1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_divnode.cpp.incl"
  31 #include <math.h>
  32 
  33 //----------------------magic_int_divide_constants-----------------------------
  34 // Compute magic multiplier and shift constant for converting a 32 bit divide
  35 // by constant into a multiply/shift/add series. Return false if calculations
  36 // fail.
  37 //
  38 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
  39 // minor type name and parameter changes.
  40 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  41   int32_t p;
  42   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  43   const uint32_t two31 = 0x80000000L;     // 2**31.
  44 
  45   ad = ABS(d);
  46   if (d == 0 || d == 1) return false;
  47   t = two31 + ((uint32_t)d >> 31);
  48   anc = t - 1 - t%ad;     // Absolute value of nc.
  49   p = 31;                 // Init. p.
  50   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  51   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  52   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  53   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  54   do {
  55     p = p + 1;
  56     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
  57     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
  58     if (r1 >= anc) {      // (Must be an unsigned
  59       q1 = q1 + 1;        // comparison here).
  60       r1 = r1 - anc;
  61     }
  62     q2 = 2*q2;            // Update q2 = 2**p/|d|.
  63     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
  64     if (r2 >= ad) {       // (Must be an unsigned
  65       q2 = q2 + 1;        // comparison here).
  66       r2 = r2 - ad;
  67     }
  68     delta = ad - r2;
  69   } while (q1 < delta || (q1 == delta && r1 == 0));
  70 
  71   M = q2 + 1;
  72   if (d < 0) M = -M;      // Magic number and
  73   s = p - 32;             // shift amount to return.
  74 
  75   return true;
  76 }
  77 
  78 //--------------------------transform_int_divide-------------------------------
  79 // Convert a division by constant divisor into an alternate Ideal graph.
  80 // Return NULL if no transformation occurs.
  81 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
  82 
  83   // Check for invalid divisors
  84   assert( divisor != 0 && divisor != min_jint,
  85           "bad divisor for transforming to long multiply" );
  86 
  87   bool d_pos = divisor >= 0;
  88   jint d = d_pos ? divisor : -divisor;
  89   const int N = 32;
  90 
  91   // Result
  92   Node *q = NULL;
  93 
  94   if (d == 1) {
  95     // division by +/- 1
  96     if (!d_pos) {
  97       // Just negate the value
  98       q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
  99     }
 100   } else if ( is_power_of_2(d) ) {
 101     // division by +/- a power of 2
 102 
 103     // See if we can simply do a shift without rounding
 104     bool needs_rounding = true;
 105     const Type *dt = phase->type(dividend);
 106     const TypeInt *dti = dt->isa_int();
 107     if (dti && dti->_lo >= 0) {
 108       // we don't need to round a positive dividend
 109       needs_rounding = false;
 110     } else if( dividend->Opcode() == Op_AndI ) {
 111       // An AND mask of sufficient size clears the low bits and
 112       // I can avoid rounding.
 113       const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
 114       if( andconi_t && andconi_t->is_con() ) {
 115         jint andconi = andconi_t->get_con();
 116         if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
 117           if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
 118             dividend = dividend->in(1);
 119           needs_rounding = false;
 120         }
 121       }
 122     }
 123 
 124     // Add rounding to the shift to handle the sign bit
 125     int l = log2_intptr(d-1)+1;
 126     if (needs_rounding) {
 127       // Divide-by-power-of-2 can be made into a shift, but you have to do
 128       // more math for the rounding.  You need to add 0 for positive
 129       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
 130       // shift is by 2.  You need to add 3 to negative dividends and 0 to
 131       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
 132       // (-2+3)>>2 becomes 0, etc.
 133 
 134       // Compute 0 or -1, based on sign bit
 135       Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
 136       // Mask sign bit to the low sign bits
 137       Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
 138       // Round up before shifting
 139       dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
 140     }
 141 
 142     // Shift for division
 143     q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
 144 
 145     if (!d_pos) {
 146       q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
 147     }
 148   } else {
 149     // Attempt the jint constant divide -> multiply transform found in
 150     //   "Division by Invariant Integers using Multiplication"
 151     //     by Granlund and Montgomery
 152     // See also "Hacker's Delight", chapter 10 by Warren.
 153 
 154     jint magic_const;
 155     jint shift_const;
 156     if (magic_int_divide_constants(d, magic_const, shift_const)) {
 157       Node *magic = phase->longcon(magic_const);
 158       Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
 159 
 160       // Compute the high half of the dividend x magic multiplication
 161       Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
 162 
 163       if (magic_const < 0) {
 164         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
 165         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
 166 
 167         // The magic multiplier is too large for a 32 bit constant. We've adjusted
 168         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
 169         // This handles the "overflow" case described by Granlund and Montgomery.
 170         mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
 171 
 172         // Shift over the (adjusted) mulhi
 173         if (shift_const != 0) {
 174           mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
 175         }
 176       } else {
 177         // No add is required, we can merge the shifts together.
 178         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
 179         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
 180       }
 181 
 182       // Get a 0 or -1 from the sign of the dividend.
 183       Node *addend0 = mul_hi;
 184       Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
 185 
 186       // If the divisor is negative, swap the order of the input addends;
 187       // this has the effect of negating the quotient.
 188       if (!d_pos) {
 189         Node *temp = addend0; addend0 = addend1; addend1 = temp;
 190       }
 191 
 192       // Adjust the final quotient by subtracting -1 (adding 1)
 193       // from the mul_hi.
