1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 
  37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39   if (_edges == NULL) {
  40      Arena *a = Compile::current()->comp_arena();
  41     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  42   }
  43   _edges->append_if_missing(v);
  44 }
  45 
  46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  47   uint v = (targIdx << EdgeShift) + ((uint) et);
  48 
  49   _edges->remove(v);
  50 }
  51 
  52 #ifndef PRODUCT
  53 static const char *node_type_names[] = {
  54   "UnknownType",
  55   "JavaObject",
  56   "LocalVar",
  57   "Field"
  58 };
  59 
  60 static const char *esc_names[] = {
  61   "UnknownEscape",
  62   "NoEscape",
  63   "ArgEscape",
  64   "GlobalEscape"
  65 };
  66 
  67 static const char *edge_type_suffix[] = {
  68  "?", // UnknownEdge
  69  "P", // PointsToEdge
  70  "D", // DeferredEdge
  71  "F"  // FieldEdge
  72 };
  73 
  74 void PointsToNode::dump(bool print_state) const {
  75   NodeType nt = node_type();
  76   tty->print("%s ", node_type_names[(int) nt]);
  77   if (print_state) {
  78     EscapeState es = escape_state();
  79     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  80   }
  81   tty->print("[[");
  82   for (uint i = 0; i < edge_count(); i++) {
  83     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  84   }
  85   tty->print("]]  ");
  86   if (_node == NULL)
  87     tty->print_cr("<null>");
  88   else
  89     _node->dump();
  90 }
  91 #endif
  92 
  93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  94   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  95   _processed(C->comp_arena()),
  96   _collecting(true),
  97   _compile(C),
  98   _igvn(igvn),
  99   _node_map(C->comp_arena()) {
 100 
 101   _phantom_object = C->top()->_idx,
 102   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
 103 
 104   // Add ConP(#NULL) and ConN(#NULL) nodes.
 105   Node* oop_null = igvn->zerocon(T_OBJECT);
 106   _oop_null = oop_null->_idx;
 107   assert(_oop_null < C->unique(), "should be created already");
 108   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 109 
 110   if (UseCompressedOops) {
 111     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 112     _noop_null = noop_null->_idx;
 113     assert(_noop_null < C->unique(), "should be created already");
 114     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 115   }
 116 }
 117 
 118 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 119   PointsToNode *f = ptnode_adr(from_i);
 120   PointsToNode *t = ptnode_adr(to_i);
 121 
 122   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 123   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 124   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 125   f->add_edge(to_i, PointsToNode::PointsToEdge);
 126 }
 127 
 128 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 129   PointsToNode *f = ptnode_adr(from_i);
 130   PointsToNode *t = ptnode_adr(to_i);
 131 
 132   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 133   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 134   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 135   // don't add a self-referential edge, this can occur during removal of
 136   // deferred edges
 137   if (from_i != to_i)
 138     f->add_edge(to_i, PointsToNode::DeferredEdge);
 139 }
 140 
 141 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 142   const Type *adr_type = phase->type(adr);
 143   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 144       adr->in(AddPNode::Address)->is_Proj() &&
 145       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 146     // We are computing a raw address for a store captured by an Initialize
 147     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 148     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 149     assert(offs != Type::OffsetBot ||
 150            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 151            "offset must be a constant or it is initialization of array");
 152     return offs;
 153   }
 154   const TypePtr *t_ptr = adr_type->isa_ptr();
 155   assert(t_ptr != NULL, "must be a pointer type");
 156   return t_ptr->offset();
 157 }
 158 
 159 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 160   PointsToNode *f = ptnode_adr(from_i);
 161   PointsToNode *t = ptnode_adr(to_i);
 162 
 163   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 164   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 165   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 166   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 167   t->set_offset(offset);
 168 
 169   f->add_edge(to_i, PointsToNode::FieldEdge);
 170 }
 171 
 172 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 173   PointsToNode *npt = ptnode_adr(ni);
 174   PointsToNode::EscapeState old_es = npt->escape_state();
 175   if (es > old_es)
 176     npt->set_escape_state(es);
 177 }
 178 
 179 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 180                                PointsToNode::EscapeState es, bool done) {
 181   PointsToNode* ptadr = ptnode_adr(n->_idx);
 182   ptadr->_node = n;
 183   ptadr->set_node_type(nt);
 184 
 185   // inline set_escape_state(idx, es);
 186   PointsToNode::EscapeState old_es = ptadr->escape_state();
 187   if (es > old_es)
 188     ptadr->set_escape_state(es);
 189 
 190   if (done)
 191     _processed.set(n->_idx);
 192 }
 193 
 194 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
 195   uint idx = n->_idx;
 196   PointsToNode::EscapeState es;
 197 
 198   // If we are still collecting or there were no non-escaping allocations
 199   // we don't know the answer yet
 200   if (_collecting)
 201     return PointsToNode::UnknownEscape;
 202 
 203   // if the node was created after the escape computation, return
 204   // UnknownEscape
 205   if (idx >= nodes_size())
 206     return PointsToNode::UnknownEscape;
 207 
 208   es = ptnode_adr(idx)->escape_state();
 209 
 210   // if we have already computed a value, return it
 211   if (es != PointsToNode::UnknownEscape &&
 212       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 213     return es;
 214 
 215   // PointsTo() calls n->uncast() which can return a new ideal node.
 216   if (n->uncast()->_idx >= nodes_size())
 217     return PointsToNode::UnknownEscape;
 218 
 219   PointsToNode::EscapeState orig_es = es;
 220 
 221   // compute max escape state of anything this node could point to
 222   VectorSet ptset(Thread::current()->resource_area());
 223   PointsTo(ptset, n);
 224   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 225     uint pt = i.elem;
 226     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 227     if (pes > es)
 228       es = pes;
 229   }
 230   if (orig_es != es) {
 231     // cache the computed escape state
 232     assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 233     ptnode_adr(idx)->set_escape_state(es);
 234   } // orig_es could be PointsToNode::UnknownEscape
 235   return es;
 236 }
 237 
 238 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
 239   VectorSet visited(Thread::current()->resource_area());
 240   GrowableArray<uint>  worklist;
 241 
 242 #ifdef ASSERT
 243   Node *orig_n = n;
 244 #endif
 245 
 246   n = n->uncast();
 247   PointsToNode* npt = ptnode_adr(n->_idx);
 248 
 249   // If we have a JavaObject, return just that object
 250   if (npt->node_type() == PointsToNode::JavaObject) {
 251     ptset.set(n->_idx);
 252     return;
 253   }
 254 #ifdef ASSERT
 255   if (npt->_node == NULL) {
 256     if (orig_n != n)
 257       orig_n->dump();
 258     n->dump();
 259     assert(npt->_node != NULL, "unregistered node");
 260   }
 261 #endif
 262   worklist.push(n->_idx);
 263   while(worklist.length() > 0) {
 264     int ni = worklist.pop();
 265     if (visited.test_set(ni))
 266       continue;
 267 
 268     PointsToNode* pn = ptnode_adr(ni);
 269     // ensure that all inputs of a Phi have been processed
 270     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 271 
 272     int edges_processed = 0;
 273     uint e_cnt = pn->edge_count();
 274     for (uint e = 0; e < e_cnt; e++) {
 275       uint etgt = pn->edge_target(e);
 276       PointsToNode::EdgeType et = pn->edge_type(e);
 277       if (et == PointsToNode::PointsToEdge) {
 278         ptset.set(etgt);
 279         edges_processed++;
 280       } else if (et == PointsToNode::DeferredEdge) {
 281         worklist.push(etgt);
 282         edges_processed++;
 283       } else {
 284         assert(false,"neither PointsToEdge or DeferredEdge");
 285       }
 286     }
 287     if (edges_processed == 0) {
 288       // no deferred or pointsto edges found.  Assume the value was set
 289       // outside this method.  Add the phantom object to the pointsto set.
 290       ptset.set(_phantom_object);
 291     }
 292   }
 293 }
 294 
 295 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 296   // This method is most expensive during ConnectionGraph construction.
 297   // Reuse vectorSet and an additional growable array for deferred edges.
 298   deferred_edges->clear();
 299   visited->Clear();
 300 
 301   visited->set(ni);
 302   PointsToNode *ptn = ptnode_adr(ni);
 303 
 304   // Mark current edges as visited and move deferred edges to separate array.
 305   for (uint i = 0; i < ptn->edge_count(); ) {
 306     uint t = ptn->edge_target(i);
 307 #ifdef ASSERT
 308     assert(!visited->test_set(t), "expecting no duplications");
 309 #else
 310     visited->set(t);
 311 #endif
 312     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 313       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 314       deferred_edges->append(t);
 315     } else {
 316       i++;
 317     }
 318   }
 319   for (int next = 0; next < deferred_edges->length(); ++next) {
 320     uint t = deferred_edges->at(next);
 321     PointsToNode *ptt = ptnode_adr(t);
 322     uint e_cnt = ptt->edge_count();
 323     for (uint e = 0; e < e_cnt; e++) {
 324       uint etgt = ptt->edge_target(e);
 325       if (visited->test_set(etgt))
 326         continue;
 327 
 328       PointsToNode::EdgeType et = ptt->edge_type(e);
 329       if (et == PointsToNode::PointsToEdge) {
 330         add_pointsto_edge(ni, etgt);
 331         if(etgt == _phantom_object) {
 332           // Special case - field set outside (globally escaping).
 333           ptn->set_escape_state(PointsToNode::GlobalEscape);
 334         }
 335       } else if (et == PointsToNode::DeferredEdge) {
 336         deferred_edges->append(etgt);
 337       } else {
 338         assert(false,"invalid connection graph");
 339       }
 340     }
 341   }
 342 }
 343 
 344 
 345 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 346 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 347 //  a pointsto edge is added if it is a JavaObject
 348 
 349 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 350   PointsToNode* an = ptnode_adr(adr_i);
 351   PointsToNode* to = ptnode_adr(to_i);
 352   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 353 
 354   for (uint fe = 0; fe < an->edge_count(); fe++) {
 355     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 356     int fi = an->edge_target(fe);
 357     PointsToNode* pf = ptnode_adr(fi);
 358     int po = pf->offset();
 359     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 360       if (deferred)
 361         add_deferred_edge(fi, to_i);
 362       else
 363         add_pointsto_edge(fi, to_i);
 364     }
 365   }
 366 }
 367 
 368 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 369 // whose offset matches "offset".
 370 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 371   PointsToNode* an = ptnode_adr(adr_i);
 372   for (uint fe = 0; fe < an->edge_count(); fe++) {
 373     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 374     int fi = an->edge_target(fe);
 375     PointsToNode* pf = ptnode_adr(fi);
 376     int po = pf->offset();
 377     if (pf->edge_count() == 0) {
 378       // we have not seen any stores to this field, assume it was set outside this method
 379       add_pointsto_edge(fi, _phantom_object);
 380     }
 381     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 382       add_deferred_edge(from_i, fi);
 383     }
 384   }
 385 }
 386 
 387 // Helper functions
 388 
 389 static Node* get_addp_base(Node *addp) {
 390   assert(addp->is_AddP(), "must be AddP");
 391   //
 392   // AddP cases for Base and Address inputs:
 393   // case #1. Direct object's field reference:
 394   //     Allocate
 395   //       |
 396   //     Proj #5 ( oop result )
 397   //       |
 398   //     CheckCastPP (cast to instance type)
 399   //      | |
 400   //     AddP  ( base == address )
 401   //
 402   // case #2. Indirect object's field reference:
 403   //      Phi
 404   //       |
 405   //     CastPP (cast to instance type)
 406   //      | |
 407   //     AddP  ( base == address )
 408   //
 409   // case #3. Raw object's field reference for Initialize node:
 410   //      Allocate
 411   //        |
 412   //      Proj #5 ( oop result )
 413   //  top   |
 414   //     \  |
 415   //     AddP  ( base == top )
 416   //
 417   // case #4. Array's element reference:
 418   //   {CheckCastPP | CastPP}
 419   //     |  | |
 420   //     |  AddP ( array's element offset )
 421   //     |  |
 422   //     AddP ( array's offset )
 423   //
 424   // case #5. Raw object's field reference for arraycopy stub call:
 425   //          The inline_native_clone() case when the arraycopy stub is called
 426   //          after the allocation before Initialize and CheckCastPP nodes.
