1 /*
   2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _igvn(igvn),
  90   _node_map(C->comp_arena()) {
  91 
  92   _phantom_object = C->top()->_idx,
  93   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  94 
  95   // Add ConP(#NULL) and ConN(#NULL) nodes.
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   PointsToNode::EscapeState orig_es = es;
 211 
 212   // compute max escape state of anything this node could point to
 213   VectorSet ptset(Thread::current()->resource_area());
 214   PointsTo(ptset, n);
 215   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 216     uint pt = i.elem;
 217     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 218     if (pes > es)
 219       es = pes;
 220   }
 221   if (orig_es != es) {
 222     // cache the computed escape state
 223     assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 224     ptnode_adr(idx)->set_escape_state(es);
 225   } // orig_es could be PointsToNode::UnknownEscape
 226   return es;
 227 }
 228 
 229 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
 230   VectorSet visited(Thread::current()->resource_area());
 231   GrowableArray<uint>  worklist;
 232 
 233 #ifdef ASSERT
 234   Node *orig_n = n;
 235 #endif
 236 
 237   n = n->uncast();
 238   PointsToNode* npt = ptnode_adr(n->_idx);
 239 
 240   // If we have a JavaObject, return just that object
 241   if (npt->node_type() == PointsToNode::JavaObject) {
 242     ptset.set(n->_idx);
 243     return;
 244   }
 245 #ifdef ASSERT
 246   if (npt->_node == NULL) {
 247     if (orig_n != n)
 248       orig_n->dump();
 249     n->dump();
 250     assert(npt->_node != NULL, "unregistered node");
 251   }
 252 #endif
 253   worklist.push(n->_idx);
 254   while(worklist.length() > 0) {
 255     int ni = worklist.pop();
 256     if (visited.test_set(ni))
 257       continue;
 258 
 259     PointsToNode* pn = ptnode_adr(ni);
 260     // ensure that all inputs of a Phi have been processed
 261     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 262 
 263     int edges_processed = 0;
 264     uint e_cnt = pn->edge_count();
 265     for (uint e = 0; e < e_cnt; e++) {
 266       uint etgt = pn->edge_target(e);
 267       PointsToNode::EdgeType et = pn->edge_type(e);
 268       if (et == PointsToNode::PointsToEdge) {
 269         ptset.set(etgt);
 270         edges_processed++;
 271       } else if (et == PointsToNode::DeferredEdge) {
 272         worklist.push(etgt);
 273         edges_processed++;
 274       } else {
 275         assert(false,"neither PointsToEdge or DeferredEdge");
 276       }
 277     }
 278     if (edges_processed == 0) {
 279       // no deferred or pointsto edges found.  Assume the value was set
 280       // outside this method.  Add the phantom object to the pointsto set.
 281       ptset.set(_phantom_object);
 282     }
 283   }
 284 }
 285 
 286 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 287   // This method is most expensive during ConnectionGraph construction.
 288   // Reuse vectorSet and an additional growable array for deferred edges.
 289   deferred_edges->clear();
 290   visited->Clear();
 291 
 292   visited->set(ni);
 293   PointsToNode *ptn = ptnode_adr(ni);
 294 
 295   // Mark current edges as visited and move deferred edges to separate array.
 296   for (uint i = 0; i < ptn->edge_count(); ) {
 297     uint t = ptn->edge_target(i);
 298 #ifdef ASSERT
 299     assert(!visited->test_set(t), "expecting no duplications");
 300 #else
 301     visited->set(t);
 302 #endif
 303     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 304       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 305       deferred_edges->append(t);
 306     } else {
 307       i++;
 308     }
 309   }
 310   for (int next = 0; next < deferred_edges->length(); ++next) {
 311     uint t = deferred_edges->at(next);
 312     PointsToNode *ptt = ptnode_adr(t);
 313     uint e_cnt = ptt->edge_count();
 314     for (uint e = 0; e < e_cnt; e++) {
 315       uint etgt = ptt->edge_target(e);
 316       if (visited->test_set(etgt))
 317         continue;
 318 
 319       PointsToNode::EdgeType et = ptt->edge_type(e);
 320       if (et == PointsToNode::PointsToEdge) {
 321         add_pointsto_edge(ni, etgt);
 322         if(etgt == _phantom_object) {
 323           // Special case - field set outside (globally escaping).
 324           ptn->set_escape_state(PointsToNode::GlobalEscape);
 325         }
 326       } else if (et == PointsToNode::DeferredEdge) {
 327         deferred_edges->append(etgt);
 328       } else {
 329         assert(false,"invalid connection graph");
 330       }
 331     }
 332   }
 333 }
 334 
 335 
 336 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 337 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 338 //  a pointsto edge is added if it is a JavaObject
 339 
 340 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 341   PointsToNode* an = ptnode_adr(adr_i);
 342   PointsToNode* to = ptnode_adr(to_i);
 343   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 344 
 345   for (uint fe = 0; fe < an->edge_count(); fe++) {
 346     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 347     int fi = an->edge_target(fe);
 348     PointsToNode* pf = ptnode_adr(fi);
 349     int po = pf->offset();
 350     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 351       if (deferred)
 352         add_deferred_edge(fi, to_i);
 353       else
 354         add_pointsto_edge(fi, to_i);
 355     }
 356   }
 357 }
 358 
 359 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 360 // whose offset matches "offset".
 361 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 362   PointsToNode* an = ptnode_adr(adr_i);
 363   for (uint fe = 0; fe < an->edge_count(); fe++) {
 364     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 365     int fi = an->edge_target(fe);
 366     PointsToNode* pf = ptnode_adr(fi);
 367     int po = pf->offset();
 368     if (pf->edge_count() == 0) {
 369       // we have not seen any stores to this field, assume it was set outside this method
 370       add_pointsto_edge(fi, _phantom_object);
 371     }
 372     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 373       add_deferred_edge(from_i, fi);
 374     }
 375   }
 376 }
 377 
 378 // Helper functions
 379 
 380 static Node* get_addp_base(Node *addp) {
 381   assert(addp->is_AddP(), "must be AddP");
 382   //
 383   // AddP cases for Base and Address inputs:
 384   // case #1. Direct object's field reference:
 385   //     Allocate
 386   //       |
 387   //     Proj #5 ( oop result )
 388   //       |
 389   //     CheckCastPP (cast to instance type)
 390   //      | |
 391   //     AddP  ( base == address )
 392   //
 393   // case #2. Indirect object's field reference:
 394   //      Phi
 395   //       |
 396   //     CastPP (cast to instance type)
 397   //      | |
 398   //     AddP  ( base == address )
 399   //
 400   // case #3. Raw object's field reference for Initialize node:
 401   //      Allocate
 402   //        |
 403   //      Proj #5 ( oop result )
 404   //  top   |
 405   //     \  |
 406   //     AddP  ( base == top )
 407   //
 408   // case #4. Array's element reference:
 409   //   {CheckCastPP | CastPP}
 410   //     |  | |
 411   //     |  AddP ( array's element offset )
 412   //     |  |
 413   //     AddP ( array's offset )
 414   //
 415   // case #5. Raw object's field reference for arraycopy stub call:
 416   //          The inline_native_clone() case when the arraycopy stub is called
 417   //          after the allocation before Initialize and CheckCastPP nodes.
 418   //      Allocate
 419   //        |
 420   //      Proj #5 ( oop result )
 421   //       | |
 422   //       AddP  ( base == address )
 423   //
 424   // case #6. Constant Pool, ThreadLocal, CastX2P or
 425   //          Raw object's field reference:
 426   //      {ConP, ThreadLocal, CastX2P, raw Load}
 427   //  top   |
 428   //     \  |
 429   //     AddP  ( base == top )
 430   //
 431   // case #7. Klass's field reference.
 432   //      LoadKlass
 433   //       | |
 434   //       AddP  ( base == address )
 435   //
 436   // case #8. narrow Klass's field reference.
 437   //      LoadNKlass
 438   //       |
 439   //      DecodeN
 440   //       | |
 441   //       AddP  ( base == address )
 442   //
 443   Node *base = addp->in(AddPNode::Base)->uncast();
 444   if (base->is_top()) { // The AddP case #3 and #6.
 445     base = addp->in(AddPNode::Address)->uncast();
 446     while (base->is_AddP()) {
 447       // Case #6 (unsafe access) may have several chained AddP nodes.
 448       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 449       base = base->in(AddPNode::Address)->uncast();
 450     }
 451     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 452            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 453            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 454            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 455   }
 456   return base;
 457 }
 458 
 459 static Node* find_second_addp(Node* addp, Node* n) {
 460   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 461 
 462   Node* addp2 = addp->raw_out(0);
 463   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 464       addp2->in(AddPNode::Base) == n &&
 465       addp2->in(AddPNode::Address) == addp) {
 466 
 467     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 468     //
 469     // Find array's offset to push it on worklist first and
 470     // as result process an array's element offset first (pushed second)
 471     // to avoid CastPP for the array's offset.
 472     // Otherwise the inserted CastPP (LocalVar) will point to what
 473     // the AddP (Field) points to. Which would be wrong since
 474     // the algorithm expects the CastPP has the same point as
 475     // as AddP's base CheckCastPP (LocalVar).
 476     //
 477     //    ArrayAllocation
 478     //     |
 479     //    CheckCastPP
 480     //     |
 481     //    memProj (from ArrayAllocation CheckCastPP)
 482     //     |  ||
 483     //     |  ||   Int (element index)
 484     //     |  ||    |   ConI (log(element size))
 485     //     |  ||    |   /
 486     //     |  ||   LShift
 487     //     |  ||  /
 488     //     |  AddP (array's element offset)
 489     //     |  |
 490     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 491     //     | / /
 492     //     AddP (array's offset)
 493     //      |
 494     //     Load/Store (memory operation on array's element)
 495     //
 496     return addp2;
 497   }
 498   return NULL;
 499 }
 500 
 501 //
 502 // Adjust the type and inputs of an AddP which computes the
 503 // address of a field of an instance
 504 //
 505 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 506   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 507   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 508   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 509   if (t == NULL) {
 510     // We are computing a raw address for a store captured by an Initialize
 511     // compute an appropriate address type (cases #3 and #5).
 512     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 513     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 514     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 515     assert(offs != Type::OffsetBot, "offset must be a constant");
 516     t = base_t->add_offset(offs)->is_oopptr();
 517   }
 518   int inst_id =  base_t->instance_id();
 519   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 520                              "old type must be non-instance or match new type");
 521 
 522   // The type 't' could be subclass of 'base_t'.
 523   // As result t->offset() could be large then base_t's size and it will
 524   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 525   // constructor verifies correctness of the offset.
 526   //
 527   // It could happened on subclass's branch (from the type profiling
 528   // inlining) which was not eliminated during parsing since the exactness
 529   // of the allocation type was not propagated to the subclass type check.