 194       q = new (phase->C, 3) SubINode(addend0, addend1);
 195     }
 196   }
 197 
 198   return q;
 199 }
 200 
 201 //---------------------magic_long_divide_constants-----------------------------
 202 // Compute magic multiplier and shift constant for converting a 64 bit divide
 203 // by constant into a multiply/shift/add series. Return false if calculations
 204 // fail.
 205 //
 206 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
 207 // minor type name and parameter changes.  Adjusted to 64 bit word width.
 208 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
 209   int64_t p;
 210   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
 211   const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
 212 
 213   ad = ABS(d);
 214   if (d == 0 || d == 1) return false;
 215   t = two63 + ((uint64_t)d >> 63);
 216   anc = t - 1 - t%ad;     // Absolute value of nc.
 217   p = 63;                 // Init. p.
 218   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
 219   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
 220   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
 221   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
 222   do {
 223     p = p + 1;
 224     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
 225     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
 226     if (r1 >= anc) {      // (Must be an unsigned
 227       q1 = q1 + 1;        // comparison here).
 228       r1 = r1 - anc;
 229     }
 230     q2 = 2*q2;            // Update q2 = 2**p/|d|.
 231     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
 232     if (r2 >= ad) {       // (Must be an unsigned
 233       q2 = q2 + 1;        // comparison here).
 234       r2 = r2 - ad;
 235     }
 236     delta = ad - r2;
 237   } while (q1 < delta || (q1 == delta && r1 == 0));
 238 
 239   M = q2 + 1;
 240   if (d < 0) M = -M;      // Magic number and
 241   s = p - 64;             // shift amount to return.
 242 
 243   return true;
 244 }
 245 
 246 //---------------------long_by_long_mulhi--------------------------------------
 247 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
 248 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
 249   // If the architecture supports a 64x64 mulhi, there is
 250   // no need to synthesize it in ideal nodes.
 251   if (Matcher::has_match_rule(Op_MulHiL)) {
 252     Node* v = phase->longcon(magic_const);
 253     return new (phase->C, 3) MulHiLNode(dividend, v);
 254   }
 255 
 256   // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
 257   // (http://www.hackersdelight.org/HDcode/mulhs.c)
 258   //
 259   // int mulhs(int u, int v) {
 260   //    unsigned u0, v0, w0;
 261   //    int u1, v1, w1, w2, t;
 262   //
 263   //    u0 = u & 0xFFFF;  u1 = u >> 16;
 264   //    v0 = v & 0xFFFF;  v1 = v >> 16;
 265   //    w0 = u0*v0;
 266   //    t  = u1*v0 + (w0 >> 16);
 267   //    w1 = t & 0xFFFF;
 268   //    w2 = t >> 16;
 269   //    w1 = u0*v1 + w1;
 270   //    return u1*v1 + w2 + (w1 >> 16);
 271   // }
 272   //
 273   // Note: The version above is for 32x32 multiplications, while the
 274   // following inline comments are adapted to 64x64.
 275 
 276   const int N = 64;
 277 
 278   // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
 279   Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
 280   Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
 281 
 282   // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
 283   Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
 284   Node* v1 = phase->longcon(magic_const >> (N / 2));
 285 
 286   // w0 = u0*v0;
 287   Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
 288 
 289   // t = u1*v0 + (w0 >> 32);
 290   Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
 291   Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
 292   Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
 293 
 294   // w1 = t & 0xFFFFFFFF;
 295   Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
 296 
 297   // w2 = t >> 32;
 298   Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
 299 
 300   // 6732154: Construct both w1 and w2 before transforming, so t
 301   // doesn't go dead prematurely.
 302   // 6837011: We need to transform w2 before w1 because the
 303   // transformation of w1 could return t.
 304   w2 = phase->transform(w2);
 305   w1 = phase->transform(w1);
 306 
 307   // w1 = u0*v1 + w1;
 308   Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
 309   w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
 310 
 311   // return u1*v1 + w2 + (w1 >> 32);
 312   Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
 313   Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
 314   Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
 315 
 316   return new (phase->C, 3) AddLNode(temp1, temp2);
 317 }
 318 
 319 
 320 //--------------------------transform_long_divide------------------------------
 321 // Convert a division by constant divisor into an alternate Ideal graph.
 322 // Return NULL if no transformation occurs.
 323 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
 324   // Check for invalid divisors
 325   assert( divisor != 0L && divisor != min_jlong,
 326           "bad divisor for transforming to long multiply" );
 327 
 328   bool d_pos = divisor >= 0;
 329   jlong d = d_pos ? divisor : -divisor;
 330   const int N = 64;
 331 
 332   // Result
 333   Node *q = NULL;
 334 
 335   if (d == 1) {
 336     // division by +/- 1
 337     if (!d_pos) {
 338       // Just negate the value
 339       q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
 340     }
 341   } else if ( is_power_of_2_long(d) ) {
 342 
 343     // division by +/- a power of 2
 344 
 345     // See if we can simply do a shift without rounding
 346     bool needs_rounding = true;
 347     const Type *dt = phase->type(dividend);
 348     const TypeLong *dtl = dt->isa_long();
 349 
 350     if (dtl && dtl->_lo > 0) {
 351       // we don't need to round a positive dividend
 352       needs_rounding = false;
 353     } else if( dividend->Opcode() == Op_AndL ) {
 354       // An AND mask of sufficient size clears the low bits and
 355       // I can avoid rounding.
