1 /*
   2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class CmpNode;
  26 class CountedLoopEndNode;
  27 class CountedLoopNode;
  28 class IdealLoopTree;
  29 class LoopNode;
  30 class Node;
  31 class PhaseIdealLoop;
  32 class VectorSet;
  33 class Invariance;
  34 struct small_cache;
  35 
  36 //
  37 //                  I D E A L I Z E D   L O O P S
  38 //
  39 // Idealized loops are the set of loops I perform more interesting
  40 // transformations on, beyond simple hoisting.
  41 
  42 //------------------------------LoopNode---------------------------------------
  43 // Simple loop header.  Fall in path on left, loop-back path on right.
  44 class LoopNode : public RegionNode {
  45   // Size is bigger to hold the flags.  However, the flags do not change
  46   // the semantics so it does not appear in the hash & cmp functions.
  47   virtual uint size_of() const { return sizeof(*this); }
  48 protected:
  49   short _loop_flags;
  50   // Names for flag bitfields
  51   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
  52   char _unswitch_count;
  53   enum { _unswitch_max=3 };
  54 
  55 public:
  56   // Names for edge indices
  57   enum { Self=0, EntryControl, LoopBackControl };
  58 
  59   int is_inner_loop() const { return _loop_flags & inner_loop; }
  60   void set_inner_loop() { _loop_flags |= inner_loop; }
  61 
  62   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
  63   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
  64   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
  65   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
  66 
  67   int unswitch_max() { return _unswitch_max; }
  68   int unswitch_count() { return _unswitch_count; }
  69   void set_unswitch_count(int val) {
  70     assert (val <= unswitch_max(), "too many unswitches");
  71     _unswitch_count = val;
  72   }
  73 
  74   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  75     init_class_id(Class_Loop);
  76     init_req(EntryControl, entry);
  77     init_req(LoopBackControl, backedge);
  78   }
  79 
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual int Opcode() const;
  82   bool can_be_counted_loop(PhaseTransform* phase) const {
  83     return req() == 3 && in(0) != NULL &&
  84       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
  85       in(2) != NULL && phase->type(in(2)) != Type::TOP;
  86   }
  87 #ifndef PRODUCT
  88   virtual void dump_spec(outputStream *st) const;
  89 #endif
  90 };
  91 
  92 //------------------------------Counted Loops----------------------------------
  93 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
  94 // path (and maybe some other exit paths).  The trip-counter exit is always
  95 // last in the loop.  The trip-counter does not have to stride by a constant,
  96 // but it does have to stride by a loop-invariant amount; the exit value is
  97 // also loop invariant.
  98 
  99 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 100 // CountedLoopNode has the incoming loop control and the loop-back-control
 101 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 102 // CountedLoopEndNode has an incoming control (possibly not the
 103 // CountedLoopNode if there is control flow in the loop), the post-increment
 104 // trip-counter value, and the limit.  The trip-counter value is always of
 105 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 106 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
 107 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 108 // CountedLoopEndNode also takes in the loop-invariant limit value.
 109 
 110 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 111 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 112 // via the old-trip-counter from the Op node.
 113 
 114 //------------------------------CountedLoopNode--------------------------------
 115 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 116 // inputs the incoming loop-start control and the loop-back control, so they
 117 // act like RegionNodes.  They also take in the initial trip counter, the
 118 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 119 // produce a loop-body control and the trip counter value.  Since
 120 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 121 
 122 class CountedLoopNode : public LoopNode {
 123   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 124   // the semantics so it does not appear in the hash & cmp functions.
 125   virtual uint size_of() const { return sizeof(*this); }
 126 
 127   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 128   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 129   node_idx_t _main_idx;
 130 
 131   // Known trip count calculated by policy_maximally_unroll
 132   int   _trip_count;
 133 
 134   // Expected trip count from profile data
 135   float _profile_trip_cnt;
 136 
 137   // Log2 of original loop bodies in unrolled loop
 138   int _unrolled_count_log2;
 139 
 140   // Node count prior to last unrolling - used to decide if
 141   // unroll,optimize,unroll,optimize,... is making progress
 142   int _node_count_before_unroll;
 143 
 144 public:
 145   CountedLoopNode( Node *entry, Node *backedge )
 146     : LoopNode(entry, backedge), _trip_count(max_jint),
 147       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 148       _node_count_before_unroll(0) {
 149     init_class_id(Class_CountedLoop);
 150     // Initialize _trip_count to the largest possible value.