 427   //      Allocate
 428   //        |
 429   //      Proj #5 ( oop result )
 430   //       | |
 431   //       AddP  ( base == address )
 432   //
 433   // case #6. Constant Pool, ThreadLocal, CastX2P or
 434   //          Raw object's field reference:
 435   //      {ConP, ThreadLocal, CastX2P, raw Load}
 436   //  top   |
 437   //     \  |
 438   //     AddP  ( base == top )
 439   //
 440   // case #7. Klass's field reference.
 441   //      LoadKlass
 442   //       | |
 443   //       AddP  ( base == address )
 444   //
 445   // case #8. narrow Klass's field reference.
 446   //      LoadNKlass
 447   //       |
 448   //      DecodeN
 449   //       | |
 450   //       AddP  ( base == address )
 451   //
 452   Node *base = addp->in(AddPNode::Base)->uncast();
 453   if (base->is_top()) { // The AddP case #3 and #6.
 454     base = addp->in(AddPNode::Address)->uncast();
 455     while (base->is_AddP()) {
 456       // Case #6 (unsafe access) may have several chained AddP nodes.
 457       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 458       base = base->in(AddPNode::Address)->uncast();
 459     }
 460     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 461            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 462            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 463            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 464   }
 465   return base;
 466 }
 467 
 468 static Node* find_second_addp(Node* addp, Node* n) {
 469   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 470 
 471   Node* addp2 = addp->raw_out(0);
 472   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 473       addp2->in(AddPNode::Base) == n &&
 474       addp2->in(AddPNode::Address) == addp) {
 475 
 476     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 477     //
 478     // Find array's offset to push it on worklist first and
 479     // as result process an array's element offset first (pushed second)
 480     // to avoid CastPP for the array's offset.
 481     // Otherwise the inserted CastPP (LocalVar) will point to what
 482     // the AddP (Field) points to. Which would be wrong since
 483     // the algorithm expects the CastPP has the same point as
 484     // as AddP's base CheckCastPP (LocalVar).
 485     //
 486     //    ArrayAllocation
 487     //     |
 488     //    CheckCastPP
 489     //     |
 490     //    memProj (from ArrayAllocation CheckCastPP)
 491     //     |  ||
 492     //     |  ||   Int (element index)
 493     //     |  ||    |   ConI (log(element size))
 494     //     |  ||    |   /
 495     //     |  ||   LShift
 496     //     |  ||  /
 497     //     |  AddP (array's element offset)
 498     //     |  |
 499     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 500     //     | / /
 501     //     AddP (array's offset)
 502     //      |
 503     //     Load/Store (memory operation on array's element)
 504     //
 505     return addp2;
 506   }
 507   return NULL;
 508 }
 509 
 510 //
 511 // Adjust the type and inputs of an AddP which computes the
 512 // address of a field of an instance
 513 //
 514 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 515   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 516   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 517   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 518   if (t == NULL) {
 519     // We are computing a raw address for a store captured by an Initialize
 520     // compute an appropriate address type (cases #3 and #5).
 521     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 522     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 523     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 524     assert(offs != Type::OffsetBot, "offset must be a constant");
 525     t = base_t->add_offset(offs)->is_oopptr();
 526   }
 527   int inst_id =  base_t->instance_id();
 528   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 529                              "old type must be non-instance or match new type");
 530 
 531   // The type 't' could be subclass of 'base_t'.
 532   // As result t->offset() could be large then base_t's size and it will
 533   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 534   // constructor verifies correctness of the offset.
 535   //
 536   // It could happened on subclass's branch (from the type profiling
 537   // inlining) which was not eliminated during parsing since the exactness
 538   // of the allocation type was not propagated to the subclass type check.
 539   //
 540   // Or the type 't' could be not related to 'base_t' at all.
 541   // It could happened when CHA type is different from MDO type on a dead path
 542   // (for example, from instanceof check) which is not collapsed during parsing.
 543   //
 544   // Do nothing for such AddP node and don't process its users since
 545   // this code branch will go away.
 546   //
 547   if (!t->is_known_instance() &&
 548       !base_t->klass()->is_subtype_of(t->klass())) {
 549      return false; // bail out
 550   }
 551 
 552   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 553   // Do NOT remove the next line: ensure a new alias index is allocated
 554   // for the instance type. Note: C++ will not remove it since the call
 555   // has side effect.
 556   int alias_idx = _compile->get_alias_index(tinst);
 557   igvn->set_type(addp, tinst);
 558   // record the allocation in the node map
 559   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 560   set_map(addp->_idx, get_map(base->_idx));
 561 
 562   // Set addp's Base and Address to 'base'.
 563   Node *abase = addp->in(AddPNode::Base);
 564   Node *adr   = addp->in(AddPNode::Address);
 565   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 566       adr->in(0)->_idx == (uint)inst_id) {
 567     // Skip AddP cases #3 and #5.
 568   } else {
 569     assert(!abase->is_top(), "sanity"); // AddP case #3
 570     if (abase != base) {
 571       igvn->hash_delete(addp);
 572       addp->set_req(AddPNode::Base, base);
 573       if (abase == adr) {
 574         addp->set_req(AddPNode::Address, base);
 575       } else {
 576         // AddP case #4 (adr is array's element offset AddP node)
 577 #ifdef ASSERT
 578         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 579         assert(adr->is_AddP() && atype != NULL &&
 580                atype->instance_id() == inst_id, "array's element offset should be processed first");
 581 #endif
 582       }
 583       igvn->hash_insert(addp);
 584     }
 585   }
 586   // Put on IGVN worklist since at least addp's type was changed above.
 587   record_for_optimizer(addp);
 588   return true;
 589 }
 590 
 591 //
 592 // Create a new version of orig_phi if necessary. Returns either the newly
 593 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 594 // phi was created.  Cache the last newly created phi in the node map.
 595 //
 596 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 597   Compile *C = _compile;
 598   new_created = false;
 599   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 600   // nothing to do if orig_phi is bottom memory or matches alias_idx
 601   if (phi_alias_idx == alias_idx) {
 602     return orig_phi;
 603   }
 604   // Have we recently created a Phi for this alias index?
 605   PhiNode *result = get_map_phi(orig_phi->_idx);
 606   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 607     return result;
 608   }
 609   // Previous check may fail when the same wide memory Phi was split into Phis
 610   // for different memory slices. Search all Phis for this region.
 611   if (result != NULL) {
 612     Node* region = orig_phi->in(0);
 613     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 614       Node* phi = region->fast_out(i);
 615       if (phi->is_Phi() &&
 616           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 617         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 618         return phi->as_Phi();
 619       }
 620     }
 621   }
 622   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 623     if (C->do_escape_analysis() == true && !C->failing()) {
 624       // Retry compilation without escape analysis.
 625       // If this is the first failure, the sentinel string will "stick"
 626       // to the Compile object, and the C2Compiler will see it and retry.
 627       C->record_failure(C2Compiler::retry_no_escape_analysis());
 628     }
 629     return NULL;
 630   }
 631   orig_phi_worklist.append_if_missing(orig_phi);
 632   const TypePtr *atype = C->get_adr_type(alias_idx);
 633   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 634   C->copy_node_notes_to(result, orig_phi);
 635   igvn->set_type(result, result->bottom_type());
 636   record_for_optimizer(result);
 637 
 638   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 639   assert(pn == NULL || pn == orig_phi, "wrong node");
 640   set_map(orig_phi->_idx, result);
 641   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 642 
 643   new_created = true;
 644   return result;
 645 }
 646 
 647 //
 648 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 649 // specified alias index.
 650 //
 651 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 652 
 653   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 654   Compile *C = _compile;
 655   bool new_phi_created;
 656   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 657   if (!new_phi_created) {
 658     return result;
 659   }
 660 
 661   GrowableArray<PhiNode *>  phi_list;
 662   GrowableArray<uint>  cur_input;
 663 
 664   PhiNode *phi = orig_phi;
 665   uint idx = 1;
 666   bool finished = false;
 667   while(!finished) {
 668     while (idx < phi->req()) {
 669       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 670       if (mem != NULL && mem->is_Phi()) {
 671         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 672         if (new_phi_created) {
 673           // found an phi for which we created a new split, push current one on worklist and begin
 674           // processing new one
 675           phi_list.push(phi);
 676           cur_input.push(idx);
 677           phi = mem->as_Phi();
 678           result = newphi;
 679           idx = 1;
 680           continue;
 681         } else {
 682           mem = newphi;
 683         }
 684       }
 685       if (C->failing()) {
 686         return NULL;
 687       }
 688       result->set_req(idx++, mem);
 689     }
 690 #ifdef ASSERT
 691     // verify that the new Phi has an input for each input of the original
 692     assert( phi->req() == result->req(), "must have same number of inputs.");
 693     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 694 #endif
 695     // Check if all new phi's inputs have specified alias index.
 696     // Otherwise use old phi.
 697     for (uint i = 1; i < phi->req(); i++) {
 698       Node* in = result->in(i);
 699       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 700     }
 701     // we have finished processing a Phi, see if there are any more to do
 702     finished = (phi_list.length() == 0 );
 703     if (!finished) {
 704       phi = phi_list.pop();
 705       idx = cur_input.pop();
 706       PhiNode *prev_result = get_map_phi(phi->_idx);
 707       prev_result->set_req(idx++, result);
 708       result = prev_result;
 709     }
 710   }
 711   return result;
 712 }
 713 
 714 
 715 //
 716 // The next methods are derived from methods in MemNode.
 717 //
 718 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 719   Node *mem = mmem;
 720   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 721   // means an array I have not precisely typed yet.  Do not do any
 722   // alias stuff with it any time soon.
 723   if( toop->base() != Type::AnyPtr &&
 724       !(toop->klass() != NULL &&
 725         toop->klass()->is_java_lang_Object() &&
 726         toop->offset() == Type::OffsetBot) ) {
 727     mem = mmem->memory_at(alias_idx);
 728     // Update input if it is progress over what we have now
 729   }
 730   return mem;
 731 }
 732 
 733 //
 734 // Move memory users to their memory slices.
 735 //
 736 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 737   Compile* C = _compile;
 738 
 739   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 740   assert(tp != NULL, "ptr type");
 741   int alias_idx = C->get_alias_index(tp);
 742   int general_idx = C->get_general_index(alias_idx);
 743 
 744   // Move users first
 745   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 746     Node* use = n->fast_out(i);
 747     if (use->is_MergeMem()) {
 748       MergeMemNode* mmem = use->as_MergeMem();
 749       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 750       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 751         continue; // Nothing to do
 752       }
 753       // Replace previous general reference to mem node.