 356       const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
 357       if( andconl_t && andconl_t->is_con() ) {
 358         jlong andconl = andconl_t->get_con();
 359         if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
 360           if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
 361             dividend = dividend->in(1);
 362           needs_rounding = false;
 363         }
 364       }
 365     }
 366 
 367     // Add rounding to the shift to handle the sign bit
 368     int l = log2_long(d-1)+1;
 369     if (needs_rounding) {
 370       // Divide-by-power-of-2 can be made into a shift, but you have to do
 371       // more math for the rounding.  You need to add 0 for positive
 372       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
 373       // shift is by 2.  You need to add 3 to negative dividends and 0 to
 374       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
 375       // (-2+3)>>2 becomes 0, etc.
 376 
 377       // Compute 0 or -1, based on sign bit
 378       Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
 379       // Mask sign bit to the low sign bits
 380       Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
 381       // Round up before shifting
 382       dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
 383     }
 384 
 385     // Shift for division
 386     q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
 387 
 388     if (!d_pos) {
 389       q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
 390     }
 391   } else {
 392     // Attempt the jlong constant divide -> multiply transform found in
 393     //   "Division by Invariant Integers using Multiplication"
 394     //     by Granlund and Montgomery
 395     // See also "Hacker's Delight", chapter 10 by Warren.
 396 
 397     jlong magic_const;
 398     jint shift_const;
 399     if (magic_long_divide_constants(d, magic_const, shift_const)) {
 400       // Compute the high half of the dividend x magic multiplication
 401       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
 402 
 403       // The high half of the 128-bit multiply is computed.
 404       if (magic_const < 0) {
 405         // The magic multiplier is too large for a 64 bit constant. We've adjusted
 406         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
 407         // This handles the "overflow" case described by Granlund and Montgomery.
 408         mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
 409       }
 410 
 411       // Shift over the (adjusted) mulhi
 412       if (shift_const != 0) {
 413         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
 414       }
 415 
 416       // Get a 0 or -1 from the sign of the dividend.
 417       Node *addend0 = mul_hi;
 418       Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
 419 
 420       // If the divisor is negative, swap the order of the input addends;
 421       // this has the effect of negating the quotient.
 422       if (!d_pos) {
 423         Node *temp = addend0; addend0 = addend1; addend1 = temp;
 424       }
 425 
 426       // Adjust the final quotient by subtracting -1 (adding 1)
 427       // from the mul_hi.
 428       q = new (phase->C, 3) SubLNode(addend0, addend1);
 429     }
 430   }
 431 
 432   return q;
 433 }
 434 
 435 //=============================================================================
 436 //------------------------------Identity---------------------------------------
 437 // If the divisor is 1, we are an identity on the dividend.
 438 Node *DivINode::Identity( PhaseTransform *phase ) {
 439   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
 440 }
 441 
 442 //------------------------------Idealize---------------------------------------
 443 // Divides can be changed to multiplies and/or shifts
 444 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 445   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 446   // Don't bother trying to transform a dead node
 447   if( in(0) && in(0)->is_top() )  return NULL;
 448 
 449   const Type *t = phase->type( in(2) );
 450   if( t == TypeInt::ONE )       // Identity?
 451     return NULL;                // Skip it
 452 
 453   const TypeInt *ti = t->isa_int();
 454   if( !ti ) return NULL;
 455   if( !ti->is_con() ) return NULL;
 456   jint i = ti->get_con();       // Get divisor
 457 
 458   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
 459 
 460   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
 461 
 462   // Dividing by MININT does not optimize as a power-of-2 shift.
 463   if( i == min_jint ) return NULL;
 464 
 465   return transform_int_divide( phase, in(1), i );
 466 }
 467 
 468 //------------------------------Value------------------------------------------
 469 // A DivINode divides its inputs.  The third input is a Control input, used to
 470 // prevent hoisting the divide above an unsafe test.
 471 const Type *DivINode::Value( PhaseTransform *phase ) const {
 472   // Either input is TOP ==> the result is TOP
 473   const Type *t1 = phase->type( in(1) );
 474   const Type *t2 = phase->type( in(2) );
 475   if( t1 == Type::TOP ) return Type::TOP;
 476   if( t2 == Type::TOP ) return Type::TOP;
 477 
 478   // x/x == 1 since we always generate the dynamic divisor check for 0.
 479   if( phase->eqv( in(1), in(2) ) )
 480     return TypeInt::ONE;
 481 
 482   // Either input is BOTTOM ==> the result is the local BOTTOM
 483   const Type *bot = bottom_type();
 484   if( (t1 == bot) || (t2 == bot) ||
 485       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 486     return bot;
 487 
 488   // Divide the two numbers.  We approximate.
 489   // If divisor is a constant and not zero
 490   const TypeInt *i1 = t1->is_int();
 491   const TypeInt *i2 = t2->is_int();
 492   int widen = MAX2(i1->_widen, i2->_widen);
 493 
 494   if( i2->is_con() && i2->get_con() != 0 ) {
 495     int32 d = i2->get_con(); // Divisor
 496     jint lo, hi;
 497     if( d >= 0 ) {
 498       lo = i1->_lo/d;
 499       hi = i1->_hi/d;
 500     } else {
 501       if( d == -1 && i1->_lo == min_jint ) {
 502         // 'min_jint/-1' throws arithmetic exception during compilation
 503         lo = min_jint;
 504         // do not support holes, 'hi' must go to either min_jint or max_jint:
 505         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
 506         hi = i1->_hi == min_jint ? min_jint : max_jint;
 507       } else {
 508         lo = i1->_hi/d;
 509         hi = i1->_lo/d;
 510       }
 511     }
 512     return TypeInt::make(lo, hi, widen);
 513   }
 514 
 515   // If the dividend is a constant
 516   if( i1->is_con() ) {
 517     int32 d = i1->get_con();
 518     if( d < 0 ) {
 519       if( d == min_jint ) {
 520         //  (-min_jint) == min_jint == (min_jint / -1)
 521         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
 522       } else {
 523         return TypeInt::make(d, -d, widen);
 524       }
 525     }
 526     return TypeInt::make(-d, d, widen);
 527   }
 528 
 529   // Otherwise we give up all hope
 530   return TypeInt::INT;
 531 }
 532 
 533 
 534 //=============================================================================
 535 //------------------------------Identity---------------------------------------
 536 // If the divisor is 1, we are an identity on the dividend.
