1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 
  46 // Optimization - Graph Style
  47 
  48 //------------------------------implicit_null_check----------------------------
  49 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  50 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  51 // I can generate a memory op if there is not one nearby.
  52 // The proj is the control projection for the not-null case.
  53 // The val is the pointer being checked for nullness or
  54 // decodeHeapOop_not_null node if it did not fold into address.
  55 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  56   // Assume if null check need for 0 offset then always needed
  57   // Intel solaris doesn't support any null checks yet and no
  58   // mechanism exists (yet) to set the switches at an os_cpu level
  59   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  60 
  61   // Make sure the ptr-is-null path appears to be uncommon!
  62   float f = end()->as_MachIf()->_prob;
  63   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  64   if( f > PROB_UNLIKELY_MAG(4) ) return;
  65 
  66   uint bidx = 0;                // Capture index of value into memop
  67   bool was_store;               // Memory op is a store op
  68 
  69   // Get the successor block for if the test ptr is non-null
  70   Block* not_null_block;  // this one goes with the proj
  71   Block* null_block;
  72   if (_nodes[_nodes.size()-1] == proj) {
  73     null_block     = _succs[0];
  74     not_null_block = _succs[1];
  75   } else {
  76     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  77     not_null_block = _succs[0];
  78     null_block     = _succs[1];
  79   }
  80   while (null_block->is_Empty() == Block::empty_with_goto) {
  81     null_block     = null_block->_succs[0];
  82   }
  83 
  84   // Search the exception block for an uncommon trap.
  85   // (See Parse::do_if and Parse::do_ifnull for the reason
  86   // we need an uncommon trap.  Briefly, we need a way to
  87   // detect failure of this optimization, as in 6366351.)
  88   {
  89     bool found_trap = false;
  90     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  91       Node* nn = null_block->_nodes[i1];
  92       if (nn->is_MachCall() &&
  93           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
  94         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
  95         if (trtype->isa_int() && trtype->is_int()->is_con()) {
  96           jint tr_con = trtype->is_int()->get_con();
  97           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
  98           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
  99           assert((int)reason < (int)BitsPerInt, "recode bit map");
 100           if (is_set_nth_bit(allowed_reasons, (int) reason)
 101               && action != Deoptimization::Action_none) {
 102             // This uncommon trap is sure to recompile, eventually.
 103             // When that happens, C->too_many_traps will prevent
 104             // this transformation from happening again.
 105             found_trap = true;
 106           }
 107         }
 108         break;
 109       }
 110     }
 111     if (!found_trap) {
 112       // We did not find an uncommon trap.
 113       return;
 114     }
 115   }
 116 
 117   // Check for decodeHeapOop_not_null node which did not fold into address
 118   bool is_decoden = ((intptr_t)val) & 1;
 119   val = (Node*)(((intptr_t)val) & ~1);
 120 
 121   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 122          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 123 
 124   // Search the successor block for a load or store who's base value is also
 125   // the tested value.  There may be several.
 126   Node_List *out = new Node_List(Thread::current()->resource_area());
 127   MachNode *best = NULL;        // Best found so far
 128   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 129     Node *m = val->out(i);
 130     if( !m->is_Mach() ) continue;
 131     MachNode *mach = m->as_Mach();
 132     was_store = false;
 133     int iop = mach->ideal_Opcode();
 134     switch( iop ) {
 135     case Op_LoadB:
 136     case Op_LoadUS:
 137     case Op_LoadD:
 138     case Op_LoadF:
 139     case Op_LoadI:
 140     case Op_LoadL:
 141     case Op_LoadP:
 142     case Op_LoadN:
 143     case Op_LoadS:
 144     case Op_LoadKlass:
 145     case Op_LoadNKlass:
 146     case Op_LoadRange:
 147     case Op_LoadD_unaligned:
 148     case Op_LoadL_unaligned:
 149       assert(mach->in(2) == val, "should be address");
 150       break;
 151     case Op_StoreB:
 152     case Op_StoreC:
 153     case Op_StoreCM:
 154     case Op_StoreD:
 155     case Op_StoreF:
 156     case Op_StoreI:
 157     case Op_StoreL:
 158     case Op_StoreP:
 159     case Op_StoreN:
 160       was_store = true;         // Memory op is a store op
 161       // Stores will have their address in slot 2 (memory in slot 1).
 162       // If the value being nul-checked is in another slot, it means we
 163       // are storing the checked value, which does NOT check the value!
 164       if( mach->in(2) != val ) continue;
 165       break;                    // Found a memory op?