 754       uint orig_uniq = C->unique();
 755       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 756       assert(orig_uniq == C->unique(), "no new nodes");
 757       mmem->set_memory_at(general_idx, m);
 758       --imax;
 759       --i;
 760     } else if (use->is_MemBar()) {
 761       assert(!use->is_Initialize(), "initializing stores should not be moved");
 762       if (use->req() > MemBarNode::Precedent &&
 763           use->in(MemBarNode::Precedent) == n) {
 764         // Don't move related membars.
 765         record_for_optimizer(use);
 766         continue;
 767       }
 768       tp = use->as_MemBar()->adr_type()->isa_ptr();
 769       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 770           alias_idx == general_idx) {
 771         continue; // Nothing to do
 772       }
 773       // Move to general memory slice.
 774       uint orig_uniq = C->unique();
 775       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 776       assert(orig_uniq == C->unique(), "no new nodes");
 777       igvn->hash_delete(use);
 778       imax -= use->replace_edge(n, m);
 779       igvn->hash_insert(use);
 780       record_for_optimizer(use);
 781       --i;
 782 #ifdef ASSERT
 783     } else if (use->is_Mem()) {
 784       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 785         // Don't move related cardmark.
 786         continue;
 787       }
 788       // Memory nodes should have new memory input.
 789       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 790       assert(tp != NULL, "ptr type");
 791       int idx = C->get_alias_index(tp);
 792       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 793              "Following memory nodes should have new memory input or be on the same memory slice");
 794     } else if (use->is_Phi()) {
 795       // Phi nodes should be split and moved already.
 796       tp = use->as_Phi()->adr_type()->isa_ptr();
 797       assert(tp != NULL, "ptr type");
 798       int idx = C->get_alias_index(tp);
 799       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 800     } else {
 801       use->dump();
 802       assert(false, "should not be here");
 803 #endif
 804     }
 805   }
 806 }
 807 
 808 //
 809 // Search memory chain of "mem" to find a MemNode whose address
 810 // is the specified alias index.
 811 //
 812 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 813   if (orig_mem == NULL)
 814     return orig_mem;
 815   Compile* C = phase->C;
 816   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 817   bool is_instance = (toop != NULL) && toop->is_known_instance();
 818   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 819   Node *prev = NULL;
 820   Node *result = orig_mem;
 821   while (prev != result) {
 822     prev = result;
 823     if (result == start_mem)
 824       break;  // hit one of our sentinels
 825     if (result->is_Mem()) {
 826       const Type *at = phase->type(result->in(MemNode::Address));
 827       if (at != Type::TOP) {
 828         assert (at->isa_ptr() != NULL, "pointer type required.");
 829         int idx = C->get_alias_index(at->is_ptr());
 830         if (idx == alias_idx)
 831           break;
 832       }
 833       result = result->in(MemNode::Memory);
 834     }
 835     if (!is_instance)
 836       continue;  // don't search further for non-instance types
 837     // skip over a call which does not affect this memory slice
 838     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 839       Node *proj_in = result->in(0);
 840       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 841         break;  // hit one of our sentinels
 842       } else if (proj_in->is_Call()) {
 843         CallNode *call = proj_in->as_Call();
 844         if (!call->may_modify(toop, phase)) {
 845           result = call->in(TypeFunc::Memory);
 846         }
 847       } else if (proj_in->is_Initialize()) {
 848         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 849         // Stop if this is the initialization for the object instance which
 850         // which contains this memory slice, otherwise skip over it.
 851         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 852           result = proj_in->in(TypeFunc::Memory);
 853         }
 854       } else if (proj_in->is_MemBar()) {
 855         result = proj_in->in(TypeFunc::Memory);
 856       }
 857     } else if (result->is_MergeMem()) {
 858       MergeMemNode *mmem = result->as_MergeMem();
 859       result = step_through_mergemem(mmem, alias_idx, toop);
 860       if (result == mmem->base_memory()) {
 861         // Didn't find instance memory, search through general slice recursively.
 862         result = mmem->memory_at(C->get_general_index(alias_idx));
 863         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 864         if (C->failing()) {
 865           return NULL;
 866         }
 867         mmem->set_memory_at(alias_idx, result);
 868       }
 869     } else if (result->is_Phi() &&
 870                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 871       Node *un = result->as_Phi()->unique_input(phase);
 872       if (un != NULL) {
 873         orig_phis.append_if_missing(result->as_Phi());
 874         result = un;
 875       } else {
 876         break;
 877       }
 878     } else if (result->is_ClearArray()) {
 879       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 880         // Can not bypass initialization of the instance
 881         // we are looking for.
 882         break;
 883       }
 884       // Otherwise skip it (the call updated 'result' value).
 885     } else if (result->Opcode() == Op_SCMemProj) {
 886       assert(result->in(0)->is_LoadStore(), "sanity");
 887       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 888       if (at != Type::TOP) {
 889         assert (at->isa_ptr() != NULL, "pointer type required.");
 890         int idx = C->get_alias_index(at->is_ptr());
 891         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 892         break;
 893       }
 894       result = result->in(0)->in(MemNode::Memory);
 895     }
 896   }
 897   if (result->is_Phi()) {
 898     PhiNode *mphi = result->as_Phi();
 899     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 900     const TypePtr *t = mphi->adr_type();
 901     if (C->get_alias_index(t) != alias_idx) {
 902       // Create a new Phi with the specified alias index type.
 903       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 904     } else if (!is_instance) {
 905       // Push all non-instance Phis on the orig_phis worklist to update inputs
 906       // during Phase 4 if needed.
 907       orig_phis.append_if_missing(mphi);
 908     }
 909   }
 910   // the result is either MemNode, PhiNode, InitializeNode.
 911   return result;
 912 }
 913 
 914 //
 915 //  Convert the types of unescaped object to instance types where possible,
 916 //  propagate the new type information through the graph, and update memory
 917 //  edges and MergeMem inputs to reflect the new type.
 918 //
 919 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 920 //  The processing is done in 4 phases:
 921 //
 922 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 923 //            types for the CheckCastPP for allocations where possible.
 924 //            Propagate the the new types through users as follows:
 925 //               casts and Phi:  push users on alloc_worklist
 926 //               AddP:  cast Base and Address inputs to the instance type
 927 //                      push any AddP users on alloc_worklist and push any memnode
 928 //                      users onto memnode_worklist.
 929 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 930 //            search the Memory chain for a store with the appropriate type
 931 //            address type.  If a Phi is found, create a new version with
 932 //            the appropriate memory slices from each of the Phi inputs.
 933 //            For stores, process the users as follows:
 934 //               MemNode:  push on memnode_worklist
 935 //               MergeMem: push on mergemem_worklist
 936 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 937 //            moving the first node encountered of each  instance type to the
 938 //            the input corresponding to its alias index.
 939 //            appropriate memory slice.
 940 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 941 //
 942 // In the following example, the CheckCastPP nodes are the cast of allocation
 943 // results and the allocation of node 29 is unescaped and eligible to be an
 944 // instance type.
 945 //
 946 // We start with:
 947 //
 948 //     7 Parm #memory
 949 //    10  ConI  "12"
 950 //    19  CheckCastPP   "Foo"
 951 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 952 //    29  CheckCastPP   "Foo"
 953 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 954 //
 955 //    40  StoreP  25   7  20   ... alias_index=4
 956 //    50  StoreP  35  40  30   ... alias_index=4
 957 //    60  StoreP  45  50  20   ... alias_index=4
 958 //    70  LoadP    _  60  30   ... alias_index=4
 959 //    80  Phi     75  50  60   Memory alias_index=4
 960 //    90  LoadP    _  80  30   ... alias_index=4
 961 //   100  LoadP    _  80  20   ... alias_index=4
 962 //
 963 //
 964 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 965 // and creating a new alias index for node 30.  This gives:
 966 //
 967 //     7 Parm #memory
 968 //    10  ConI  "12"
 969 //    19  CheckCastPP   "Foo"
 970 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 971 //    29  CheckCastPP   "Foo"  iid=24
 972 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 973 //
 974 //    40  StoreP  25   7  20   ... alias_index=4
 975 //    50  StoreP  35  40  30   ... alias_index=6
 976 //    60  StoreP  45  50  20   ... alias_index=4
 977 //    70  LoadP    _  60  30   ... alias_index=6
 978 //    80  Phi     75  50  60   Memory alias_index=4
 979 //    90  LoadP    _  80  30   ... alias_index=6
 980 //   100  LoadP    _  80  20   ... alias_index=4
 981 //
 982 // In phase 2, new memory inputs are computed for the loads and stores,
 983 // And a new version of the phi is created.  In phase 4, the inputs to
 984 // node 80 are updated and then the memory nodes are updated with the
 985 // values computed in phase 2.  This results in:
 986 //
 987 //     7 Parm #memory
 988 //    10  ConI  "12"
 989 //    19  CheckCastPP   "Foo"
 990 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 991 //    29  CheckCastPP   "Foo"  iid=24
 992 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 993 //
 994 //    40  StoreP  25  7   20   ... alias_index=4
 995 //    50  StoreP  35  7   30   ... alias_index=6
 996 //    60  StoreP  45  40  20   ... alias_index=4
 997 //    70  LoadP    _  50  30   ... alias_index=6
 998 //    80  Phi     75  40  60   Memory alias_index=4
 999 //   120  Phi     75  50  50   Memory alias_index=6
1000 //    90  LoadP    _ 120  30   ... alias_index=6
1001 //   100  LoadP    _  80  20   ... alias_index=4
1002 //
1003 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
1004   GrowableArray<Node *>  memnode_worklist;
1005   GrowableArray<PhiNode *>  orig_phis;
1006 
1007   PhaseGVN  *igvn = _igvn;
1008   uint new_index_start = (uint) _compile->num_alias_types();
1009   Arena* arena = Thread::current()->resource_area();
1010   VectorSet visited(arena);
1011   VectorSet ptset(arena);
1012 
1013 
1014   //  Phase 1:  Process possible allocations from alloc_worklist.
1015   //  Create instance types for the CheckCastPP for allocations where possible.
1016   //
1017   // (Note: don't forget to change the order of the second AddP node on
1018   //  the alloc_worklist if the order of the worklist processing is changed,
1019   //  see the comment in find_second_addp().)
1020   //
1021   while (alloc_worklist.length() != 0) {
1022     Node *n = alloc_worklist.pop();
1023     uint ni = n->_idx;
1024     const TypeOopPtr* tinst = NULL;
1025     if (n->is_Call()) {
1026       CallNode *alloc = n->as_Call();
1027       // copy escape information to call node
1028       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1029       PointsToNode::EscapeState es = escape_state(alloc);
1030       // We have an allocation or call which returns a Java object,
1031       // see if it is unescaped.
1032       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
1033         continue;
1034 
1035       // Find CheckCastPP for the allocate or for the return value of a call
1036       n = alloc->result_cast();
1037       if (n == NULL) {            // No uses except Initialize node
1038         if (alloc->is_Allocate()) {
1039           // Set the scalar_replaceable flag for allocation
1040           // so it could be eliminated if it has no uses.
1041           alloc->as_Allocate()->_is_scalar_replaceable = true;
1042         }
1043         continue;
1044       }
1045       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1046         assert(!alloc->is_Allocate(), "allocation should have unique type");
1047         continue;
1048       }
1049 
1050       // The inline code for Object.clone() casts the allocation result to
1051       // java.lang.Object and then to the actual type of the allocated
1052       // object. Detect this case and use the second cast.
1053       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1054       // the allocation result is cast to java.lang.Object and then
1055       // to the actual Array type.
