1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_ifg.cpp.incl"
  27 
  28 #define EXACT_PRESSURE 1
  29 
  30 //=============================================================================
  31 //------------------------------IFG--------------------------------------------
  32 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
  33 }
  34 
  35 //------------------------------init-------------------------------------------
  36 void PhaseIFG::init( uint maxlrg ) {
  37   _maxlrg = maxlrg;
  38   _yanked = new (_arena) VectorSet(_arena);
  39   _is_square = false;
  40   // Make uninitialized adjacency lists
  41   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
  42   // Also make empty live range structures
  43   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
  44   memset(_lrgs,0,sizeof(LRG)*maxlrg);
  45   // Init all to empty
  46   for( uint i = 0; i < maxlrg; i++ ) {
  47     _adjs[i].initialize(maxlrg);
  48     _lrgs[i].Set_All();
  49   }
  50 }
  51 
  52 //------------------------------add--------------------------------------------
  53 // Add edge between vertices a & b.  These are sorted (triangular matrix),
  54 // then the smaller number is inserted in the larger numbered array.
  55 int PhaseIFG::add_edge( uint a, uint b ) {
  56   lrgs(a).invalid_degree();
  57   lrgs(b).invalid_degree();
  58   // Sort a and b, so that a is bigger
  59   assert( !_is_square, "only on triangular" );
  60   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  61   return _adjs[a].insert( b );
  62 }
  63 
  64 //------------------------------add_vector-------------------------------------
  65 // Add an edge between 'a' and everything in the vector.
  66 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
  67   // IFG is triangular, so do the inserts where 'a' < 'b'.
  68   assert( !_is_square, "only on triangular" );
  69   IndexSet *adjs_a = &_adjs[a];
  70   if( !vec->count() ) return;
  71 
  72   IndexSetIterator elements(vec);
  73   uint neighbor;
  74   while ((neighbor = elements.next()) != 0) {
  75     add_edge( a, neighbor );
  76   }
  77 }
  78 
  79 //------------------------------test-------------------------------------------
  80 // Is there an edge between a and b?
  81 int PhaseIFG::test_edge( uint a, uint b ) const {
  82   // Sort a and b, so that a is larger
  83   assert( !_is_square, "only on triangular" );
  84   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  85   return _adjs[a].member(b);
  86 }
  87 
  88 //------------------------------SquareUp---------------------------------------
  89 // Convert triangular matrix to square matrix
  90 void PhaseIFG::SquareUp() {
  91   assert( !_is_square, "only on triangular" );
  92 
  93   // Simple transpose
  94   for( uint i = 0; i < _maxlrg; i++ ) {
  95     IndexSetIterator elements(&_adjs[i]);
  96     uint datum;
  97     while ((datum = elements.next()) != 0) {
  98       _adjs[datum].insert( i );
  99     }
 100   }
 101   _is_square = true;
 102 }
 103 
 104 //------------------------------Compute_Effective_Degree-----------------------
 105 // Compute effective degree in bulk
 106 void PhaseIFG::Compute_Effective_Degree() {
 107   assert( _is_square, "only on square" );
 108 
 109   for( uint i = 0; i < _maxlrg; i++ )
 110     lrgs(i).set_degree(effective_degree(i));
 111 }
 112 
 113 //------------------------------test_edge_sq-----------------------------------
 114 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
 115   assert( _is_square, "only on square" );
 116   // Swap, so that 'a' has the lesser count.  Then binary search is on
 117   // the smaller of a's list and b's list.
 118   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
 119   //return _adjs[a].unordered_member(b);
 120   return _adjs[a].member(b);
 121 }
 122 
 123 //------------------------------Union------------------------------------------
 124 // Union edges of B into A
 125 void PhaseIFG::Union( uint a, uint b ) {
 126   assert( _is_square, "only on square" );
 127   IndexSet *A = &_adjs[a];
 128   IndexSetIterator b_elements(&_adjs[b]);
 129   uint datum;
 130   while ((datum = b_elements.next()) != 0) {
 131     if(A->insert(datum)) {
 132       _adjs[datum].insert(a);
 133       lrgs(a).invalid_degree();
 134       lrgs(datum).invalid_degree();
 135     }
 136   }
 137 }
 138 
 139 //------------------------------remove_node------------------------------------
 140 // Yank a Node and all connected edges from the IFG.  Return a
 141 // list of neighbors (edges) yanked.