 166     case Op_StrComp:
 167     case Op_StrEquals:
 168     case Op_StrIndexOf:
 169     case Op_AryEq:
 170       // Not a legit memory op for implicit null check regardless of
 171       // embedded loads
 172       continue;
 173     default:                    // Also check for embedded loads
 174       if( !mach->needs_anti_dependence_check() )
 175         continue;               // Not an memory op; skip it
 176       if( must_clone[iop] ) {
 177         // Do not move nodes which produce flags because
 178         // RA will try to clone it to place near branch and
 179         // it will cause recompilation, see clone_node().
 180         continue;
 181       }
 182       {
 183         // Check that value is used in memory address in
 184         // instructions with embedded load (CmpP val1,(val2+off)).
 185         Node* base;
 186         Node* index;
 187         const MachOper* oper = mach->memory_inputs(base, index);
 188         if (oper == NULL || oper == (MachOper*)-1) {
 189           continue;             // Not an memory op; skip it
 190         }
 191         if (val == base ||
 192             val == index && val->bottom_type()->isa_narrowoop()) {
 193           break;                // Found it
 194         } else {
 195           continue;             // Skip it
 196         }
 197       }
 198       break;
 199     }
 200     // check if the offset is not too high for implicit exception
 201     {
 202       intptr_t offset = 0;
 203       const TypePtr *adr_type = NULL;  // Do not need this return value here
 204       const Node* base = mach->get_base_and_disp(offset, adr_type);
 205       if (base == NULL || base == NodeSentinel) {
 206         // Narrow oop address doesn't have base, only index
 207         if( val->bottom_type()->isa_narrowoop() &&
 208             MacroAssembler::needs_explicit_null_check(offset) )
 209           continue;             // Give up if offset is beyond page size
 210         // cannot reason about it; is probably not implicit null exception
 211       } else {
 212         const TypePtr* tptr;
 213         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
 214           // 32-bits narrow oop can be the base of address expressions
 215           tptr = base->bottom_type()->make_ptr();
 216         } else {
 217           // only regular oops are expected here
 218           tptr = base->bottom_type()->is_ptr();
 219         }
 220         // Give up if offset is not a compile-time constant
 221         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 222           continue;
 223         offset += tptr->_offset; // correct if base is offseted
 224         if( MacroAssembler::needs_explicit_null_check(offset) )
 225           continue;             // Give up is reference is beyond 4K page size
 226       }
 227     }
 228 
 229     // Check ctrl input to see if the null-check dominates the memory op
 230     Block *cb = cfg->_bbs[mach->_idx];
 231     cb = cb->_idom;             // Always hoist at least 1 block
 232     if( !was_store ) {          // Stores can be hoisted only one block
 233       while( cb->_dom_depth > (_dom_depth + 1))
 234         cb = cb->_idom;         // Hoist loads as far as we want
 235       // The non-null-block should dominate the memory op, too. Live
 236       // range spilling will insert a spill in the non-null-block if it is
 237       // needs to spill the memory op for an implicit null check.
 238       if (cb->_dom_depth == (_dom_depth + 1)) {
 239         if (cb != not_null_block) continue;
 240         cb = cb->_idom;
 241       }
 242     }
 243     if( cb != this ) continue;
 244 
 245     // Found a memory user; see if it can be hoisted to check-block
 246     uint vidx = 0;              // Capture index of value into memop
 247     uint j;
 248     for( j = mach->req()-1; j > 0; j-- ) {
 249       if( mach->in(j) == val ) {
 250         vidx = j;
 251         // Ignore DecodeN val which could be hoisted to where needed.
 252         if( is_decoden ) continue;
 253       }
 254       // Block of memory-op input
 255       Block *inb = cfg->_bbs[mach->in(j)->_idx];
 256       Block *b = this;          // Start from nul check
 257       while( b != inb && b->_dom_depth > inb->_dom_depth )
 258         b = b->_idom;           // search upwards for input
 259       // See if input dominates null check
 260       if( b != inb )
 261         break;
 262     }
 263     if( j > 0 )
 264       continue;
 265     Block *mb = cfg->_bbs[mach->_idx];
 266     // Hoisting stores requires more checks for the anti-dependence case.
 267     // Give up hoisting if we have to move the store past any load.