 151     // Will be reset (lower) if the loop's trip count is known.
 152   }
 153 
 154   virtual int Opcode() const;
 155   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 156 
 157   Node *init_control() const { return in(EntryControl); }
 158   Node *back_control() const { return in(LoopBackControl); }
 159   CountedLoopEndNode *loopexit() const;
 160   Node *init_trip() const;
 161   Node *stride() const;
 162   int   stride_con() const;
 163   bool  stride_is_con() const;
 164   Node *limit() const;
 165   Node *incr() const;
 166   Node *phi() const;
 167 
 168   // Match increment with optional truncation
 169   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 170 
 171   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 172   // can run short a few iterations and may start a few iterations in.
 173   // It will be RCE'd and unrolled and aligned.
 174 
 175   // A following 'post' loop will run any remaining iterations.  Used
 176   // during Range Check Elimination, the 'post' loop will do any final
 177   // iterations with full checks.  Also used by Loop Unrolling, where
 178   // the 'post' loop will do any epilog iterations needed.  Basically,
 179   // a 'post' loop can not profitably be further unrolled or RCE'd.
 180 
 181   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 182   // it may do under-flow checks for RCE and may do alignment iterations
 183   // so the following main loop 'knows' that it is striding down cache
 184   // lines.
 185 
 186   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 187   // Aligned, may be missing it's pre-loop.
 188   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
 189   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
 190   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
 191   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
 192   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
 193   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
 194   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
 195 
 196   int main_idx() const { return _main_idx; }
 197 
 198 
 199   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 200   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 201   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 202   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
 203 
 204   void set_trip_count(int tc) { _trip_count = tc; }
 205   int trip_count()            { return _trip_count; }
 206 
 207   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 208   float profile_trip_cnt()             { return _profile_trip_cnt; }
 209 
 210   void double_unrolled_count() { _unrolled_count_log2++; }
 211   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 212 
 213   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
 214   int  node_count_before_unroll()           { return _node_count_before_unroll; }
 215 
 216 #ifndef PRODUCT
 217   virtual void dump_spec(outputStream *st) const;
 218 #endif
 219 };
 220 
 221 //------------------------------CountedLoopEndNode-----------------------------
 222 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 223 // IfNodes.
 224 class CountedLoopEndNode : public IfNode {
 225 public:
 226   enum { TestControl, TestValue };
 227 
 228   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 229     : IfNode( control, test, prob, cnt) {
 230     init_class_id(Class_CountedLoopEnd);
 231   }
 232   virtual int Opcode() const;
 233 
 234   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 235   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 236   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 237   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 238   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 239   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 240   int stride_con() const;
 241   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 242   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 243   CountedLoopNode *loopnode() const {
 244     Node *ln = phi()->in(0);
 245     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
 246     return (CountedLoopNode*)ln; }
 247 
 248 #ifndef PRODUCT
 249   virtual void dump_spec(outputStream *st) const;
 250 #endif
 251 };
 252 
 253 
 254 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 255   Node *bc = back_control();
 256   if( bc == NULL ) return NULL;
 257   Node *le = bc->in(0);
 258   if( le->Opcode() != Op_CountedLoopEnd )
 259     return NULL;
 260   return (CountedLoopEndNode*)le;
 261 }
 262 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 263 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 264 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 265 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 266 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 267 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 268 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 269 
 270 
 271 // -----------------------------IdealLoopTree----------------------------------
 272 class IdealLoopTree : public ResourceObj {
 273 public:
 274   IdealLoopTree *_parent;       // Parent in loop tree
 275   IdealLoopTree *_next;         // Next sibling in loop tree
 276   IdealLoopTree *_child;        // First child in loop tree
 277 
 278   // The head-tail backedge defines the loop.
 279   // If tail is NULL then this loop has multiple backedges as part of the
 280   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 281   // them at the loop bottom and flow 1 real backedge into the loop.
