1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class Block_Array;
  46 class BoolNode;
  47 class BoxLockNode;
  48 class CMoveNode;
  49 class CallDynamicJavaNode;
  50 class CallJavaNode;
  51 class CallLeafNode;
  52 class CallNode;
  53 class CallRuntimeNode;
  54 class CallStaticJavaNode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNNode;
  66 class EncodePNode;
  67 class FastLockNode;
  68 class FastUnlockNode;
  69 class IfNode;
  70 class InitializeNode;
  71 class JVMState;
  72 class JumpNode;
  73 class JumpProjNode;
  74 class LoadNode;
  75 class LoadStoreNode;
  76 class LockNode;
  77 class LoopNode;
  78 class MachCallDynamicJavaNode;
  79 class MachCallJavaNode;
  80 class MachCallLeafNode;
  81 class MachCallNode;
  82 class MachCallRuntimeNode;
  83 class MachCallStaticJavaNode;
  84 class MachIfNode;
  85 class MachNode;
  86 class MachNullCheckNode;
  87 class MachReturnNode;
  88 class MachSafePointNode;
  89 class MachSpillCopyNode;
  90 class MachTempNode;
  91 class Matcher;
  92 class MemBarNode;
  93 class MemNode;
  94 class MergeMemNode;
  95 class MulNode;
  96 class MultiNode;
  97 class MultiBranchNode;
  98 class NeverBranchNode;
  99 class Node;
 100 class Node_Array;
 101 class Node_List;
 102 class Node_Stack;
 103 class NullCheckNode;
 104 class OopMap;
 105 class ParmNode;
 106 class PCTableNode;
 107 class PhaseCCP;
 108 class PhaseGVN;
 109 class PhaseIterGVN;
 110 class PhaseRegAlloc;
 111 class PhaseTransform;
 112 class PhaseValues;
 113 class PhiNode;
 114 class Pipeline;
 115 class ProjNode;
 116 class RegMask;
 117 class RegionNode;
 118 class RootNode;
 119 class SafePointNode;
 120 class SafePointScalarObjectNode;
 121 class StartNode;
 122 class State;
 123 class StoreNode;
 124 class SubNode;
 125 class Type;
 126 class TypeNode;
 127 class UnlockNode;
 128 class VectorSet;
 129 class IfTrueNode;
 130 class IfFalseNode;
 131 typedef void (*NFunc)(Node&,void*);
 132 extern "C" {
 133   typedef int (*C_sort_func_t)(const void *, const void *);
 134 }
 135 
 136 // The type of all node counts and indexes.
 137 // It must hold at least 16 bits, but must also be fast to load and store.
 138 // This type, if less than 32 bits, could limit the number of possible nodes.
 139 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 140 typedef unsigned int node_idx_t;
 141 
 142 
 143 #ifndef OPTO_DU_ITERATOR_ASSERT
 144 #ifdef ASSERT
 145 #define OPTO_DU_ITERATOR_ASSERT 1
 146 #else
 147 #define OPTO_DU_ITERATOR_ASSERT 0
 148 #endif
 149 #endif //OPTO_DU_ITERATOR_ASSERT
 150 
 151 #if OPTO_DU_ITERATOR_ASSERT
 152 class DUIterator;
 153 class DUIterator_Fast;
 154 class DUIterator_Last;
 155 #else
 156 typedef uint   DUIterator;
 157 typedef Node** DUIterator_Fast;
 158 typedef Node** DUIterator_Last;
 159 #endif
 160 
 161 // Node Sentinel
 162 #define NodeSentinel (Node*)-1
 163 
 164 // Unknown count frequency
 165 #define COUNT_UNKNOWN (-1.0f)
 166 
 167 //------------------------------Node-------------------------------------------
 168 // Nodes define actions in the program.  They create values, which have types.
 169 // They are both vertices in a directed graph and program primitives.  Nodes
 170 // are labeled; the label is the "opcode", the primitive function in the lambda
 171 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 172 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 173 // the Node's function.  These inputs also define a Type equation for the Node.
 174 // Solving these Type equations amounts to doing dataflow analysis.
 175 // Control and data are uniformly represented in the graph.  Finally, Nodes
 176 // have a unique dense integer index which is used to index into side arrays
 177 // whenever I have phase-specific information.