 537 Node *DivLNode::Identity( PhaseTransform *phase ) {
 538   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
 539 }
 540 
 541 //------------------------------Idealize---------------------------------------
 542 // Dividing by a power of 2 is a shift.
 543 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
 544   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 545   // Don't bother trying to transform a dead node
 546   if( in(0) && in(0)->is_top() )  return NULL;
 547 
 548   const Type *t = phase->type( in(2) );
 549   if( t == TypeLong::ONE )      // Identity?
 550     return NULL;                // Skip it
 551 
 552   const TypeLong *tl = t->isa_long();
 553   if( !tl ) return NULL;
 554   if( !tl->is_con() ) return NULL;
 555   jlong l = tl->get_con();      // Get divisor
 556 
 557   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
 558 
 559   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
 560 
 561   // Dividing by MININT does not optimize as a power-of-2 shift.
 562   if( l == min_jlong ) return NULL;
 563 
 564   return transform_long_divide( phase, in(1), l );
 565 }
 566 
 567 //------------------------------Value------------------------------------------
 568 // A DivLNode divides its inputs.  The third input is a Control input, used to
 569 // prevent hoisting the divide above an unsafe test.
 570 const Type *DivLNode::Value( PhaseTransform *phase ) const {
 571   // Either input is TOP ==> the result is TOP
 572   const Type *t1 = phase->type( in(1) );
 573   const Type *t2 = phase->type( in(2) );
 574   if( t1 == Type::TOP ) return Type::TOP;
 575   if( t2 == Type::TOP ) return Type::TOP;
 576 
 577   // x/x == 1 since we always generate the dynamic divisor check for 0.
 578   if( phase->eqv( in(1), in(2) ) )
 579     return TypeLong::ONE;
 580 
 581   // Either input is BOTTOM ==> the result is the local BOTTOM
 582   const Type *bot = bottom_type();
 583   if( (t1 == bot) || (t2 == bot) ||
 584       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 585     return bot;
 586 
 587   // Divide the two numbers.  We approximate.
 588   // If divisor is a constant and not zero
 589   const TypeLong *i1 = t1->is_long();
 590   const TypeLong *i2 = t2->is_long();
 591   int widen = MAX2(i1->_widen, i2->_widen);
 592 
 593   if( i2->is_con() && i2->get_con() != 0 ) {
 594     jlong d = i2->get_con();    // Divisor
 595     jlong lo, hi;
 596     if( d >= 0 ) {
 597       lo = i1->_lo/d;
 598       hi = i1->_hi/d;
 599     } else {
 600       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
 601         // 'min_jlong/-1' throws arithmetic exception during compilation
 602         lo = min_jlong;
 603         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
 604         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
 605         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
 606       } else {
 607         lo = i1->_hi/d;
 608         hi = i1->_lo/d;
 609       }
 610     }
 611     return TypeLong::make(lo, hi, widen);
 612   }
 613 
 614   // If the dividend is a constant
 615   if( i1->is_con() ) {
 616     jlong d = i1->get_con();
 617     if( d < 0 ) {
 618       if( d == min_jlong ) {
 619         //  (-min_jlong) == min_jlong == (min_jlong / -1)
 620         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
 621       } else {
 622         return TypeLong::make(d, -d, widen);
 623       }
 624     }
 625     return TypeLong::make(-d, d, widen);
 626   }
 627 
 628   // Otherwise we give up all hope
 629   return TypeLong::LONG;
 630 }
 631 
 632 
 633 //=============================================================================
 634 //------------------------------Value------------------------------------------
 635 // An DivFNode divides its inputs.  The third input is a Control input, used to
 636 // prevent hoisting the divide above an unsafe test.
 637 const Type *DivFNode::Value( PhaseTransform *phase ) const {
 638   // Either input is TOP ==> the result is TOP
 639   const Type *t1 = phase->type( in(1) );
 640   const Type *t2 = phase->type( in(2) );
 641   if( t1 == Type::TOP ) return Type::TOP;
 642   if( t2 == Type::TOP ) return Type::TOP;
 643 
 644   // Either input is BOTTOM ==> the result is the local BOTTOM
 645   const Type *bot = bottom_type();
 646   if( (t1 == bot) || (t2 == bot) ||
 647       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 648     return bot;
 649 
 650   // x/x == 1, we ignore 0/0.