 282   Node *_head;                  // Head of loop
 283   Node *_tail;                  // Tail of loop
 284   inline Node *tail();          // Handle lazy update of _tail field
 285   PhaseIdealLoop* _phase;
 286 
 287   Node_List _body;              // Loop body for inner loops
 288 
 289   uint8 _nest;                  // Nesting depth
 290   uint8 _irreducible:1,         // True if irreducible
 291         _has_call:1,            // True if has call safepoint
 292         _has_sfpt:1,            // True if has non-call safepoint
 293         _rce_candidate:1;       // True if candidate for range check elimination
 294 
 295   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 296   bool  _allow_optimizations;   // Allow loop optimizations
 297 
 298   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 299     : _parent(0), _next(0), _child(0),
 300       _head(head), _tail(tail),
 301       _phase(phase),
 302       _required_safept(NULL),
 303       _allow_optimizations(true),
 304       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
 305   { }
 306 
 307   // Is 'l' a member of 'this'?
 308   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
 309 
 310   // Set loop nesting depth.  Accumulate has_call bits.
 311   int set_nest( uint depth );
 312 
 313   // Split out multiple fall-in edges from the loop header.  Move them to a
 314   // private RegionNode before the loop.  This becomes the loop landing pad.
 315   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 316 
 317   // Split out the outermost loop from this shared header.
 318   void split_outer_loop( PhaseIdealLoop *phase );
 319 
 320   // Merge all the backedges from the shared header into a private Region.
 321   // Feed that region as the one backedge to this loop.
 322   void merge_many_backedges( PhaseIdealLoop *phase );
 323 
 324   // Split shared headers and insert loop landing pads.
 325   // Insert a LoopNode to replace the RegionNode.
 326   // Returns TRUE if loop tree is structurally changed.
 327   bool beautify_loops( PhaseIdealLoop *phase );
 328 
 329   // Perform optimization to use the loop predicates for null checks and range checks.
 330   // Applies to any loop level (not just the innermost one)
 331   bool loop_predication( PhaseIdealLoop *phase);
 332 
 333   // Perform iteration-splitting on inner loops.  Split iterations to
 334   // avoid range checks or one-shot null checks.  Returns false if the
 335   // current round of loop opts should stop.
 336   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 337 
 338   // Driver for various flavors of iteration splitting.  Returns false
 339   // if the current round of loop opts should stop.
 340   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 341 
 342   // Given dominators, try to find loops with calls that must always be
 343   // executed (call dominates loop tail).  These loops do not need non-call
 344   // safepoints (ncsfpt).
 345   void check_safepts(VectorSet &visited, Node_List &stack);
 346 
 347   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 348   // encountered.
 349   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 350 
 351   // Convert to counted loops where possible
 352   void counted_loop( PhaseIdealLoop *phase );
 353 
 354   // Check for Node being a loop-breaking test
 355   Node *is_loop_exit(Node *iff) const;
 356 
 357   // Returns true if ctrl is executed on every complete iteration
 358   bool dominates_backedge(Node* ctrl);
 359 
 360   // Remove simplistic dead code from loop body
 361   void DCE_loop_body();
 362 
 363   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 364   // Replace with a 1-in-10 exit guess.
 365   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 366 
 367   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 368   // Useful for unrolling loops with NO array accesses.
 369   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 370 
 371   // Return TRUE or FALSE if the loop should be unswitched -- clone
 372   // loop with an invariant test
 373   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 374 
 375   // Micro-benchmark spamming.  Remove empty loops.
 376   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 377 
 378   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 379   // make some loop-invariant test (usually a null-check) happen before the
 380   // loop.
 381   bool policy_peeling( PhaseIdealLoop *phase ) const;
 382 
 383   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 384   // known trip count in the counted loop node.
 385   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 386 
 387   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 388   // the loop is a CountedLoop and the body is small enough.
 389   bool policy_unroll( PhaseIdealLoop *phase ) const;
 390 
 391   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 392   // Gather a list of IF tests that are dominated by iteration splitting;
 393   // also gather the end of the first split and the start of the 2nd split.
 394   bool policy_range_check( PhaseIdealLoop *phase ) const;
 395 
 396   // Return TRUE or FALSE if the loop should be cache-line aligned.
 397   // Gather the expression that does the alignment.  Note that only
 398   // one array base can be aligned in a loop (unless the VM guarantees
 399   // mutual alignment).  Note that if we vectorize short memory ops
 400   // into longer memory ops, we may want to increase alignment.