 268     if( was_store ) {
 269       Block *b = mb;            // Start searching here for a local load
 270       // mach use (faulting) trying to hoist
 271       // n might be blocker to hoisting
 272       while( b != this ) {
 273         uint k;
 274         for( k = 1; k < b->_nodes.size(); k++ ) {
 275           Node *n = b->_nodes[k];
 276           if( n->needs_anti_dependence_check() &&
 277               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 278             break;              // Found anti-dependent load
 279         }
 280         if( k < b->_nodes.size() )
 281           break;                // Found anti-dependent load
 282         // Make sure control does not do a merge (would have to check allpaths)
 283         if( b->num_preds() != 2 ) break;
 284         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
 285       }
 286       if( b != this ) continue;
 287     }
 288 
 289     // Make sure this memory op is not already being used for a NullCheck
 290     Node *e = mb->end();
 291     if( e->is_MachNullCheck() && e->in(1) == mach )
 292       continue;                 // Already being used as a NULL check
 293 
 294     // Found a candidate!  Pick one with least dom depth - the highest
 295     // in the dom tree should be closest to the null check.
 296     if( !best ||
 297         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
 298       best = mach;
 299       bidx = vidx;
 300 
 301     }
 302   }
 303   // No candidate!
 304   if( !best ) return;
 305 
 306   // ---- Found an implicit null check
 307   extern int implicit_null_checks;
 308   implicit_null_checks++;
 309 
 310   if( is_decoden ) {
 311     // Check if we need to hoist decodeHeapOop_not_null first.
 312     Block *valb = cfg->_bbs[val->_idx];
 313     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
 314       // Hoist it up to the end of the test block.
 315       valb->find_remove(val);
 316       this->add_inst(val);
 317       cfg->_bbs.map(val->_idx,this);
 318       // DecodeN on x86 may kill flags. Check for flag-killing projections
 319       // that also need to be hoisted.
 320       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 321         Node* n = val->fast_out(j);
 322         if( n->Opcode() == Op_MachProj ) {
 323           cfg->_bbs[n->_idx]->find_remove(n);
 324           this->add_inst(n);
 325           cfg->_bbs.map(n->_idx,this);
 326         }
 327       }
 328     }
 329   }
 330   // Hoist the memory candidate up to the end of the test block.
 331   Block *old_block = cfg->_bbs[best->_idx];
 332   old_block->find_remove(best);
 333   add_inst(best);
 334   cfg->_bbs.map(best->_idx,this);
 335 
 336   // Move the control dependence
 337   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 338     best->set_req(0, _nodes[0]);
 339 
 340   // Check for flag-killing projections that also need to be hoisted
 341   // Should be DU safe because no edge updates.
 342   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 343     Node* n = best->fast_out(j);
 344     if( n->Opcode() == Op_MachProj ) {
 345       cfg->_bbs[n->_idx]->find_remove(n);
 346       add_inst(n);
 347       cfg->_bbs.map(n->_idx,this);
 348     }
 349   }
 350 
 351   Compile *C = cfg->C;
 352   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 353   // One of two graph shapes got matched:
 354   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 355   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 356   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 357   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 358   // We need to flip the projections to keep the same semantics.
 359   if( proj->Opcode() == Op_IfTrue ) {
 360     // Swap order of projections in basic block to swap branch targets
 361     Node *tmp1 = _nodes[end_idx()+1];
 362     Node *tmp2 = _nodes[end_idx()+2];
 363     _nodes.map(end_idx()+1, tmp2);
 364     _nodes.map(end_idx()+2, tmp1);
 365     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
 366     tmp1->replace_by(tmp);
 367     tmp2->replace_by(tmp1);
 368     tmp->replace_by(tmp2);
 369     tmp->destruct();
 370   }
 371 
 372   // Remove the existing null check; use a new implicit null check instead.
 373   // Since schedule-local needs precise def-use info, we need to correct
 374   // it as well.
 375   Node *old_tst = proj->in(0);
 376   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 377   _nodes.map(end_idx(),nul_chk);
 378   cfg->_bbs.map(nul_chk->_idx,this);
 379   // Redirect users of old_test to nul_chk
 380   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 381     old_tst->last_out(i2)->set_req(0, nul_chk);
 382   // Clean-up any dead code
 383   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 384     old_tst->set_req(i3, NULL);
 385 
 386   cfg->latency_from_uses(nul_chk);
 387   cfg->latency_from_uses(best);
 388 }
 389 
 390 
 391 //------------------------------select-----------------------------------------
 392 // Select a nice fellow from the worklist to schedule next. If there is only
 393 // one choice, then use it. Projections take top priority for correctness
 394 // reasons - if I see a projection, then it is next.  There are a number of
 395 // other special cases, for instructions that consume condition codes, et al.