1056       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1057           && (alloc->is_AllocateArray() ||
1058               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1059         Node *cast2 = NULL;
1060         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1061           Node *use = n->fast_out(i);
1062           if (use->is_CheckCastPP()) {
1063             cast2 = use;
1064             break;
1065           }
1066         }
1067         if (cast2 != NULL) {
1068           n = cast2;
1069         } else {
1070           // Non-scalar replaceable if the allocation type is unknown statically
1071           // (reflection allocation), the object can't be restored during
1072           // deoptimization without precise type.
1073           continue;
1074         }
1075       }
1076       if (alloc->is_Allocate()) {
1077         // Set the scalar_replaceable flag for allocation
1078         // so it could be eliminated.
1079         alloc->as_Allocate()->_is_scalar_replaceable = true;
1080       }
1081       set_escape_state(n->_idx, es);
1082       // in order for an object to be scalar-replaceable, it must be:
1083       //   - a direct allocation (not a call returning an object)
1084       //   - non-escaping
1085       //   - eligible to be a unique type
1086       //   - not determined to be ineligible by escape analysis
1087       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1088              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1089       set_map(alloc->_idx, n);
1090       set_map(n->_idx, alloc);
1091       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1092       if (t == NULL)
1093         continue;  // not a TypeInstPtr
1094       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1095       igvn->hash_delete(n);
1096       igvn->set_type(n,  tinst);
1097       n->raise_bottom_type(tinst);
1098       igvn->hash_insert(n);
1099       record_for_optimizer(n);
1100       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
1101           (t->isa_instptr() || t->isa_aryptr())) {
1102 
1103         // First, put on the worklist all Field edges from Connection Graph
1104         // which is more accurate then putting immediate users from Ideal Graph.
1105         for (uint e = 0; e < ptn->edge_count(); e++) {
1106           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1107           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1108                  "only AddP nodes are Field edges in CG");
1109           if (use->outcnt() > 0) { // Don't process dead nodes
1110             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1111             if (addp2 != NULL) {
1112               assert(alloc->is_AllocateArray(),"array allocation was expected");
1113               alloc_worklist.append_if_missing(addp2);
1114             }
1115             alloc_worklist.append_if_missing(use);
1116           }
1117         }
1118 
1119         // An allocation may have an Initialize which has raw stores. Scan
1120         // the users of the raw allocation result and push AddP users
1121         // on alloc_worklist.
1122         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1123         assert (raw_result != NULL, "must have an allocation result");
1124         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1125           Node *use = raw_result->fast_out(i);
1126           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1127             Node* addp2 = find_second_addp(use, raw_result);
1128             if (addp2 != NULL) {
1129               assert(alloc->is_AllocateArray(),"array allocation was expected");
1130               alloc_worklist.append_if_missing(addp2);
1131             }
1132             alloc_worklist.append_if_missing(use);
1133           } else if (use->is_MemBar()) {
1134             memnode_worklist.append_if_missing(use);
1135           }
1136         }
1137       }
1138     } else if (n->is_AddP()) {
1139       ptset.Clear();
1140       PointsTo(ptset, get_addp_base(n));
1141       assert(ptset.Size() == 1, "AddP address is unique");
1142       uint elem = ptset.getelem(); // Allocation node's index
1143       if (elem == _phantom_object) {
1144         assert(false, "escaped allocation");
1145         continue; // Assume the value was set outside this method.
1146       }
1147       Node *base = get_map(elem);  // CheckCastPP node
1148       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1149       tinst = igvn->type(base)->isa_oopptr();
1150     } else if (n->is_Phi() ||
1151                n->is_CheckCastPP() ||
1152                n->is_EncodeP() ||
1153                n->is_DecodeN() ||
1154                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1155       if (visited.test_set(n->_idx)) {
1156         assert(n->is_Phi(), "loops only through Phi's");
1157         continue;  // already processed
1158       }
1159       ptset.Clear();
1160       PointsTo(ptset, n);
1161       if (ptset.Size() == 1) {
1162         uint elem = ptset.getelem(); // Allocation node's index
1163         if (elem == _phantom_object) {
1164           assert(false, "escaped allocation");
1165           continue; // Assume the value was set outside this method.
1166         }
1167         Node *val = get_map(elem);   // CheckCastPP node
1168         TypeNode *tn = n->as_Type();
1169         tinst = igvn->type(val)->isa_oopptr();
1170         assert(tinst != NULL && tinst->is_known_instance() &&
1171                (uint)tinst->instance_id() == elem , "instance type expected.");
1172 
1173         const Type *tn_type = igvn->type(tn);
1174         const TypeOopPtr *tn_t;
1175         if (tn_type->isa_narrowoop()) {
1176           tn_t = tn_type->make_ptr()->isa_oopptr();
1177         } else {
1178           tn_t = tn_type->isa_oopptr();
1179         }
1180 
1181         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1182           if (tn_type->isa_narrowoop()) {
1183             tn_type = tinst->make_narrowoop();
1184           } else {
1185             tn_type = tinst;
1186           }
1187           igvn->hash_delete(tn);
1188           igvn->set_type(tn, tn_type);
1189           tn->set_type(tn_type);
1190           igvn->hash_insert(tn);
1191           record_for_optimizer(n);
1192         } else {
1193           assert(tn_type == TypePtr::NULL_PTR ||
1194                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1195                  "unexpected type");
1196           continue; // Skip dead path with different type
1197         }
1198       }
1199     } else {
1200       debug_only(n->dump();)
1201       assert(false, "EA: unexpected node");
1202       continue;
1203     }
1204     // push allocation's users on appropriate worklist
1205     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1206       Node *use = n->fast_out(i);
1207       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1208         // Load/store to instance's field
1209         memnode_worklist.append_if_missing(use);
1210       } else if (use->is_MemBar()) {
1211         memnode_worklist.append_if_missing(use);
1212       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1213         Node* addp2 = find_second_addp(use, n);
1214         if (addp2 != NULL) {
1215           alloc_worklist.append_if_missing(addp2);
1216         }
1217         alloc_worklist.append_if_missing(use);
1218       } else if (use->is_Phi() ||
1219                  use->is_CheckCastPP() ||
1220                  use->is_EncodeP() ||
1221                  use->is_DecodeN() ||
1222                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1223         alloc_worklist.append_if_missing(use);
1224 #ifdef ASSERT
1225       } else if (use->is_Mem()) {
1226         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1227       } else if (use->is_MergeMem()) {
1228         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1229       } else if (use->is_SafePoint()) {
1230         // Look for MergeMem nodes for calls which reference unique allocation
1231         // (through CheckCastPP nodes) even for debug info.
1232         Node* m = use->in(TypeFunc::Memory);
1233         if (m->is_MergeMem()) {
1234           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1235         }
1236       } else {
1237         uint op = use->Opcode();
1238         if (!(op == Op_CmpP || op == Op_Conv2B ||
1239               op == Op_CastP2X || op == Op_StoreCM ||
1240               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1241               op == Op_StrEquals || op == Op_StrIndexOf)) {
1242           n->dump();
1243           use->dump();
1244           assert(false, "EA: missing allocation reference path");
1245         }
1246 #endif
1247       }
1248     }
1249 
1250   }
1251   // New alias types were created in split_AddP().
1252   uint new_index_end = (uint) _compile->num_alias_types();
1253 
1254   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1255   //            compute new values for Memory inputs  (the Memory inputs are not
1256   //            actually updated until phase 4.)
1257   if (memnode_worklist.length() == 0)
1258     return;  // nothing to do
1259 
1260   while (memnode_worklist.length() != 0) {
1261     Node *n = memnode_worklist.pop();
1262     if (visited.test_set(n->_idx))
1263       continue;
1264     if (n->is_Phi() || n->is_ClearArray()) {
1265       // we don't need to do anything, but the users must be pushed
1266     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1267       // we don't need to do anything, but the users must be pushed
1268       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1269       if (n == NULL)
1270         continue;
1271     } else {
1272       assert(n->is_Mem(), "memory node required.");
1273       Node *addr = n->in(MemNode::Address);
1274       const Type *addr_t = igvn->type(addr);
1275       if (addr_t == Type::TOP)
1276         continue;
1277       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1278       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1279       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1280       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1281       if (_compile->failing()) {
1282         return;
1283       }
1284       if (mem != n->in(MemNode::Memory)) {
1285         // We delay the memory edge update since we need old one in
1286         // MergeMem code below when instances memory slices are separated.
1287         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1288         assert(pn == NULL || pn == n, "wrong node");
1289         set_map(n->_idx, mem);
1290         ptnode_adr(n->_idx)->_node = n;
1291       }
1292       if (n->is_Load()) {
1293         continue;  // don't push users
1294       } else if (n->is_LoadStore()) {
1295         // get the memory projection
1296         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1297           Node *use = n->fast_out(i);
1298           if (use->Opcode() == Op_SCMemProj) {
1299             n = use;
1300             break;
1301           }
1302         }
1303         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1304       }
1305     }
1306     // push user on appropriate worklist
1307     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1308       Node *use = n->fast_out(i);
1309       if (use->is_Phi() || use->is_ClearArray()) {
1310         memnode_worklist.append_if_missing(use);
1311       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1312         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1313           continue;
1314         memnode_worklist.append_if_missing(use);
1315       } else if (use->is_MemBar()) {
1316         memnode_worklist.append_if_missing(use);
1317 #ifdef ASSERT
1318       } else if(use->is_Mem()) {
1319         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1320       } else if (use->is_MergeMem()) {
1321         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1322       } else {
1323         uint op = use->Opcode();
1324         if (!(op == Op_StoreCM ||
1325               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1326                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1327               op == Op_AryEq || op == Op_StrComp ||
1328               op == Op_StrEquals || op == Op_StrIndexOf)) {
1329           n->dump();
1330           use->dump();
1331           assert(false, "EA: missing memory path");
1332         }
1333 #endif
1334       }
1335     }
1336   }
1337 
1338   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1339   //            Walk each memory slice moving the first node encountered of each
1340   //            instance type to the the input corresponding to its alias index.
1341   uint length = _mergemem_worklist.length();
1342   for( uint next = 0; next < length; ++next ) {
1343     MergeMemNode* nmm = _mergemem_worklist.at(next);
1344     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1345     // Note: we don't want to use MergeMemStream here because we only want to
1346     // scan inputs which exist at the start, not ones we add during processing.
1347     // Note 2: MergeMem may already contains instance memory slices added
1348     // during find_inst_mem() call when memory nodes were processed above.
1349     igvn->hash_delete(nmm);
1350     uint nslices = nmm->req();
1351     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1352       Node* mem = nmm->in(i);
1353       Node* cur = NULL;
1354       if (mem == NULL || mem->is_top())
1355         continue;
1356       // First, update mergemem by moving memory nodes to corresponding slices
1357       // if their type became more precise since this mergemem was created.
1358       while (mem->is_Mem()) {
1359         const Type *at = igvn->type(mem->in(MemNode::Address));
1360         if (at != Type::TOP) {
1361           assert (at->isa_ptr() != NULL, "pointer type required.");
1362           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1363           if (idx == i) {
1364             if (cur == NULL)
1365               cur = mem;
1366           } else {
1367             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1368               nmm->set_memory_at(idx, mem);
1369             }
1370           }
1371         }
1372         mem = mem->in(MemNode::Memory);
1373       }
1374       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1375       // Find any instance of the current type if we haven't encountered
1376       // already a memory slice of the instance along the memory chain.