 401   bool policy_align( PhaseIdealLoop *phase ) const;
 402 
 403   // Return TRUE if "iff" is a range check.
 404   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 405 
 406   // Compute loop trip count from profile data
 407   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 408 
 409   // Reassociate invariant expressions.
 410   void reassociate_invariants(PhaseIdealLoop *phase);
 411   // Reassociate invariant add and subtract expressions.
 412   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 413   // Return nonzero index of invariant operand if invariant and variant
 414   // are combined with an Add or Sub. Helper for reassociate_invariants.
 415   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 416 
 417   // Return true if n is invariant
 418   bool is_invariant(Node* n) const;
 419 
 420   // Put loop body on igvn work list
 421   void record_for_igvn();
 422 
 423   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 424   bool is_inner()   { return is_loop() && _child == NULL; }
 425   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 426 
 427 #ifndef PRODUCT
 428   void dump_head( ) const;      // Dump loop head only
 429   void dump() const;            // Dump this loop recursively
 430   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 431 #endif
 432 
 433 };
 434 
 435 // -----------------------------PhaseIdealLoop---------------------------------
 436 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 437 // loop tree.  Drives the loop-based transformations on the ideal graph.
 438 class PhaseIdealLoop : public PhaseTransform {
 439   friend class IdealLoopTree;
 440   friend class SuperWord;
 441   // Pre-computed def-use info
 442   PhaseIterGVN &_igvn;
 443 
 444   // Head of loop tree
 445   IdealLoopTree *_ltree_root;
 446 
 447   // Array of pre-order numbers, plus post-visited bit.
 448   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 449   // ODD for post-visited.  Other bits are the pre-order number.
 450   uint *_preorders;
 451   uint _max_preorder;
 452 
 453   const PhaseIdealLoop* _verify_me;
 454   bool _verify_only;
 455 
 456   // Allocate _preorders[] array
 457   void allocate_preorders() {
 458     _max_preorder = C->unique()+8;
 459     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 460     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 461   }
 462 
 463   // Allocate _preorders[] array
 464   void reallocate_preorders() {
 465     if ( _max_preorder < C->unique() ) {
 466       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 467       _max_preorder = C->unique();
 468     }
 469     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 470   }
 471 
 472   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 473   // adds new nodes.
 474   void check_grow_preorders( ) {
 475     if ( _max_preorder < C->unique() ) {
 476       uint newsize = _max_preorder<<1;  // double size of array
 477       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 478       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 479       _max_preorder = newsize;
 480     }
 481   }
 482   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 483   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 484   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 485   void set_preorder_visited( Node *n, int pre_order ) {
 486     assert( !is_visited( n ), "already set" );
 487     _preorders[n->_idx] = (pre_order<<1);
 488   };
 489   // Return pre-order number.
 490   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 491 
 492   // Check for being post-visited.
 493   // Should be previsited already (checked with assert(is_visited(n))).
 494   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 495 
 496   // Mark as post visited
 497   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 498 
 499   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 500   // Returns true if "n" is a data node, false if it's a control node.
 501   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 502 
 503   // clear out dead code after build_loop_late
 504   Node_List _deadlist;
 505 
 506   // Support for faster execution of get_late_ctrl()/dom_lca()
 507   // when a node has many uses and dominator depth is deep.
 508   Node_Array _dom_lca_tags;
 509   void   init_dom_lca_tags();
 510   void   clear_dom_lca_tags();
 511 
 512   // Helper for debugging bad dominance relationships
 513   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 514 
 515   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 516 
 517   // Inline wrapper for frequent cases:
 518   // 1) only one use
 519   // 2) a use is the same as the current LCA passed as 'n1'
 520   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 521     assert( n->is_CFG(), "" );
 522     // Fast-path NULL lca
 523     if( lca != NULL && lca != n ) {
 524       assert( lca->is_CFG(), "" );
 525       // find LCA of all uses
 526       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 527     }
 528     return find_non_split_ctrl(n);
 529   }
 530   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 531 
 532   // Helper function for directing control inputs away from CFG split
 533   // points.