 530   //
 531   // Or the type 't' could be not related to 'base_t' at all.
 532   // It could happened when CHA type is different from MDO type on a dead path
 533   // (for example, from instanceof check) which is not collapsed during parsing.
 534   //
 535   // Do nothing for such AddP node and don't process its users since
 536   // this code branch will go away.
 537   //
 538   if (!t->is_known_instance() &&
 539       !base_t->klass()->is_subtype_of(t->klass())) {
 540      return false; // bail out
 541   }
 542 
 543   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 544   // Do NOT remove the next line: ensure a new alias index is allocated
 545   // for the instance type. Note: C++ will not remove it since the call
 546   // has side effect.
 547   int alias_idx = _compile->get_alias_index(tinst);
 548   igvn->set_type(addp, tinst);
 549   // record the allocation in the node map
 550   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 551   set_map(addp->_idx, get_map(base->_idx));
 552 
 553   // Set addp's Base and Address to 'base'.
 554   Node *abase = addp->in(AddPNode::Base);
 555   Node *adr   = addp->in(AddPNode::Address);
 556   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 557       adr->in(0)->_idx == (uint)inst_id) {
 558     // Skip AddP cases #3 and #5.
 559   } else {
 560     assert(!abase->is_top(), "sanity"); // AddP case #3
 561     if (abase != base) {
 562       igvn->hash_delete(addp);
 563       addp->set_req(AddPNode::Base, base);
 564       if (abase == adr) {
 565         addp->set_req(AddPNode::Address, base);
 566       } else {
 567         // AddP case #4 (adr is array's element offset AddP node)
 568 #ifdef ASSERT
 569         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 570         assert(adr->is_AddP() && atype != NULL &&
 571                atype->instance_id() == inst_id, "array's element offset should be processed first");
 572 #endif
 573       }
 574       igvn->hash_insert(addp);
 575     }
 576   }
 577   // Put on IGVN worklist since at least addp's type was changed above.
 578   record_for_optimizer(addp);
 579   return true;
 580 }
 581 
 582 //
 583 // Create a new version of orig_phi if necessary. Returns either the newly
 584 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 585 // phi was created.  Cache the last newly created phi in the node map.
 586 //
 587 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 588   Compile *C = _compile;
 589   new_created = false;
 590   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 591   // nothing to do if orig_phi is bottom memory or matches alias_idx
 592   if (phi_alias_idx == alias_idx) {
 593     return orig_phi;
 594   }
 595   // Have we recently created a Phi for this alias index?
 596   PhiNode *result = get_map_phi(orig_phi->_idx);
 597   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 598     return result;
 599   }
 600   // Previous check may fail when the same wide memory Phi was split into Phis
 601   // for different memory slices. Search all Phis for this region.
 602   if (result != NULL) {
 603     Node* region = orig_phi->in(0);
 604     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 605       Node* phi = region->fast_out(i);
 606       if (phi->is_Phi() &&
 607           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 608         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 609         return phi->as_Phi();
 610       }
 611     }
 612   }
 613   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 614     if (C->do_escape_analysis() == true && !C->failing()) {
 615       // Retry compilation without escape analysis.
 616       // If this is the first failure, the sentinel string will "stick"
 617       // to the Compile object, and the C2Compiler will see it and retry.
 618       C->record_failure(C2Compiler::retry_no_escape_analysis());
 619     }
 620     return NULL;
 621   }
 622   orig_phi_worklist.append_if_missing(orig_phi);
 623   const TypePtr *atype = C->get_adr_type(alias_idx);
 624   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 625   C->copy_node_notes_to(result, orig_phi);
 626   igvn->set_type(result, result->bottom_type());
 627   record_for_optimizer(result);
 628 
 629   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 630   assert(pn == NULL || pn == orig_phi, "wrong node");
 631   set_map(orig_phi->_idx, result);
 632   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 633 
 634   new_created = true;
 635   return result;
 636 }
 637 
 638 //
 639 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 640 // specified alias index.
 641 //
 642 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 643 
 644   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 645   Compile *C = _compile;
 646   bool new_phi_created;
 647   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 648   if (!new_phi_created) {
 649     return result;
 650   }
 651 
 652   GrowableArray<PhiNode *>  phi_list;
 653   GrowableArray<uint>  cur_input;
 654 
 655   PhiNode *phi = orig_phi;
 656   uint idx = 1;
 657   bool finished = false;
 658   while(!finished) {
 659     while (idx < phi->req()) {
 660       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 661       if (mem != NULL && mem->is_Phi()) {
 662         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 663         if (new_phi_created) {
 664           // found an phi for which we created a new split, push current one on worklist and begin
 665           // processing new one
 666           phi_list.push(phi);
 667           cur_input.push(idx);
 668           phi = mem->as_Phi();
 669           result = newphi;
 670           idx = 1;
 671           continue;
 672         } else {
 673           mem = newphi;
 674         }
 675       }
 676       if (C->failing()) {
 677         return NULL;
 678       }
 679       result->set_req(idx++, mem);
 680     }
 681 #ifdef ASSERT
 682     // verify that the new Phi has an input for each input of the original
 683     assert( phi->req() == result->req(), "must have same number of inputs.");
 684     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 685 #endif
 686     // Check if all new phi's inputs have specified alias index.
 687     // Otherwise use old phi.
 688     for (uint i = 1; i < phi->req(); i++) {
 689       Node* in = result->in(i);
 690       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 691     }
 692     // we have finished processing a Phi, see if there are any more to do
 693     finished = (phi_list.length() == 0 );
 694     if (!finished) {
 695       phi = phi_list.pop();
 696       idx = cur_input.pop();
 697       PhiNode *prev_result = get_map_phi(phi->_idx);
 698       prev_result->set_req(idx++, result);
 699       result = prev_result;
 700     }
 701   }
 702   return result;
 703 }
 704 
 705 
 706 //
 707 // The next methods are derived from methods in MemNode.
 708 //
 709 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 710   Node *mem = mmem;
 711   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 712   // means an array I have not precisely typed yet.  Do not do any
 713   // alias stuff with it any time soon.
 714   if( toop->base() != Type::AnyPtr &&
 715       !(toop->klass() != NULL &&
 716         toop->klass()->is_java_lang_Object() &&
 717         toop->offset() == Type::OffsetBot) ) {
 718     mem = mmem->memory_at(alias_idx);
 719     // Update input if it is progress over what we have now
 720   }
 721   return mem;
 722 }
 723 
 724 //
 725 // Move memory users to their memory slices.
 726 //
 727 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 728   Compile* C = _compile;
 729 
 730   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 731   assert(tp != NULL, "ptr type");
 732   int alias_idx = C->get_alias_index(tp);
 733   int general_idx = C->get_general_index(alias_idx);
 734 
 735   // Move users first
 736   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 737     Node* use = n->fast_out(i);
 738     if (use->is_MergeMem()) {
 739       MergeMemNode* mmem = use->as_MergeMem();
 740       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 741       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 742         continue; // Nothing to do
 743       }
 744       // Replace previous general reference to mem node.
 745       uint orig_uniq = C->unique();
 746       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 747       assert(orig_uniq == C->unique(), "no new nodes");
 748       mmem->set_memory_at(general_idx, m);
 749       --imax;
 750       --i;
 751     } else if (use->is_MemBar()) {
 752       assert(!use->is_Initialize(), "initializing stores should not be moved");
 753       if (use->req() > MemBarNode::Precedent &&
 754           use->in(MemBarNode::Precedent) == n) {
 755         // Don't move related membars.
 756         record_for_optimizer(use);
 757         continue;
 758       }
 759       tp = use->as_MemBar()->adr_type()->isa_ptr();
 760       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 761           alias_idx == general_idx) {
 762         continue; // Nothing to do
 763       }
 764       // Move to general memory slice.
 765       uint orig_uniq = C->unique();
 766       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 767       assert(orig_uniq == C->unique(), "no new nodes");
 768       igvn->hash_delete(use);
 769       imax -= use->replace_edge(n, m);
 770       igvn->hash_insert(use);
 771       record_for_optimizer(use);
 772       --i;
 773 #ifdef ASSERT
 774     } else if (use->is_Mem()) {
 775       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 776         // Don't move related cardmark.
 777         continue;
 778       }
 779       // Memory nodes should have new memory input.
 780       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 781       assert(tp != NULL, "ptr type");
 782       int idx = C->get_alias_index(tp);
 783       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 784              "Following memory nodes should have new memory input or be on the same memory slice");
 785     } else if (use->is_Phi()) {
 786       // Phi nodes should be split and moved already.
 787       tp = use->as_Phi()->adr_type()->isa_ptr();
 788       assert(tp != NULL, "ptr type");
 789       int idx = C->get_alias_index(tp);
 790       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 791     } else {
 792       use->dump();
 793       assert(false, "should not be here");
 794 #endif
 795     }
 796   }
 797 }
 798 
 799 //
 800 // Search memory chain of "mem" to find a MemNode whose address
 801 // is the specified alias index.
 802 //
 803 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 804   if (orig_mem == NULL)
 805     return orig_mem;
 806   Compile* C = phase->C;
 807   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 808   bool is_instance = (toop != NULL) && toop->is_known_instance();
 809   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 810   Node *prev = NULL;
 811   Node *result = orig_mem;
 812   while (prev != result) {
 813     prev = result;
 814     if (result == start_mem)
 815       break;  // hit one of our sentinels
 816     if (result->is_Mem()) {
 817       const Type *at = phase->type(result->in(MemNode::Address));
 818       if (at != Type::TOP) {
 819         assert (at->isa_ptr() != NULL, "pointer type required.");
 820         int idx = C->get_alias_index(at->is_ptr());
 821         if (idx == alias_idx)
 822           break;
 823       }
 824       result = result->in(MemNode::Memory);
 825     }
 826     if (!is_instance)
 827       continue;  // don't search further for non-instance types
 828     // skip over a call which does not affect this memory slice
 829     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 830       Node *proj_in = result->in(0);
 831       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 832         break;  // hit one of our sentinels
 833       } else if (proj_in->is_Call()) {
 834         CallNode *call = proj_in->as_Call();
 835         if (!call->may_modify(toop, phase)) {
 836           result = call->in(TypeFunc::Memory);
 837         }
 838       } else if (proj_in->is_Initialize()) {
 839         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 840         // Stop if this is the initialization for the object instance which
 841         // which contains this memory slice, otherwise skip over it.
 842         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 843           result = proj_in->in(TypeFunc::Memory);
 844         }
 845       } else if (proj_in->is_MemBar()) {
 846         result = proj_in->in(TypeFunc::Memory);
 847       }
 848     } else if (result->is_MergeMem()) {
 849       MergeMemNode *mmem = result->as_MergeMem();
 850       result = step_through_mergemem(mmem, alias_idx, toop);
 851       if (result == mmem->base_memory()) {
 852         // Didn't find instance memory, search through general slice recursively.