 651   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 652   // Does not work for variables because of NaN's
 653   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
 654     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
 655       return TypeF::ONE;
 656 
 657   if( t2 == TypeF::ONE )
 658     return t1;
 659 
 660   // If divisor is a constant and not zero, divide them numbers
 661   if( t1->base() == Type::FloatCon &&
 662       t2->base() == Type::FloatCon &&
 663       t2->getf() != 0.0 ) // could be negative zero
 664     return TypeF::make( t1->getf()/t2->getf() );
 665 
 666   // If the dividend is a constant zero
 667   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 668   // Test TypeF::ZERO is not sufficient as it could be negative zero
 669 
 670   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
 671     return TypeF::ZERO;
 672 
 673   // Otherwise we give up all hope
 674   return Type::FLOAT;
 675 }
 676 
 677 //------------------------------isA_Copy---------------------------------------
 678 // Dividing by self is 1.
 679 // If the divisor is 1, we are an identity on the dividend.
 680 Node *DivFNode::Identity( PhaseTransform *phase ) {
 681   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
 682 }
 683 
 684 
 685 //------------------------------Idealize---------------------------------------
 686 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 687   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 688   // Don't bother trying to transform a dead node
 689   if( in(0) && in(0)->is_top() )  return NULL;
 690 
 691   const Type *t2 = phase->type( in(2) );
 692   if( t2 == TypeF::ONE )         // Identity?
 693     return NULL;                // Skip it
 694 
 695   const TypeF *tf = t2->isa_float_constant();
 696   if( !tf ) return NULL;
 697   if( tf->base() != Type::FloatCon ) return NULL;
 698 
 699   // Check for out of range values
 700   if( tf->is_nan() || !tf->is_finite() ) return NULL;
 701 
 702   // Get the value
 703   float f = tf->getf();
 704   int exp;
 705 
 706   // Only for special case of dividing by a power of 2
 707   if( frexp((double)f, &exp) != 0.5 ) return NULL;
 708 
 709   // Limit the range of acceptable exponents
 710   if( exp < -126 || exp > 126 ) return NULL;
 711 
 712   // Compute the reciprocal
 713   float reciprocal = ((float)1.0) / f;
 714 
 715   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 716 
 717   // return multiplication by the reciprocal
 718   return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
 719 }
 720 
 721 //=============================================================================
 722 //------------------------------Value------------------------------------------
 723 // An DivDNode divides its inputs.  The third input is a Control input, used to
 724 // prevent hoisting the divide above an unsafe test.
 725 const Type *DivDNode::Value( PhaseTransform *phase ) const {
 726   // Either input is TOP ==> the result is TOP
 727   const Type *t1 = phase->type( in(1) );
 728   const Type *t2 = phase->type( in(2) );
 729   if( t1 == Type::TOP ) return Type::TOP;
 730   if( t2 == Type::TOP ) return Type::TOP;
 731 
 732   // Either input is BOTTOM ==> the result is the local BOTTOM
 733   const Type *bot = bottom_type();
 734   if( (t1 == bot) || (t2 == bot) ||
 735       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 736     return bot;
 737 
 738   // x/x == 1, we ignore 0/0.
 739   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 740   // Does not work for variables because of NaN's
 741   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
 742     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
 743       return TypeD::ONE;
 744 
 745   if( t2 == TypeD::ONE )
 746     return t1;
 747 
 748 #if defined(IA32)
 749   if (!phase->C->method()->is_strict())
 750     // Can't trust native compilers to properly fold strict double
 751     // division with round-to-zero on this platform.
 752 #endif
 753     {
 754       // If divisor is a constant and not zero, divide them numbers
 755       if( t1->base() == Type::DoubleCon &&
 756           t2->base() == Type::DoubleCon &&
 757           t2->getd() != 0.0 ) // could be negative zero
 758         return TypeD::make( t1->getd()/t2->getd() );
 759     }
 760 
 761   // If the dividend is a constant zero
 762   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 763   // Test TypeF::ZERO is not sufficient as it could be negative zero
 764   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
 765     return TypeD::ZERO;
 766 
 767   // Otherwise we give up all hope
 768   return Type::DOUBLE;
 769 }
 770 
 771 
 772 //------------------------------isA_Copy---------------------------------------
 773 // Dividing by self is 1.
 774 // If the divisor is 1, we are an identity on the dividend.
 775 Node *DivDNode::Identity( PhaseTransform *phase ) {
 776   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
 777 }
 778 
 779 //------------------------------Idealize---------------------------------------
 780 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 781   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 782   // Don't bother trying to transform a dead node
 783   if( in(0) && in(0)->is_top() )  return NULL;
 784 
 785   const Type *t2 = phase->type( in(2) );
 786   if( t2 == TypeD::ONE )         // Identity?
 787     return NULL;                // Skip it
 788 
 789   const TypeD *td = t2->isa_double_constant();
 790   if( !td ) return NULL;
 791   if( td->base() != Type::DoubleCon ) return NULL;
 792 
 793   // Check for out of range values
 794   if( td->is_nan() || !td->is_finite() ) return NULL;
 795 
 796   // Get the value
 797   double d = td->getd();
 798   int exp;
 799 
 800   // Only for special case of dividing by a power of 2
 801   if( frexp(d, &exp) != 0.5 ) return NULL;
 802 
 803   // Limit the range of acceptable exponents
 804   if( exp < -1021 || exp > 1022 ) return NULL;
 805 
 806   // Compute the reciprocal
 807   double reciprocal = 1.0 / d;
 808 
 809   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 810 
 811   // return multiplication by the reciprocal
 812   return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
 813 }
 814 
 815 //=============================================================================
 816 //------------------------------Idealize---------------------------------------
 817 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 818   // Check for dead control input
 819   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
 820   // Don't bother trying to transform a dead node
 821   if( in(0) && in(0)->is_top() )  return NULL;
 822 
 823   // Get the modulus
 824   const Type *t = phase->type( in(2) );
 825   if( t == Type::TOP ) return NULL;
 826   const TypeInt *ti = t->is_int();
 827 
 828   // Check for useless control input
 829   // Check for excluding mod-zero case
 830   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
 831     set_req(0, NULL);        // Yank control input
 832     return this;
 833   }
 834 
 835   // See if we are MOD'ing by 2^k or 2^k-1.
