NULL);
2324         }
2325       }
2326     }
2327     break;
2328 
2329   case Op_DecodeN:
2330     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2331     // DecodeN could be pinned when it can't be fold into
2332     // an address expression, see the code for Op_CastPP above.
2333     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2334     break;
2335 
2336   case Op_EncodeP: {
2337     Node* in1 = n->in(1);
2338     if (in1->is_DecodeN()) {
2339       n->subsume_by(in1->in(1));
2340     } else if (in1->Opcode() == Op_ConP) {
2341       Compile* C = Compile::current();
2342       const Type* t = in1->bottom_type();
2343       if (t == TypePtr::NULL_PTR) {
2344         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2345       } else if (t->isa_oopptr()) {
2346         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2347       }
2348     }
2349     if (in1->outcnt() == 0) {
2350       in1->disconnect_inputs(NULL);
2351     }
2352     break;
2353   }
2354 
2355   case Op_Proj: {
2356     if (OptimizeStringConcat) {
2357       ProjNode* p = n->as_Proj();
2358       if (p->_is_io_use) {
2359         // Separate projections were used for the exception path which
2360         // are normally removed by a late inline.  If it wasn't inlined
2361         // then they will hang around and should just be replaced with
2362         // the original one.
2363         Node* proj = NULL;
2364         // Replace with just one
2365         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2366           Node *use = i.get();
2367           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2368             proj = use;
2369             break;
2370           }
2371         }
2372         assert(p != NULL, "must be found");
2373         p->subsume_by(proj);
2374       }
2375     }
2376     break;
2377   }
2378 
2379   case Op_Phi:
2380     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2381       // The EncodeP optimization may create Phi with the same edges
2382       // for all paths. It is not handled well by Register Allocator.
2383       Node* unique_in = n->in(1);
2384       assert(unique_in != NULL, "");
2385       uint cnt = n->req();
2386       for (uint i = 2; i < cnt; i++) {
2387         Node* m = n->in(i);
2388         assert(m != NULL, "");
2389         if (unique_in != m)
2390           unique_in = NULL;
2391       }
2392       if (unique_in != NULL) {
2393         n->subsume_by(unique_in);
2394       }
2395     }
2396     break;
2397 
2398 #endif
2399 
2400   case Op_ModI:
2401     if (UseDivMod) {
2402       // Check if a%b and a/b both exist
2403       Node* d = n->find_similar(Op_DivI);
2404       if (d) {
2405         // Replace them with a fused divmod if supported
2406         Compile* C = Compile::current();
2407         if (Matcher::has_match_rule(Op_DivModI)) {
2408           DivModINode* divmod = DivModINode::make(C, n);
2409           d->subsume_by(divmod->div_proj());
2410           n->subsume_by(divmod->mod_proj());
2411         } else {
2412           // replace a%b with a-((a/b)*b)
2413           Node* mult = new (C, 3) MulINode(d, d->in(2));
2414           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2415           n->subsume_by( sub );
2416         }
2417       }
2418     }
2419     break;
2420 
2421   case Op_ModL:
2422     if (UseDivMod) {
2423       // Check if a%b and a/b both exist
2424       Node* d = n->find_similar(Op_DivL);
2425       if (d) {
2426         // Replace them with a fused divmod if supported
2427         Compile* C = Compile::current();
2428         if (Matcher::has_match_rule(Op_DivModL)) {
2429           DivModLNode* divmod = DivModLNode::make(C, n);
2430           d->subsume_by(divmod->div_proj());
2431           n->subsume_by(divmod->mod_proj());
2432         } else {
2433           // replace a%b with a-((a/b)*b)
2434           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2435           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2436           n->subsume_by( sub );
2437         }
2438       }
2439     }
2440     break;
2441 
2442   case Op_Load16B:
2443   case Op_Load8B:
2444   case Op_Load4B:
2445   case Op_Load8S:
2446   case Op_Load4S:
2447   case Op_Load2S:
2448   case Op_Load8C:
2449   case Op_Load4C:
2450   case Op_Load2C:
2451   case Op_Load4I:
2452   case Op_Load2I:
2453   case Op_Load2L:
2454   case Op_Load4F:
2455   case Op_Load2F:
2456   case Op_Load2D:
2457   case Op_Store16B:
2458   case Op_Store8B:
2459   case Op_Store4B:
2460   case Op_Store8C:
2461   case Op_Store4C:
2462   case Op_Store2C:
2463   case Op_Store4I:
2464   case Op_Store2I:
2465   case Op_Store2L:
2466   case Op_Store4F:
2467   case Op_Store2F:
2468   case Op_Store2D:
2469     break;
2470 
2471   case Op_PackB:
2472   case Op_PackS:
2473   case Op_PackC:
2474   case Op_PackI:
2475   case Op_PackF:
2476   case Op_PackL:
2477   case Op_PackD:
2478     if (n->req()-1 > 2) {
2479       // Replace many operand PackNodes with a binary tree for matching
2480       PackNode* p = (PackNode*) n;
2481       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2482       n->subsume_by(btp);
2483     }
2484     break;
2485   case Op_Loop:
2486   case Op_CountedLoop:
2487     if (n->as_Loop()->is_inner_loop()) {
2488       frc.inc_inner_loop_count();
2489     }
2490     break;
2491   default:
2492     assert( !n->is_Call(), "" );
2493     assert( !n->is_Mem(), "" );
2494     break;
2495   }
2496 
2497   // Collect CFG split points
2498   if (n->is_MultiBranch())
2499     frc._tests.push(n);
2500 }
2501 
2502 //------------------------------final_graph_reshaping_walk---------------------
2503 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2504 // requires that the walk visits a node's inputs before visiting the node.