 853         result = mmem->memory_at(C->get_general_index(alias_idx));
 854         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 855         if (C->failing()) {
 856           return NULL;
 857         }
 858         mmem->set_memory_at(alias_idx, result);
 859       }
 860     } else if (result->is_Phi() &&
 861                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 862       Node *un = result->as_Phi()->unique_input(phase);
 863       if (un != NULL) {
 864         orig_phis.append_if_missing(result->as_Phi());
 865         result = un;
 866       } else {
 867         break;
 868       }
 869     } else if (result->is_ClearArray()) {
 870       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 871         // Can not bypass initialization of the instance
 872         // we are looking for.
 873         break;
 874       }
 875       // Otherwise skip it (the call updated 'result' value).
 876     } else if (result->Opcode() == Op_SCMemProj) {
 877       assert(result->in(0)->is_LoadStore(), "sanity");
 878       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 879       if (at != Type::TOP) {
 880         assert (at->isa_ptr() != NULL, "pointer type required.");
 881         int idx = C->get_alias_index(at->is_ptr());
 882         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 883         break;
 884       }
 885       result = result->in(0)->in(MemNode::Memory);
 886     }
 887   }
 888   if (result->is_Phi()) {
 889     PhiNode *mphi = result->as_Phi();
 890     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 891     const TypePtr *t = mphi->adr_type();
 892     if (C->get_alias_index(t) != alias_idx) {
 893       // Create a new Phi with the specified alias index type.
 894       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 895     } else if (!is_instance) {
 896       // Push all non-instance Phis on the orig_phis worklist to update inputs
 897       // during Phase 4 if needed.
 898       orig_phis.append_if_missing(mphi);
 899     }
 900   }
 901   // the result is either MemNode, PhiNode, InitializeNode.
 902   return result;
 903 }
 904 
 905 //
 906 //  Convert the types of unescaped object to instance types where possible,
 907 //  propagate the new type information through the graph, and update memory
 908 //  edges and MergeMem inputs to reflect the new type.
 909 //
 910 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 911 //  The processing is done in 4 phases:
 912 //
 913 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 914 //            types for the CheckCastPP for allocations where possible.
 915 //            Propagate the the new types through users as follows:
 916 //               casts and Phi:  push users on alloc_worklist
 917 //               AddP:  cast Base and Address inputs to the instance type
 918 //                      push any AddP users on alloc_worklist and push any memnode
 919 //                      users onto memnode_worklist.
 920 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 921 //            search the Memory chain for a store with the appropriate type
 922 //            address type.  If a Phi is found, create a new version with
 923 //            the appropriate memory slices from each of the Phi inputs.
 924 //            For stores, process the users as follows:
 925 //               MemNode:  push on memnode_worklist
 926 //               MergeMem: push on mergemem_worklist
 927 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 928 //            moving the first node encountered of each  instance type to the
 929 //            the input corresponding to its alias index.
 930 //            appropriate memory slice.
 931 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 932 //
 933 // In the following example, the CheckCastPP nodes are the cast of allocation
 934 // results and the allocation of node 29 is unescaped and eligible to be an
 935 // instance type.
 936 //
 937 // We start with:
 938 //
 939 //     7 Parm #memory
 940 //    10  ConI  "12"
 941 //    19  CheckCastPP   "Foo"
 942 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 943 //    29  CheckCastPP   "Foo"
 944 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 945 //
 946 //    40  StoreP  25   7  20   ... alias_index=4
 947 //    50  StoreP  35  40  30   ... alias_index=4
 948 //    60  StoreP  45  50  20   ... alias_index=4
 949 //    70  LoadP    _  60  30   ... alias_index=4
 950 //    80  Phi     75  50  60   Memory alias_index=4
 951 //    90  LoadP    _  80  30   ... alias_index=4
 952 //   100  LoadP    _  80  20   ... alias_index=4
 953 //
 954 //
 955 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 956 // and creating a new alias index for node 30.  This gives:
 957 //
 958 //     7 Parm #memory
 959 //    10  ConI  "12"
 960 //    19  CheckCastPP   "Foo"
 961 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 962 //    29  CheckCastPP   "Foo"  iid=24
 963 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 964 //
 965 //    40  StoreP  25   7  20   ... alias_index=4
 966 //    50  StoreP  35  40  30   ... alias_index=6
 967 //    60  StoreP  45  50  20   ... alias_index=4
 968 //    70  LoadP    _  60  30   ... alias_index=6
 969 //    80  Phi     75  50  60   Memory alias_index=4
 970 //    90  LoadP    _  80  30   ... alias_index=6
 971 //   100  LoadP    _  80  20   ... alias_index=4
 972 //
 973 // In phase 2, new memory inputs are computed for the loads and stores,
 974 // And a new version of the phi is created.  In phase 4, the inputs to
 975 // node 80 are updated and then the memory nodes are updated with the
 976 // values computed in phase 2.  This results in:
 977 //
 978 //     7 Parm #memory
 979 //    10  ConI  "12"
 980 //    19  CheckCastPP   "Foo"
 981 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 982 //    29  CheckCastPP   "Foo"  iid=24
 983 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 984 //
 985 //    40  StoreP  25  7   20   ... alias_index=4
 986 //    50  StoreP  35  7   30   ... alias_index=6
 987 //    60  StoreP  45  40  20   ... alias_index=4
 988 //    70  LoadP    _  50  30   ... alias_index=6
 989 //    80  Phi     75  40  60   Memory alias_index=4
 990 //   120  Phi     75  50  50   Memory alias_index=6
 991 //    90  LoadP    _ 120  30   ... alias_index=6
 992 //   100  LoadP    _  80  20   ... alias_index=4
 993 //
 994 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 995   GrowableArray<Node *>  memnode_worklist;
 996   GrowableArray<PhiNode *>  orig_phis;
 997 
 998   PhaseGVN  *igvn = _igvn;
 999   uint new_index_start = (uint) _compile->num_alias_types();
1000   Arena* arena = Thread::current()->resource_area();
1001   VectorSet visited(arena);
1002   VectorSet ptset(arena);
1003 
1004 
1005   //  Phase 1:  Process possible allocations from alloc_worklist.
1006   //  Create instance types for the CheckCastPP for allocations where possible.
1007   //
1008   // (Note: don't forget to change the order of the second AddP node on
1009   //  the alloc_worklist if the order of the worklist processing is changed,
1010   //  see the comment in find_second_addp().)
1011   //
1012   while (alloc_worklist.length() != 0) {
1013     Node *n = alloc_worklist.pop();
1014     uint ni = n->_idx;
1015     const TypeOopPtr* tinst = NULL;
1016     if (n->is_Call()) {
1017       CallNode *alloc = n->as_Call();
1018       // copy escape information to call node
1019       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1020       PointsToNode::EscapeState es = escape_state(alloc);
1021       // We have an allocation or call which returns a Java object,
1022       // see if it is unescaped.
1023       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
1024         continue;
1025 
1026       // Find CheckCastPP for the allocate or for the return value of a call
1027       n = alloc->result_cast();
1028       if (n == NULL) {            // No uses except Initialize node
1029         if (alloc->is_Allocate()) {
1030           // Set the scalar_replaceable flag for allocation
1031           // so it could be eliminated if it has no uses.
1032           alloc->as_Allocate()->_is_scalar_replaceable = true;
1033         }
1034         continue;
1035       }
1036       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1037         assert(!alloc->is_Allocate(), "allocation should have unique type");
1038         continue;
1039       }
1040 
1041       // The inline code for Object.clone() casts the allocation result to
1042       // java.lang.Object and then to the actual type of the allocated
1043       // object. Detect this case and use the second cast.
1044       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1045       // the allocation result is cast to java.lang.Object and then
1046       // to the actual Array type.
1047       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1048           && (alloc->is_AllocateArray() ||
1049               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1050         Node *cast2 = NULL;
1051         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1052           Node *use = n->fast_out(i);
1053           if (use->is_CheckCastPP()) {
1054             cast2 = use;
1055             break;
1056           }
1057         }
1058         if (cast2 != NULL) {
1059           n = cast2;
1060         } else {
1061           // Non-scalar replaceable if the allocation type is unknown statically
1062           // (reflection allocation), the object can't be restored during
1063           // deoptimization without precise type.
1064           continue;
1065         }
1066       }
1067       if (alloc->is_Allocate()) {
1068         // Set the scalar_replaceable flag for allocation
1069         // so it could be eliminated.
1070         alloc->as_Allocate()->_is_scalar_replaceable = true;
1071       }
1072       set_escape_state(n->_idx, es);
1073       // in order for an object to be scalar-replaceable, it must be:
1074       //   - a direct allocation (not a call returning an object)
1075       //   - non-escaping
1076       //   - eligible to be a unique type
1077       //   - not determined to be ineligible by escape analysis
1078       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1079              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1080       set_map(alloc->_idx, n);
1081       set_map(n->_idx, alloc);
1082       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1083       if (t == NULL)
1084         continue;  // not a TypeInstPtr
1085       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1086       igvn->hash_delete(n);
1087       igvn->set_type(n,  tinst);
1088       n->raise_bottom_type(tinst);
1089       igvn->hash_insert(n);
1090       record_for_optimizer(n);
1091       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
1092           (t->isa_instptr() || t->isa_aryptr())) {
1093 
1094         // First, put on the worklist all Field edges from Connection Graph
1095         // which is more accurate then putting immediate users from Ideal Graph.
1096         for (uint e = 0; e < ptn->edge_count(); e++) {
1097           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1098           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1099                  "only AddP nodes are Field edges in CG");
1100           if (use->outcnt() > 0) { // Don't process dead nodes
1101             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1102             if (addp2 != NULL) {
1103               assert(alloc->is_AllocateArray(),"array allocation was expected");
1104               alloc_worklist.append_if_missing(addp2);
1105             }
1106             alloc_worklist.append_if_missing(use);
1107           }
1108         }
1109 
1110         // An allocation may have an Initialize which has raw stores. Scan
1111         // the users of the raw allocation result and push AddP users
1112         // on alloc_worklist.
1113         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1114         assert (raw_result != NULL, "must have an allocation result");
1115         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1116           Node *use = raw_result->fast_out(i);
1117           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1118             Node* addp2 = find_second_addp(use, raw_result);
1119             if (addp2 != NULL) {
1120               assert(alloc->is_AllocateArray(),"array allocation was expected");
1121               alloc_worklist.append_if_missing(addp2);
1122             }
1123             alloc_worklist.append_if_missing(use);
1124           } else if (use->is_MemBar()) {
1125             memnode_worklist.append_if_missing(use);
1126           }
1127         }
1128       }
1129     } else if (n->is_AddP()) {
1130       ptset.Clear();
1131       PointsTo(ptset, get_addp_base(n));
1132       assert(ptset.Size() == 1, "AddP address is unique");
1133       uint elem = ptset.getelem(); // Allocation node's index
1134       if (elem == _phantom_object) {
1135         assert(false, "escaped allocation");
1136         continue; // Assume the value was set outside this method.