 178 
 179 class Node {
 180   // Lots of restrictions on cloning Nodes
 181   Node(const Node&);            // not defined; linker error to use these
 182   Node &operator=(const Node &rhs);
 183 
 184 public:
 185   friend class Compile;
 186   #if OPTO_DU_ITERATOR_ASSERT
 187   friend class DUIterator_Common;
 188   friend class DUIterator;
 189   friend class DUIterator_Fast;
 190   friend class DUIterator_Last;
 191   #endif
 192 
 193   // Because Nodes come and go, I define an Arena of Node structures to pull
 194   // from.  This should allow fast access to node creation & deletion.  This
 195   // field is a local cache of a value defined in some "program fragment" for
 196   // which these Nodes are just a part of.
 197 
 198   // New Operator that takes a Compile pointer, this will eventually
 199   // be the "new" New operator.
 200   inline void* operator new( size_t x, Compile* C) {
 201     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 202 #ifdef ASSERT
 203     n->_in = (Node**)n; // magic cookie for assertion check
 204 #endif
 205     n->_out = (Node**)C;
 206     return (void*)n;
 207   }
 208 
 209   // New Operator that takes a Compile pointer, this will eventually
 210   // be the "new" New operator.
 211   inline void* operator new( size_t x, Compile* C, int y) {
 212     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 213     n->_in = (Node**)(((char*)n) + x);
 214 #ifdef ASSERT
 215     n->_in[y-1] = n; // magic cookie for assertion check
 216 #endif
 217     n->_out = (Node**)C;
 218     return (void*)n;
 219   }
 220 
 221   // Delete is a NOP
 222   void operator delete( void *ptr ) {}
 223   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 224   void destruct();
 225 
 226   // Create a new Node.  Required is the number is of inputs required for
 227   // semantic correctness.
 228   Node( uint required );
 229 
 230   // Create a new Node with given input edges.
 231   // This version requires use of the "edge-count" new.
 232   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 233   Node( Node *n0 );
 234   Node( Node *n0, Node *n1 );
 235   Node( Node *n0, Node *n1, Node *n2 );
 236   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 237   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 238   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 240             Node *n4, Node *n5, Node *n6 );
 241 
 242   // Clone an inherited Node given only the base Node type.
 243   Node* clone() const;
 244 
 245   // Clone a Node, immediately supplying one or two new edges.
 246   // The first and second arguments, if non-null, replace in(1) and in(2),
 247   // respectively.
 248   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 249     Node* nn = clone();
 250     if (in1 != NULL)  nn->set_req(1, in1);
 251     if (in2 != NULL)  nn->set_req(2, in2);
 252     return nn;
 253   }
 254 
 255 private:
 256   // Shared setup for the above constructors.
 257   // Handles all interactions with Compile::current.
 258   // Puts initial values in all Node fields except _idx.
 259   // Returns the initial value for _idx, which cannot
 260   // be initialized by assignment.
 261   inline int Init(int req, Compile* C);
 262 
 263 //----------------- input edge handling
 264 protected:
 265   friend class PhaseCFG;        // Access to address of _in array elements
 266   Node **_in;                   // Array of use-def references to Nodes
 267   Node **_out;                  // Array of def-use references to Nodes
 268 
 269   // Input edges are split into two categories.  Required edges are required
 270   // for semantic correctness; order is important and NULLs are allowed.
 271   // Precedence edges are used to help determine execution order and are
 272   // added, e.g., for scheduling purposes.  They are unordered and not
 273   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 274   // are required, from _cnt to _max-1 are precedence edges.
 275   node_idx_t _cnt;              // Total number of required Node inputs.
 276 
 277   node_idx_t _max;              // Actual length of input array.
 278 
 279   // Output edges are an unordered list of def-use edges which exactly
 280   // correspond to required input edges which point from other nodes
 281   // to this one.  Thus the count of the output edges is the number of
 282   // users of this node.
 283   node_idx_t _outcnt;           // Total number of Node outputs.
 284 
 285   node_idx_t _outmax;           // Actual length of output array.
 286 
 287   // Grow the actual input array to the next larger power-of-2 bigger than len.