 534   Node *find_non_split_ctrl( Node *ctrl ) const {
 535     if (ctrl != NULL) {
 536       if (ctrl->is_MultiBranch()) {
 537         ctrl = ctrl->in(0);
 538       }
 539       assert(ctrl->is_CFG(), "CFG");
 540     }
 541     return ctrl;
 542   }
 543 
 544 public:
 545   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
 546   // check if transform created new nodes that need _ctrl recorded
 547   Node *get_late_ctrl( Node *n, Node *early );
 548   Node *get_early_ctrl( Node *n );
 549   void set_early_ctrl( Node *n );
 550   void set_subtree_ctrl( Node *root );
 551   void set_ctrl( Node *n, Node *ctrl ) {
 552     assert( !has_node(n) || has_ctrl(n), "" );
 553     assert( ctrl->in(0), "cannot set dead control node" );
 554     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 555     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 556   }
 557   // Set control and update loop membership
 558   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 559     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 560     IdealLoopTree* new_loop = get_loop(ctrl);
 561     if (old_loop != new_loop) {
 562       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 563       if (new_loop->_child == NULL) new_loop->_body.push(n);
 564     }
 565     set_ctrl(n, ctrl);
 566   }
 567   // Control nodes can be replaced or subsumed.  During this pass they
 568   // get their replacement Node in slot 1.  Instead of updating the block
 569   // location of all Nodes in the subsumed block, we lazily do it.  As we
 570   // pull such a subsumed block out of the array, we write back the final
 571   // correct block.
 572   Node *get_ctrl( Node *i ) {
 573     assert(has_node(i), "");
 574     Node *n = get_ctrl_no_update(i);
 575     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 576     assert(has_node(i) && has_ctrl(i), "");
 577     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 578     return n;
 579   }
 580   // true if CFG node d dominates CFG node n
 581   bool is_dominator(Node *d, Node *n);
 582   // return get_ctrl for a data node and self(n) for a CFG node
 583   Node* ctrl_or_self(Node* n) {
 584     if (has_ctrl(n))
 585       return get_ctrl(n);
 586     else {
 587       assert (n->is_CFG(), "must be a CFG node");
 588       return n;
 589     }
 590   }
 591 
 592 private:
 593   Node *get_ctrl_no_update( Node *i ) const {
 594     assert( has_ctrl(i), "" );
 595     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 596     if (!n->in(0)) {
 597       // Skip dead CFG nodes
 598       do {
 599         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 600       } while (!n->in(0));
 601       n = find_non_split_ctrl(n);
 602     }
 603     return n;
 604   }
 605 
 606   // Check for loop being set
 607   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 608   bool has_loop( Node *n ) const {
 609     assert(!has_node(n) || !has_ctrl(n), "");
 610     return has_node(n);
 611   }
 612   // Set loop
 613   void set_loop( Node *n, IdealLoopTree *loop ) {
 614     _nodes.map(n->_idx, (Node*)loop);
 615   }
 616   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 617   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 618   // from old_node to new_node to support the lazy update.  Reference
 619   // replaces loop reference, since that is not needed for dead node.
 620 public:
 621   void lazy_update( Node *old_node, Node *new_node ) {
 622     assert( old_node != new_node, "no cycles please" );
 623     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 624     // Nodes always have DU info now, so re-use the side array slot
 625     // for this node to provide the forwarding pointer.
 626     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 627   }
 628   void lazy_replace( Node *old_node, Node *new_node ) {
 629     _igvn.replace_node( old_node, new_node );
 630     lazy_update( old_node, new_node );
 631   }
 632   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 633     assert( old_node->req() == 1, "use this for Projs" );
 634     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 635     old_node->add_req( NULL );
 636     lazy_replace( old_node, new_node );
 637   }
 638 
 639 private:
 640 
 641   // Place 'n' in some loop nest, where 'n' is a CFG node
 642   void build_loop_tree();
 643   int build_loop_tree_impl( Node *n, int pre_order );
 644   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 645   // loop tree, not the root.