 396 // These are chosen immediately. Some instructions are required to immediately
 397 // precede the last instruction in the block, and these are taken last. Of the
 398 // remaining cases (most), choose the instruction with the greatest latency
 399 // (that is, the most number of pseudo-cycles required to the end of the
 400 // routine). If there is a tie, choose the instruction with the most inputs.
 401 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
 402 
 403   // If only a single entry on the stack, use it
 404   uint cnt = worklist.size();
 405   if (cnt == 1) {
 406     Node *n = worklist[0];
 407     worklist.map(0,worklist.pop());
 408     return n;
 409   }
 410 
 411   uint choice  = 0; // Bigger is most important
 412   uint latency = 0; // Bigger is scheduled first
 413   uint score   = 0; // Bigger is better
 414   int idx = -1;     // Index in worklist
 415 
 416   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 417     // Order in worklist is used to break ties.
 418     // See caller for how this is used to delay scheduling
 419     // of induction variable increments to after the other
 420     // uses of the phi are scheduled.
 421     Node *n = worklist[i];      // Get Node on worklist
 422 
 423     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 424     if( n->is_Proj() ||         // Projections always win
 425         n->Opcode()== Op_Con || // So does constant 'Top'
 426         iop == Op_CreateEx ||   // Create-exception must start block
 427         iop == Op_CheckCastPP
 428         ) {
 429       worklist.map(i,worklist.pop());
 430       return n;
 431     }
 432 
 433     // Final call in a block must be adjacent to 'catch'
 434     Node *e = end();
 435     if( e->is_Catch() && e->in(0)->in(0) == n )
 436       continue;
 437 
 438     // Memory op for an implicit null check has to be at the end of the block
 439     if( e->is_MachNullCheck() && e->in(1) == n )
 440       continue;
 441 
 442     uint n_choice  = 2;
 443 
 444     // See if this instruction is consumed by a branch. If so, then (as the
 445     // branch is the last instruction in the basic block) force it to the
 446     // end of the basic block
 447     if ( must_clone[iop] ) {
 448       // See if any use is a branch
 449       bool found_machif = false;
 450 
 451       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 452         Node* use = n->fast_out(j);
 453 
 454         // The use is a conditional branch, make them adjacent
 455         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
 456           found_machif = true;
 457           break;
 458         }
 459 
 460         // More than this instruction pending for successor to be ready,
 461         // don't choose this if other opportunities are ready
 462         if (ready_cnt[use->_idx] > 1)
 463           n_choice = 1;
 464       }
 465 
 466       // loop terminated, prefer not to use this instruction
 467       if (found_machif)
 468         continue;
 469     }
 470 
 471     // See if this has a predecessor that is "must_clone", i.e. sets the
 472     // condition code. If so, choose this first
 473     for (uint j = 0; j < n->req() ; j++) {
 474       Node *inn = n->in(j);
 475       if (inn) {
 476         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 477           n_choice = 3;
 478           break;
 479         }
 480       }
 481     }
 482 
 483     // MachTemps should be scheduled last so they are near their uses
 484     if (n->is_MachTemp()) {
 485       n_choice = 1;
 486     }
 487 
 488     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
 489     uint n_score   = n->req();   // Many inputs get high score to break ties
 490 
 491     // Keep best latency found
 492     if( choice < n_choice ||
 493         ( choice == n_choice &&
 494           ( latency < n_latency ||
 495             ( latency == n_latency &&
 496               ( score < n_score ))))) {
 497       choice  = n_choice;
 498       latency = n_latency;
 499       score   = n_score;
 500       idx     = i;               // Also keep index in worklist
 501     }
 502   } // End of for all ready nodes in worklist
 503 
 504   assert(idx >= 0, "index should be set");
 505   Node *n = worklist[(uint)idx];      // Get the winner
 506 
 507   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 508   return n;
 509 }
 510 
 511 
 512 //------------------------------set_next_call----------------------------------
 513 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
 514   if( next_call.test_set(n->_idx) ) return;
 515   for( uint i=0; i<n->len(); i++ ) {
 516     Node *m = n->in(i);
 517     if( !m ) continue;  // must see all nodes in block that precede call
 518     if( bbs[m->_idx] == this )
 519       set_next_call( m, next_call, bbs );
 520   }
 521 }
 522 
 523 //------------------------------needed_for_next_call---------------------------
 524 // Set the flag 'next_call' for each Node that is needed for the next call to
 525 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 526 // next subroutine call get priority - basically it moves things NOT needed
 527 // for the next call till after the call.  This prevents me from trying to
 528 // carry lots of stuff live across a call.