 288   void grow( uint len );
 289   // Grow the output array to the next larger power-of-2 bigger than len.
 290   void out_grow( uint len );
 291 
 292  public:
 293   // Each Node is assigned a unique small/dense number.  This number is used
 294   // to index into auxiliary arrays of data and bitvectors.
 295   // It is declared const to defend against inadvertant assignment,
 296   // since it is used by clients as a naked field.
 297   const node_idx_t _idx;
 298 
 299   // Get the (read-only) number of input edges
 300   uint req() const { return _cnt; }
 301   uint len() const { return _max; }
 302   // Get the (read-only) number of output edges
 303   uint outcnt() const { return _outcnt; }
 304 
 305 #if OPTO_DU_ITERATOR_ASSERT
 306   // Iterate over the out-edges of this node.  Deletions are illegal.
 307   inline DUIterator outs() const;
 308   // Use this when the out array might have changed to suppress asserts.
 309   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 310   // Does the node have an out at this position?  (Used for iteration.)
 311   inline bool has_out(DUIterator& i) const;
 312   inline Node*    out(DUIterator& i) const;
 313   // Iterate over the out-edges of this node.  All changes are illegal.
 314   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 315   inline Node*    fast_out(DUIterator_Fast& i) const;
 316   // Iterate over the out-edges of this node, deleting one at a time.
 317   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 318   inline Node*    last_out(DUIterator_Last& i) const;
 319   // The inline bodies of all these methods are after the iterator definitions.
 320 #else
 321   // Iterate over the out-edges of this node.  Deletions are illegal.
 322   // This iteration uses integral indexes, to decouple from array reallocations.
 323   DUIterator outs() const  { return 0; }
 324   // Use this when the out array might have changed to suppress asserts.
 325   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 326 
 327   // Reference to the i'th output Node.  Error if out of bounds.
 328   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 329   // Does the node have an out at this position?  (Used for iteration.)
 330   bool has_out(DUIterator i) const { return i < _outcnt; }
 331 
 332   // Iterate over the out-edges of this node.  All changes are illegal.
 333   // This iteration uses a pointer internal to the out array.
 334   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 335     Node** out = _out;
 336     // Assign a limit pointer to the reference argument:
 337     max = out + (ptrdiff_t)_outcnt;
 338     // Return the base pointer:
 339     return out;
 340   }
 341   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 342   // Iterate over the out-edges of this node, deleting one at a time.
 343   // This iteration uses a pointer internal to the out array.
 344   DUIterator_Last last_outs(DUIterator_Last& min) const {
 345     Node** out = _out;
 346     // Assign a limit pointer to the reference argument:
 347     min = out;
 348     // Return the pointer to the start of the iteration:
 349     return out + (ptrdiff_t)_outcnt - 1;
 350   }
 351   Node*    last_out(DUIterator_Last i) const  { return *i; }
 352 #endif
 353 
 354   // Reference to the i'th input Node.  Error if out of bounds.
 355   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
 356   // Reference to the i'th output Node.  Error if out of bounds.
 357   // Use this accessor sparingly.  We are going trying to use iterators instead.
 358   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 359   // Return the unique out edge.
 360   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 361   // Delete out edge at position 'i' by moving last out edge to position 'i'
 362   void  raw_del_out(uint i) {
 363     assert(i < _outcnt,"oob");
 364     assert(_outcnt > 0,"oob");
 365     #if OPTO_DU_ITERATOR_ASSERT
 366     // Record that a change happened here.
 367     debug_only(_last_del = _out[i]; ++_del_tick);
 368     #endif
 369     _out[i] = _out[--_outcnt];
 370     // Smash the old edge so it can't be used accidentally.
 371     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 372   }
 373 
 374 #ifdef ASSERT
 375   bool is_dead() const;
 376 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 377 #endif
 378 
 379   // Set a required input edge, also updates corresponding output edge
 380   void add_req( Node *n ); // Append a NEW required input
 381   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 382   void del_req( uint idx ); // Delete required edge & compact
 383   void ins_req( uint i, Node *n ); // Insert a NEW required input
 384   void set_req( uint i, Node *n ) {
 385     assert( is_not_dead(n), "can not use dead node");
 386     assert( i < _cnt, "oob");
 387     assert( !VerifyHashTableKeys || _hash_lock == 0,
 388             "remove node from hash table before modifying it");
 389     Node** p = &_in[i];    // cache this._in, across the del_out call
 390     if (*p != NULL)  (*p)->del_out((Node *)this);
 391     (*p) = n;
 392     if (n != NULL)      n->add_out((Node *)this);
 393   }
 394   // Light version of set_req() to init inputs after node creation.