 836   if( !ti->is_con() ) return NULL;
 837   jint con = ti->get_con();
 838 
 839   Node *hook = new (phase->C, 1) Node(1);
 840 
 841   // First, special check for modulo 2^k-1
 842   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
 843     uint k = exact_log2(con+1);  // Extract k
 844 
 845     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
 846     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
 847     int trip_count = 1;
 848     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
 849 
 850     // If the unroll factor is not too large, and if conditional moves are
 851     // ok, then use this case
 852     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
 853       Node *x = in(1);            // Value being mod'd
 854       Node *divisor = in(2);      // Also is mask
 855 
 856       hook->init_req(0, x);       // Add a use to x to prevent him from dying
 857       // Generate code to reduce X rapidly to nearly 2^k-1.
 858       for( int i = 0; i < trip_count; i++ ) {
 859         Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
 860         Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
 861         x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
 862         hook->set_req(0, x);
 863       }
 864 
 865       // Generate sign-fixup code.  Was original value positive?
 866       // int hack_res = (i >= 0) ? divisor : 1;
 867       Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
 868       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
 869       Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
 870       // if( x >= hack_res ) x -= divisor;
 871       Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
 872       Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
 873       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
 874       // Convention is to not transform the return value of an Ideal
 875       // since Ideal is expected to return a modified 'this' or a new node.
 876       Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
 877       // cmov2 is now the mod
 878 
 879       // Now remove the bogus extra edges used to keep things alive
 880       if (can_reshape) {
 881         phase->is_IterGVN()->remove_dead_node(hook);
 882       } else {
 883         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
 884       }
 885       return cmov2;
 886     }
 887   }
 888 
 889   // Fell thru, the unroll case is not appropriate. Transform the modulo
 890   // into a long multiply/int multiply/subtract case
 891 
 892   // Cannot handle mod 0, and min_jint isn't handled by the transform
 893   if( con == 0 || con == min_jint ) return NULL;
 894 
 895   // Get the absolute value of the constant; at this point, we can use this
 896   jint pos_con = (con >= 0) ? con : -con;
 897 
 898   // integer Mod 1 is always 0
 899   if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
 900 
 901   int log2_con = -1;
 902 
 903   // If this is a power of two, they maybe we can mask it
 904   if( is_power_of_2(pos_con) ) {
 905     log2_con = log2_intptr((intptr_t)pos_con);
 906 
 907     const Type *dt = phase->type(in(1));
 908     const TypeInt *dti = dt->isa_int();
 909 
 910     // See if this can be masked, if the dividend is non-negative
 911     if( dti && dti->_lo >= 0 )
 912       return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
 913   }
 914 
 915   // Save in(1) so that it cannot be changed or deleted
 916   hook->init_req(0, in(1));
 917 
 918   // Divide using the transform from DivI to MulL
 919   Node *result = transform_int_divide( phase, in(1), pos_con );
 920   if (result != NULL) {
 921     Node *divide = phase->transform(result);
 922 
 923     // Re-multiply, using a shift if this is a power of two
 924     Node *mult = NULL;
 925 
 926     if( log2_con >= 0 )
 927       mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
 928     else
 929       mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
 930 
 931     // Finally, subtract the multiplied divided value from the original
 932     result = new (phase->C, 3) SubINode( in(1), mult );
 933   }
 934 
 935   // Now remove the bogus extra edges used to keep things alive
 936   if (can_reshape) {
 937     phase->is_IterGVN()->remove_dead_node(hook);
 938   } else {
 939     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
 940   }
 941 
 942   // return the value
 943   return result;
 944 }
 945 
 946 //------------------------------Value------------------------------------------
 947 const Type *ModINode::Value( PhaseTransform *phase ) const {
 948   // Either input is TOP ==> the result is TOP
 949   const Type *t1 = phase->type( in(1) );
 950   const Type *t2 = phase->type( in(2) );
 951   if( t1 == Type::TOP ) return Type::TOP;
 952   if( t2 == Type::TOP ) return Type::TOP;
 953 
 954   // We always generate the dynamic check for 0.
 955   // 0 MOD X is 0
 956   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 957   // X MOD X is 0
 958   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
 959 
 960   // Either input is BOTTOM ==> the result is the local BOTTOM
 961   const Type *bot = bottom_type();
 962   if( (t1 == bot) || (t2 == bot) ||
 963       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 964     return bot;
 965 
 966   const TypeInt *i1 = t1->is_int();
 967   const TypeInt *i2 = t2->is_int();
 968   if( !i1->is_con() || !i2->is_con() ) {
 969     if( i1->_lo >= 0 && i2->_lo >= 0 )
 970       return TypeInt::POS;
 971     // If both numbers are not constants, we know little.
 972     return TypeInt::INT;
 973   }
 974   // Mod by zero?  Throw exception at runtime!
 975   if( !i2->get_con() ) return TypeInt::POS;
 976 
 977   // We must be modulo'ing 2 float constants.
 978   // Check for min_jint % '-1', result is defined to be '0'.