 529 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
 530   // Find the next control-defining Node in this block
 531   Node* call = NULL;
 532   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 533     Node* m = this_call->fast_out(i);
 534     if( bbs[m->_idx] == this && // Local-block user
 535         m != this_call &&       // Not self-start node
 536         m->is_Call() )
 537       call = m;
 538       break;
 539   }
 540   if (call == NULL)  return;    // No next call (e.g., block end is near)
 541   // Set next-call for all inputs to this call
 542   set_next_call(call, next_call, bbs);
 543 }
 544 
 545 //------------------------------sched_call-------------------------------------
 546 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 547   RegMask regs;
 548 
 549   // Schedule all the users of the call right now.  All the users are
 550   // projection Nodes, so they must be scheduled next to the call.
 551   // Collect all the defined registers.
 552   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 553     Node* n = mcall->fast_out(i);
 554     assert( n->Opcode()==Op_MachProj, "" );
 555     --ready_cnt[n->_idx];
 556     assert( !ready_cnt[n->_idx], "" );
 557     // Schedule next to call
 558     _nodes.map(node_cnt++, n);
 559     // Collect defined registers
 560     regs.OR(n->out_RegMask());
 561     // Check for scheduling the next control-definer
 562     if( n->bottom_type() == Type::CONTROL )
 563       // Warm up next pile of heuristic bits
 564       needed_for_next_call(n, next_call, bbs);
 565 
 566     // Children of projections are now all ready
 567     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 568       Node* m = n->fast_out(j); // Get user
 569       if( bbs[m->_idx] != this ) continue;
 570       if( m->is_Phi() ) continue;
 571       if( !--ready_cnt[m->_idx] )
 572         worklist.push(m);
 573     }
 574 
 575   }
 576 
 577   // Act as if the call defines the Frame Pointer.
 578   // Certainly the FP is alive and well after the call.
 579   regs.Insert(matcher.c_frame_pointer());
 580 
 581   // Set all registers killed and not already defined by the call.
 582   uint r_cnt = mcall->tf()->range()->cnt();
 583   int op = mcall->ideal_Opcode();
 584   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 585   bbs.map(proj->_idx,this);
 586   _nodes.insert(node_cnt++, proj);
 587 
 588   // Select the right register save policy.
 589   const char * save_policy;
 590   switch (op) {
 591     case Op_CallRuntime:
 592     case Op_CallLeaf:
 593     case Op_CallLeafNoFP:
 594       // Calling C code so use C calling convention
 595       save_policy = matcher._c_reg_save_policy;
 596       break;
 597 
 598     case Op_CallStaticJava:
 599     case Op_CallDynamicJava:
 600       // Calling Java code so use Java calling convention
 601       save_policy = matcher._register_save_policy;
 602       break;
 603 
 604     default:
 605       ShouldNotReachHere();
 606   }
 607 
 608   // When using CallRuntime mark SOE registers as killed by the call
 609   // so values that could show up in the RegisterMap aren't live in a
 610   // callee saved register since the register wouldn't know where to
 611   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 612   // have debug info on them.  Strictly speaking this only needs to be
 613   // done for oops since idealreg2debugmask takes care of debug info
 614   // references but there no way to handle oops differently than other
 615   // pointers as far as the kill mask goes.
 616   bool exclude_soe = op == Op_CallRuntime;
 617 
 618   // If the call is a MethodHandle invoke, we need to exclude the
 619   // register which is used to save the SP value over MH invokes from
 620   // the mask.  Otherwise this register could be used for
 621   // deoptimization information.
 622   if (op == Op_CallStaticJava) {
 623     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 624     if (mcallstaticjava->_method_handle_invoke)
 625       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 626   }
 627 
 628   // Fill in the kill mask for the call
 629   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 630     if( !regs.Member(r) ) {     // Not already defined by the call
 631       // Save-on-call register?
 632       if ((save_policy[r] == 'C') ||
 633           (save_policy[r] == 'A') ||
 634           ((save_policy[r] == 'E') && exclude_soe)) {
 635         proj->_rout.Insert(r);
 636       }
 637     }
 638   }
 639 
 640   return node_cnt;
 641 }
 642 
 643 
 644 //------------------------------schedule_local---------------------------------
 645 // Topological sort within a block.  Someday become a real scheduler.
 646 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
 647   // Already "sorted" are the block start Node (as the first entry), and
 648   // the block-ending Node and any trailing control projections.  We leave
 649   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 650   // Node.  Everything else gets topo-sorted.