 142 IndexSet *PhaseIFG::remove_node( uint a ) {
 143   assert( _is_square, "only on square" );
 144   assert( !_yanked->test(a), "" );
 145   _yanked->set(a);
 146 
 147   // I remove the LRG from all neighbors.
 148   IndexSetIterator elements(&_adjs[a]);
 149   LRG &lrg_a = lrgs(a);
 150   uint datum;
 151   while ((datum = elements.next()) != 0) {
 152     _adjs[datum].remove(a);
 153     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
 154   }
 155   return neighbors(a);
 156 }
 157 
 158 //------------------------------re_insert--------------------------------------
 159 // Re-insert a yanked Node.
 160 void PhaseIFG::re_insert( uint a ) {
 161   assert( _is_square, "only on square" );
 162   assert( _yanked->test(a), "" );
 163   (*_yanked) >>= a;
 164 
 165   IndexSetIterator elements(&_adjs[a]);
 166   uint datum;
 167   while ((datum = elements.next()) != 0) {
 168     _adjs[datum].insert(a);
 169     lrgs(datum).invalid_degree();
 170   }
 171 }
 172 
 173 //------------------------------compute_degree---------------------------------
 174 // Compute the degree between 2 live ranges.  If both live ranges are
 175 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 176 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 177 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 178 // this is so.
 179 int LRG::compute_degree( LRG &l ) const {
 180   int tmp;
 181   int num_regs = _num_regs;
 182   int nregs = l.num_regs();
 183   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
 184     ? (num_regs * nregs)                // then use product
 185     : MAX2(num_regs,nregs);             // else use max
 186   return tmp;
 187 }
 188 
 189 //------------------------------effective_degree-------------------------------
 190 // Compute effective degree for this live range.  If both live ranges are
 191 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 192 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 193 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 194 // this is so.
 195 int PhaseIFG::effective_degree( uint lidx ) const {
 196   int eff = 0;
 197   int num_regs = lrgs(lidx).num_regs();
 198   int fat_proj = lrgs(lidx)._fat_proj;
 199   IndexSet *s = neighbors(lidx);
 200   IndexSetIterator elements(s);
 201   uint nidx;
 202   while((nidx = elements.next()) != 0) {
 203     LRG &lrgn = lrgs(nidx);
 204     int nregs = lrgn.num_regs();
 205     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
 206       ? (num_regs * nregs)              // then use product
 207       : MAX2(num_regs,nregs);           // else use max
 208   }
 209   return eff;
 210 }
 211 
 212 
 213 #ifndef PRODUCT
 214 //------------------------------dump-------------------------------------------
 215 void PhaseIFG::dump() const {
 216   tty->print_cr("-- Interference Graph --%s--",
 217                 _is_square ? "square" : "triangular" );
 218   if( _is_square ) {
 219     for( uint i = 0; i < _maxlrg; i++ ) {
 220       tty->print( (*_yanked)[i] ? "XX " : "  ");
 221       tty->print("L%d: { ",i);
 222       IndexSetIterator elements(&_adjs[i]);
 223       uint datum;
 224       while ((datum = elements.next()) != 0) {
 225         tty->print("L%d ", datum);
 226       }
 227       tty->print_cr("}");
 228 
 229     }
 230     return;
 231   }
 232 
 233   // Triangular
 234   for( uint i = 0; i < _maxlrg; i++ ) {
 235     uint j;
 236     tty->print( (*_yanked)[i] ? "XX " : "  ");
 237     tty->print("L%d: { ",i);
 238     for( j = _maxlrg; j > i; j-- )
 239       if( test_edge(j - 1,i) ) {
 240         tty->print("L%d ",j - 1);
 241       }
 242     tty->print("| ");
 243     IndexSetIterator elements(&_adjs[i]);
 244     uint datum;
 245     while ((datum = elements.next()) != 0) {
 246       tty->print("L%d ", datum);