2505 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2506   ResourceArea *area = Thread::current()->resource_area();
2507   Unique_Node_List sfpt(area);
2508 
2509   frc._visited.set(root->_idx); // first, mark node as visited
2510   uint cnt = root->req();
2511   Node *n = root;
2512   uint  i = 0;
2513   while (true) {
2514     if (i < cnt) {
2515       // Place all non-visited non-null inputs onto stack
2516       Node* m = n->in(i);
2517       ++i;
2518       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2519         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2520           sfpt.push(m);
2521         cnt = m->req();
2522         nstack.push(n, i); // put on stack parent and next input's index
2523         n = m;
2524         i = 0;
2525       }
2526     } else {
2527       // Now do post-visit work
2528       final_graph_reshaping_impl( n, frc );
2529       if (nstack.is_empty())
2530         break;             // finished
2531       n = nstack.node();   // Get node from stack
2532       cnt = n->req();
2533       i = nstack.index();
2534       nstack.pop();        // Shift to the next node on stack
2535     }
2536   }
2537 
2538   // Skip next transformation if compressed oops are not used.
2539   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2540     return;
2541 
2542   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2543   // It could be done for an uncommon traps or any safepoints/calls
2544   // if the DecodeN node is referenced only in a debug info.
2545   while (sfpt.size() > 0) {
2546     n = sfpt.pop();
2547     JVMState *jvms = n->as_SafePoint()->jvms();
2548     assert(jvms != NULL, "sanity");
2549     int start = jvms->debug_start();
2550     int end   = n->req();
2551     bool is_uncommon = (n->is_CallStaticJava() &&
2552                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2553     for (int j = start; j < end; j++) {
2554       Node* in = n->in(j);
2555       if (in->is_DecodeN()) {
2556         bool safe_to_skip = true;
2557         if (!is_uncommon ) {
2558           // Is it safe to skip?
2559           for (uint i = 0; i < in->outcnt(); i++) {
2560             Node* u = in->raw_out(i);
2561             if (!u->is_SafePoint() ||
2562                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2563               safe_to_skip = false;
2564             }
2565           }
2566         }
2567         if (safe_to_skip) {
2568           n->set_req(j, in->in(1));
2569         }
2570         if (in->outcnt() == 0) {
2571           in->disconnect_inputs(NULL);
2572         }
2573       }
2574     }
2575   }
2576 }
2577 
2578 //------------------------------final_graph_reshaping--------------------------
2579 // Final Graph Reshaping.
2580 //
2581 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2582 //     and not commoned up and forced early.  Must come after regular
2583 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2584 //     inputs to Loop Phis; these will be split by the allocator anyways.
2585 //     Remove Opaque nodes.
2586 // (2) Move last-uses by commutative operations to the left input to encourage
2587 //     Intel update-in-place two-address operations and better register usage
2588 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2589 //     calls canonicalizing them back.
2590 // (3) Count the number of double-precision FP ops, single-precision FP ops
2591 //     and call sites.  On Intel, we can get correct rounding either by
2592 //     forcing singles to memory (requires extra stores and loads after each
2593 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2594 //     clearing the mode bit around call sites).  The mode bit is only used
2595 //     if the relative frequency of single FP ops to calls is low enough.
2596 //     This is a key transform for SPEC mpeg_audio.
2597 // (4) Detect infinite loops; blobs of code reachable from above but not
2598 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2599 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2600 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2601 //     Detection is by looking for IfNodes where only 1 projection is
2602 //     reachable from below or CatchNodes missing some targets.
2603 // (5) Assert for insane oop offsets in debug mode.
2604 
2605 bool Compile::final_graph_reshaping() {
2606   // an infinite loop may have been eliminated by the optimizer,
2607   // in which case the graph will be empty.