 979   if( i1->get_con() == min_jint && i2->get_con() == -1 )
 980     return TypeInt::ZERO;
 981 
 982   return TypeInt::make( i1->get_con() % i2->get_con() );
 983 }
 984 
 985 
 986 //=============================================================================
 987 //------------------------------Idealize---------------------------------------
 988 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 989   // Check for dead control input
 990   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
 991   // Don't bother trying to transform a dead node
 992   if( in(0) && in(0)->is_top() )  return NULL;
 993 
 994   // Get the modulus
 995   const Type *t = phase->type( in(2) );
 996   if( t == Type::TOP ) return NULL;
 997   const TypeLong *tl = t->is_long();
 998 
 999   // Check for useless control input
1000   // Check for excluding mod-zero case
1001   if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
1002     set_req(0, NULL);        // Yank control input
1003     return this;
1004   }
1005 
1006   // See if we are MOD'ing by 2^k or 2^k-1.
1007   if( !tl->is_con() ) return NULL;
1008   jlong con = tl->get_con();
1009 
1010   Node *hook = new (phase->C, 1) Node(1);
1011 
1012   // Expand mod
1013   if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1014     uint k = exact_log2_long(con+1);  // Extract k
1015 
1016     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
1017     // Used to help a popular random number generator which does a long-mod
1018     // of 2^31-1 and shows up in SpecJBB and SciMark.
1019     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1020     int trip_count = 1;
1021     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1022 
1023     // If the unroll factor is not too large, and if conditional moves are
1024     // ok, then use this case
1025     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1026       Node *x = in(1);            // Value being mod'd
1027       Node *divisor = in(2);      // Also is mask
1028 
1029       hook->init_req(0, x);       // Add a use to x to prevent him from dying
1030       // Generate code to reduce X rapidly to nearly 2^k-1.
1031       for( int i = 0; i < trip_count; i++ ) {
1032         Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
1033         Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1034         x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
1035         hook->set_req(0, x);    // Add a use to x to prevent him from dying
1036       }
1037 
1038       // Generate sign-fixup code.  Was original value positive?
1039       // long hack_res = (i >= 0) ? divisor : CONST64(1);
1040       Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
1041       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
1042       Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1043       // if( x >= hack_res ) x -= divisor;
1044       Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
1045       Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
1046       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
1047       // Convention is to not transform the return value of an Ideal
1048       // since Ideal is expected to return a modified 'this' or a new node.
1049       Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
1050       // cmov2 is now the mod
1051 
1052       // Now remove the bogus extra edges used to keep things alive
1053       if (can_reshape) {
1054         phase->is_IterGVN()->remove_dead_node(hook);
1055       } else {
1056         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
1057       }
1058       return cmov2;
1059     }
1060   }
1061 
1062   // Fell thru, the unroll case is not appropriate. Transform the modulo
1063   // into a long multiply/int multiply/subtract case
1064 
1065   // Cannot handle mod 0, and min_jint isn't handled by the transform
1066   if( con == 0 || con == min_jlong ) return NULL;
1067 
1068   // Get the absolute value of the constant; at this point, we can use this
1069   jlong pos_con = (con >= 0) ? con : -con;
1070 
1071   // integer Mod 1 is always 0
1072   if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
1073 
1074   int log2_con = -1;
1075 
1076   // If this is a power of two, then maybe we can mask it
1077   if( is_power_of_2_long(pos_con) ) {
1078     log2_con = log2_long(pos_con);
1079 
1080     const Type *dt = phase->type(in(1));
1081     const TypeLong *dtl = dt->isa_long();
1082 
1083     // See if this can be masked, if the dividend is non-negative
1084     if( dtl && dtl->_lo >= 0 )
1085       return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1086   }
1087 
1088   // Save in(1) so that it cannot be changed or deleted
1089   hook->init_req(0, in(1));
1090 
1091   // Divide using the transform from DivI to MulL
1092   Node *result = transform_long_divide( phase, in(1), pos_con );
1093   if (result != NULL) {
1094     Node *divide = phase->transform(result);
1095 
1096     // Re-multiply, using a shift if this is a power of two
1097     Node *mult = NULL;
1098 
1099     if( log2_con >= 0 )
1100       mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
1101     else
1102       mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
1103 
1104     // Finally, subtract the multiplied divided value from the original
1105     result = new (phase->C, 3) SubLNode( in(1), mult );
1106   }
1107 
1108   // Now remove the bogus extra edges used to keep things alive
1109   if (can_reshape) {
1110     phase->is_IterGVN()->remove_dead_node(hook);
1111   } else {
1112     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
1113   }
1114 
1115   // return the value
1116   return result;
1117 }
1118 
1119 //------------------------------Value------------------------------------------
1120 const Type *ModLNode::Value( PhaseTransform *phase ) const {
1121   // Either input is TOP ==> the result is TOP
1122   const Type *t1 = phase->type( in(1) );
1123   const Type *t2 = phase->type( in(2) );
1124   if( t1 == Type::TOP ) return Type::TOP;
1125   if( t2 == Type::TOP ) return Type::TOP;
1126 
1127   // We always generate the dynamic check for 0.
1128   // 0 MOD X is 0
1129   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1130   // X MOD X is 0
1131   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
1132 
1133   // Either input is BOTTOM ==> the result is the local BOTTOM
1134   const Type *bot = bottom_type();
1135   if( (t1 == bot) || (t2 == bot) ||
1136       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1137     return bot;
1138 
1139   const TypeLong *i1 = t1->is_long();
1140   const TypeLong *i2 = t2->is_long();
1141   if( !i1->is_con() || !i2->is_con() ) {
1142     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
1143       return TypeLong::POS;
1144     // If both numbers are not constants, we know little.