 395   void init_req( uint i, Node *n ) {
 396     assert( i == 0 && this == n ||
 397             is_not_dead(n), "can not use dead node");
 398     assert( i < _cnt, "oob");
 399     assert( !VerifyHashTableKeys || _hash_lock == 0,
 400             "remove node from hash table before modifying it");
 401     assert( _in[i] == NULL, "sanity");
 402     _in[i] = n;
 403     if (n != NULL)      n->add_out((Node *)this);
 404   }
 405   // Find first occurrence of n among my edges:
 406   int find_edge(Node* n);
 407   int replace_edge(Node* old, Node* neww);
 408   // NULL out all inputs to eliminate incoming Def-Use edges.
 409   // Return the number of edges between 'n' and 'this'
 410   int  disconnect_inputs(Node *n);
 411 
 412   // Quickly, return true if and only if I am Compile::current()->top().
 413   bool is_top() const {
 414     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 415     return (_out == NULL);
 416   }
 417   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 418   void setup_is_top();
 419 
 420   // Strip away casting.  (It is depth-limited.)
 421   Node* uncast() const;
 422 
 423 private:
 424   static Node* uncast_helper(const Node* n);
 425 
 426   // Add an output edge to the end of the list
 427   void add_out( Node *n ) {
 428     if (is_top())  return;
 429     if( _outcnt == _outmax ) out_grow(_outcnt);
 430     _out[_outcnt++] = n;
 431   }
 432   // Delete an output edge
 433   void del_out( Node *n ) {
 434     if (is_top())  return;
 435     Node** outp = &_out[_outcnt];
 436     // Find and remove n
 437     do {
 438       assert(outp > _out, "Missing Def-Use edge");
 439     } while (*--outp != n);
 440     *outp = _out[--_outcnt];
 441     // Smash the old edge so it can't be used accidentally.
 442     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 443     // Record that a change happened here.
 444     #if OPTO_DU_ITERATOR_ASSERT
 445     debug_only(_last_del = n; ++_del_tick);
 446     #endif
 447   }
 448 
 449 public:
 450   // Globally replace this node by a given new node, updating all uses.
 451   void replace_by(Node* new_node);
 452   // Globally replace this node by a given new node, updating all uses
 453   // and cutting input edges of old node.
 454   void subsume_by(Node* new_node) {
 455     replace_by(new_node);
 456     disconnect_inputs(NULL);
 457   }
 458   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 459   // Find the one non-null required input.  RegionNode only
 460   Node *nonnull_req() const;
 461   // Add or remove precedence edges
 462   void add_prec( Node *n );
 463   void rm_prec( uint i );
 464   void set_prec( uint i, Node *n ) {
 465     assert( is_not_dead(n), "can not use dead node");
 466     assert( i >= _cnt, "not a precedence edge");
 467     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 468     _in[i] = n;
 469     if (n != NULL) n->add_out((Node *)this);
 470   }
 471   // Set this node's index, used by cisc_version to replace current node
 472   void set_idx(uint new_idx) {
 473     const node_idx_t* ref = &_idx;
 474     *(node_idx_t*)ref = new_idx;
 475   }
 476   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 477   void swap_edges(uint i1, uint i2) {
 478     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 479     // Def-Use info is unchanged
 480     Node* n1 = in(i1);
 481     Node* n2 = in(i2);
 482     _in[i1] = n2;
 483     _in[i2] = n1;
 484     // If this node is in the hash table, make sure it doesn't need a rehash.
 485     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 486   }
 487 
 488   // Iterators over input Nodes for a Node X are written as:
 489   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 490   // NOTE: Required edges can contain embedded NULL pointers.
 491 
 492 //----------------- Other Node Properties
 493 
 494   // Generate class id for some ideal nodes to avoid virtual query
 495   // methods is_<Node>().