 646   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 647 
 648   // Place Data nodes in some loop nest
 649   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 650   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 651   void build_loop_late_post ( Node* n );
 652 
 653   // Array of immediate dominance info for each CFG node indexed by node idx
 654 private:
 655   uint _idom_size;
 656   Node **_idom;                 // Array of immediate dominators
 657   uint *_dom_depth;           // Used for fast LCA test
 658   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 659 
 660   Node* idom_no_update(Node* d) const {
 661     assert(d->_idx < _idom_size, "oob");
 662     Node* n = _idom[d->_idx];
 663     assert(n != NULL,"Bad immediate dominator info.");
 664     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 665       //n = n->in(1);
 666       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 667       assert(n != NULL,"Bad immediate dominator info.");
 668     }
 669     return n;
 670   }
 671   Node *idom(Node* d) const {
 672     uint didx = d->_idx;
 673     Node *n = idom_no_update(d);
 674     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 675     return n;
 676   }
 677   uint dom_depth(Node* d) const {
 678     assert(d->_idx < _idom_size, "");
 679     return _dom_depth[d->_idx];
 680   }
 681   void set_idom(Node* d, Node* n, uint dom_depth);
 682   // Locally compute IDOM using dom_lca call
 683   Node *compute_idom( Node *region ) const;
 684   // Recompute dom_depth
 685   void recompute_dom_depth();
 686 
 687   // Is safept not required by an outer loop?
 688   bool is_deleteable_safept(Node* sfpt);
 689 
 690   // Perform verification that the graph is valid.
 691   PhaseIdealLoop( PhaseIterGVN &igvn) :
 692     PhaseTransform(Ideal_Loop),
 693     _igvn(igvn),
 694     _dom_lca_tags(C->comp_arena()),
 695     _verify_me(NULL),
 696     _verify_only(true) {
 697     build_and_optimize(false, false);
 698   }
 699 
 700   // build the loop tree and perform any requested optimizations
 701   void build_and_optimize(bool do_split_if, bool do_loop_pred);
 702 
 703 public:
 704   // Dominators for the sea of nodes
 705   void Dominators();
 706   Node *dom_lca( Node *n1, Node *n2 ) const {
 707     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 708   }
 709   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 710 
 711   // Compute the Ideal Node to Loop mapping
 712   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool do_loop_pred) :
 713     PhaseTransform(Ideal_Loop),
 714     _igvn(igvn),
 715     _dom_lca_tags(C->comp_arena()),
 716     _verify_me(NULL),
 717     _verify_only(false) {
 718     build_and_optimize(do_split_ifs, do_loop_pred);
 719   }
 720 
 721   // Verify that verify_me made the same decisions as a fresh run.
 722   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 723     PhaseTransform(Ideal_Loop),
 724     _igvn(igvn),
 725     _dom_lca_tags(C->comp_arena()),
 726     _verify_me(verify_me),
 727     _verify_only(false) {
 728     build_and_optimize(false, false);
 729   }
 730 
 731   // Build and verify the loop tree without modifying the graph.  This
 732   // is useful to verify that all inputs properly dominate their uses.
 733   static void verify(PhaseIterGVN& igvn) {
 734 #ifdef ASSERT
 735     PhaseIdealLoop v(igvn);
 736 #endif
 737   }
 738 
 739   // True if the method has at least 1 irreducible loop
 740   bool _has_irreducible_loops;
 741 
 742   // Per-Node transform
 743   virtual Node *transform( Node *a_node ) { return 0; }
 744 
 745   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
 746 
 747   // Return a post-walked LoopNode
 748   IdealLoopTree *get_loop( Node *n ) const {
 749     // Dead nodes have no loop, so return the top level loop instead
 750     if (!has_node(n))  return _ltree_root;
 751     assert(!has_ctrl(n), "");
 752     return (IdealLoopTree*)_nodes[n->_idx];
 753   }
 754 
 755   // Is 'n' a (nested) member of 'loop'?
 756   int is_member( const IdealLoopTree *loop, Node *n ) const {
 757     return loop->is_member(get_loop(n)); }
 758 
 759   // This is the basic building block of the loop optimizations.  It clones an
 760   // entire loop body.  It makes an old_new loop body mapping; with this
 761   // mapping you can find the new-loop equivalent to an old-loop node.  All
 762   // new-loop nodes are exactly equal to their old-loop counterparts, all
 763   // edges are the same.  All exits from the old-loop now have a RegionNode
 764   // that merges the equivalent new-loop path.  This is true even for the
 765   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 766   // now come from (one or more) Phis that merge their new-loop equivalents.
 767   // Parameter side_by_side_idom:
 768   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 769   //      the clone loop to dominate the original.  Used in construction of
 770   //      pre-main-post loop sequence.