 247     }
 248     tty->print("}\n");
 249   }
 250   tty->print("\n");
 251 }
 252 
 253 //------------------------------stats------------------------------------------
 254 void PhaseIFG::stats() const {
 255   ResourceMark rm;
 256   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
 257   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
 258   uint i;
 259   for( i = 0; i < _maxlrg; i++ ) {
 260     h_cnt[neighbor_cnt(i)]++;
 261   }
 262   tty->print_cr("--Histogram of counts--");
 263   for( i = 0; i < _maxlrg*2; i++ )
 264     if( h_cnt[i] )
 265       tty->print("%d/%d ",i,h_cnt[i]);
 266   tty->print_cr("");
 267 }
 268 
 269 //------------------------------verify-----------------------------------------
 270 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
 271   // IFG is square, sorted and no need for Find
 272   for( uint i = 0; i < _maxlrg; i++ ) {
 273     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
 274     IndexSet *set = &_adjs[i];
 275     IndexSetIterator elements(set);
 276     uint idx;
 277     uint last = 0;
 278     while ((idx = elements.next()) != 0) {
 279       assert( idx != i, "Must have empty diagonal");
 280       assert( pc->Find_const(idx) == idx, "Must not need Find" );
 281       assert( _adjs[idx].member(i), "IFG not square" );
 282       assert( !(*_yanked)[idx], "No yanked neighbors" );
 283       assert( last < idx, "not sorted increasing");
 284       last = idx;
 285     }
 286     assert( !lrgs(i)._degree_valid ||
 287             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
 288   }
 289 }
 290 #endif
 291 
 292 //------------------------------interfere_with_live----------------------------
 293 // Interfere this register with everything currently live.  Use the RegMasks
 294 // to trim the set of possible interferences. Return a count of register-only
 295 // interferences as an estimate of register pressure.
 296 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
 297   uint retval = 0;
 298   // Interfere with everything live.
 299   const RegMask &rm = lrgs(r).mask();
 300   // Check for interference by checking overlap of regmasks.
 301   // Only interfere if acceptable register masks overlap.
 302   IndexSetIterator elements(liveout);
 303   uint l;
 304   while( (l = elements.next()) != 0 )
 305     if( rm.overlap( lrgs(l).mask() ) )
 306       _ifg->add_edge( r, l );
 307 }
 308 
 309 //------------------------------build_ifg_virtual------------------------------
 310 // Actually build the interference graph.  Uses virtual registers only, no
 311 // physical register masks.  This allows me to be very aggressive when
 312 // coalescing copies.  Some of this aggressiveness will have to be undone
 313 // later, but I'd rather get all the copies I can now (since unremoved copies
 314 // at this point can end up in bad places).  Copies I re-insert later I have
 315 // more opportunity to insert them in low-frequency locations.
 316 void PhaseChaitin::build_ifg_virtual( ) {
 317 
 318   // For all blocks (in any order) do...
 319   for( uint i=0; i<_cfg._num_blocks; i++ ) {
 320     Block *b = _cfg._blocks[i];
 321     IndexSet *liveout = _live->live(b);
 322 
 323     // The IFG is built by a single reverse pass over each basic block.
 324     // Starting with the known live-out set, we remove things that get
 325     // defined and add things that become live (essentially executing one
 326     // pass of a standard LIVE analysis). Just before a Node defines a value
 327     // (and removes it from the live-ness set) that value is certainly live.
 328     // The defined value interferes with everything currently live.  The
 329     // value is then removed from the live-ness set and it's inputs are
 330     // added to the live-ness set.