 496   // Class id is the set of bits corresponded to the node class and all its
 497   // super classes so that queries for super classes are also valid.
 498   // Subclasses of the same super class have different assigned bit
 499   // (the third parameter in the macro DEFINE_CLASS_ID).
 500   // Classes with deeper hierarchy are declared first.
 501   // Classes with the same hierarchy depth are sorted by usage frequency.
 502   //
 503   // The query method masks the bits to cut off bits of subclasses
 504   // and then compare the result with the class id
 505   // (see the macro DEFINE_CLASS_QUERY below).
 506   //
 507   //  Class_MachCall=30, ClassMask_MachCall=31
 508   // 12               8               4               0
 509   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 510   //                                  |   |   |   |
 511   //                                  |   |   |   Bit_Mach=2
 512   //                                  |   |   Bit_MachReturn=4
 513   //                                  |   Bit_MachSafePoint=8
 514   //                                  Bit_MachCall=16
 515   //
 516   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 517   // 12               8               4               0
 518   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 519   //                              |   |   |
 520   //                              |   |   Bit_Region=8
 521   //                              |   Bit_Loop=16
 522   //                              Bit_CountedLoop=32
 523 
 524   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 525   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 526   Class_##cl = Class_##supcl + Bit_##cl , \
 527   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 528 
 529   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 530   // so that it's values fits into 16 bits.
 531   enum NodeClasses {
 532     Bit_Node   = 0x0000,
 533     Class_Node = 0x0000,
 534     ClassMask_Node = 0xFFFF,
 535 
 536     DEFINE_CLASS_ID(Multi, Node, 0)
 537       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 538         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 539           DEFINE_CLASS_ID(CallJava,         Call, 0)
 540             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 541             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 542           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 543             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 544           DEFINE_CLASS_ID(Allocate,         Call, 2)
 545             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 546           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 547             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 548             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 549       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 550         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 551           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 552           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 553         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 554           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 555         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 556       DEFINE_CLASS_ID(Start,       Multi, 2)
 557       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 558         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
 559 
 560     DEFINE_CLASS_ID(Mach,  Node, 1)
 561       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 562         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 563           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 564             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 565               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 566               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 567             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 568               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 569       DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
 570       DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
 571       DEFINE_CLASS_ID(MachIf,        Mach, 3)
 572       DEFINE_CLASS_ID(MachTemp,      Mach, 4)
 573 
 574     DEFINE_CLASS_ID(Proj,  Node, 2)
 575       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 576       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 577       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 578       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 579       DEFINE_CLASS_ID(Parm,      Proj, 4)
 580 
 581     DEFINE_CLASS_ID(Region, Node, 3)
 582       DEFINE_CLASS_ID(Loop, Region, 0)
 583         DEFINE_CLASS_ID(Root,        Loop, 0)
 584         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 585 
 586     DEFINE_CLASS_ID(Sub,   Node, 4)
 587       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 588         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 589         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 590 
 591     DEFINE_CLASS_ID(Type,  Node, 5)
 592       DEFINE_CLASS_ID(Phi,   Type, 0)
 593       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 594       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 595       DEFINE_CLASS_ID(CMove, Type, 3)
 596       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 597       DEFINE_CLASS_ID(DecodeN, Type, 5)
 598       DEFINE_CLASS_ID(EncodeP, Type, 6)
 599 
 600     DEFINE_CLASS_ID(Mem,   Node, 6)
 601       DEFINE_CLASS_ID(Load,  Mem, 0)
 602       DEFINE_CLASS_ID(Store, Mem, 1)
 603       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 604 
 605     DEFINE_CLASS_ID(MergeMem, Node, 7)
 606     DEFINE_CLASS_ID(Bool,     Node, 8)
 607     DEFINE_CLASS_ID(AddP,     Node, 9)
 608     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 609     DEFINE_CLASS_ID(Add,      Node, 11)
 610     DEFINE_CLASS_ID(Mul,      Node, 12)
 611     DEFINE_CLASS_ID(ClearArray, Node, 13)
 612 
 613     _max_classes  = ClassMask_ClearArray
 614   };
 615   #undef DEFINE_CLASS_ID
 616 
 617   // Flags are sorted by usage frequency.