1377       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1378         if((uint)_compile->get_general_index(ni) == i) {
1379           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1380           if (nmm->is_empty_memory(m)) {
1381             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1382             if (_compile->failing()) {
1383               return;
1384             }
1385             nmm->set_memory_at(ni, result);
1386           }
1387         }
1388       }
1389     }
1390     // Find the rest of instances values
1391     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1392       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1393       Node* result = step_through_mergemem(nmm, ni, tinst);
1394       if (result == nmm->base_memory()) {
1395         // Didn't find instance memory, search through general slice recursively.
1396         result = nmm->memory_at(_compile->get_general_index(ni));
1397         result = find_inst_mem(result, ni, orig_phis, igvn);
1398         if (_compile->failing()) {
1399           return;
1400         }
1401         nmm->set_memory_at(ni, result);
1402       }
1403     }
1404     igvn->hash_insert(nmm);
1405     record_for_optimizer(nmm);
1406   }
1407 
1408   //  Phase 4:  Update the inputs of non-instance memory Phis and
1409   //            the Memory input of memnodes
1410   // First update the inputs of any non-instance Phi's from
1411   // which we split out an instance Phi.  Note we don't have
1412   // to recursively process Phi's encounted on the input memory
1413   // chains as is done in split_memory_phi() since they  will
1414   // also be processed here.
1415   for (int j = 0; j < orig_phis.length(); j++) {
1416     PhiNode *phi = orig_phis.at(j);
1417     int alias_idx = _compile->get_alias_index(phi->adr_type());
1418     igvn->hash_delete(phi);
1419     for (uint i = 1; i < phi->req(); i++) {
1420       Node *mem = phi->in(i);
1421       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1422       if (_compile->failing()) {
1423         return;
1424       }
1425       if (mem != new_mem) {
1426         phi->set_req(i, new_mem);
1427       }
1428     }
1429     igvn->hash_insert(phi);
1430     record_for_optimizer(phi);
1431   }
1432 
1433   // Update the memory inputs of MemNodes with the value we computed
1434   // in Phase 2 and move stores memory users to corresponding memory slices.
1435 #ifdef ASSERT
1436   visited.Clear();
1437   Node_Stack old_mems(arena, _compile->unique() >> 2);
1438 #endif
1439   for (uint i = 0; i < nodes_size(); i++) {
1440     Node *nmem = get_map(i);
1441     if (nmem != NULL) {
1442       Node *n = ptnode_adr(i)->_node;
1443       assert(n != NULL, "sanity");
1444       if (n->is_Mem()) {
1445 #ifdef ASSERT
1446         Node* old_mem = n->in(MemNode::Memory);
1447         if (!visited.test_set(old_mem->_idx)) {
1448           old_mems.push(old_mem, old_mem->outcnt());
1449         }
1450 #endif
1451         assert(n->in(MemNode::Memory) != nmem, "sanity");
1452         if (!n->is_Load()) {
1453           // Move memory users of a store first.
1454           move_inst_mem(n, orig_phis, igvn);
1455         }
1456         // Now update memory input
1457         igvn->hash_delete(n);
1458         n->set_req(MemNode::Memory, nmem);
1459         igvn->hash_insert(n);
1460         record_for_optimizer(n);
1461       } else {
1462         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1463                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1464       }
1465     }
1466   }
1467 #ifdef ASSERT
1468   // Verify that memory was split correctly
1469   while (old_mems.is_nonempty()) {
1470     Node* old_mem = old_mems.node();
1471     uint  old_cnt = old_mems.index();
1472     old_mems.pop();
1473     assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
1474   }
1475 #endif
1476 }
1477 
1478 bool ConnectionGraph::has_candidates(Compile *C) {
1479   // EA brings benefits only when the code has allocations and/or locks which
1480   // are represented by ideal Macro nodes.
1481   int cnt = C->macro_count();
1482   for( int i=0; i < cnt; i++ ) {
1483     Node *n = C->macro_node(i);
1484     if ( n->is_Allocate() )
1485       return true;
1486     if( n->is_Lock() ) {
1487       Node* obj = n->as_Lock()->obj_node()->uncast();
1488       if( !(obj->is_Parm() || obj->is_Con()) )
1489         return true;
1490     }
1491   }
1492   return false;
1493 }
1494 
1495 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1496   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1497   // to create space for them in ConnectionGraph::_nodes[].
1498   Node* oop_null = igvn->zerocon(T_OBJECT);
1499   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1500 
1501   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1502   // Perform escape analysis
1503   if (congraph->compute_escape()) {
1504     // There are non escaping objects.
1505     C->set_congraph(congraph);
1506   }
1507 
1508   // Cleanup.
1509   if (oop_null->outcnt() == 0)
1510     igvn->hash_delete(oop_null);
1511   if (noop_null->outcnt() == 0)
1512     igvn->hash_delete(noop_null);
1513 }
1514 
1515 bool ConnectionGraph::compute_escape() {
1516   Compile* C = _compile;
1517 
1518   // 1. Populate Connection Graph (CG) with Ideal nodes.
1519 
1520   Unique_Node_List worklist_init;
1521   worklist_init.map(C->unique(), NULL);  // preallocate space
1522 
1523   // Initialize worklist
1524   if (C->root() != NULL) {
1525     worklist_init.push(C->root());
1526   }
1527 
1528   GrowableArray<int> cg_worklist;
1529   PhaseGVN* igvn = _igvn;
1530   bool has_allocations = false;
1531 
1532   // Push all useful nodes onto CG list and set their type.
1533   for( uint next = 0; next < worklist_init.size(); ++next ) {
1534     Node* n = worklist_init.at(next);
1535     record_for_escape_analysis(n, igvn);
1536     // Only allocations and java static calls results are checked
1537     // for an escape status. See process_call_result() below.
1538     if (n->is_Allocate() || n->is_CallStaticJava() &&
1539         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1540       has_allocations = true;
1541     }
1542     if(n->is_AddP()) {
1543       // Collect address nodes which directly reference an allocation.
1544       // Use them during stage 3 below to build initial connection graph
1545       // field edges. Other field edges could be added after StoreP/LoadP
1546       // nodes are processed during stage 4 below.
1547       Node* base = get_addp_base(n);
1548       if(base->is_Proj() && base->in(0)->is_Allocate()) {
1549         cg_worklist.append(n->_idx);
1550       }
1551     } else if (n->is_MergeMem()) {
1552       // Collect all MergeMem nodes to add memory slices for
1553       // scalar replaceable objects in split_unique_types().
1554       _mergemem_worklist.append(n->as_MergeMem());
1555     }
1556     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1557       Node* m = n->fast_out(i);   // Get user
1558       worklist_init.push(m);
1559     }
1560   }
1561 
1562   if (!has_allocations) {
1563     _collecting = false;
1564     return false; // Nothing to do.
1565   }
1566 
1567   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1568   uint delayed_size = _delayed_worklist.size();
1569   for( uint next = 0; next < delayed_size; ++next ) {
1570     Node* n = _delayed_worklist.at(next);
1571     build_connection_graph(n, igvn);
1572   }
1573 
1574   // 3. Pass to create fields edges (Allocate -F-> AddP).
1575   uint cg_length = cg_worklist.length();
1576   for( uint next = 0; next < cg_length; ++next ) {
1577     int ni = cg_worklist.at(next);
1578     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1579   }
1580 
1581   cg_worklist.clear();
1582   cg_worklist.append(_phantom_object);
1583 
1584   // 4. Build Connection Graph which need
1585   //    to walk the connection graph.
1586   for (uint ni = 0; ni < nodes_size(); ni++) {
1587     PointsToNode* ptn = ptnode_adr(ni);
1588     Node *n = ptn->_node;
1589     if (n != NULL) { // Call, AddP, LoadP, StoreP
1590       build_connection_graph(n, igvn);
1591       if (ptn->node_type() != PointsToNode::UnknownType)
1592         cg_worklist.append(n->_idx); // Collect CG nodes
1593     }
1594   }
1595 
1596   Arena* arena = Thread::current()->resource_area();
1597   VectorSet ptset(arena);
1598   GrowableArray<uint>  deferred_edges;
1599   VectorSet visited(arena);
1600 
1601   // 5. Remove deferred edges from the graph and adjust
1602   //    escape state of nonescaping objects.
1603   cg_length = cg_worklist.length();
1604   for( uint next = 0; next < cg_length; ++next ) {
1605     int ni = cg_worklist.at(next);
1606     PointsToNode* ptn = ptnode_adr(ni);
1607     PointsToNode::NodeType nt = ptn->node_type();
1608     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1609       remove_deferred(ni, &deferred_edges, &visited);
1610       Node *n = ptn->_node;
1611       if (n->is_AddP()) {
1612         // Search for objects which are not scalar replaceable
1613         // and adjust their escape state.
1614         verify_escape_state(ni, ptset, igvn);
1615       }
1616     }
1617   }
1618 
1619   // 6. Propagate escape states.
1620   GrowableArray<int>  worklist;
1621   bool has_non_escaping_obj = false;
1622 
1623   // push all GlobalEscape nodes on the worklist
1624   for( uint next = 0; next < cg_length; ++next ) {
1625     int nk = cg_worklist.at(next);
1626     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1627       worklist.push(nk);
1628   }
1629   // mark all nodes reachable from GlobalEscape nodes
1630   while(worklist.length() > 0) {
1631     PointsToNode* ptn = ptnode_adr(worklist.pop());
1632     uint e_cnt = ptn->edge_count();
1633     for (uint ei = 0; ei < e_cnt; ei++) {
1634       uint npi = ptn->edge_target(ei);
1635       PointsToNode *np = ptnode_adr(npi);
1636       if (np->escape_state() < PointsToNode::GlobalEscape) {
1637         np->set_escape_state(PointsToNode::GlobalEscape);
1638         worklist.push(npi);
1639       }
1640     }
1641   }
1642 
1643   // push all ArgEscape nodes on the worklist
1644   for( uint next = 0; next < cg_length; ++next ) {
1645     int nk = cg_worklist.at(next);
1646     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1647       worklist.push(nk);
1648   }
1649   // mark all nodes reachable from ArgEscape nodes
1650   while(worklist.length() > 0) {
1651     PointsToNode* ptn = ptnode_adr(worklist.pop());
1652     if (ptn->node_type() == PointsToNode::JavaObject)
1653       has_non_escaping_obj = true; // Non GlobalEscape
1654     uint e_cnt = ptn->edge_count();
1655     for (uint ei = 0; ei < e_cnt; ei++) {
1656       uint npi = ptn->edge_target(ei);
1657       PointsToNode *np = ptnode_adr(npi);
1658       if (np->escape_state() < PointsToNode::ArgEscape) {
1659         np->set_escape_state(PointsToNode::ArgEscape);
1660         worklist.push(npi);
1661       }
1662     }
1663   }
1664 
1665   GrowableArray<Node*> alloc_worklist;
1666 
1667   // push all NoEscape nodes on the worklist
1668   for( uint next = 0; next < cg_length; ++next ) {
1669     int nk = cg_worklist.at(next);
1670     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1671       worklist.push(nk);
1672   }
1673   // mark all nodes reachable from NoEscape nodes
1674   while(worklist.length() > 0) {
1675     PointsToNode* ptn = ptnode_adr(worklist.pop());
1676     if (ptn->node_type() == PointsToNode::JavaObject)
1677       has_non_escaping_obj = true; // Non GlobalEscape
1678     Node* n = ptn->_node;
1679     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1680       // Push scalar replaceable allocations on alloc_worklist
1681       // for processing in split_unique_types().