 331     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
 332       Node *n = b->_nodes[j-1];
 333 
 334       // Get value being defined
 335       uint r = n2lidx(n);
 336 
 337       // Some special values do not allocate
 338       if( r ) {
 339 
 340         // Remove from live-out set
 341         liveout->remove(r);
 342 
 343         // Copies do not define a new value and so do not interfere.
 344         // Remove the copies source from the liveout set before interfering.
 345         uint idx = n->is_Copy();
 346         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
 347 
 348         // Interfere with everything live
 349         interfere_with_live( r, liveout );
 350       }
 351 
 352       // Make all inputs live
 353       if( !n->is_Phi() ) {      // Phi function uses come from prior block
 354         for( uint k = 1; k < n->req(); k++ )
 355           liveout->insert( n2lidx(n->in(k)) );
 356       }
 357 
 358       // 2-address instructions always have the defined value live
 359       // on entry to the instruction, even though it is being defined
 360       // by the instruction.  We pretend a virtual copy sits just prior
 361       // to the instruction and kills the src-def'd register.
 362       // In other words, for 2-address instructions the defined value
 363       // interferes with all inputs.
 364       uint idx;
 365       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
 366         const MachNode *mach = n->as_Mach();
 367         // Sometimes my 2-address ADDs are commuted in a bad way.
 368         // We generally want the USE-DEF register to refer to the
 369         // loop-varying quantity, to avoid a copy.
 370         uint op = mach->ideal_Opcode();
 371         // Check that mach->num_opnds() == 3 to ensure instruction is
 372         // not subsuming constants, effectively excludes addI_cin_imm
 373         // Can NOT swap for instructions like addI_cin_imm since it
 374         // is adding zero to yhi + carry and the second ideal-input
 375         // points to the result of adding low-halves.
 376         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
 377         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
 378             n->in(1)->bottom_type()->base() == Type::Int &&
 379             // See if the ADD is involved in a tight data loop the wrong way
 380             n->in(2)->is_Phi() &&
 381             n->in(2)->in(2) == n ) {
 382           Node *tmp = n->in(1);
 383           n->set_req( 1, n->in(2) );
 384           n->set_req( 2, tmp );
 385         }
 386         // Defined value interferes with all inputs
 387         uint lidx = n2lidx(n->in(idx));
 388         for( uint k = 1; k < n->req(); k++ ) {
 389           uint kidx = n2lidx(n->in(k));
 390           if( kidx != lidx )
 391             _ifg->add_edge( r, kidx );
 392         }
 393       }
 394     } // End of forall instructions in block
 395   } // End of forall blocks
 396 }
 397 
 398 //------------------------------count_int_pressure-----------------------------
 399 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
 400   IndexSetIterator elements(liveout);
 401   uint lidx;
 402   uint cnt = 0;
 403   while ((lidx = elements.next()) != 0) {
 404     if( lrgs(lidx).mask().is_UP() &&
 405         lrgs(lidx).mask_size() &&
 406         !lrgs(lidx)._is_float &&
 407         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
 408       cnt += lrgs(lidx).reg_pressure();
 409   }
 410   return cnt;
 411 }
 412 
 413 //------------------------------count_float_pressure---------------------------
 414 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
 415   IndexSetIterator elements(liveout);
 416   uint lidx;
 417   uint cnt = 0;
 418   while ((lidx = elements.next()) != 0) {
 419     if( lrgs(lidx).mask().is_UP() &&
 420         lrgs(lidx).mask_size() &&
 421         lrgs(lidx)._is_float )
 422       cnt += lrgs(lidx).reg_pressure();
 423   }
 424   return cnt;
 425 }
 426 
 427 //------------------------------lower_pressure---------------------------------
 428 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
 429 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
 430   if( lrg->mask().is_UP() && lrg->mask_size() ) {
 431     if( lrg->_is_float ) {
 432       pressure[1] -= lrg->reg_pressure();
 433       if( pressure[1] == (uint)FLOATPRESSURE ) {
 434         hrp_index[1] = where;
 435 #ifdef EXACT_PRESSURE
 436       if( pressure[1] > b->_freg_pressure )
 437         b->_freg_pressure = pressure[1]+1;
 438 #else
 439         b->_freg_pressure = (uint)FLOATPRESSURE+1;
 440 #endif
 441       }
 442     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 443       pressure[0] -= lrg->reg_pressure();
 444       if( pressure[0] == (uint)INTPRESSURE   ) {
 445         hrp_index[0] = where;
 446 #ifdef EXACT_PRESSURE
 447       if( pressure[0] > b->_reg_pressure )
 448         b->_reg_pressure = pressure[0]+1;
 449 #else
 450         b->_reg_pressure = (uint)INTPRESSURE+1;
 451 #endif
 452       }
 453     }
 454   }
 455 }
 456 
 457 //------------------------------build_ifg_physical-----------------------------
 458 // Build the interference graph using physical registers when available.