 651 
 652 #ifndef PRODUCT
 653     if (cfg->trace_opto_pipelining()) {
 654       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 655       for (uint i = 0;i < _nodes.size();i++) {
 656         tty->print("# ");
 657         _nodes[i]->fast_dump();
 658       }
 659       tty->print_cr("#");
 660     }
 661 #endif
 662 
 663   // RootNode is already sorted
 664   if( _nodes.size() == 1 ) return true;
 665 
 666   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 667   uint node_cnt = end_idx();
 668   uint phi_cnt = 1;
 669   uint i;
 670   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 671     Node *n = _nodes[i];
 672     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 673         (n->is_Proj()  && n->in(0) == head()) ) {
 674       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 675       _nodes.map(i,_nodes[phi_cnt]);
 676       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 677     } else {                    // All others
 678       // Count block-local inputs to 'n'
 679       uint cnt = n->len();      // Input count
 680       uint local = 0;
 681       for( uint j=0; j<cnt; j++ ) {
 682         Node *m = n->in(j);
 683         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
 684           local++;              // One more block-local input
 685       }
 686       ready_cnt[n->_idx] = local; // Count em up
 687 
 688       // A few node types require changing a required edge to a precedence edge
 689       // before allocation.
 690       if( UseConcMarkSweepGC || UseG1GC ) {
 691         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 692           // Note: Required edges with an index greater than oper_input_base
 693           // are not supported by the allocator.
 694           // Note2: Can only depend on unmatched edge being last,
 695           // can not depend on its absolute position.
 696           Node *oop_store = n->in(n->req() - 1);
 697           n->del_req(n->req() - 1);
 698           n->add_prec(oop_store);
 699           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 700         }
 701       }
 702       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 703           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 704            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 705         // MemBarAcquire could be created without Precedent edge.
 706         // del_req() replaces the specified edge with the last input edge
 707         // and then removes the last edge. If the specified edge > number of
 708         // edges the last edge will be moved outside of the input edges array
 709         // and the edge will be lost. This is why this code should be
 710         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 711         Node *x = n->in(TypeFunc::Parms);
 712         n->del_req(TypeFunc::Parms);
 713         n->add_prec(x);
 714       }
 715     }
 716   }
 717   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 718     ready_cnt[_nodes[i2]->_idx] = 0;
 719 
 720   // All the prescheduled guys do not hold back internal nodes
 721   uint i3;
 722   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 723     Node *n = _nodes[i3];       // Get pre-scheduled
 724     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 725       Node* m = n->fast_out(j);
 726       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
 727         ready_cnt[m->_idx]--;   // Fix ready count
 728     }
 729   }
 730 
 731   Node_List delay;
 732   // Make a worklist
 733   Node_List worklist;
 734   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 735     Node *m = _nodes[i4];
 736     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
 737       if (m->is_iteratively_computed()) {
 738         // Push induction variable increments last to allow other uses
 739         // of the phi to be scheduled first. The select() method breaks
 740         // ties in scheduling by worklist order.
 741         delay.push(m);
 742       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 743         // Force the CreateEx to the top of the list so it's processed
 744         // first and ends up at the start of the block.
 745         worklist.insert(0, m);
 746       } else {
 747         worklist.push(m);         // Then on to worklist!
 748       }
 749     }
 750   }
 751   while (delay.size()) {
 752     Node* d = delay.pop();
 753     worklist.push(d);
 754   }
 755 
 756   // Warm up the 'next_call' heuristic bits
 757   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
 758 
 759 #ifndef PRODUCT
 760     if (cfg->trace_opto_pipelining()) {
 761       for (uint j=0; j<_nodes.size(); j++) {
 762         Node     *n = _nodes[j];
 763         int     idx = n->_idx;
 764         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
 765         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
 766         tty->print("%4d: %s\n", idx, n->Name());
 767       }
 768     }
 769 #endif
 770 
 771   // Pull from worklist and schedule
 772   while( worklist.size() ) {    // Worklist is not ready
 773 
 774 #ifndef PRODUCT
 775     if (cfg->trace_opto_pipelining()) {
 776       tty->print("#   ready list:");
 777       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 778         Node *n = worklist[i];      // Get Node on worklist
 779         tty->print(" %d", n->_idx);
 780       }
 781       tty->cr();
 782     }
 783 #endif
 784 
 785     // Select and pop a ready guy from worklist
 786     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 787     _nodes.map(phi_cnt++,n);    // Schedule him next
 788 
 789 #ifndef PRODUCT
 790     if (cfg->trace_opto_pipelining()) {
 791       tty->print("#    select %d: %s", n->_idx, n->Name());
 792       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
 793       n->dump();
 794       if (Verbose) {
 795         tty->print("#   ready list:");
 796         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 797           Node *n = worklist[i];      // Get Node on worklist
 798           tty->print(" %d", n->_idx);
 799         }
 800         tty->cr();
 801       }
 802     }
 803 
 804 #endif
 805     if( n->is_MachCall() ) {
 806       MachCallNode *mcall = n->as_MachCall();
 807       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
 808       continue;
 809     }
 810     // Children are now all ready
 811     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 812       Node* m = n->fast_out(i5); // Get user
 813       if( cfg->_bbs[m->_idx] != this ) continue;
 814       if( m->is_Phi() ) continue;
 815       if( !--ready_cnt[m->_idx] )
 816         worklist.push(m);
 817     }
 818   }
 819 
 820   if( phi_cnt != end_idx() ) {
 821     // did not schedule all.  Retry, Bailout, or Die
 822     Compile* C = matcher.C;
 823     if (C->subsume_loads() == true && !C->failing()) {
 824       // Retry with subsume_loads == false
 825       // If this is the first failure, the sentinel string will "stick"
 826       // to the Compile object, and the C2Compiler will see it and retry.