1682       alloc_worklist.append(n);
1683     }
1684     uint e_cnt = ptn->edge_count();
1685     for (uint ei = 0; ei < e_cnt; ei++) {
1686       uint npi = ptn->edge_target(ei);
1687       PointsToNode *np = ptnode_adr(npi);
1688       if (np->escape_state() < PointsToNode::NoEscape) {
1689         np->set_escape_state(PointsToNode::NoEscape);
1690         worklist.push(npi);
1691       }
1692     }
1693   }
1694 
1695   _collecting = false;
1696   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1697 
1698 #ifndef PRODUCT
1699   if (PrintEscapeAnalysis) {
1700     dump(); // Dump ConnectionGraph
1701   }
1702 #endif
1703 
1704   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1705   if ( has_scalar_replaceable_candidates &&
1706        C->AliasLevel() >= 3 && EliminateAllocations ) {
1707 
1708     // Now use the escape information to create unique types for
1709     // scalar replaceable objects.
1710     split_unique_types(alloc_worklist);
1711 
1712     if (C->failing())  return false;
1713 
1714     C->print_method("After Escape Analysis", 2);
1715 
1716 #ifdef ASSERT
1717   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1718     tty->print("=== No allocations eliminated for ");
1719     C->method()->print_short_name();
1720     if(!EliminateAllocations) {
1721       tty->print(" since EliminateAllocations is off ===");
1722     } else if(!has_scalar_replaceable_candidates) {
1723       tty->print(" since there are no scalar replaceable candidates ===");
1724     } else if(C->AliasLevel() < 3) {
1725       tty->print(" since AliasLevel < 3 ===");
1726     }
1727     tty->cr();
1728 #endif
1729   }
1730   return has_non_escaping_obj;
1731 }
1732 
1733 // Search for objects which are not scalar replaceable.
1734 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
1735   PointsToNode* ptn = ptnode_adr(nidx);
1736   Node* n = ptn->_node;
1737   assert(n->is_AddP(), "Should be called for AddP nodes only");
1738   // Search for objects which are not scalar replaceable.
1739   // Mark their escape state as ArgEscape to propagate the state
1740   // to referenced objects.
1741   // Note: currently there are no difference in compiler optimizations
1742   // for ArgEscape objects and NoEscape objects which are not
1743   // scalar replaceable.
1744 
1745   Compile* C = _compile;
1746 
1747   int offset = ptn->offset();
1748   Node* base = get_addp_base(n);
1749   ptset.Clear();
1750   PointsTo(ptset, base);
1751   int ptset_size = ptset.Size();
1752 
1753   // Check if a oop field's initializing value is recorded and add
1754   // a corresponding NULL field's value if it is not recorded.
1755   // Connection Graph does not record a default initialization by NULL
1756   // captured by Initialize node.
1757   //
1758   // Note: it will disable scalar replacement in some cases:
1759   //
1760   //    Point p[] = new Point[1];
1761   //    p[0] = new Point(); // Will be not scalar replaced
1762   //
1763   // but it will save us from incorrect optimizations in next cases:
1764   //
1765   //    Point p[] = new Point[1];
1766   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1767   //
1768   // Do a simple control flow analysis to distinguish above cases.
1769   //
1770   if (offset != Type::OffsetBot && ptset_size == 1) {
1771     uint elem = ptset.getelem(); // Allocation node's index
1772     // It does not matter if it is not Allocation node since
1773     // only non-escaping allocations are scalar replaced.
1774     if (ptnode_adr(elem)->_node->is_Allocate() &&
1775         ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1776       AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1777       InitializeNode* ini = alloc->initialization();
1778 
1779       // Check only oop fields.
1780       const Type* adr_type = n->as_AddP()->bottom_type();
1781       BasicType basic_field_type = T_INT;
1782       if (adr_type->isa_instptr()) {
1783         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
1784         if (field != NULL) {
1785           basic_field_type = field->layout_type();
1786         } else {
1787           // Ignore non field load (for example, klass load)
1788         }
1789       } else if (adr_type->isa_aryptr()) {
1790         const Type* elemtype = adr_type->isa_aryptr()->elem();
1791         basic_field_type = elemtype->array_element_basic_type();
1792       } else {
1793         // Raw pointers are used for initializing stores so skip it.
1794         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1795                (base->in(0) == alloc),"unexpected pointer type");
1796       }
1797       if (basic_field_type == T_OBJECT ||
1798           basic_field_type == T_NARROWOOP ||
1799           basic_field_type == T_ARRAY) {
1800         Node* value = NULL;
1801         if (ini != NULL) {
1802           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1803           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1804           if (store != NULL && store->is_Store()) {
1805             value = store->in(MemNode::ValueIn);
1806           } else if (ptn->edge_count() > 0) { // Are there oop stores?
1807             // Check for a store which follows allocation without branches.
1808             // For example, a volatile field store is not collected
1809             // by Initialize node. TODO: it would be nice to use idom() here.
1810             for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1811               store = n->fast_out(i);
1812               if (store->is_Store() && store->in(0) != NULL) {
1813                 Node* ctrl = store->in(0);
1814                 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
1815                         ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
1816                         ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
1817                    ctrl = ctrl->in(0);
1818                 }
1819                 if (ctrl == ini || ctrl == alloc) {
1820                   value = store->in(MemNode::ValueIn);
1821                   break;
1822                 }
1823               }
1824             }
1825           }
1826         }
1827         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1828           // A field's initializing value was not recorded. Add NULL.
1829           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1830           add_pointsto_edge(nidx, null_idx);
1831         }
1832       }
1833     }
1834   }
1835 
1836   // An object is not scalar replaceable if the field which may point
1837   // to it has unknown offset (unknown element of an array of objects).
1838   //
1839   if (offset == Type::OffsetBot) {
1840     uint e_cnt = ptn->edge_count();
1841     for (uint ei = 0; ei < e_cnt; ei++) {
1842       uint npi = ptn->edge_target(ei);
1843       set_escape_state(npi, PointsToNode::ArgEscape);
1844       ptnode_adr(npi)->_scalar_replaceable = false;
1845     }
1846   }
1847 
1848   // Currently an object is not scalar replaceable if a LoadStore node
1849   // access its field since the field value is unknown after it.
1850   //
1851   bool has_LoadStore = false;
1852   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1853     Node *use = n->fast_out(i);
1854     if (use->is_LoadStore()) {
1855       has_LoadStore = true;
1856       break;
1857     }
1858   }
1859   // An object is not scalar replaceable if the address points
1860   // to unknown field (unknown element for arrays, offset is OffsetBot).
1861   //
1862   // Or the address may point to more then one object. This may produce
1863   // the false positive result (set scalar_replaceable to false)
1864   // since the flow-insensitive escape analysis can't separate
1865   // the case when stores overwrite the field's value from the case
1866   // when stores happened on different control branches.
1867   //
1868   if (ptset_size > 1 || ptset_size != 0 &&
1869       (has_LoadStore || offset == Type::OffsetBot)) {
1870     for( VectorSetI j(&ptset); j.test(); ++j ) {
1871       set_escape_state(j.elem, PointsToNode::ArgEscape);
1872       ptnode_adr(j.elem)->_scalar_replaceable = false;
1873     }
1874   }
1875 }
1876 
1877 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1878 
1879     switch (call->Opcode()) {
1880 #ifdef ASSERT
1881     case Op_Allocate:
1882     case Op_AllocateArray:
1883     case Op_Lock:
1884     case Op_Unlock:
1885       assert(false, "should be done already");
1886       break;
1887 #endif
1888     case Op_CallLeaf:
1889     case Op_CallLeafNoFP:
1890     {
1891       // Stub calls, objects do not escape but they are not scale replaceable.
1892       // Adjust escape state for outgoing arguments.
1893       const TypeTuple * d = call->tf()->domain();
1894       VectorSet ptset(Thread::current()->resource_area());
1895       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1896         const Type* at = d->field_at(i);
1897         Node *arg = call->in(i)->uncast();
1898         const Type *aat = phase->type(arg);
1899         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
1900             ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
1901 
1902           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1903                  aat->isa_ptr() != NULL, "expecting an Ptr");
1904 #ifdef ASSERT
1905           if (!(call->Opcode() == Op_CallLeafNoFP &&
1906                 call->as_CallLeaf()->_name != NULL &&
1907                 (strstr(call->as_CallLeaf()->_name, "arraycopy")  != 0) ||
1908                 call->as_CallLeaf()->_name != NULL &&
1909                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
1910                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
1911           ) {
1912             call->dump();
1913             assert(false, "EA: unexpected CallLeaf");
1914           }
1915 #endif
1916           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1917           if (arg->is_AddP()) {
1918             //
1919             // The inline_native_clone() case when the arraycopy stub is called
1920             // after the allocation before Initialize and CheckCastPP nodes.
1921             //
1922             // Set AddP's base (Allocate) as not scalar replaceable since
1923             // pointer to the base (with offset) is passed as argument.
1924             //
1925             arg = get_addp_base(arg);
1926           }
1927           ptset.Clear();
1928           PointsTo(ptset, arg);
1929           for( VectorSetI j(&ptset); j.test(); ++j ) {
1930             uint pt = j.elem;
1931             set_escape_state(pt, PointsToNode::ArgEscape);
1932           }
1933         }
1934       }
1935       break;
1936     }
1937 
1938     case Op_CallStaticJava:
1939     // For a static call, we know exactly what method is being called.
1940     // Use bytecode estimator to record the call's escape affects
1941     {
1942       ciMethod *meth = call->as_CallJava()->method();
1943       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1944       // fall-through if not a Java method or no analyzer information
1945       if (call_analyzer != NULL) {
1946         const TypeTuple * d = call->tf()->domain();
1947         VectorSet ptset(Thread::current()->resource_area());
1948         bool copy_dependencies = false;
1949         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1950           const Type* at = d->field_at(i);
1951           int k = i - TypeFunc::Parms;
1952           Node *arg = call->in(i)->uncast();
1953 
1954           if (at->isa_oopptr() != NULL &&
1955               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
1956 
1957             bool global_escapes = false;
1958             bool fields_escapes = false;
1959             if (!call_analyzer->is_arg_stack(k)) {
1960               // The argument global escapes, mark everything it could point to
1961               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1962               global_escapes = true;
1963             } else {
1964               if (!call_analyzer->is_arg_local(k)) {
1965                 // The argument itself doesn't escape, but any fields might
1966                 fields_escapes = true;
1967               }
1968               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1969               copy_dependencies = true;
1970             }
1971 
1972             ptset.Clear();
1973             PointsTo(ptset, arg);
1974             for( VectorSetI j(&ptset); j.test(); ++j ) {
1975               uint pt = j.elem;
1976               if (global_escapes) {
1977                 //The argument global escapes, mark everything it could point to
1978                 set_escape_state(pt, PointsToNode::GlobalEscape);
1979               } else {
1980                 if (fields_escapes) {
1981                   // The argument itself doesn't escape, but any fields might
1982                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1983                 }
1984                 set_escape_state(pt, PointsToNode::ArgEscape);
1985               }
1986             }
1987           }
1988         }
1989         if (copy_dependencies)
1990           call_analyzer->copy_dependencies(_compile->dependencies());
1991         break;
1992       }
1993     }
1994 
1995     default:
1996     // Fall-through here if not a Java method or no analyzer information
1997     // or some other type of call, assume the worst case: all arguments
1998     // globally escape.