2608   if (root()->req() == 1) {
2609     record_method_not_compilable("trivial infinite loop");
2610     return true;
2611   }
2612 
2613   Final_Reshape_Counts frc;
2614 
2615   // Visit everybody reachable!
2616   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2617   Node_Stack nstack(unique() >> 1);
2618   final_graph_reshaping_walk(nstack, root(), frc);
2619 
2620   // Check for unreachable (from below) code (i.e., infinite loops).
2621   for( uint i = 0; i < frc._tests.size(); i++ ) {
2622     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2623     // Get number of CFG targets.
2624     // Note that PCTables include exception targets after calls.
2625     uint required_outcnt = n->required_outcnt();
2626     if (n->outcnt() != required_outcnt) {
2627       // Check for a few special cases.  Rethrow Nodes never take the
2628       // 'fall-thru' path, so expected kids is 1 less.
2629       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2630         if (n->in(0)->in(0)->is_Call()) {
2631           CallNode *call = n->in(0)->in(0)->as_Call();
2632           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2633             required_outcnt--;      // Rethrow always has 1 less kid
2634           } else if (call->req() > TypeFunc::Parms &&
2635                      call->is_CallDynamicJava()) {
2636             // Check for null receiver. In such case, the optimizer has
2637             // detected that the virtual call will always result in a null
2638             // pointer exception. The fall-through projection of this CatchNode
2639             // will not be populated.
2640             Node *arg0 = call->in(TypeFunc::Parms);
2641             if (arg0->is_Type() &&
2642                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2643               required_outcnt--;
2644             }
2645           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2646                      call->req() > TypeFunc::Parms+1 &&
2647                      call->is_CallStaticJava()) {
2648             // Check for negative array length. In such case, the optimizer has
2649             // detected that the allocation attempt will always result in an
2650             // exception. There is no fall-through projection of this CatchNode .
2651             Node *arg1 = call->in(TypeFunc::Parms+1);
2652             if (arg1->is_Type() &&
2653                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2654               required_outcnt--;
2655             }
2656           }
2657         }
2658       }
2659       // Recheck with a better notion of 'required_outcnt'
2660       if (n->outcnt() != required_outcnt) {
2661         record_method_not_compilable("malformed control flow");
2662         return true;            // Not all targets reachable!
2663       }
2664     }
2665     // Check that I actually visited all kids.  Unreached kids
2666     // must be infinite loops.
2667     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2668       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2669         record_method_not_compilable("infinite loop");
2670         return true;            // Found unvisited kid; must be unreach
2671       }
2672   }
2673 
2674   // If original bytecodes contained a mixture of floats and doubles
2675   // check if the optimizer has made it homogenous, item (3).
2676   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2677       frc.get_float_count() > 32 &&
2678       frc.get_double_count() == 0 &&
2679       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2680     set_24_bit_selection_and_mode( false,  true );
2681   }
2682 
2683   set_java_calls(frc.get_java_call_count());
2684   set_inner_loops(frc.get_inner_loop_count());
2685 
2686   // No infinite loops, no reason to bail out.
2687   return false;
2688 }
2689 
2690 //-----------------------------too_many_traps----------------------------------
2691 // Report if there are too many traps at the current method and bci.
2692 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2693 bool Compile::too_many_traps(ciMethod* method,
2694                              int bci,
2695                              Deoptimization::DeoptReason reason) {
2696   ciMethodData* md = method->method_data();
2697   if (md->is_empty()) {
2698     // Assume the trap has not occurred, or that it occurred only
2699     // because of a transient condition during start-up in the interpreter.
2700     return false;
2701   }
2702   if (md->has_trap_at(bci, reason) != 0) {
2703     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2704     // Also, if there are multiple reasons, or if there is no per-BCI record,
2705     // assume the worst.
2706     if (log())
2707       log()->elem("observe trap='%s' count='%d'",
2708                   Deoptimization::trap_reason_name(reason),
2709                   md->trap_count(reason));
2710     return true;
2711   } else {
2712     // Ignore method/bci and see if there have been too many globally.
2713     return too_many_traps(reason, md);
2714   }
2715 }
2716 
2717 // Less-accurate variant which does not require a method and bci.
2718 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2719                              ciMethodData* logmd) {
2720  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2721     // Too many traps globally.
2722     // Note that we use cumulative trap_count, not just md->trap_count.
2723     if (log()) {
2724       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2725       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2726                   Deoptimization::trap_reason_name(reason),
2727                   mcount, trap_count(reason));
2728     }
2729     return true;
2730   } else {
2731     // The coast is clear.
2732     return false;
2733   }
2734 }
2735 
2736 //--------------------------too_many_recompiles--------------------------------
2737 // Report if there are too many recompiles at the current method and bci.