 618   enum NodeFlags {
 619     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 620     Flag_is_Call             = Flag_is_Copy << 1,
 621     Flag_rematerialize       = Flag_is_Call << 1,
 622     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 623     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 624     Flag_is_Con              = Flag_is_macro << 1,
 625     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 626     Flag_is_Branch           = Flag_is_cisc_alternate << 1,
 627     Flag_is_block_start      = Flag_is_Branch << 1,
 628     Flag_is_Goto             = Flag_is_block_start << 1,
 629     Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
 630     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 631     Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
 632     Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
 633     Flag_is_Vector           = Flag_is_pc_relative << 1,
 634     _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
 635   };
 636 
 637 private:
 638   jushort _class_id;
 639   jushort _flags;
 640 
 641 protected:
 642   // These methods should be called from constructors only.
 643   void init_class_id(jushort c) {
 644     assert(c <= _max_classes, "invalid node class");
 645     _class_id = c; // cast out const
 646   }
 647   void init_flags(jushort fl) {
 648     assert(fl <= _max_flags, "invalid node flag");
 649     _flags |= fl;
 650   }
 651   void clear_flag(jushort fl) {
 652     assert(fl <= _max_flags, "invalid node flag");
 653     _flags &= ~fl;
 654   }
 655 
 656 public:
 657   const jushort class_id() const { return _class_id; }
 658 
 659   const jushort flags() const { return _flags; }
 660 
 661   // Return a dense integer opcode number
 662   virtual int Opcode() const;
 663 
 664   // Virtual inherited Node size
 665   virtual uint size_of() const;
 666 
 667   // Other interesting Node properties
 668 
 669   // Special case: is_Call() returns true for both CallNode and MachCallNode.
 670   bool is_Call() const {
 671     return (_flags & Flag_is_Call) != 0;
 672   }
 673 
 674   CallNode* isa_Call() const {
 675     return is_Call() ? as_Call() : NULL;
 676   }
 677 
 678   CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
 679     assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
 680     return (CallNode*)this;
 681   }
 682 
 683   #define DEFINE_CLASS_QUERY(type)                           \
 684   bool is_##type() const {                                   \
 685     return ((_class_id & ClassMask_##type) == Class_##type); \
 686   }                                                          \
 687   type##Node *as_##type() const {                            \
 688     assert(is_##type(), "invalid node class");               \
 689     return (type##Node*)this;                                \
 690   }                                                          \
 691   type##Node* isa_##type() const {                           \
 692     return (is_##type()) ? as_##type() : NULL;               \
 693   }
 694 
 695   DEFINE_CLASS_QUERY(AbstractLock)
 696   DEFINE_CLASS_QUERY(Add)
 697   DEFINE_CLASS_QUERY(AddP)
 698   DEFINE_CLASS_QUERY(Allocate)
 699   DEFINE_CLASS_QUERY(AllocateArray)
 700   DEFINE_CLASS_QUERY(Bool)
 701   DEFINE_CLASS_QUERY(BoxLock)
 702   DEFINE_CLASS_QUERY(CallDynamicJava)
 703   DEFINE_CLASS_QUERY(CallJava)
 704   DEFINE_CLASS_QUERY(CallLeaf)
 705   DEFINE_CLASS_QUERY(CallRuntime)
 706   DEFINE_CLASS_QUERY(CallStaticJava)
 707   DEFINE_CLASS_QUERY(Catch)
 708   DEFINE_CLASS_QUERY(CatchProj)
 709   DEFINE_CLASS_QUERY(CheckCastPP)
 710   DEFINE_CLASS_QUERY(ConstraintCast)
 711   DEFINE_CLASS_QUERY(ClearArray)
 712   DEFINE_CLASS_QUERY(CMove)
 713   DEFINE_CLASS_QUERY(Cmp)
 714   DEFINE_CLASS_QUERY(CountedLoop)
 715   DEFINE_CLASS_QUERY(CountedLoopEnd)
 716   DEFINE_CLASS_QUERY(DecodeN)
 717   DEFINE_CLASS_QUERY(EncodeP)
 718   DEFINE_CLASS_QUERY(FastLock)
 719   DEFINE_CLASS_QUERY(FastUnlock)