1137       }
1138       Node *base = get_map(elem);  // CheckCastPP node
1139       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1140       tinst = igvn->type(base)->isa_oopptr();
1141     } else if (n->is_Phi() ||
1142                n->is_CheckCastPP() ||
1143                n->is_EncodeP() ||
1144                n->is_DecodeN() ||
1145                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1146       if (visited.test_set(n->_idx)) {
1147         assert(n->is_Phi(), "loops only through Phi's");
1148         continue;  // already processed
1149       }
1150       ptset.Clear();
1151       PointsTo(ptset, n);
1152       if (ptset.Size() == 1) {
1153         uint elem = ptset.getelem(); // Allocation node's index
1154         if (elem == _phantom_object) {
1155           assert(false, "escaped allocation");
1156           continue; // Assume the value was set outside this method.
1157         }
1158         Node *val = get_map(elem);   // CheckCastPP node
1159         TypeNode *tn = n->as_Type();
1160         tinst = igvn->type(val)->isa_oopptr();
1161         assert(tinst != NULL && tinst->is_known_instance() &&
1162                (uint)tinst->instance_id() == elem , "instance type expected.");
1163 
1164         const Type *tn_type = igvn->type(tn);
1165         const TypeOopPtr *tn_t;
1166         if (tn_type->isa_narrowoop()) {
1167           tn_t = tn_type->make_ptr()->isa_oopptr();
1168         } else {
1169           tn_t = tn_type->isa_oopptr();
1170         }
1171 
1172         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1173           if (tn_type->isa_narrowoop()) {
1174             tn_type = tinst->make_narrowoop();
1175           } else {
1176             tn_type = tinst;
1177           }
1178           igvn->hash_delete(tn);
1179           igvn->set_type(tn, tn_type);
1180           tn->set_type(tn_type);
1181           igvn->hash_insert(tn);
1182           record_for_optimizer(n);
1183         } else {
1184           assert(tn_type == TypePtr::NULL_PTR ||
1185                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1186                  "unexpected type");
1187           continue; // Skip dead path with different type
1188         }
1189       }
1190     } else {
1191       debug_only(n->dump();)
1192       assert(false, "EA: unexpected node");
1193       continue;
1194     }
1195     // push allocation's users on appropriate worklist
1196     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1197       Node *use = n->fast_out(i);
1198       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1199         // Load/store to instance's field
1200         memnode_worklist.append_if_missing(use);
1201       } else if (use->is_MemBar()) {
1202         memnode_worklist.append_if_missing(use);
1203       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1204         Node* addp2 = find_second_addp(use, n);
1205         if (addp2 != NULL) {
1206           alloc_worklist.append_if_missing(addp2);
1207         }
1208         alloc_worklist.append_if_missing(use);
1209       } else if (use->is_Phi() ||
1210                  use->is_CheckCastPP() ||
1211                  use->is_EncodeP() ||
1212                  use->is_DecodeN() ||
1213                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1214         alloc_worklist.append_if_missing(use);
1215 #ifdef ASSERT
1216       } else if (use->is_Mem()) {
1217         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1218       } else if (use->is_MergeMem()) {
1219         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1220       } else if (use->is_SafePoint()) {
1221         // Look for MergeMem nodes for calls which reference unique allocation
1222         // (through CheckCastPP nodes) even for debug info.
1223         Node* m = use->in(TypeFunc::Memory);
1224         if (m->is_MergeMem()) {
1225           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1226         }
1227       } else {
1228         uint op = use->Opcode();
1229         if (!(op == Op_CmpP || op == Op_Conv2B ||
1230               op == Op_CastP2X || op == Op_StoreCM ||
1231               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1232               op == Op_StrEquals || op == Op_StrIndexOf)) {
1233           n->dump();
1234           use->dump();
1235           assert(false, "EA: missing allocation reference path");
1236         }
1237 #endif
1238       }
1239     }
1240 
1241   }
1242   // New alias types were created in split_AddP().
1243   uint new_index_end = (uint) _compile->num_alias_types();
1244 
1245   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1246   //            compute new values for Memory inputs  (the Memory inputs are not
1247   //            actually updated until phase 4.)
1248   if (memnode_worklist.length() == 0)
1249     return;  // nothing to do
1250 
1251   while (memnode_worklist.length() != 0) {
1252     Node *n = memnode_worklist.pop();
1253     if (visited.test_set(n->_idx))
1254       continue;
1255     if (n->is_Phi() || n->is_ClearArray()) {
1256       // we don't need to do anything, but the users must be pushed
1257     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1258       // we don't need to do anything, but the users must be pushed
1259       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1260       if (n == NULL)
1261         continue;
1262     } else {
1263       assert(n->is_Mem(), "memory node required.");
1264       Node *addr = n->in(MemNode::Address);
1265       const Type *addr_t = igvn->type(addr);
1266       if (addr_t == Type::TOP)
1267         continue;
1268       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1269       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1270       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1271       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1272       if (_compile->failing()) {
1273         return;
1274       }
1275       if (mem != n->in(MemNode::Memory)) {
1276         // We delay the memory edge update since we need old one in
1277         // MergeMem code below when instances memory slices are separated.
1278         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1279         assert(pn == NULL || pn == n, "wrong node");
1280         set_map(n->_idx, mem);
1281         ptnode_adr(n->_idx)->_node = n;
1282       }
1283       if (n->is_Load()) {
1284         continue;  // don't push users
1285       } else if (n->is_LoadStore()) {
1286         // get the memory projection
1287         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1288           Node *use = n->fast_out(i);
1289           if (use->Opcode() == Op_SCMemProj) {
1290             n = use;
1291             break;
1292           }
1293         }
1294         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1295       }
1296     }
1297     // push user on appropriate worklist
1298     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1299       Node *use = n->fast_out(i);
1300       if (use->is_Phi() || use->is_ClearArray()) {
1301         memnode_worklist.append_if_missing(use);
1302       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1303         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1304           continue;
1305         memnode_worklist.append_if_missing(use);
1306       } else if (use->is_MemBar()) {
1307         memnode_worklist.append_if_missing(use);
1308 #ifdef ASSERT
1309       } else if(use->is_Mem()) {
1310         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1311       } else if (use->is_MergeMem()) {
1312         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1313       } else {
1314         uint op = use->Opcode();
1315         if (!(op == Op_StoreCM ||
1316               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1317                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1318               op == Op_AryEq || op == Op_StrComp ||
1319               op == Op_StrEquals || op == Op_StrIndexOf)) {
1320           n->dump();
1321           use->dump();
1322           assert(false, "EA: missing memory path");
1323         }
1324 #endif
1325       }
1326     }
1327   }
1328 
1329   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1330   //            Walk each memory slice moving the first node encountered of each
1331   //            instance type to the the input corresponding to its alias index.
1332   uint length = _mergemem_worklist.length();
1333   for( uint next = 0; next < length; ++next ) {
1334     MergeMemNode* nmm = _mergemem_worklist.at(next);
1335     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1336     // Note: we don't want to use MergeMemStream here because we only want to
1337     // scan inputs which exist at the start, not ones we add during processing.
1338     // Note 2: MergeMem may already contains instance memory slices added
1339     // during find_inst_mem() call when memory nodes were processed above.
1340     igvn->hash_delete(nmm);
1341     uint nslices = nmm->req();
1342     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1343       Node* mem = nmm->in(i);
1344       Node* cur = NULL;
1345       if (mem == NULL || mem->is_top())
1346         continue;
1347       // First, update mergemem by moving memory nodes to corresponding slices
1348       // if their type became more precise since this mergemem was created.
1349       while (mem->is_Mem()) {
1350         const Type *at = igvn->type(mem->in(MemNode::Address));
1351         if (at != Type::TOP) {
1352           assert (at->isa_ptr() != NULL, "pointer type required.");
1353           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1354           if (idx == i) {
1355             if (cur == NULL)
1356               cur = mem;
1357           } else {
1358             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1359               nmm->set_memory_at(idx, mem);
1360             }
1361           }
1362         }
1363         mem = mem->in(MemNode::Memory);
1364       }
1365       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1366       // Find any instance of the current type if we haven't encountered
1367       // already a memory slice of the instance along the memory chain.
1368       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1369         if((uint)_compile->get_general_index(ni) == i) {
1370           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1371           if (nmm->is_empty_memory(m)) {
1372             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1373             if (_compile->failing()) {
1374               return;
1375             }
1376             nmm->set_memory_at(ni, result);
1377           }
1378         }
1379       }
1380     }
1381     // Find the rest of instances values
1382     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1383       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1384       Node* result = step_through_mergemem(nmm, ni, tinst);
1385       if (result == nmm->base_memory()) {
1386         // Didn't find instance memory, search through general slice recursively.
1387         result = nmm->memory_at(_compile->get_general_index(ni));
1388         result = find_inst_mem(result, ni, orig_phis, igvn);
1389         if (_compile->failing()) {
1390           return;
1391         }
1392         nmm->set_memory_at(ni, result);
1393       }
1394     }
1395     igvn->hash_insert(nmm);
1396     record_for_optimizer(nmm);
1397   }
1398 
1399   //  Phase 4:  Update the inputs of non-instance memory Phis and
1400   //            the Memory input of memnodes
1401   // First update the inputs of any non-instance Phi's from
1402   // which we split out an instance Phi.  Note we don't have
1403   // to recursively process Phi's encounted on the input memory
1404   // chains as is done in split_memory_phi() since they  will
1405   // also be processed here.
1406   for (int j = 0; j < orig_phis.length(); j++) {
1407     PhiNode *phi = orig_phis.at(j);
1408     int alias_idx = _compile->get_alias_index(phi->adr_type());
1409     igvn->hash_delete(phi);
1410     for (uint i = 1; i < phi->req(); i++) {
1411       Node *mem = phi->in(i);
1412       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1413       if (_compile->failing()) {
1414         return;
1415       }
1416       if (mem != new_mem) {
1417         phi->set_req(i, new_mem);
1418       }
1419     }
1420     igvn->hash_insert(phi);
1421     record_for_optimizer(phi);
1422   }
1423 
1424   // Update the memory inputs of MemNodes with the value we computed
1425   // in Phase 2 and move stores memory users to corresponding memory slices.
1426 #ifdef ASSERT
1427   visited.Clear();
1428   Node_Stack old_mems(arena, _compile->unique() >> 2);
1429 #endif
1430   for (uint i = 0; i < nodes_size(); i++) {
1431     Node *nmem = get_map(i);
1432     if (nmem != NULL) {
1433       Node *n = ptnode_adr(i)->_node;
1434       assert(n != NULL, "sanity");
1435       if (n->is_Mem()) {
1436 #ifdef ASSERT
1437         Node* old_mem = n->in(MemNode::Memory);
1438         if (!visited.test_set(old_mem->_idx)) {
1439           old_mems.push(old_mem, old_mem->outcnt());
1440         }
1441 #endif
1442         assert(n->in(MemNode::Memory) != nmem, "sanity");
1443         if (!n->is_Load()) {
1444           // Move memory users of a store first.