 459 // That is, if 2 live ranges are simultaneously alive but in their acceptable
 460 // register sets do not overlap, then they do not interfere.
 461 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
 462   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
 463 
 464   uint spill_reg = LRG::SPILL_REG;
 465   uint must_spill = 0;
 466 
 467   // For all blocks (in any order) do...
 468   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 469     Block *b = _cfg._blocks[i];
 470     // Clone (rather than smash in place) the liveout info, so it is alive
 471     // for the "collect_gc_info" phase later.
 472     IndexSet liveout(_live->live(b));
 473     uint last_inst = b->end_idx();
 474     // Compute first nonphi node index
 475     uint first_inst;
 476     for( first_inst = 1; first_inst < last_inst; first_inst++ )
 477       if( !b->_nodes[first_inst]->is_Phi() )
 478         break;
 479 
 480     // Spills could be inserted before CreateEx node which should be
 481     // first instruction in block after Phis. Move CreateEx up.
 482     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
 483       Node *ex = b->_nodes[insidx];
 484       if( ex->is_SpillCopy() ) continue;
 485       if( insidx > first_inst && ex->is_Mach() &&
 486           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 487         // If the CreateEx isn't above all the MachSpillCopies
 488         // then move it to the top.
 489         b->_nodes.remove(insidx);
 490         b->_nodes.insert(first_inst, ex);
 491       }
 492       // Stop once a CreateEx or any other node is found
 493       break;
 494     }
 495 
 496     // Reset block's register pressure values for each ifg construction
 497     uint pressure[2], hrp_index[2];
 498     pressure[0] = pressure[1] = 0;
 499     hrp_index[0] = hrp_index[1] = last_inst+1;
 500     b->_reg_pressure = b->_freg_pressure = 0;
 501     // Liveout things are presumed live for the whole block.  We accumulate
 502     // 'area' accordingly.  If they get killed in the block, we'll subtract
 503     // the unused part of the block from the area.
 504     int inst_count = last_inst - first_inst;
 505     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 506     assert(!(cost < 0.0), "negative spill cost" );
 507     IndexSetIterator elements(&liveout);
 508     uint lidx;
 509     while ((lidx = elements.next()) != 0) {
 510       LRG &lrg = lrgs(lidx);
 511       lrg._area += cost;
 512       // Compute initial register pressure
 513       if( lrg.mask().is_UP() && lrg.mask_size() ) {
 514         if( lrg._is_float ) {   // Count float pressure
 515           pressure[1] += lrg.reg_pressure();
 516 #ifdef EXACT_PRESSURE
 517           if( pressure[1] > b->_freg_pressure )
 518             b->_freg_pressure = pressure[1];
 519 #endif
 520           // Count int pressure, but do not count the SP, flags
 521         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 522           pressure[0] += lrg.reg_pressure();
 523 #ifdef EXACT_PRESSURE
 524           if( pressure[0] > b->_reg_pressure )
 525             b->_reg_pressure = pressure[0];
 526 #endif
 527         }
 528       }
 529     }
 530     assert( pressure[0] == count_int_pressure  (&liveout), "" );
 531     assert( pressure[1] == count_float_pressure(&liveout), "" );
 532 
 533     // The IFG is built by a single reverse pass over each basic block.