1999     {
2000       // adjust escape state for  outgoing arguments
2001       const TypeTuple * d = call->tf()->domain();
2002       VectorSet ptset(Thread::current()->resource_area());
2003       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2004         const Type* at = d->field_at(i);
2005         if (at->isa_oopptr() != NULL) {
2006           Node *arg = call->in(i)->uncast();
2007           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2008           ptset.Clear();
2009           PointsTo(ptset, arg);
2010           for( VectorSetI j(&ptset); j.test(); ++j ) {
2011             uint pt = j.elem;
2012             set_escape_state(pt, PointsToNode::GlobalEscape);
2013           }
2014         }
2015       }
2016     }
2017   }
2018 }
2019 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
2020   CallNode   *call = resproj->in(0)->as_Call();
2021   uint    call_idx = call->_idx;
2022   uint resproj_idx = resproj->_idx;
2023 
2024   switch (call->Opcode()) {
2025     case Op_Allocate:
2026     {
2027       Node *k = call->in(AllocateNode::KlassNode);
2028       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2029       assert(kt != NULL, "TypeKlassPtr  required.");
2030       ciKlass* cik = kt->klass();
2031 
2032       PointsToNode::EscapeState es;
2033       uint edge_to;
2034       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2035          !cik->is_instance_klass() || // StressReflectiveCode
2036           cik->as_instance_klass()->has_finalizer()) {
2037         es = PointsToNode::GlobalEscape;
2038         edge_to = _phantom_object; // Could not be worse
2039       } else {
2040         es = PointsToNode::NoEscape;
2041         edge_to = call_idx;
2042       }
2043       set_escape_state(call_idx, es);
2044       add_pointsto_edge(resproj_idx, edge_to);
2045       _processed.set(resproj_idx);
2046       break;
2047     }
2048 
2049     case Op_AllocateArray:
2050     {
2051 
2052       Node *k = call->in(AllocateNode::KlassNode);
2053       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2054       assert(kt != NULL, "TypeKlassPtr  required.");
2055       ciKlass* cik = kt->klass();
2056 
2057       PointsToNode::EscapeState es;
2058       uint edge_to;
2059       if (!cik->is_array_klass()) { // StressReflectiveCode
2060         es = PointsToNode::GlobalEscape;
2061         edge_to = _phantom_object;
2062       } else {
2063         es = PointsToNode::NoEscape;
2064         edge_to = call_idx;
2065         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2066         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2067           // Not scalar replaceable if the length is not constant or too big.
2068           ptnode_adr(call_idx)->_scalar_replaceable = false;
2069         }
2070       }
2071       set_escape_state(call_idx, es);
2072       add_pointsto_edge(resproj_idx, edge_to);
2073       _processed.set(resproj_idx);
2074       break;
2075     }
2076 
2077     case Op_CallStaticJava:
2078     // For a static call, we know exactly what method is being called.
2079     // Use bytecode estimator to record whether the call's return value escapes
2080     {
2081       bool done = true;
2082       const TypeTuple *r = call->tf()->range();
2083       const Type* ret_type = NULL;
2084 
2085       if (r->cnt() > TypeFunc::Parms)
2086         ret_type = r->field_at(TypeFunc::Parms);
2087 
2088       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2089       //        _multianewarray functions return a TypeRawPtr.
2090       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
2091         _processed.set(resproj_idx);
2092         break;  // doesn't return a pointer type
2093       }
2094       ciMethod *meth = call->as_CallJava()->method();
2095       const TypeTuple * d = call->tf()->domain();
2096       if (meth == NULL) {
2097         // not a Java method, assume global escape
2098         set_escape_state(call_idx, PointsToNode::GlobalEscape);
2099         add_pointsto_edge(resproj_idx, _phantom_object);
2100       } else {
2101         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
2102         bool copy_dependencies = false;
2103 
2104         if (call_analyzer->is_return_allocated()) {
2105           // Returns a newly allocated unescaped object, simply
2106           // update dependency information.
2107           // Mark it as NoEscape so that objects referenced by
2108           // it's fields will be marked as NoEscape at least.
2109           set_escape_state(call_idx, PointsToNode::NoEscape);
2110           add_pointsto_edge(resproj_idx, call_idx);
2111           copy_dependencies = true;
2112         } else if (call_analyzer->is_return_local()) {
2113           // determine whether any arguments are returned
2114           set_escape_state(call_idx, PointsToNode::NoEscape);
2115           bool ret_arg = false;
2116           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2117             const Type* at = d->field_at(i);
2118 
2119             if (at->isa_oopptr() != NULL) {
2120               Node *arg = call->in(i)->uncast();
2121 
2122               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2123                 ret_arg = true;
2124                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2125                 if (arg_esp->node_type() == PointsToNode::UnknownType)
2126                   done = false;
2127                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
2128                   add_pointsto_edge(resproj_idx, arg->_idx);
2129                 else
2130                   add_deferred_edge(resproj_idx, arg->_idx);
2131                 arg_esp->_hidden_alias = true;
2132               }
2133             }
2134           }
2135           if (done && !ret_arg) {
2136             // Returns unknown object.
2137             set_escape_state(call_idx, PointsToNode::GlobalEscape);
2138             add_pointsto_edge(resproj_idx, _phantom_object);
2139           }
2140           copy_dependencies = true;
2141         } else {
2142           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2143           add_pointsto_edge(resproj_idx, _phantom_object);
2144           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2145             const Type* at = d->field_at(i);
2146             if (at->isa_oopptr() != NULL) {
2147               Node *arg = call->in(i)->uncast();
2148               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2149               arg_esp->_hidden_alias = true;
2150             }
2151           }
2152         }
2153         if (copy_dependencies)
2154           call_analyzer->copy_dependencies(_compile->dependencies());
2155       }
2156       if (done)
2157         _processed.set(resproj_idx);
2158       break;
2159     }
2160 
2161     default:
2162     // Some other type of call, assume the worst case that the
2163     // returned value, if any, globally escapes.
2164     {
2165       const TypeTuple *r = call->tf()->range();
2166       if (r->cnt() > TypeFunc::Parms) {
2167         const Type* ret_type = r->field_at(TypeFunc::Parms);
2168 
2169         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2170         //        _multianewarray functions return a TypeRawPtr.
2171         if (ret_type->isa_ptr() != NULL) {
2172           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2173           add_pointsto_edge(resproj_idx, _phantom_object);
2174         }
2175       }
2176       _processed.set(resproj_idx);
2177     }
2178   }
2179 }
2180 
2181 // Populate Connection Graph with Ideal nodes and create simple
2182 // connection graph edges (do not need to check the node_type of inputs
2183 // or to call PointsTo() to walk the connection graph).
2184 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2185   if (_processed.test(n->_idx))
2186     return; // No need to redefine node's state.
2187 
2188   if (n->is_Call()) {
2189     // Arguments to allocation and locking don't escape.
2190     if (n->is_Allocate()) {
2191       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2192       record_for_optimizer(n);
2193     } else if (n->is_Lock() || n->is_Unlock()) {
2194       // Put Lock and Unlock nodes on IGVN worklist to process them during
2195       // the first IGVN optimization when escape information is still available.
2196       record_for_optimizer(n);
2197       _processed.set(n->_idx);
2198     } else {
2199       // Don't mark as processed since call's arguments have to be processed.
2200       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2201       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2202 
2203       // Check if a call returns an object.
2204       const TypeTuple *r = n->as_Call()->tf()->range();
2205       if (r->cnt() > TypeFunc::Parms &&
2206           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2207           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2208         nt = PointsToNode::JavaObject;
2209         if (!n->is_CallStaticJava()) {
2210           // Since the called mathod is statically unknown assume
2211           // the worst case that the returned value globally escapes.
2212           es = PointsToNode::GlobalEscape;
2213         }
2214       }
2215       add_node(n, nt, es, false);
2216     }
2217     return;
2218   }
2219 
2220   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2221   // ThreadLocal has RawPrt type.
2222   switch (n->Opcode()) {
2223     case Op_AddP:
2224     {
2225       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2226       break;
2227     }
2228     case Op_CastX2P:
2229     { // "Unsafe" memory access.
2230       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2231       break;
2232     }
2233     case Op_CastPP:
2234     case Op_CheckCastPP:
2235     case Op_EncodeP:
2236     case Op_DecodeN:
2237     {
2238       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2239       int ti = n->in(1)->_idx;
2240       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2241       if (nt == PointsToNode::UnknownType) {
2242         _delayed_worklist.push(n); // Process it later.
2243         break;
2244       } else if (nt == PointsToNode::JavaObject) {
2245         add_pointsto_edge(n->_idx, ti);
2246       } else {
2247         add_deferred_edge(n->_idx, ti);
2248       }
2249       _processed.set(n->_idx);
2250       break;
2251     }
2252     case Op_ConP:
2253     {
2254       // assume all pointer constants globally escape except for null
2255       PointsToNode::EscapeState es;
2256       if (phase->type(n) == TypePtr::NULL_PTR)
2257         es = PointsToNode::NoEscape;
2258       else
2259         es = PointsToNode::GlobalEscape;
2260 
2261       add_node(n, PointsToNode::JavaObject, es, true);
2262       break;
2263     }
2264     case Op_ConN:
2265     {
2266       // assume all narrow oop constants globally escape except for null
2267       PointsToNode::EscapeState es;
2268       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2269         es = PointsToNode::NoEscape;
2270       else
2271         es = PointsToNode::GlobalEscape;
2272 
2273       add_node(n, PointsToNode::JavaObject, es, true);
2274       break;
2275     }
2276     case Op_CreateEx:
2277     {
2278       // assume that all exception objects globally escape
2279       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2280       break;
2281     }
2282     case Op_LoadKlass:
2283     case Op_LoadNKlass:
2284     {
2285       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2286       break;
2287     }
2288     case Op_LoadP:
2289     case Op_LoadN:
2290     {
2291       const Type *t = phase->type(n);
2292       if (t->make_ptr() == NULL) {
2293         _processed.set(n->_idx);
2294         return;
2295       }
2296       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2297       break;
2298     }
2299     case Op_Parm:
2300     {
2301       _processed.set(n->_idx); // No need to redefine it state.
2302       uint con = n->as_Proj()->_con;
2303       if (con < TypeFunc::Parms)
2304         return;
2305       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2306       if (t->isa_ptr() == NULL)
2307         return;
2308       // We have to assume all input parameters globally escape
2309       // (Note: passing 'false' since _processed is already set).
2310       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2311       break;
2312     }
2313     case Op_Phi:
2314     {
2315       const Type *t = n->as_Phi()->type();
2316       if (t->make_ptr() == NULL) {
2317         // nothing to do if not an oop or narrow oop
2318         _processed.set(n->_idx);
2319         return;
2320       }
2321       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2322       uint i;
2323       for (i = 1; i < n->req() ; i++) {
2324         Node* in = n->in(i);
2325         if (in == NULL)
2326           continue;  // ignore NULL
2327         in = in->uncast();
2328         if (in->is_top() || in == n)
2329           continue;  // ignore top or inputs which go back this node
2330         int ti = in->_idx;
2331         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2332         if (nt == PointsToNode::UnknownType) {
2333           break;
2334         } else if (nt == PointsToNode::JavaObject) {
2335           add_pointsto_edge(n->_idx, ti);
2336         } else {
2337           add_deferred_edge(n->_idx, ti);
2338         }
2339       }
2340       if (i >= n->req())
2341         _processed.set(n->_idx);
2342       else
2343         _delayed_worklist.push(n);
2344       break;
2345     }
2346     case Op_Proj:
2347     {
2348       // we are only interested in the oop result projection from a call
2349       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2350         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2351         assert(r->cnt() > TypeFunc::Parms, "sanity");
2352         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2353           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2354           int ti = n->in(0)->_idx;
2355           // The call may not be registered yet (since not all its inputs are registered)
2356           // if this is the projection from backbranch edge of Phi.