1445           move_inst_mem(n, orig_phis, igvn);
1446         }
1447         // Now update memory input
1448         igvn->hash_delete(n);
1449         n->set_req(MemNode::Memory, nmem);
1450         igvn->hash_insert(n);
1451         record_for_optimizer(n);
1452       } else {
1453         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1454                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1455       }
1456     }
1457   }
1458 #ifdef ASSERT
1459   // Verify that memory was split correctly
1460   while (old_mems.is_nonempty()) {
1461     Node* old_mem = old_mems.node();
1462     uint  old_cnt = old_mems.index();
1463     old_mems.pop();
1464     assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
1465   }
1466 #endif
1467 }
1468 
1469 bool ConnectionGraph::has_candidates(Compile *C) {
1470   // EA brings benefits only when the code has allocations and/or locks which
1471   // are represented by ideal Macro nodes.
1472   int cnt = C->macro_count();
1473   for( int i=0; i < cnt; i++ ) {
1474     Node *n = C->macro_node(i);
1475     if ( n->is_Allocate() )
1476       return true;
1477     if( n->is_Lock() ) {
1478       Node* obj = n->as_Lock()->obj_node()->uncast();
1479       if( !(obj->is_Parm() || obj->is_Con()) )
1480         return true;
1481     }
1482   }
1483   return false;
1484 }
1485 
1486 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1487   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1488   // to create space for them in ConnectionGraph::_nodes[].
1489   Node* oop_null = igvn->zerocon(T_OBJECT);
1490   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1491 
1492   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1493   // Perform escape analysis
1494   if (congraph->compute_escape()) {
1495     // There are non escaping objects.
1496     C->set_congraph(congraph);
1497   }
1498 
1499   // Cleanup.
1500   if (oop_null->outcnt() == 0)
1501     igvn->hash_delete(oop_null);
1502   if (noop_null->outcnt() == 0)
1503     igvn->hash_delete(noop_null);
1504 }
1505 
1506 bool ConnectionGraph::compute_escape() {
1507   Compile* C = _compile;
1508 
1509   // 1. Populate Connection Graph (CG) with Ideal nodes.
1510 
1511   Unique_Node_List worklist_init;
1512   worklist_init.map(C->unique(), NULL);  // preallocate space
1513 
1514   // Initialize worklist
1515   if (C->root() != NULL) {
1516     worklist_init.push(C->root());
1517   }
1518 
1519   GrowableArray<int> cg_worklist;
1520   PhaseGVN* igvn = _igvn;
1521   bool has_allocations = false;
1522 
1523   // Push all useful nodes onto CG list and set their type.
1524   for( uint next = 0; next < worklist_init.size(); ++next ) {
1525     Node* n = worklist_init.at(next);
1526     record_for_escape_analysis(n, igvn);
1527     // Only allocations and java static calls results are checked
1528     // for an escape status. See process_call_result() below.
1529     if (n->is_Allocate() || n->is_CallStaticJava() &&
1530         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1531       has_allocations = true;
1532     }
1533     if(n->is_AddP()) {
1534       // Collect address nodes which directly reference an allocation.
1535       // Use them during stage 3 below to build initial connection graph
1536       // field edges. Other field edges could be added after StoreP/LoadP
1537       // nodes are processed during stage 4 below.
1538       Node* base = get_addp_base(n);
1539       if(base->is_Proj() && base->in(0)->is_Allocate()) {
1540         cg_worklist.append(n->_idx);
1541       }
1542     } else if (n->is_MergeMem()) {
1543       // Collect all MergeMem nodes to add memory slices for
1544       // scalar replaceable objects in split_unique_types().
1545       _mergemem_worklist.append(n->as_MergeMem());
1546     }
1547     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1548       Node* m = n->fast_out(i);   // Get user
1549       worklist_init.push(m);
1550     }
1551   }
1552 
1553   if (!has_allocations) {
1554     _collecting = false;
1555     return false; // Nothing to do.
1556   }
1557 
1558   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1559   uint delayed_size = _delayed_worklist.size();
1560   for( uint next = 0; next < delayed_size; ++next ) {
1561     Node* n = _delayed_worklist.at(next);
1562     build_connection_graph(n, igvn);
1563   }
1564 
1565   // 3. Pass to create fields edges (Allocate -F-> AddP).
1566   uint cg_length = cg_worklist.length();
1567   for( uint next = 0; next < cg_length; ++next ) {
1568     int ni = cg_worklist.at(next);
1569     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1570   }
1571 
1572   cg_worklist.clear();
1573   cg_worklist.append(_phantom_object);
1574 
1575   // 4. Build Connection Graph which need
1576   //    to walk the connection graph.
1577   for (uint ni = 0; ni < nodes_size(); ni++) {
1578     PointsToNode* ptn = ptnode_adr(ni);
1579     Node *n = ptn->_node;
1580     if (n != NULL) { // Call, AddP, LoadP, StoreP
1581       build_connection_graph(n, igvn);
1582       if (ptn->node_type() != PointsToNode::UnknownType)
1583         cg_worklist.append(n->_idx); // Collect CG nodes
1584     }
1585   }
1586 
1587   Arena* arena = Thread::current()->resource_area();
1588   VectorSet ptset(arena);
1589   GrowableArray<uint>  deferred_edges;
1590   VectorSet visited(arena);
1591 
1592   // 5. Remove deferred edges from the graph and adjust
1593   //    escape state of nonescaping objects.
1594   cg_length = cg_worklist.length();
1595   for( uint next = 0; next < cg_length; ++next ) {
1596     int ni = cg_worklist.at(next);
1597     PointsToNode* ptn = ptnode_adr(ni);
1598     PointsToNode::NodeType nt = ptn->node_type();
1599     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1600       remove_deferred(ni, &deferred_edges, &visited);
1601       Node *n = ptn->_node;
1602       if (n->is_AddP()) {
1603         // Search for objects which are not scalar replaceable
1604         // and adjust their escape state.
1605         verify_escape_state(ni, ptset, igvn);
1606       }
1607     }
1608   }
1609 
1610   // 6. Propagate escape states.
1611   GrowableArray<int>  worklist;
1612   bool has_non_escaping_obj = false;
1613 
1614   // push all GlobalEscape nodes on the worklist
1615   for( uint next = 0; next < cg_length; ++next ) {
1616     int nk = cg_worklist.at(next);
1617     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1618       worklist.push(nk);
1619   }
1620   // mark all nodes reachable from GlobalEscape nodes
1621   while(worklist.length() > 0) {
1622     PointsToNode* ptn = ptnode_adr(worklist.pop());
1623     uint e_cnt = ptn->edge_count();
1624     for (uint ei = 0; ei < e_cnt; ei++) {
1625       uint npi = ptn->edge_target(ei);
1626       PointsToNode *np = ptnode_adr(npi);
1627       if (np->escape_state() < PointsToNode::GlobalEscape) {
1628         np->set_escape_state(PointsToNode::GlobalEscape);
1629         worklist.push(npi);
1630       }
1631     }
1632   }
1633 
1634   // push all ArgEscape nodes on the worklist
1635   for( uint next = 0; next < cg_length; ++next ) {
1636     int nk = cg_worklist.at(next);
1637     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1638       worklist.push(nk);
1639   }
1640   // mark all nodes reachable from ArgEscape nodes
1641   while(worklist.length() > 0) {
1642     PointsToNode* ptn = ptnode_adr(worklist.pop());
1643     if (ptn->node_type() == PointsToNode::JavaObject)
1644       has_non_escaping_obj = true; // Non GlobalEscape
1645     uint e_cnt = ptn->edge_count();
1646     for (uint ei = 0; ei < e_cnt; ei++) {
1647       uint npi = ptn->edge_target(ei);
1648       PointsToNode *np = ptnode_adr(npi);
1649       if (np->escape_state() < PointsToNode::ArgEscape) {
1650         np->set_escape_state(PointsToNode::ArgEscape);
1651         worklist.push(npi);
1652       }
1653     }
1654   }
1655 
1656   GrowableArray<Node*> alloc_worklist;
1657 
1658   // push all NoEscape nodes on the worklist
1659   for( uint next = 0; next < cg_length; ++next ) {
1660     int nk = cg_worklist.at(next);
1661     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1662       worklist.push(nk);
1663   }
1664   // mark all nodes reachable from NoEscape nodes
1665   while(worklist.length() > 0) {
1666     PointsToNode* ptn = ptnode_adr(worklist.pop());
1667     if (ptn->node_type() == PointsToNode::JavaObject)
1668       has_non_escaping_obj = true; // Non GlobalEscape
1669     Node* n = ptn->_node;
1670     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1671       // Push scalar replaceable allocations on alloc_worklist
1672       // for processing in split_unique_types().
1673       alloc_worklist.append(n);
1674     }
1675     uint e_cnt = ptn->edge_count();
1676     for (uint ei = 0; ei < e_cnt; ei++) {
1677       uint npi = ptn->edge_target(ei);
1678       PointsToNode *np = ptnode_adr(npi);
1679       if (np->escape_state() < PointsToNode::NoEscape) {
1680         np->set_escape_state(PointsToNode::NoEscape);
1681         worklist.push(npi);
1682       }
1683     }
1684   }
1685 
1686   _collecting = false;
1687   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1688 
1689 #ifndef PRODUCT
1690   if (PrintEscapeAnalysis) {
1691     dump(); // Dump ConnectionGraph
1692   }
1693 #endif
1694 
1695   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1696   if ( has_scalar_replaceable_candidates &&
1697        C->AliasLevel() >= 3 && EliminateAllocations ) {
1698 
1699     // Now use the escape information to create unique types for
1700     // scalar replaceable objects.
1701     split_unique_types(alloc_worklist);
1702 
1703     if (C->failing())  return false;
1704 
1705     C->print_method("After Escape Analysis", 2);
1706 
1707 #ifdef ASSERT
1708   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1709     tty->print("=== No allocations eliminated for ");
1710     C->method()->print_short_name();
1711     if(!EliminateAllocations) {
1712       tty->print(" since EliminateAllocations is off ===");
1713     } else if(!has_scalar_replaceable_candidates) {
1714       tty->print(" since there are no scalar replaceable candidates ===");
1715     } else if(C->AliasLevel() < 3) {
1716       tty->print(" since AliasLevel < 3 ===");
1717     }
1718     tty->cr();
1719 #endif
1720   }
1721   return has_non_escaping_obj;
1722 }
1723 
1724 // Search for objects which are not scalar replaceable.