 720   DEFINE_CLASS_QUERY(If)
 721   DEFINE_CLASS_QUERY(IfFalse)
 722   DEFINE_CLASS_QUERY(IfTrue)
 723   DEFINE_CLASS_QUERY(Initialize)
 724   DEFINE_CLASS_QUERY(Jump)
 725   DEFINE_CLASS_QUERY(JumpProj)
 726   DEFINE_CLASS_QUERY(Load)
 727   DEFINE_CLASS_QUERY(LoadStore)
 728   DEFINE_CLASS_QUERY(Lock)
 729   DEFINE_CLASS_QUERY(Loop)
 730   DEFINE_CLASS_QUERY(Mach)
 731   DEFINE_CLASS_QUERY(MachCall)
 732   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 733   DEFINE_CLASS_QUERY(MachCallJava)
 734   DEFINE_CLASS_QUERY(MachCallLeaf)
 735   DEFINE_CLASS_QUERY(MachCallRuntime)
 736   DEFINE_CLASS_QUERY(MachCallStaticJava)
 737   DEFINE_CLASS_QUERY(MachIf)
 738   DEFINE_CLASS_QUERY(MachNullCheck)
 739   DEFINE_CLASS_QUERY(MachReturn)
 740   DEFINE_CLASS_QUERY(MachSafePoint)
 741   DEFINE_CLASS_QUERY(MachSpillCopy)
 742   DEFINE_CLASS_QUERY(MachTemp)
 743   DEFINE_CLASS_QUERY(Mem)
 744   DEFINE_CLASS_QUERY(MemBar)
 745   DEFINE_CLASS_QUERY(MergeMem)
 746   DEFINE_CLASS_QUERY(Mul)
 747   DEFINE_CLASS_QUERY(Multi)
 748   DEFINE_CLASS_QUERY(MultiBranch)
 749   DEFINE_CLASS_QUERY(Parm)
 750   DEFINE_CLASS_QUERY(PCTable)
 751   DEFINE_CLASS_QUERY(Phi)
 752   DEFINE_CLASS_QUERY(Proj)
 753   DEFINE_CLASS_QUERY(Region)
 754   DEFINE_CLASS_QUERY(Root)
 755   DEFINE_CLASS_QUERY(SafePoint)
 756   DEFINE_CLASS_QUERY(SafePointScalarObject)
 757   DEFINE_CLASS_QUERY(Start)
 758   DEFINE_CLASS_QUERY(Store)
 759   DEFINE_CLASS_QUERY(Sub)
 760   DEFINE_CLASS_QUERY(Type)
 761   DEFINE_CLASS_QUERY(Unlock)
 762 
 763   #undef DEFINE_CLASS_QUERY
 764 
 765   // duplicate of is_MachSpillCopy()
 766   bool is_SpillCopy () const {
 767     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 768   }
 769 
 770   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 771   bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
 772   // The data node which is safe to leave in dead loop during IGVN optimization.
 773   bool is_dead_loop_safe() const {
 774     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 775            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 776             (!is_Proj() || !in(0)->is_Allocate()));
 777   }
 778 
 779   // is_Copy() returns copied edge index (0 or 1)
 780   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 781 
 782   virtual bool is_CFG() const { return false; }
 783 
 784   // If this node is control-dependent on a test, can it be
 785   // rerouted to a dominating equivalent test?  This is usually
 786   // true of non-CFG nodes, but can be false for operations which
 787   // depend for their correct sequencing on more than one test.
 788   // (In that case, hoisting to a dominating test may silently
 789   // skip some other important test.)
 790   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 791 
 792   // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
 793   bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
 794 
 795   // When building basic blocks, I need to have a notion of block beginning
 796   // Nodes, next block selector Nodes (block enders), and next block
 797   // projections.  These calls need to work on their machine equivalents.  The
 798   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 799   bool is_block_start() const {
 800     if ( is_Region() )
 801       return this == (const Node*)in(0);
 802     else
 803       return (_flags & Flag_is_block_start) != 0;
 804   }
 805 
 806   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 807   // Goto and Return.  This call also returns the block ending Node.
 808   virtual const Node *is_block_proj() const;
 809 
 810   // The node is a "macro" node which needs to be expanded before matching
 811   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 812 
 813   // Value is a vector of primitive values
 814   bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
 815 
 816 //----------------- Optimization
 817 
 818   // Get the worst-case Type output for this Node.