 827       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 828     }
 829     // assert( phi_cnt == end_idx(), "did not schedule all" );
 830     return false;
 831   }
 832 
 833 #ifndef PRODUCT
 834   if (cfg->trace_opto_pipelining()) {
 835     tty->print_cr("#");
 836     tty->print_cr("# after schedule_local");
 837     for (uint i = 0;i < _nodes.size();i++) {
 838       tty->print("# ");
 839       _nodes[i]->fast_dump();
 840     }
 841     tty->cr();
 842   }
 843 #endif
 844 
 845 
 846   return true;
 847 }
 848 
 849 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 850 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 851   for (uint l = 0; l < use->len(); l++) {
 852     if (use->in(l) == old_def) {
 853       if (l < use->req()) {
 854         use->set_req(l, new_def);
 855       } else {
 856         use->rm_prec(l);
 857         use->add_prec(new_def);
 858         l--;
 859       }
 860     }
 861   }
 862 }
 863 
 864 //------------------------------catch_cleanup_find_cloned_def------------------
 865 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 866   assert( use_blk != def_blk, "Inter-block cleanup only");
 867 
 868   // The use is some block below the Catch.  Find and return the clone of the def
 869   // that dominates the use. If there is no clone in a dominating block, then
 870   // create a phi for the def in a dominating block.
 871 
 872   // Find which successor block dominates this use.  The successor
 873   // blocks must all be single-entry (from the Catch only; I will have
 874   // split blocks to make this so), hence they all dominate.
 875   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 876     use_blk = use_blk->_idom;
 877 
 878   // Find the successor
 879   Node *fixup = NULL;
 880 
 881   uint j;
 882   for( j = 0; j < def_blk->_num_succs; j++ )
 883     if( use_blk == def_blk->_succs[j] )
 884       break;
 885 
 886   if( j == def_blk->_num_succs ) {
 887     // Block at same level in dom-tree is not a successor.  It needs a
 888     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 889     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 890     for(uint k = 1; k < use_blk->num_preds(); k++) {
 891       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
 892     }
 893 
 894     // Check to see if the use_blk already has an identical phi inserted.
 895     // If it exists, it will be at the first position since all uses of a
 896     // def are processed together.
 897     Node *phi = use_blk->_nodes[1];
 898     if( phi->is_Phi() ) {
 899       fixup = phi;
 900       for (uint k = 1; k < use_blk->num_preds(); k++) {
 901         if (phi->in(k) != inputs[k]) {
 902           // Not a match
 903           fixup = NULL;
 904           break;
 905         }
 906       }
 907     }
 908 
 909     // If an existing PhiNode was not found, make a new one.
 910     if (fixup == NULL) {
 911       Node *new_phi = PhiNode::make(use_blk->head(), def);
 912       use_blk->_nodes.insert(1, new_phi);
 913       bbs.map(new_phi->_idx, use_blk);
 914       for (uint k = 1; k < use_blk->num_preds(); k++) {
 915         new_phi->set_req(k, inputs[k]);
 916       }
 917       fixup = new_phi;
 918     }
 919 
 920   } else {
 921     // Found the use just below the Catch.  Make it use the clone.
 922     fixup = use_blk->_nodes[n_clone_idx];
 923   }
 924 
 925   return fixup;
 926 }
 927 
 928 //--------------------------catch_cleanup_intra_block--------------------------
 929 // Fix all input edges in use that reference "def".  The use is in the same
 930 // block as the def and both have been cloned in each successor block.