1725 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
1726   PointsToNode* ptn = ptnode_adr(nidx);
1727   Node* n = ptn->_node;
1728   assert(n->is_AddP(), "Should be called for AddP nodes only");
1729   // Search for objects which are not scalar replaceable.
1730   // Mark their escape state as ArgEscape to propagate the state
1731   // to referenced objects.
1732   // Note: currently there are no difference in compiler optimizations
1733   // for ArgEscape objects and NoEscape objects which are not
1734   // scalar replaceable.
1735 
1736   Compile* C = _compile;
1737 
1738   int offset = ptn->offset();
1739   Node* base = get_addp_base(n);
1740   ptset.Clear();
1741   PointsTo(ptset, base);
1742   int ptset_size = ptset.Size();
1743 
1744   // Check if a oop field's initializing value is recorded and add
1745   // a corresponding NULL field's value if it is not recorded.
1746   // Connection Graph does not record a default initialization by NULL
1747   // captured by Initialize node.
1748   //
1749   // Note: it will disable scalar replacement in some cases:
1750   //
1751   //    Point p[] = new Point[1];
1752   //    p[0] = new Point(); // Will be not scalar replaced
1753   //
1754   // but it will save us from incorrect optimizations in next cases:
1755   //
1756   //    Point p[] = new Point[1];
1757   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1758   //
1759   // Do a simple control flow analysis to distinguish above cases.
1760   //
1761   if (offset != Type::OffsetBot && ptset_size == 1) {
1762     uint elem = ptset.getelem(); // Allocation node's index
1763     // It does not matter if it is not Allocation node since
1764     // only non-escaping allocations are scalar replaced.
1765     if (ptnode_adr(elem)->_node->is_Allocate() &&
1766         ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1767       AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1768       InitializeNode* ini = alloc->initialization();
1769 
1770       // Check only oop fields.
1771       const Type* adr_type = n->as_AddP()->bottom_type();
1772       BasicType basic_field_type = T_INT;
1773       if (adr_type->isa_instptr()) {
1774         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
1775         if (field != NULL) {
1776           basic_field_type = field->layout_type();
1777         } else {
1778           // Ignore non field load (for example, klass load)
1779         }
1780       } else if (adr_type->isa_aryptr()) {
1781         const Type* elemtype = adr_type->isa_aryptr()->elem();
1782         basic_field_type = elemtype->array_element_basic_type();
1783       } else {
1784         // Raw pointers are used for initializing stores so skip it.
1785         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1786                (base->in(0) == alloc),"unexpected pointer type");
1787       }
1788       if (basic_field_type == T_OBJECT ||
1789           basic_field_type == T_NARROWOOP ||
1790           basic_field_type == T_ARRAY) {
1791         Node* value = NULL;
1792         if (ini != NULL) {
1793           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1794           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1795           if (store != NULL && store->is_Store()) {
1796             value = store->in(MemNode::ValueIn);
1797           } else if (ptn->edge_count() > 0) { // Are there oop stores?
1798             // Check for a store which follows allocation without branches.
1799             // For example, a volatile field store is not collected
1800             // by Initialize node. TODO: it would be nice to use idom() here.
1801             for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1802               store = n->fast_out(i);
1803               if (store->is_Store() && store->in(0) != NULL) {
1804                 Node* ctrl = store->in(0);
1805                 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
1806                         ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
1807                         ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
1808                    ctrl = ctrl->in(0);
1809                 }
1810                 if (ctrl == ini || ctrl == alloc) {
1811                   value = store->in(MemNode::ValueIn);
1812                   break;
1813                 }
1814               }
1815             }
1816           }
1817         }
1818         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1819           // A field's initializing value was not recorded. Add NULL.
1820           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1821           add_pointsto_edge(nidx, null_idx);
1822         }
1823       }
1824     }
1825   }
1826 
1827   // An object is not scalar replaceable if the field which may point
1828   // to it has unknown offset (unknown element of an array of objects).
1829   //
1830   if (offset == Type::OffsetBot) {
1831     uint e_cnt = ptn->edge_count();
1832     for (uint ei = 0; ei < e_cnt; ei++) {
1833       uint npi = ptn->edge_target(ei);
1834       set_escape_state(npi, PointsToNode::ArgEscape);
1835       ptnode_adr(npi)->_scalar_replaceable = false;
1836     }
1837   }
1838 
1839   // Currently an object is not scalar replaceable if a LoadStore node
1840   // access its field since the field value is unknown after it.
1841   //
1842   bool has_LoadStore = false;
1843   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1844     Node *use = n->fast_out(i);
1845     if (use->is_LoadStore()) {
1846       has_LoadStore = true;
1847       break;
1848     }
1849   }
1850   // An object is not scalar replaceable if the address points
1851   // to unknown field (unknown element for arrays, offset is OffsetBot).
1852   //
1853   // Or the address may point to more then one object. This may produce
1854   // the false positive result (set scalar_replaceable to false)
1855   // since the flow-insensitive escape analysis can't separate
1856   // the case when stores overwrite the field's value from the case
1857   // when stores happened on different control branches.
1858   //
1859   if (ptset_size > 1 || ptset_size != 0 &&
1860       (has_LoadStore || offset == Type::OffsetBot)) {
1861     for( VectorSetI j(&ptset); j.test(); ++j ) {
1862       set_escape_state(j.elem, PointsToNode::ArgEscape);
1863       ptnode_adr(j.elem)->_scalar_replaceable = false;
1864     }
1865   }
1866 }
1867 
1868 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1869 
1870     switch (call->Opcode()) {
1871 #ifdef ASSERT
1872     case Op_Allocate:
1873     case Op_AllocateArray:
1874     case Op_Lock:
1875     case Op_Unlock:
1876       assert(false, "should be done already");
1877       break;
1878 #endif
1879     case Op_CallLeaf:
1880     case Op_CallLeafNoFP:
1881     {
1882       // Stub calls, objects do not escape but they are not scale replaceable.
1883       // Adjust escape state for outgoing arguments.
1884       const TypeTuple * d = call->tf()->domain();
1885       VectorSet ptset(Thread::current()->resource_area());
1886       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1887         const Type* at = d->field_at(i);
1888         Node *arg = call->in(i)->uncast();
1889         const Type *aat = phase->type(arg);
1890         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
1891             ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
1892 
1893           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1894                  aat->isa_ptr() != NULL, "expecting an Ptr");
1895 #ifdef ASSERT
1896           if (!(call->Opcode() == Op_CallLeafNoFP &&
1897                 call->as_CallLeaf()->_name != NULL &&
1898                 (strstr(call->as_CallLeaf()->_name, "arraycopy")  != 0) ||
1899                 call->as_CallLeaf()->_name != NULL &&
1900                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
1901                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
1902           ) {
1903             call->dump();
1904             assert(false, "EA: unexpected CallLeaf");
1905           }
1906 #endif
1907           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1908           if (arg->is_AddP()) {
1909             //
1910             // The inline_native_clone() case when the arraycopy stub is called
1911             // after the allocation before Initialize and CheckCastPP nodes.
1912             //
1913             // Set AddP's base (Allocate) as not scalar replaceable since
1914             // pointer to the base (with offset) is passed as argument.
1915             //
1916             arg = get_addp_base(arg);
1917           }
1918           ptset.Clear();
1919           PointsTo(ptset, arg);
1920           for( VectorSetI j(&ptset); j.test(); ++j ) {
1921             uint pt = j.elem;
1922             set_escape_state(pt, PointsToNode::ArgEscape);
1923           }
1924         }
1925       }
1926       break;
1927     }
1928 
1929     case Op_CallStaticJava:
1930     // For a static call, we know exactly what method is being called.
1931     // Use bytecode estimator to record the call's escape affects
1932     {
1933       ciMethod *meth = call->as_CallJava()->method();
1934       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1935       // fall-through if not a Java method or no analyzer information
1936       if (call_analyzer != NULL) {
1937         const TypeTuple * d = call->tf()->domain();
1938         VectorSet ptset(Thread::current()->resource_area());
1939         bool copy_dependencies = false;
1940         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1941           const Type* at = d->field_at(i);
1942           int k = i - TypeFunc::Parms;
1943           Node *arg = call->in(i)->uncast();
1944 
1945           if (at->isa_oopptr() != NULL &&
1946               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
1947 
1948             bool global_escapes = false;
1949             bool fields_escapes = false;
1950             if (!call_analyzer->is_arg_stack(k)) {
1951               // The argument global escapes, mark everything it could point to
1952               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1953               global_escapes = true;
1954             } else {
1955               if (!call_analyzer->is_arg_local(k)) {
1956                 // The argument itself doesn't escape, but any fields might
1957                 fields_escapes = true;
1958               }
1959               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1960               copy_dependencies = true;
1961             }
1962 
1963             ptset.Clear();
1964             PointsTo(ptset, arg);
1965             for( VectorSetI j(&ptset); j.test(); ++j ) {
1966               uint pt = j.elem;
1967               if (global_escapes) {
1968                 //The argument global escapes, mark everything it could point to
1969                 set_escape_state(pt, PointsToNode::GlobalEscape);
1970               } else {
1971                 if (fields_escapes) {
1972                   // The argument itself doesn't escape, but any fields might
1973                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1974                 }
1975                 set_escape_state(pt, PointsToNode::ArgEscape);
1976               }
1977             }
1978           }
1979         }
1980         if (copy_dependencies)
1981           call_analyzer->copy_dependencies(_compile->dependencies());
1982         break;
1983       }
1984     }
1985 
1986     default:
1987     // Fall-through here if not a Java method or no analyzer information
1988     // or some other type of call, assume the worst case: all arguments
1989     // globally escape.
1990     {
1991       // adjust escape state for  outgoing arguments
1992       const TypeTuple * d = call->tf()->domain();
1993       VectorSet ptset(Thread::current()->resource_area());
1994       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1995         const Type* at = d->field_at(i);
1996         if (at->isa_oopptr() != NULL) {
1997           Node *arg = call->in(i)->uncast();
1998           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1999           ptset.Clear();
2000           PointsTo(ptset, arg);
2001           for( VectorSetI j(&ptset); j.test(); ++j ) {
2002             uint pt = j.elem;
2003             set_escape_state(pt, PointsToNode::GlobalEscape);
2004           }
2005         }
2006       }
2007     }
2008   }
2009 }
2010 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
2011   CallNode   *call = resproj->in(0)->as_Call();
2012   uint    call_idx = call->_idx;
2013   uint resproj_idx = resproj->_idx;
2014 
2015   switch (call->Opcode()) {
2016     case Op_Allocate:
2017     {
2018       Node *k = call->in(AllocateNode::KlassNode);
2019       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2020       assert(kt != NULL, "TypeKlassPtr  required.");
2021       ciKlass* cik = kt->klass();
2022 
2023       PointsToNode::EscapeState es;
2024       uint edge_to;
2025       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2026          !cik->is_instance_klass() || // StressReflectiveCode
2027           cik->as_instance_klass()->has_finalizer()) {
2028         es = PointsToNode::GlobalEscape;
2029         edge_to = _phantom_object; // Could not be worse
2030       } else {
2031         es = PointsToNode::NoEscape;
2032         edge_to = call_idx;
2033       }
2034       set_escape_state(call_idx, es);
2035       add_pointsto_edge(resproj_idx, edge_to);
2036       _processed.set(resproj_idx);
2037       break;
2038     }
2039 
2040     case Op_AllocateArray:
2041     {
2042 
2043       Node *k = call->in(AllocateNode::KlassNode);
2044       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2045       assert(kt != NULL, "TypeKlassPtr  required.");
2046       ciKlass* cik = kt->klass();
2047 
2048       PointsToNode::EscapeState es;
2049       uint edge_to;
2050       if (!cik->is_array_klass()) { // StressReflectiveCode
2051         es = PointsToNode::GlobalEscape;
2052         edge_to = _phantom_object;
2053       } else {
2054         es = PointsToNode::NoEscape;
2055         edge_to = call_idx;
2056         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2057         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2058           // Not scalar replaceable if the length is not constant or too big.