 534     // Starting with the known live-out set, we remove things that get
 535     // defined and add things that become live (essentially executing one
 536     // pass of a standard LIVE analysis).  Just before a Node defines a value
 537     // (and removes it from the live-ness set) that value is certainly live.
 538     // The defined value interferes with everything currently live.  The
 539     // value is then removed from the live-ness set and it's inputs are added
 540     // to the live-ness set.
 541     uint j;
 542     for( j = last_inst + 1; j > 1; j-- ) {
 543       Node *n = b->_nodes[j - 1];
 544 
 545       // Get value being defined
 546       uint r = n2lidx(n);
 547 
 548       // Some special values do not allocate
 549       if( r ) {
 550         // A DEF normally costs block frequency; rematerialized values are
 551         // removed from the DEF sight, so LOWER costs here.
 552         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
 553 
 554         // If it is not live, then this instruction is dead.  Probably caused
 555         // by spilling and rematerialization.  Who cares why, yank this baby.
 556         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
 557           Node *def = n->in(0);
 558           if( !n->is_Proj() ||
 559               // Could also be a flags-projection of a dead ADD or such.
 560               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
 561             b->_nodes.remove(j - 1);
 562             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
 563             n->disconnect_inputs(NULL);
 564             _cfg._bbs.map(n->_idx,NULL);
 565             n->replace_by(C->top());
 566             // Since yanking a Node from block, high pressure moves up one
 567             hrp_index[0]--;
 568             hrp_index[1]--;
 569             continue;
 570           }
 571 
 572           // Fat-projections kill many registers which cannot be used to
 573           // hold live ranges.
 574           if( lrgs(r)._fat_proj ) {
 575             // Count the int-only registers
 576             RegMask itmp = lrgs(r).mask();
 577             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
 578             int iregs = itmp.Size();
 579 #ifdef EXACT_PRESSURE
 580             if( pressure[0]+iregs > b->_reg_pressure )
 581               b->_reg_pressure = pressure[0]+iregs;
 582 #endif
 583             if( pressure[0]       <= (uint)INTPRESSURE &&
 584                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
 585 #ifndef EXACT_PRESSURE
 586               b->_reg_pressure = (uint)INTPRESSURE+1;
 587 #endif
 588               hrp_index[0] = j-1;
 589             }
 590             // Count the float-only registers
 591             RegMask ftmp = lrgs(r).mask();
 592             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
 593             int fregs = ftmp.Size();
 594 #ifdef EXACT_PRESSURE
 595             if( pressure[1]+fregs > b->_freg_pressure )
 596               b->_freg_pressure = pressure[1]+fregs;
 597 #endif
 598             if( pressure[1]       <= (uint)FLOATPRESSURE &&
 599                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
 600 #ifndef EXACT_PRESSURE
 601               b->_freg_pressure = (uint)FLOATPRESSURE+1;
 602 #endif
 603               hrp_index[1] = j-1;
 604             }
 605           }
 606 
 607         } else {                // Else it is live
 608           // A DEF also ends 'area' partway through the block.
 609           lrgs(r)._area -= cost;
 610           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
 611 
 612           // Insure high score for immediate-use spill copies so they get a color
 613           if( n->is_SpillCopy()
 614               && lrgs(r).is_singledef()        // MultiDef live range can still split
 615               && n->outcnt() == 1              // and use must be in this block
 616               && _cfg._bbs[n->unique_out()->_idx] == b ) {
 617             // All single-use MachSpillCopy(s) that immediately precede their
 618             // use must color early.  If a longer live range steals their
 619             // color, the spill copy will split and may push another spill copy
 620             // further away resulting in an infinite spill-split-retry cycle.