 931 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 932 
 933   // Both the use and def have been cloned. For each successor block,
 934   // get the clone of the use, and make its input the clone of the def
 935   // found in that block.
 936 
 937   uint use_idx = blk->find_node(use);
 938   uint offset_idx = use_idx - beg;
 939   for( uint k = 0; k < blk->_num_succs; k++ ) {
 940     // Get clone in each successor block
 941     Block *sb = blk->_succs[k];
 942     Node *clone = sb->_nodes[offset_idx+1];
 943     assert( clone->Opcode() == use->Opcode(), "" );
 944 
 945     // Make use-clone reference the def-clone
 946     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
 947   }
 948 }
 949 
 950 //------------------------------catch_cleanup_inter_block---------------------
 951 // Fix all input edges in use that reference "def".  The use is in a different
 952 // block than the def.
 953 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 954   if( !use_blk ) return;        // Can happen if the use is a precedence edge
 955 
 956   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
 957   catch_cleanup_fix_all_inputs(use, def, new_def);
 958 }
 959 
 960 //------------------------------call_catch_cleanup-----------------------------
 961 // If we inserted any instructions between a Call and his CatchNode,
 962 // clone the instructions on all paths below the Catch.
 963 void Block::call_catch_cleanup(Block_Array &bbs) {
 964 
 965   // End of region to clone
 966   uint end = end_idx();
 967   if( !_nodes[end]->is_Catch() ) return;
 968   // Start of region to clone
 969   uint beg = end;
 970   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
 971         !_nodes[beg-1]->in(0)->is_Call() ) {
 972     beg--;
 973     assert(beg > 0,"Catch cleanup walking beyond block boundary");
 974   }
 975   // Range of inserted instructions is [beg, end)
 976   if( beg == end ) return;
 977 
 978   // Clone along all Catch output paths.  Clone area between the 'beg' and
 979   // 'end' indices.
 980   for( uint i = 0; i < _num_succs; i++ ) {
 981     Block *sb = _succs[i];
 982     // Clone the entire area; ignoring the edge fixup for now.
 983     for( uint j = end; j > beg; j-- ) {
 984       // It is safe here to clone a node with anti_dependence
 985       // since clones dominate on each path.
 986       Node *clone = _nodes[j-1]->clone();
 987       sb->_nodes.insert( 1, clone );
 988       bbs.map(clone->_idx,sb);
 989     }
 990   }
 991 
 992 
 993   // Fixup edges.  Check the def-use info per cloned Node
 994   for(uint i2 = beg; i2 < end; i2++ ) {
 995     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
 996     Node *n = _nodes[i2];        // Node that got cloned
 997     // Need DU safe iterator because of edge manipulation in calls.
 998     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
 999     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1000       out->push(n->fast_out(j1));
1001     }
1002     uint max = out->size();
1003     for (uint j = 0; j < max; j++) {// For all users
1004       Node *use = out->pop();
1005       Block *buse = bbs[use->_idx];
1006       if( use->is_Phi() ) {
1007         for( uint k = 1; k < use->req(); k++ )
1008           if( use->in(k) == n ) {
1009             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
1010             use->set_req(k, fixup);
1011           }
1012       } else {
1013         if (this == buse) {
1014           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1015         } else {
1016           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
1017         }
1018       }
1019     } // End for all users
1020 
1021   } // End of for all Nodes in cloned area
1022 
1023   // Remove the now-dead cloned ops
1024   for(uint i3 = beg; i3 < end; i3++ ) {
1025     _nodes[beg]->disconnect_inputs(NULL);
1026     _nodes.remove(beg);
1027   }
1028 
1029   // If the successor blocks have a CreateEx node, move it back to the top
1030   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1031     Block *sb = _succs[i4];
1032     uint new_cnt = end - beg;
1033     // Remove any newly created, but dead, nodes.
1034     for( uint j = new_cnt; j > 0; j-- ) {
1035       Node *n = sb->_nodes[j];
1036       if (n->outcnt() == 0 &&
1037           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1038         n->disconnect_inputs(NULL);
1039         sb->_nodes.remove(j);
1040         new_cnt--;
1041       }
1042     }
1043     // If any newly created nodes remain, move the CreateEx node to the top
1044     if (new_cnt > 0) {
1045       Node *cex = sb->_nodes[1+new_cnt];
1046       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1047         sb->_nodes.remove(1+new_cnt);
1048         sb->_nodes.insert(1,cex);
1049       }
1050     }
1051   }
1052 }