 771   //   When nonnull, the clone and original are side-by-side, both are
 772   //      dominated by the passed in side_by_side_idom node.  Used in
 773   //      construction of unswitched loops.
 774   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 775                    Node* side_by_side_idom = NULL);
 776 
 777   // If we got the effect of peeling, either by actually peeling or by
 778   // making a pre-loop which must execute at least once, we can remove
 779   // all loop-invariant dominated tests in the main body.
 780   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 781 
 782   // Generate code to do a loop peel for the given loop (and body).
 783   // old_new is a temp array.
 784   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 785 
 786   // Add pre and post loops around the given loop.  These loops are used
 787   // during RCE, unrolling and aligning loops.
 788   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 789   // If Node n lives in the back_ctrl block, we clone a private version of n
 790   // in preheader_ctrl block and return that, otherwise return n.
 791   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
 792 
 793   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 794   // unroll to do double iterations.  The next round of major loop transforms
 795   // will repeat till the doubled loop body does all remaining iterations in 1
 796   // pass.
 797   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 798 
 799   // Unroll the loop body one step - make each trip do 2 iterations.
 800   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 801 
 802   // Return true if exp is a constant times an induction var
 803   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 804 
 805   // Return true if exp is a scaled induction var plus (or minus) constant
 806   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 807 
 808   // Return true if proj is for "proj->[region->..]call_uct"
 809   bool is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate = false);
 810   // Return true for    "if(test)-> proj -> ...
 811   //                          |
 812   //                          V
 813   //                      other_proj->[region->..]call_uct"
 814   bool is_uncommon_trap_if_pattern(ProjNode* proj, bool must_reason_predicate = false);
 815   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 816   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj);
 817   // Find a good location to insert a predicate
 818   ProjNode* find_predicate_insertion_point(Node* start_c);
 819   // Construct a range check for a predicate if
 820   BoolNode* rc_predicate(Node* ctrl,
 821                          int scale, Node* offset,
 822                          Node* init, Node* limit, Node* stride,
 823                          Node* range, bool upper);
 824 
 825   // Implementation of the loop predication to promote checks outside the loop
 826   bool loop_predication_impl(IdealLoopTree *loop);
 827 
 828   // Helper function to collect predicate for eliminating the useless ones
 829   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 830   void eliminate_useless_predicates();
 831 
 832   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 833   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 834 
 835   // Create a slow version of the loop by cloning the loop
 836   // and inserting an if to select fast-slow versions.
 837   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 838                                         Node_List &old_new);
 839 
 840   // Clone loop with an invariant test (that does not exit) and
 841   // insert a clone of the test that selects which version to
 842   // execute.
 843   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 844 
 845   // Find candidate "if" for unswitching
 846   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 847 
 848   // Range Check Elimination uses this function!
 849   // Constrain the main loop iterations so the affine function:
 850   //    scale_con * I + offset  <  limit
 851   // always holds true.  That is, either increase the number of iterations in
 852   // the pre-loop or the post-loop until the condition holds true in the main
 853   // loop.  Scale_con, offset and limit are all loop invariant.
 854   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 855 
 856   // Partially peel loop up through last_peel node.
 857   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 858 
 859   // Create a scheduled list of nodes control dependent on ctrl set.
 860   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 861   // Has a use in the vector set
 862   bool has_use_in_set( Node* n, VectorSet& vset );
 863   // Has use internal to the vector set (ie. not in a phi at the loop head)
 864   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 865   // clone "n" for uses that are outside of loop
 866   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 867   // clone "n" for special uses that are in the not_peeled region
 868   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 869                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 870   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
 871   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
 872 #ifdef ASSERT
 873   // Validate the loop partition sets: peel and not_peel
 874   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
 875   // Ensure that uses outside of loop are of the right form
 876   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
 877                                  uint orig_exit_idx, uint clone_exit_idx);
 878   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
 879 #endif
 880 
 881   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
 882   int stride_of_possible_iv( Node* iff );
 883   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
 884   // Return the (unique) control output node that's in the loop (if it exists.)
 885   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
 886   // Insert a signed compare loop exit cloned from an unsigned compare.