1145     return TypeLong::LONG;
1146   }
1147   // Mod by zero?  Throw exception at runtime!
1148   if( !i2->get_con() ) return TypeLong::POS;
1149 
1150   // We must be modulo'ing 2 float constants.
1151   // Check for min_jint % '-1', result is defined to be '0'.
1152   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
1153     return TypeLong::ZERO;
1154 
1155   return TypeLong::make( i1->get_con() % i2->get_con() );
1156 }
1157 
1158 
1159 //=============================================================================
1160 //------------------------------Value------------------------------------------
1161 const Type *ModFNode::Value( PhaseTransform *phase ) const {
1162   // Either input is TOP ==> the result is TOP
1163   const Type *t1 = phase->type( in(1) );
1164   const Type *t2 = phase->type( in(2) );
1165   if( t1 == Type::TOP ) return Type::TOP;
1166   if( t2 == Type::TOP ) return Type::TOP;
1167 
1168   // Either input is BOTTOM ==> the result is the local BOTTOM
1169   const Type *bot = bottom_type();
1170   if( (t1 == bot) || (t2 == bot) ||
1171       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1172     return bot;
1173 
1174   // If either number is not a constant, we know nothing.
1175   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
1176     return Type::FLOAT;         // note: x%x can be either NaN or 0
1177   }
1178 
1179   float f1 = t1->getf();
1180   float f2 = t2->getf();
1181   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
1182   jint  x2 = jint_cast(f2);
1183 
1184   // If either is a NaN, return an input NaN
1185   if (g_isnan(f1))    return t1;
1186   if (g_isnan(f2))    return t2;
1187 
1188   // If an operand is infinity or the divisor is +/- zero, punt.
1189   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
1190     return Type::FLOAT;
1191 
1192   // We must be modulo'ing 2 float constants.
1193   // Make sure that the sign of the fmod is equal to the sign of the dividend
1194   jint xr = jint_cast(fmod(f1, f2));
1195   if ((x1 ^ xr) < 0) {
1196     xr ^= min_jint;
1197   }
1198 
1199   return TypeF::make(jfloat_cast(xr));
1200 }
1201 
1202 
1203 //=============================================================================
1204 //------------------------------Value------------------------------------------
1205 const Type *ModDNode::Value( PhaseTransform *phase ) const {
1206   // Either input is TOP ==> the result is TOP
1207   const Type *t1 = phase->type( in(1) );
1208   const Type *t2 = phase->type( in(2) );
1209   if( t1 == Type::TOP ) return Type::TOP;
1210   if( t2 == Type::TOP ) return Type::TOP;
1211 
1212   // Either input is BOTTOM ==> the result is the local BOTTOM
1213   const Type *bot = bottom_type();
1214   if( (t1 == bot) || (t2 == bot) ||
1215       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1216     return bot;
1217 
1218   // If either number is not a constant, we know nothing.
1219   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
1220     return Type::DOUBLE;        // note: x%x can be either NaN or 0
1221   }
1222 
1223   double f1 = t1->getd();
1224   double f2 = t2->getd();
1225   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
1226   jlong  x2 = jlong_cast(f2);
1227 
1228   // If either is a NaN, return an input NaN
1229   if (g_isnan(f1))    return t1;
1230   if (g_isnan(f2))    return t2;
1231 
1232   // If an operand is infinity or the divisor is +/- zero, punt.
1233   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
1234     return Type::DOUBLE;
1235 
1236   // We must be modulo'ing 2 double constants.
1237   // Make sure that the sign of the fmod is equal to the sign of the dividend
1238   jlong xr = jlong_cast(fmod(f1, f2));
1239   if ((x1 ^ xr) < 0) {
1240     xr ^= min_jlong;
1241   }
1242 
1243   return TypeD::make(jdouble_cast(xr));
1244 }
1245 
1246 //=============================================================================
1247 
1248 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1249   init_req(0, c);
1250   init_req(1, dividend);
1251   init_req(2, divisor);
1252 }
1253 
1254 //------------------------------make------------------------------------------
1255 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
1256   Node* n = div_or_mod;
1257   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1258          "only div or mod input pattern accepted");
1259 
1260   DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
1261   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
1262   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
1263   return divmod;
1264 }
1265 
1266 //------------------------------make------------------------------------------
1267 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
1268   Node* n = div_or_mod;
1269   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1270          "only div or mod input pattern accepted");
1271 
1272   DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
1273   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
1274   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
1275   return divmod;
1276 }
1277 
1278 //------------------------------match------------------------------------------
1279 // return result(s) along with their RegMask info
1280 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1281   uint ideal_reg = proj->ideal_reg();
1282   RegMask rm;
1283   if (proj->_con == div_proj_num) {
1284     rm = match->divI_proj_mask();
1285   } else {
1286     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1287     rm = match->modI_proj_mask();
1288   }
1289   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1290 }
1291 
1292 
1293 //------------------------------match------------------------------------------
1294 // return result(s) along with their RegMask info
1295 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1296   uint ideal_reg = proj->ideal_reg();
1297   RegMask rm;
1298   if (proj->_con == div_proj_num) {
1299     rm = match->divL_proj_mask();
1300   } else {
1301     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1302     rm = match->modL_proj_mask();
1303   }
1304   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1305 }