 621             // Assigning a zero area results in a high score() and a good
 622             // location in the simplify list.
 623             //
 624 
 625             Node *single_use = n->unique_out();
 626             assert( b->find_node(single_use) >= j, "Use must be later in block");
 627             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
 628 
 629             // Find first non SpillCopy 'm' that follows the current instruction
 630             // (j - 1) is index for current instruction 'n'
 631             Node *m = n;
 632             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
 633             if( m == single_use ) {
 634               lrgs(r)._area = 0.0;
 635             }
 636           }
 637 
 638           // Remove from live-out set
 639           if( liveout.remove(r) ) {
 640             // Adjust register pressure.
 641             // Capture last hi-to-lo pressure transition
 642             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
 643             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 644             assert( pressure[1] == count_float_pressure(&liveout), "" );
 645           }
 646 
 647           // Copies do not define a new value and so do not interfere.
 648           // Remove the copies source from the liveout set before interfering.
 649           uint idx = n->is_Copy();
 650           if( idx ) {
 651             uint x = n2lidx(n->in(idx));
 652             if( liveout.remove( x ) ) {
 653               lrgs(x)._area -= cost;
 654               // Adjust register pressure.
 655               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
 656               assert( pressure[0] == count_int_pressure  (&liveout), "" );
 657               assert( pressure[1] == count_float_pressure(&liveout), "" );
 658             }
 659           }
 660         } // End of if live or not
 661 
 662         // Interfere with everything live.  If the defined value must
 663         // go in a particular register, just remove that register from
 664         // all conflicting parties and avoid the interference.
 665 
 666         // Make exclusions for rematerializable defs.  Since rematerializable
 667         // DEFs are not bound but the live range is, some uses must be bound.
 668         // If we spill live range 'r', it can rematerialize at each use site
 669         // according to its bindings.
 670         const RegMask &rmask = lrgs(r).mask();
 671         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
 672           // Smear odd bits; leave only aligned pairs of bits.
 673           RegMask r2mask = rmask;
 674           r2mask.SmearToPairs();
 675           // Check for common case
 676           int r_size = lrgs(r).num_regs();
 677           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
 678 
 679           IndexSetIterator elements(&liveout);
 680           uint l;
 681           while ((l = elements.next()) != 0) {
 682             LRG &lrg = lrgs(l);
 683             // If 'l' must spill already, do not further hack his bits.
 684             // He'll get some interferences and be forced to spill later.
 685             if( lrg._must_spill ) continue;
 686             // Remove bound register(s) from 'l's choices
 687             RegMask old = lrg.mask();
 688             uint old_size = lrg.mask_size();
 689             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
 690             // longer interferes with 'r'.  If 'l' requires aligned
 691             // adjacent pairs, subtract out bit pairs.
 692             if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
 693               lrg.SUBTRACT( r2mask );
 694               lrg.compute_set_mask_size();
 695             } else if( r_size != 1 ) {
 696               lrg.SUBTRACT( rmask );
 697               lrg.compute_set_mask_size();
 698             } else {            // Common case: size 1 bound removal
 699               if( lrg.mask().Member(r_reg) ) {
 700                 lrg.Remove(r_reg);
 701                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
 702               }
 703             }
 704             // If 'l' goes completely dry, it must spill.
 705             if( lrg.not_free() ) {
 706               // Give 'l' some kind of reasonable mask, so he picks up
 707               // interferences (and will spill later).
 708               lrg.set_mask( old );
 709               lrg.set_mask_size(old_size);
 710               must_spill++;
 711               lrg._must_spill = 1;
 712               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
 713             }
 714           }
 715         } // End of if bound
 716 
 717         // Now interference with everything that is live and has
 718         // compatible register sets.