2059           ptnode_adr(call_idx)->_scalar_replaceable = false;
2060         }
2061       }
2062       set_escape_state(call_idx, es);
2063       add_pointsto_edge(resproj_idx, edge_to);
2064       _processed.set(resproj_idx);
2065       break;
2066     }
2067 
2068     case Op_CallStaticJava:
2069     // For a static call, we know exactly what method is being called.
2070     // Use bytecode estimator to record whether the call's return value escapes
2071     {
2072       bool done = true;
2073       const TypeTuple *r = call->tf()->range();
2074       const Type* ret_type = NULL;
2075 
2076       if (r->cnt() > TypeFunc::Parms)
2077         ret_type = r->field_at(TypeFunc::Parms);
2078 
2079       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2080       //        _multianewarray functions return a TypeRawPtr.
2081       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
2082         _processed.set(resproj_idx);
2083         break;  // doesn't return a pointer type
2084       }
2085       ciMethod *meth = call->as_CallJava()->method();
2086       const TypeTuple * d = call->tf()->domain();
2087       if (meth == NULL) {
2088         // not a Java method, assume global escape
2089         set_escape_state(call_idx, PointsToNode::GlobalEscape);
2090         add_pointsto_edge(resproj_idx, _phantom_object);
2091       } else {
2092         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
2093         bool copy_dependencies = false;
2094 
2095         if (call_analyzer->is_return_allocated()) {
2096           // Returns a newly allocated unescaped object, simply
2097           // update dependency information.
2098           // Mark it as NoEscape so that objects referenced by
2099           // it's fields will be marked as NoEscape at least.
2100           set_escape_state(call_idx, PointsToNode::NoEscape);
2101           add_pointsto_edge(resproj_idx, call_idx);
2102           copy_dependencies = true;
2103         } else if (call_analyzer->is_return_local()) {
2104           // determine whether any arguments are returned
2105           set_escape_state(call_idx, PointsToNode::NoEscape);
2106           bool ret_arg = false;
2107           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2108             const Type* at = d->field_at(i);
2109 
2110             if (at->isa_oopptr() != NULL) {
2111               Node *arg = call->in(i)->uncast();
2112 
2113               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2114                 ret_arg = true;
2115                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2116                 if (arg_esp->node_type() == PointsToNode::UnknownType)
2117                   done = false;
2118                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
2119                   add_pointsto_edge(resproj_idx, arg->_idx);
2120                 else
2121                   add_deferred_edge(resproj_idx, arg->_idx);
2122                 arg_esp->_hidden_alias = true;
2123               }
2124             }
2125           }
2126           if (done && !ret_arg) {
2127             // Returns unknown object.
2128             set_escape_state(call_idx, PointsToNode::GlobalEscape);
2129             add_pointsto_edge(resproj_idx, _phantom_object);
2130           }
2131           copy_dependencies = true;
2132         } else {
2133           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2134           add_pointsto_edge(resproj_idx, _phantom_object);
2135           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2136             const Type* at = d->field_at(i);
2137             if (at->isa_oopptr() != NULL) {
2138               Node *arg = call->in(i)->uncast();
2139               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2140               arg_esp->_hidden_alias = true;
2141             }
2142           }
2143         }
2144         if (copy_dependencies)
2145           call_analyzer->copy_dependencies(_compile->dependencies());
2146       }
2147       if (done)
2148         _processed.set(resproj_idx);
2149       break;
2150     }
2151 
2152     default:
2153     // Some other type of call, assume the worst case that the
2154     // returned value, if any, globally escapes.
2155     {
2156       const TypeTuple *r = call->tf()->range();
2157       if (r->cnt() > TypeFunc::Parms) {
2158         const Type* ret_type = r->field_at(TypeFunc::Parms);
2159 
2160         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2161         //        _multianewarray functions return a TypeRawPtr.
2162         if (ret_type->isa_ptr() != NULL) {
2163           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2164           add_pointsto_edge(resproj_idx, _phantom_object);
2165         }
2166       }
2167       _processed.set(resproj_idx);
2168     }
2169   }
2170 }
2171 
2172 // Populate Connection Graph with Ideal nodes and create simple
2173 // connection graph edges (do not need to check the node_type of inputs
2174 // or to call PointsTo() to walk the connection graph).
2175 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2176   if (_processed.test(n->_idx))
2177     return; // No need to redefine node's state.
2178 
2179   if (n->is_Call()) {
2180     // Arguments to allocation and locking don't escape.
2181     if (n->is_Allocate()) {
2182       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2183       record_for_optimizer(n);
2184     } else if (n->is_Lock() || n->is_Unlock()) {
2185       // Put Lock and Unlock nodes on IGVN worklist to process them during
2186       // the first IGVN optimization when escape information is still available.
2187       record_for_optimizer(n);
2188       _processed.set(n->_idx);
2189     } else {
2190       // Don't mark as processed since call's arguments have to be processed.
2191       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2192       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2193 
2194       // Check if a call returns an object.
2195       const TypeTuple *r = n->as_Call()->tf()->range();
2196       if (r->cnt() > TypeFunc::Parms &&
2197           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2198           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2199         nt = PointsToNode::JavaObject;
2200         if (!n->is_CallStaticJava()) {
2201           // Since the called mathod is statically unknown assume
2202           // the worst case that the returned value globally escapes.
2203           es = PointsToNode::GlobalEscape;
2204         }
2205       }
2206       add_node(n, nt, es, false);
2207     }
2208     return;
2209   }
2210 
2211   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2212   // ThreadLocal has RawPrt type.
2213   switch (n->Opcode()) {
2214     case Op_AddP:
2215     {
2216       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2217       break;
2218     }
2219     case Op_CastX2P:
2220     { // "Unsafe" memory access.
2221       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2222       break;
2223     }
2224     case Op_CastPP:
2225     case Op_CheckCastPP:
2226     case Op_EncodeP:
2227     case Op_DecodeN:
2228     {
2229       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2230       int ti = n->in(1)->_idx;
2231       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2232       if (nt == PointsToNode::UnknownType) {
2233         _delayed_worklist.push(n); // Process it later.
2234         break;
2235       } else if (nt == PointsToNode::JavaObject) {
2236         add_pointsto_edge(n->_idx, ti);
2237       } else {
2238         add_deferred_edge(n->_idx, ti);
2239       }
2240       _processed.set(n->_idx);
2241       break;
2242     }
2243     case Op_ConP:
2244     {
2245       // assume all pointer constants globally escape except for null
2246       PointsToNode::EscapeState es;
2247       if (phase->type(n) == TypePtr::NULL_PTR)
2248         es = PointsToNode::NoEscape;
2249       else
2250         es = PointsToNode::GlobalEscape;
2251 
2252       add_node(n, PointsToNode::JavaObject, es, true);
2253       break;
2254     }
2255     case Op_ConN:
2256     {
2257       // assume all narrow oop constants globally escape except for null
2258       PointsToNode::EscapeState es;
2259       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2260         es = PointsToNode::NoEscape;
2261       else
2262         es = PointsToNode::GlobalEscape;
2263 
2264       add_node(n, PointsToNode::JavaObject, es, true);
2265       break;
2266     }
2267     case Op_CreateEx:
2268     {
2269       // assume that all exception objects globally escape
2270       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2271       break;
2272     }
2273     case Op_LoadKlass:
2274     case Op_LoadNKlass:
2275     {
2276       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2277       break;
2278     }
2279     case Op_LoadP:
2280     case Op_LoadN:
2281     {
2282       const Type *t = phase->type(n);
2283       if (t->make_ptr() == NULL) {
2284         _processed.set(n->_idx);
2285         return;
2286       }
2287       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2288       break;
2289     }
2290     case Op_Parm:
2291     {
2292       _processed.set(n->_idx); // No need to redefine it state.
2293       uint con = n->as_Proj()->_con;
2294       if (con < TypeFunc::Parms)
2295         return;
2296       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2297       if (t->isa_ptr() == NULL)
2298         return;
2299       // We have to assume all input parameters globally escape
2300       // (Note: passing 'false' since _processed is already set).
2301       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2302       break;
2303     }
2304     case Op_Phi:
2305     {
2306       const Type *t = n->as_Phi()->type();
2307       if (t->make_ptr() == NULL) {
2308         // nothing to do if not an oop or narrow oop
2309         _processed.set(n->_idx);
2310         return;
2311       }
2312       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2313       uint i;
2314       for (i = 1; i < n->req() ; i++) {
2315         Node* in = n->in(i);
2316         if (in == NULL)
2317           continue;  // ignore NULL
2318         in = in->uncast();
2319         if (in->is_top() || in == n)
2320           continue;  // ignore top or inputs which go back this node
2321         int ti = in->_idx;
2322         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2323         if (nt == PointsToNode::UnknownType) {
2324           break;
2325         } else if (nt == PointsToNode::JavaObject) {
2326           add_pointsto_edge(n->_idx, ti);
2327         } else {
2328           add_deferred_edge(n->_idx, ti);
2329         }
2330       }
2331       if (i >= n->req())
2332         _processed.set(n->_idx);
2333       else
2334         _delayed_worklist.push(n);
2335       break;
2336     }
2337     case Op_Proj:
2338     {
2339       // we are only interested in the oop result projection from a call
2340       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2341         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2342         assert(r->cnt() > TypeFunc::Parms, "sanity");
2343         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2344           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2345           int ti = n->in(0)->_idx;
2346           // The call may not be registered yet (since not all its inputs are registered)
2347           // if this is the projection from backbranch edge of Phi.
2348           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2349             process_call_result(n->as_Proj(), phase);
2350           }
2351           if (!_processed.test(n->_idx)) {
2352             // The call's result may need to be processed later if the call
2353             // returns it's argument and the argument is not processed yet.