2357           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2358             process_call_result(n->as_Proj(), phase);
2359           }
2360           if (!_processed.test(n->_idx)) {
2361             // The call's result may need to be processed later if the call
2362             // returns it's argument and the argument is not processed yet.
2363             _delayed_worklist.push(n);
2364           }
2365           break;
2366         }
2367       }
2368       _processed.set(n->_idx);
2369       break;
2370     }
2371     case Op_Return:
2372     {
2373       if( n->req() > TypeFunc::Parms &&
2374           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2375         // Treat Return value as LocalVar with GlobalEscape escape state.
2376         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2377         int ti = n->in(TypeFunc::Parms)->_idx;
2378         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2379         if (nt == PointsToNode::UnknownType) {
2380           _delayed_worklist.push(n); // Process it later.
2381           break;
2382         } else if (nt == PointsToNode::JavaObject) {
2383           add_pointsto_edge(n->_idx, ti);
2384         } else {
2385           add_deferred_edge(n->_idx, ti);
2386         }
2387       }
2388       _processed.set(n->_idx);
2389       break;
2390     }
2391     case Op_StoreP:
2392     case Op_StoreN:
2393     {
2394       const Type *adr_type = phase->type(n->in(MemNode::Address));
2395       adr_type = adr_type->make_ptr();
2396       if (adr_type->isa_oopptr()) {
2397         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2398       } else {
2399         Node* adr = n->in(MemNode::Address);
2400         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2401             adr->in(AddPNode::Address)->is_Proj() &&
2402             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2403           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2404           // We are computing a raw address for a store captured
2405           // by an Initialize compute an appropriate address type.
2406           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2407           assert(offs != Type::OffsetBot, "offset must be a constant");
2408         } else {
2409           _processed.set(n->_idx);
2410           return;
2411         }
2412       }
2413       break;
2414     }
2415     case Op_StorePConditional:
2416     case Op_CompareAndSwapP:
2417     case Op_CompareAndSwapN:
2418     {
2419       const Type *adr_type = phase->type(n->in(MemNode::Address));
2420       adr_type = adr_type->make_ptr();
2421       if (adr_type->isa_oopptr()) {
2422         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2423       } else {
2424         _processed.set(n->_idx);
2425         return;
2426       }
2427       break;
2428     }
2429     case Op_AryEq:
2430     case Op_StrComp:
2431     case Op_StrEquals:
2432     case Op_StrIndexOf:
2433     {
2434       // char[] arrays passed to string intrinsics are not scalar replaceable.
2435       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2436       break;
2437     }
2438     case Op_ThreadLocal:
2439     {
2440       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2441       break;
2442     }
2443     default:
2444       ;
2445       // nothing to do
2446   }
2447   return;
2448 }
2449 
2450 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2451   uint n_idx = n->_idx;
2452   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2453 
2454   // Don't set processed bit for AddP, LoadP, StoreP since
2455   // they may need more then one pass to process.
2456   if (_processed.test(n_idx))
2457     return; // No need to redefine node's state.
2458 
2459   if (n->is_Call()) {
2460     CallNode *call = n->as_Call();
2461     process_call_arguments(call, phase);
2462     _processed.set(n_idx);
2463     return;
2464   }
2465 
2466   switch (n->Opcode()) {
2467     case Op_AddP:
2468     {
2469       Node *base = get_addp_base(n);
2470       // Create a field edge to this node from everything base could point to.
2471       VectorSet ptset(Thread::current()->resource_area());
2472       PointsTo(ptset, base);
2473       for( VectorSetI i(&ptset); i.test(); ++i ) {
2474         uint pt = i.elem;
2475         add_field_edge(pt, n_idx, address_offset(n, phase));
2476       }
2477       break;
2478     }
2479     case Op_CastX2P:
2480     {
2481       assert(false, "Op_CastX2P");
2482       break;
2483     }
2484     case Op_CastPP:
2485     case Op_CheckCastPP:
2486     case Op_EncodeP:
2487     case Op_DecodeN:
2488     {
2489       int ti = n->in(1)->_idx;
2490       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2491       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2492         add_pointsto_edge(n_idx, ti);
2493       } else {
2494         add_deferred_edge(n_idx, ti);
2495       }
2496       _processed.set(n_idx);
2497       break;
2498     }
2499     case Op_ConP:
2500     {
2501       assert(false, "Op_ConP");
2502       break;
2503     }
2504     case Op_ConN:
2505     {
2506       assert(false, "Op_ConN");
2507       break;
2508     }
2509     case Op_CreateEx:
2510     {
2511       assert(false, "Op_CreateEx");
2512       break;
2513     }
2514     case Op_LoadKlass:
2515     case Op_LoadNKlass:
2516     {
2517       assert(false, "Op_LoadKlass");
2518       break;
2519     }
2520     case Op_LoadP:
2521     case Op_LoadN:
2522     {
2523       const Type *t = phase->type(n);
2524 #ifdef ASSERT
2525       if (t->make_ptr() == NULL)
2526         assert(false, "Op_LoadP");
2527 #endif
2528 
2529       Node* adr = n->in(MemNode::Address)->uncast();
2530       Node* adr_base;
2531       if (adr->is_AddP()) {
2532         adr_base = get_addp_base(adr);
2533       } else {
2534         adr_base = adr;
2535       }
2536 
2537       // For everything "adr_base" could point to, create a deferred edge from
2538       // this node to each field with the same offset.
2539       VectorSet ptset(Thread::current()->resource_area());
2540       PointsTo(ptset, adr_base);
2541       int offset = address_offset(adr, phase);
2542       for( VectorSetI i(&ptset); i.test(); ++i ) {
2543         uint pt = i.elem;
2544         add_deferred_edge_to_fields(n_idx, pt, offset);
2545       }
2546       break;
2547     }
2548     case Op_Parm:
2549     {
2550       assert(false, "Op_Parm");
2551       break;
2552     }
2553     case Op_Phi:
2554     {
2555 #ifdef ASSERT
2556       const Type *t = n->as_Phi()->type();
2557       if (t->make_ptr() == NULL)
2558         assert(false, "Op_Phi");
2559 #endif
2560       for (uint i = 1; i < n->req() ; i++) {
2561         Node* in = n->in(i);
2562         if (in == NULL)
2563           continue;  // ignore NULL
2564         in = in->uncast();
2565         if (in->is_top() || in == n)
2566           continue;  // ignore top or inputs which go back this node
2567         int ti = in->_idx;
2568         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2569         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2570         if (nt == PointsToNode::JavaObject) {
2571           add_pointsto_edge(n_idx, ti);
2572         } else {
2573           add_deferred_edge(n_idx, ti);
2574         }
2575       }
2576       _processed.set(n_idx);
2577       break;
2578     }
2579     case Op_Proj:
2580     {
2581       // we are only interested in the oop result projection from a call
2582       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2583         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
2584                "all nodes should be registered");
2585         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2586         assert(r->cnt() > TypeFunc::Parms, "sanity");
2587         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2588           process_call_result(n->as_Proj(), phase);
2589           assert(_processed.test(n_idx), "all call results should be processed");
2590           break;
2591         }
2592       }
2593       assert(false, "Op_Proj");
2594       break;
2595     }
2596     case Op_Return:
2597     {
2598 #ifdef ASSERT
2599       if( n->req() <= TypeFunc::Parms ||
2600           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2601         assert(false, "Op_Return");
2602       }
2603 #endif
2604       int ti = n->in(TypeFunc::Parms)->_idx;
2605       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
2606       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2607         add_pointsto_edge(n_idx, ti);
2608       } else {
2609         add_deferred_edge(n_idx, ti);
2610       }
2611       _processed.set(n_idx);
2612       break;
2613     }
2614     case Op_StoreP:
2615     case Op_StoreN:
2616     case Op_StorePConditional:
2617     case Op_CompareAndSwapP:
2618     case Op_CompareAndSwapN:
2619     {
2620       Node *adr = n->in(MemNode::Address);
2621       const Type *adr_type = phase->type(adr)->make_ptr();
2622 #ifdef ASSERT
2623       if (!adr_type->isa_oopptr())
2624         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2625 #endif
2626 
2627       assert(adr->is_AddP(), "expecting an AddP");
2628       Node *adr_base = get_addp_base(adr);
2629       Node *val = n->in(MemNode::ValueIn)->uncast();
2630       // For everything "adr_base" could point to, create a deferred edge
2631       // to "val" from each field with the same offset.
2632       VectorSet ptset(Thread::current()->resource_area());
2633       PointsTo(ptset, adr_base);
2634       for( VectorSetI i(&ptset); i.test(); ++i ) {
2635         uint pt = i.elem;
2636         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2637       }
2638       break;
2639     }
2640     case Op_AryEq:
2641     case Op_StrComp:
2642     case Op_StrEquals:
2643     case Op_StrIndexOf:
2644     {
2645       // char[] arrays passed to string intrinsic do not escape but
2646       // they are not scalar replaceable. Adjust escape state for them.
2647       // Start from in(2) edge since in(1) is memory edge.
2648       for (uint i = 2; i < n->req(); i++) {
2649         Node* adr = n->in(i)->uncast();
2650         const Type *at = phase->type(adr);
2651         if (!adr->is_top() && at->isa_ptr()) {
2652           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
2653                  at->isa_ptr() != NULL, "expecting an Ptr");
2654           if (adr->is_AddP()) {
2655             adr = get_addp_base(adr);
2656           }
2657           // Mark as ArgEscape everything "adr" could point to.
2658           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
2659         }
2660       }
2661       _processed.set(n_idx);
2662       break;
2663     }
2664     case Op_ThreadLocal:
2665     {
2666       assert(false, "Op_ThreadLocal");
2667       break;
2668     }
2669     default:
2670       // This method should be called only for EA specific nodes.
2671       ShouldNotReachHere();
2672   }
2673 }
2674 
2675 #ifndef PRODUCT
2676 void ConnectionGraph::dump() {
2677   bool first = true;
2678 
2679   uint size = nodes_size();
2680   for (uint ni = 0; ni < size; ni++) {
2681     PointsToNode *ptn = ptnode_adr(ni);
2682     PointsToNode::NodeType ptn_type = ptn->node_type();
2683 
2684     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2685       continue;
2686     PointsToNode::EscapeState es = escape_state(ptn->_node);
2687     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2688       if (first) {
2689         tty->cr();
2690         tty->print("======== Connection graph for ");
2691         _compile->method()->print_short_name();
2692         tty->cr();
2693         first = false;
2694       }
2695       tty->print("%6d ", ni);
2696       ptn->dump();
2697       // Print all locals which reference this allocation
2698       for (uint li = ni; li < size; li++) {
2699         PointsToNode *ptn_loc = ptnode_adr(li);
2700         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2701         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2702              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2703           ptnode_adr(li)->dump(false);
2704         }
2705       }
2706       if (Verbose) {
2707         // Print all fields which reference this allocation
2708         for (uint i = 0; i < ptn->edge_count(); i++) {
2709           uint ei = ptn->edge_target(i);
2710           ptnode_adr(ei)->dump(false);
2711         }
2712       }
2713       tty->cr();
2714     }
2715   }
2716 }
2717 #endif