 719         interfere_with_live(r,&liveout);
 720 
 721       } // End of if normal register-allocated value
 722 
 723       // Area remaining in the block
 724       inst_count--;
 725       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 726 
 727       // Make all inputs live
 728       if( !n->is_Phi() ) {      // Phi function uses come from prior block
 729         JVMState* jvms = n->jvms();
 730         uint debug_start = jvms ? jvms->debug_start() : 999999;
 731         // Start loop at 1 (skip control edge) for most Nodes.
 732         // SCMemProj's might be the sole use of a StoreLConditional.
 733         // While StoreLConditionals set memory (the SCMemProj use)
 734         // they also def flags; if that flag def is unused the
 735         // allocator sees a flag-setting instruction with no use of
 736         // the flags and assumes it's dead.  This keeps the (useless)
 737         // flag-setting behavior alive while also keeping the (useful)
 738         // memory update effect.
 739         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
 740           Node *def = n->in(k);
 741           uint x = n2lidx(def);
 742           if( !x ) continue;
 743           LRG &lrg = lrgs(x);
 744           // No use-side cost for spilling debug info
 745           if( k < debug_start )
 746             // A USE costs twice block frequency (once for the Load, once
 747             // for a Load-delay).  Rematerialized uses only cost once.
 748             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
 749           // It is live now
 750           if( liveout.insert( x ) ) {
 751             // Newly live things assumed live from here to top of block
 752             lrg._area += cost;
 753             // Adjust register pressure
 754             if( lrg.mask().is_UP() && lrg.mask_size() ) {
 755               if( lrg._is_float ) {
 756                 pressure[1] += lrg.reg_pressure();
 757 #ifdef EXACT_PRESSURE
 758                 if( pressure[1] > b->_freg_pressure )
 759                   b->_freg_pressure = pressure[1];
 760 #endif
 761               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 762                 pressure[0] += lrg.reg_pressure();
 763 #ifdef EXACT_PRESSURE
 764                 if( pressure[0] > b->_reg_pressure )
 765                   b->_reg_pressure = pressure[0];
 766 #endif
 767               }
 768             }
 769             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 770             assert( pressure[1] == count_float_pressure(&liveout), "" );
 771           }
 772           assert(!(lrg._area < 0.0), "negative spill area" );
 773         }
 774       }
 775     } // End of reverse pass over all instructions in block
 776 
 777     // If we run off the top of the block with high pressure and
 778     // never see a hi-to-low pressure transition, just record that
 779     // the whole block is high pressure.
 780     if( pressure[0] > (uint)INTPRESSURE   ) {
 781       hrp_index[0] = 0;
 782 #ifdef EXACT_PRESSURE
 783       if( pressure[0] > b->_reg_pressure )
 784         b->_reg_pressure = pressure[0];
 785 #else
 786       b->_reg_pressure = (uint)INTPRESSURE+1;
 787 #endif
 788     }
 789     if( pressure[1] > (uint)FLOATPRESSURE ) {
 790       hrp_index[1] = 0;
 791 #ifdef EXACT_PRESSURE
 792       if( pressure[1] > b->_freg_pressure )
 793         b->_freg_pressure = pressure[1];
 794 #else
 795       b->_freg_pressure = (uint)FLOATPRESSURE+1;
 796 #endif
 797     }
 798 
 799     // Compute high pressure indice; avoid landing in the middle of projnodes
 800     j = hrp_index[0];
 801     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 802       Node *cur = b->_nodes[j];
 803       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 804         j--;
 805         cur = b->_nodes[j];
 806       }
 807     }
 808     b->_ihrp_index = j;
 809     j = hrp_index[1];
 810     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 811       Node *cur = b->_nodes[j];
 812       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 813         j--;
 814         cur = b->_nodes[j];
 815       }
 816     }
 817     b->_fhrp_index = j;
 818 
 819 #ifndef PRODUCT
 820     // Gather Register Pressure Statistics
 821     if( PrintOptoStatistics ) {
 822       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
 823         _high_pressure++;
 824       else
 825         _low_pressure++;
 826     }
 827 #endif
 828   } // End of for all blocks
 829 
 830   return must_spill;
 831 }