 887   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
 888   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
 889   // Utility to register node "n" with PhaseIdealLoop
 890   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
 891   // Utility to create an if-projection
 892   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
 893   // Force the iff control output to be the live_proj
 894   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
 895   // Insert a region before an if projection
 896   RegionNode* insert_region_before_proj(ProjNode* proj);
 897   // Insert a new if before an if projection
 898   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
 899 
 900   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
 901   // "Nearly" because all Nodes have been cloned from the original in the loop,
 902   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
 903   // through the Phi recursively, and return a Bool.
 904   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
 905   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
 906 
 907 
 908   // Rework addressing expressions to get the most loop-invariant stuff
 909   // moved out.  We'd like to do all associative operators, but it's especially
 910   // important (common) to do address expressions.
 911   Node *remix_address_expressions( Node *n );
 912 
 913   // Attempt to use a conditional move instead of a phi/branch
 914   Node *conditional_move( Node *n );
 915 
 916   // Reorganize offset computations to lower register pressure.
 917   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
 918   // (which are then alive with the post-incremented trip counter
 919   // forcing an extra register move)
 920   void reorg_offsets( IdealLoopTree *loop );
 921 
 922   // Check for aggressive application of 'split-if' optimization,
 923   // using basic block level info.
 924   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
 925   Node *split_if_with_blocks_pre ( Node *n );
 926   void  split_if_with_blocks_post( Node *n );
 927   Node *has_local_phi_input( Node *n );
 928   // Mark an IfNode as being dominated by a prior test,
 929   // without actually altering the CFG (and hence IDOM info).
 930   void dominated_by( Node *prevdom, Node *iff );
 931 
 932   // Split Node 'n' through merge point
 933   Node *split_thru_region( Node *n, Node *region );
 934   // Split Node 'n' through merge point if there is enough win.
 935   Node *split_thru_phi( Node *n, Node *region, int policy );
 936   // Found an If getting its condition-code input from a Phi in the
 937   // same block.  Split thru the Region.
 938   void do_split_if( Node *iff );
 939 
 940   // Conversion of fill/copy patterns into intrisic versions
 941   bool do_intrinsify_fill();
 942   bool intrinsify_fill(IdealLoopTree* lpt);
 943   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
 944                        Node*& shift, Node*& offset);
 945 
 946 private:
 947   // Return a type based on condition control flow
 948   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
 949   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
 950  // Helpers for filtered type
 951   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
 952 
 953   // Helper functions
 954   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
 955   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
 956   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
 957   bool split_up( Node *n, Node *blk1, Node *blk2 );
 958   void sink_use( Node *use, Node *post_loop );
 959   Node *place_near_use( Node *useblock ) const;
 960 
 961   bool _created_loop_node;
 962 public:
 963   void set_created_loop_node() { _created_loop_node = true; }
 964   bool created_loop_node()     { return _created_loop_node; }
 965   void register_new_node( Node *n, Node *blk );
 966 
 967 #ifndef PRODUCT
 968   void dump( ) const;
 969   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
 970   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
 971   void verify() const;          // Major slow  :-)
 972   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
 973   IdealLoopTree *get_loop_idx(Node* n) const {
 974     // Dead nodes have no loop, so return the top level loop instead
 975     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
 976   }
 977   // Print some stats
 978   static void print_statistics();
 979   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
 980   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
 981 #endif
 982 };
 983 
 984 inline Node* IdealLoopTree::tail() {
 985 // Handle lazy update of _tail field
 986   Node *n = _tail;
 987   //while( !n->in(0) )  // Skip dead CFG nodes
 988     //n = n->in(1);
 989   if (n->in(0) == NULL)
 990     n = _phase->get_ctrl(n);
 991   _tail = n;
 992   return n;
 993 }
 994 
 995 
 996 // Iterate over the loop tree using a preorder, left-to-right traversal.
 997 //
 998 // Example that visits all counted loops from within PhaseIdealLoop
 999 //
1000 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1001 //   IdealLoopTree* lpt = iter.current();
1002 //   if (!lpt->is_counted()) continue;
1003 //   ...
1004 class LoopTreeIterator : public StackObj {
1005 private:
1006   IdealLoopTree* _root;
1007   IdealLoopTree* _curnt;
1008 
1009 public:
1010   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1011 
1012   bool done() { return _curnt == NULL; }       // Finished iterating?
1013 
1014   void next();                                 // Advance to next loop tree
1015 
1016   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1017 };