2354             _delayed_worklist.push(n);
2355           }
2356           break;
2357         }
2358       }
2359       _processed.set(n->_idx);
2360       break;
2361     }
2362     case Op_Return:
2363     {
2364       if( n->req() > TypeFunc::Parms &&
2365           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2366         // Treat Return value as LocalVar with GlobalEscape escape state.
2367         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2368         int ti = n->in(TypeFunc::Parms)->_idx;
2369         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2370         if (nt == PointsToNode::UnknownType) {
2371           _delayed_worklist.push(n); // Process it later.
2372           break;
2373         } else if (nt == PointsToNode::JavaObject) {
2374           add_pointsto_edge(n->_idx, ti);
2375         } else {
2376           add_deferred_edge(n->_idx, ti);
2377         }
2378       }
2379       _processed.set(n->_idx);
2380       break;
2381     }
2382     case Op_StoreP:
2383     case Op_StoreN:
2384     {
2385       const Type *adr_type = phase->type(n->in(MemNode::Address));
2386       adr_type = adr_type->make_ptr();
2387       if (adr_type->isa_oopptr()) {
2388         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2389       } else {
2390         Node* adr = n->in(MemNode::Address);
2391         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2392             adr->in(AddPNode::Address)->is_Proj() &&
2393             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2394           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2395           // We are computing a raw address for a store captured
2396           // by an Initialize compute an appropriate address type.
2397           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2398           assert(offs != Type::OffsetBot, "offset must be a constant");
2399         } else {
2400           _processed.set(n->_idx);
2401           return;
2402         }
2403       }
2404       break;
2405     }
2406     case Op_StorePConditional:
2407     case Op_CompareAndSwapP:
2408     case Op_CompareAndSwapN:
2409     {
2410       const Type *adr_type = phase->type(n->in(MemNode::Address));
2411       adr_type = adr_type->make_ptr();
2412       if (adr_type->isa_oopptr()) {
2413         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2414       } else {
2415         _processed.set(n->_idx);
2416         return;
2417       }
2418       break;
2419     }
2420     case Op_AryEq:
2421     case Op_StrComp:
2422     case Op_StrEquals:
2423     case Op_StrIndexOf:
2424     {
2425       // char[] arrays passed to string intrinsics are not scalar replaceable.
2426       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2427       break;
2428     }
2429     case Op_ThreadLocal:
2430     {
2431       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2432       break;
2433     }
2434     default:
2435       ;
2436       // nothing to do
2437   }
2438   return;
2439 }
2440 
2441 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2442   uint n_idx = n->_idx;
2443   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2444 
2445   // Don't set processed bit for AddP, LoadP, StoreP since
2446   // they may need more then one pass to process.
2447   if (_processed.test(n_idx))
2448     return; // No need to redefine node's state.
2449 
2450   if (n->is_Call()) {
2451     CallNode *call = n->as_Call();
2452     process_call_arguments(call, phase);
2453     _processed.set(n_idx);
2454     return;
2455   }
2456 
2457   switch (n->Opcode()) {
2458     case Op_AddP:
2459     {
2460       Node *base = get_addp_base(n);
2461       // Create a field edge to this node from everything base could point to.
2462       VectorSet ptset(Thread::current()->resource_area());
2463       PointsTo(ptset, base);
2464       for( VectorSetI i(&ptset); i.test(); ++i ) {
2465         uint pt = i.elem;
2466         add_field_edge(pt, n_idx, address_offset(n, phase));
2467       }
2468       break;
2469     }
2470     case Op_CastX2P:
2471     {
2472       assert(false, "Op_CastX2P");
2473       break;
2474     }
2475     case Op_CastPP:
2476     case Op_CheckCastPP:
2477     case Op_EncodeP:
2478     case Op_DecodeN:
2479     {
2480       int ti = n->in(1)->_idx;
2481       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2482       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2483         add_pointsto_edge(n_idx, ti);
2484       } else {
2485         add_deferred_edge(n_idx, ti);
2486       }
2487       _processed.set(n_idx);
2488       break;
2489     }
2490     case Op_ConP:
2491     {
2492       assert(false, "Op_ConP");
2493       break;
2494     }
2495     case Op_ConN:
2496     {
2497       assert(false, "Op_ConN");
2498       break;
2499     }
2500     case Op_CreateEx:
2501     {
2502       assert(false, "Op_CreateEx");
2503       break;
2504     }
2505     case Op_LoadKlass:
2506     case Op_LoadNKlass:
2507     {
2508       assert(false, "Op_LoadKlass");
2509       break;
2510     }
2511     case Op_LoadP:
2512     case Op_LoadN:
2513     {
2514       const Type *t = phase->type(n);
2515 #ifdef ASSERT
2516       if (t->make_ptr() == NULL)
2517         assert(false, "Op_LoadP");
2518 #endif
2519 
2520       Node* adr = n->in(MemNode::Address)->uncast();
2521       Node* adr_base;
2522       if (adr->is_AddP()) {
2523         adr_base = get_addp_base(adr);
2524       } else {
2525         adr_base = adr;
2526       }
2527 
2528       // For everything "adr_base" could point to, create a deferred edge from
2529       // this node to each field with the same offset.
2530       VectorSet ptset(Thread::current()->resource_area());
2531       PointsTo(ptset, adr_base);
2532       int offset = address_offset(adr, phase);
2533       for( VectorSetI i(&ptset); i.test(); ++i ) {
2534         uint pt = i.elem;
2535         add_deferred_edge_to_fields(n_idx, pt, offset);
2536       }
2537       break;
2538     }
2539     case Op_Parm:
2540     {
2541       assert(false, "Op_Parm");
2542       break;
2543     }
2544     case Op_Phi:
2545     {
2546 #ifdef ASSERT
2547       const Type *t = n->as_Phi()->type();
2548       if (t->make_ptr() == NULL)
2549         assert(false, "Op_Phi");
2550 #endif
2551       for (uint i = 1; i < n->req() ; i++) {
2552         Node* in = n->in(i);
2553         if (in == NULL)
2554           continue;  // ignore NULL
2555         in = in->uncast();
2556         if (in->is_top() || in == n)
2557           continue;  // ignore top or inputs which go back this node
2558         int ti = in->_idx;
2559         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2560         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2561         if (nt == PointsToNode::JavaObject) {
2562           add_pointsto_edge(n_idx, ti);
2563         } else {
2564           add_deferred_edge(n_idx, ti);
2565         }
2566       }
2567       _processed.set(n_idx);
2568       break;
2569     }
2570     case Op_Proj:
2571     {
2572       // we are only interested in the oop result projection from a call
2573       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2574         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
2575                "all nodes should be registered");
2576         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2577         assert(r->cnt() > TypeFunc::Parms, "sanity");
2578         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2579           process_call_result(n->as_Proj(), phase);
2580           assert(_processed.test(n_idx), "all call results should be processed");
2581           break;
2582         }
2583       }
2584       assert(false, "Op_Proj");
2585       break;
2586     }
2587     case Op_Return:
2588     {
2589 #ifdef ASSERT
2590       if( n->req() <= TypeFunc::Parms ||
2591           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2592         assert(false, "Op_Return");
2593       }
2594 #endif
2595       int ti = n->in(TypeFunc::Parms)->_idx;
2596       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
2597       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2598         add_pointsto_edge(n_idx, ti);
2599       } else {
2600         add_deferred_edge(n_idx, ti);
2601       }
2602       _processed.set(n_idx);
2603       break;
2604     }
2605     case Op_StoreP:
2606     case Op_StoreN:
2607     case Op_StorePConditional:
2608     case Op_CompareAndSwapP:
2609     case Op_CompareAndSwapN:
2610     {
2611       Node *adr = n->in(MemNode::Address);
2612       const Type *adr_type = phase->type(adr)->make_ptr();
2613 #ifdef ASSERT
2614       if (!adr_type->isa_oopptr())
2615         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2616 #endif
2617 
2618       assert(adr->is_AddP(), "expecting an AddP");
2619       Node *adr_base = get_addp_base(adr);
2620       Node *val = n->in(MemNode::ValueIn)->uncast();
2621       // For everything "adr_base" could point to, create a deferred edge
2622       // to "val" from each field with the same offset.
2623       VectorSet ptset(Thread::current()->resource_area());
2624       PointsTo(ptset, adr_base);
2625       for( VectorSetI i(&ptset); i.test(); ++i ) {
2626         uint pt = i.elem;
2627         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2628       }
2629       break;
2630     }
2631     case Op_AryEq:
2632     case Op_StrComp:
2633     case Op_StrEquals:
2634     case Op_StrIndexOf:
2635     {
2636       // char[] arrays passed to string intrinsic do not escape but
2637       // they are not scalar replaceable. Adjust escape state for them.
2638       // Start from in(2) edge since in(1) is memory edge.
2639       for (uint i = 2; i < n->req(); i++) {
2640         Node* adr = n->in(i)->uncast();
2641         const Type *at = phase->type(adr);
2642         if (!adr->is_top() && at->isa_ptr()) {
2643           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
2644                  at->isa_ptr() != NULL, "expecting an Ptr");
2645           if (adr->is_AddP()) {
2646             adr = get_addp_base(adr);
2647           }
2648           // Mark as ArgEscape everything "adr" could point to.
2649           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
2650         }
2651       }
2652       _processed.set(n_idx);
2653       break;
2654     }
2655     case Op_ThreadLocal:
2656     {
2657       assert(false, "Op_ThreadLocal");
2658       break;
2659     }
2660     default:
2661       // This method should be called only for EA specific nodes.
2662       ShouldNotReachHere();
2663   }
2664 }
2665 
2666 #ifndef PRODUCT
2667 void ConnectionGraph::dump() {
2668   bool first = true;
2669 
2670   uint size = nodes_size();
2671   for (uint ni = 0; ni < size; ni++) {
2672     PointsToNode *ptn = ptnode_adr(ni);
2673     PointsToNode::NodeType ptn_type = ptn->node_type();
2674 
2675     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2676       continue;
2677     PointsToNode::EscapeState es = escape_state(ptn->_node);
2678     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2679       if (first) {
2680         tty->cr();
2681         tty->print("======== Connection graph for ");
2682         _compile->method()->print_short_name();
2683         tty->cr();
2684         first = false;
2685       }
2686       tty->print("%6d ", ni);
2687       ptn->dump();
2688       // Print all locals which reference this allocation
2689       for (uint li = ni; li < size; li++) {
2690         PointsToNode *ptn_loc = ptnode_adr(li);
2691         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2692         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2693              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2694           ptnode_adr(li)->dump(false);
2695         }
2696       }
2697       if (Verbose) {
2698         // Print all fields which reference this allocation
2699         for (uint i = 0; i < ptn->edge_count(); i++) {
2700           uint ei = ptn->edge_target(i);
2701           ptnode_adr(ei)->dump(false);
2702         }
2703       }
2704       tty->cr();
2705     }
2706   }
2707 }
2708 #endif