2738 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2739 // Is not eager to return true, since this will cause the compiler to use
2740 // Action_none for a trap point, to avoid too many recompilations.
2741 bool Compile::too_many_recompiles(ciMethod* method,
2742                                   int bci,
2743                                   Deoptimization::DeoptReason reason) {
2744   ciMethodData* md = method->method_data();
2745   if (md->is_empty()) {
2746     // Assume the trap has not occurred, or that it occurred only
2747     // because of a transient condition during start-up in the interpreter.
2748     return false;
2749   }
2750   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2751   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2752   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2753   Deoptimization::DeoptReason per_bc_reason
2754     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2755   if ((per_bc_reason == Deoptimization::Reason_none
2756        || md->has_trap_at(bci, reason) != 0)
2757       // The trap frequency measure we care about is the recompile count:
2758       && md->trap_recompiled_at(bci)
2759       && md->overflow_recompile_count() >= bc_cutoff) {
2760     // Do not emit a trap here if it has already caused recompilations.
2761     // Also, if there are multiple reasons, or if there is no per-BCI record,
2762     // assume the worst.
2763     if (log())
2764       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2765                   Deoptimization::trap_reason_name(reason),
2766                   md->trap_count(reason),
2767                   md->overflow_recompile_count());
2768     return true;
2769   } else if (trap_count(reason) != 0
2770              && decompile_count() >= m_cutoff) {
2771     // Too many recompiles globally, and we have seen this sort of trap.
2772     // Use cumulative decompile_count, not just md->decompile_count.
2773     if (log())
2774       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2775                   Deoptimization::trap_reason_name(reason),
2776                   md->trap_count(reason), trap_count(reason),
2777                   md->decompile_count(), decompile_count());
2778     return true;
2779   } else {
2780     // The coast is clear.
2781     return false;
2782   }
2783 }
2784 
2785 
2786 #ifndef PRODUCT
2787 //------------------------------verify_graph_edges---------------------------
2788 // Walk the Graph and verify that there is a one-to-one correspondence
2789 // between Use-Def edges and Def-Use edges in the graph.
2790 void Compile::verify_graph_edges(bool no_dead_code) {
2791   if (VerifyGraphEdges) {
2792     ResourceArea *area = Thread::current()->resource_area();
2793     Unique_Node_List visited(area);
2794     // Call recursive graph walk to check edges
2795     _root->verify_edges(visited);
2796     if (no_dead_code) {
2797       // Now make sure that no visited node is used by an unvisited node.
2798       bool dead_nodes = 0;
2799       Unique_Node_List checked(area);
2800       while (visited.size() > 0) {
2801         Node* n = visited.pop();
2802         checked.push(n);
2803         for (uint i = 0; i < n->outcnt(); i++) {
2804           Node* use = n->raw_out(i);
2805           if (checked.member(use))  continue;  // already checked
2806           if (visited.member(use))  continue;  // already in the graph
2807           if (use->is_Con())        continue;  // a dead ConNode is OK
2808           // At this point, we have found a dead node which is DU-reachable.
2809           if (dead_nodes++ == 0)
2810             tty->print_cr("*** Dead nodes reachable via DU edges:");
2811           use->dump(2);
2812           tty->print_cr("---");
2813           checked.push(use);  // No repeats; pretend it is now checked.
2814         }
2815       }
2816       assert(dead_nodes == 0, "using nodes must be reachable from root");
2817     }
2818   }
2819 }
2820 #endif
2821 
2822 // The Compile object keeps track of failure reasons separately from the ciEnv.
2823 // This is required because there is not quite a 1-1 relation between the
2824 // ciEnv and its compilation task and the Compile object.  Note that one
2825 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2826 // to backtrack and retry without subsuming loads.  Other than this backtracking
2827 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2828 // by the logic in C2Compiler.
2829 void Compile::record_failure(const char* reason) {
2830   if (log() != NULL) {
2831     log()->elem("failure reason='%s' phase='compile'", reason);
2832   }
2833   if (_failure_reason == NULL) {
2834     // Record the first failure reason.
2835     _failure_reason = reason;
2836   }
2837   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2838     C->print_method(_failure_reason);
2839   }
2840   _root = NULL;  // flush the graph, too
2841 }
2842 
2843 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2844   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2845 {
2846   if (dolog) {
2847     C = Compile::current();
2848     _log = C->log();
2849   } else {
2850     C = NULL;
2851     _log = NULL;
2852   }
2853   if (_log != NULL) {
2854     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2855     _log->stamp();
2856     _log->end_head();
2857   }
2858 }
2859 
2860 Compile::TracePhase::~TracePhase() {
2861   if (_log != NULL) {
2862     _log->done("phase nodes='%d'", C->unique());
2863   }
2864 }