 819   virtual const class Type *bottom_type() const;
 820 
 821   // If we find a better type for a node, try to record it permanently.
 822   // Return true if this node actually changed.
 823   // Be sure to do the hash_delete game in the "rehash" variant.
 824   void raise_bottom_type(const Type* new_type);
 825 
 826   // Get the address type with which this node uses and/or defs memory,
 827   // or NULL if none.  The address type is conservatively wide.
 828   // Returns non-null for calls, membars, loads, stores, etc.
 829   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 830   virtual const class TypePtr *adr_type() const { return NULL; }
 831 
 832   // Return an existing node which computes the same function as this node.
 833   // The optimistic combined algorithm requires this to return a Node which
 834   // is a small number of steps away (e.g., one of my inputs).
 835   virtual Node *Identity( PhaseTransform *phase );
 836 
 837   // Return the set of values this Node can take on at runtime.
 838   virtual const Type *Value( PhaseTransform *phase ) const;
 839 
 840   // Return a node which is more "ideal" than the current node.
 841   // The invariants on this call are subtle.  If in doubt, read the
 842   // treatise in node.cpp above the default implemention AND TEST WITH
 843   // +VerifyIterativeGVN!
 844   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 845 
 846   // Some nodes have specific Ideal subgraph transformations only if they are
 847   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 848   // for the transformations to happen.
 849   bool has_special_unique_user() const;
 850 
 851   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 852   Node* find_exact_control(Node* ctrl);
 853 
 854   // Check if 'this' node dominates or equal to 'sub'.
 855   bool dominates(Node* sub, Node_List &nlist);
 856 
 857 protected:
 858   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 859 public:
 860 
 861   // Idealize graph, using DU info.  Done after constant propagation
 862   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 863 
 864   // See if there is valid pipeline info
 865   static  const Pipeline *pipeline_class();
 866   virtual const Pipeline *pipeline() const;
 867 
 868   // Compute the latency from the def to this instruction of the ith input node
 869   uint latency(uint i);
 870 
 871   // Hash & compare functions, for pessimistic value numbering
 872 
 873   // If the hash function returns the special sentinel value NO_HASH,
 874   // the node is guaranteed never to compare equal to any other node.
 875   // If we accidentally generate a hash with value NO_HASH the node
 876   // won't go into the table and we'll lose a little optimization.
 877   enum { NO_HASH = 0 };
 878   virtual uint hash() const;
 879   virtual uint cmp( const Node &n ) const;
 880 
 881   // Operation appears to be iteratively computed (such as an induction variable)
 882   // It is possible for this operation to return false for a loop-varying
 883   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 884   bool is_iteratively_computed();
 885 
 886   // Determine if a node is Counted loop induction variable.
 887   // The method is defined in loopnode.cpp.
 888   const Node* is_loop_iv() const;
 889 
 890   // Return a node with opcode "opc" and same inputs as "this" if one can
 891   // be found; Otherwise return NULL;
 892   Node* find_similar(int opc);
 893 
 894   // Return the unique control out if only one. Null if none or more than one.
 895   Node* unique_ctrl_out();
 896 
 897 //----------------- Code Generation
 898 
 899   // Ideal register class for Matching.  Zero means unmatched instruction
 900   // (these are cloned instead of converted to machine nodes).
 901   virtual uint ideal_reg() const;
 902 
 903   static const uint NotAMachineReg;   // must be > max. machine register
 904 
 905   // Do we Match on this edge index or not?  Generally false for Control
 906   // and true for everything else.  Weird for calls & returns.
 907   virtual uint match_edge(uint idx) const;
 908 
 909   // Register class output is returned in
 910   virtual const RegMask &out_RegMask() const;
 911   // Register class input is expected in
 912   virtual const RegMask &in_RegMask(uint) const;
 913   // Should we clone rather than spill this instruction?
 914   bool rematerialize() const;
 915 
 916   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 917   virtual JVMState* jvms() const;
 918 
 919   // Print as assembly
 920   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 921   // Emit bytes starting at parameter 'ptr'
 922   // Bump 'ptr' by the number of output bytes
 923   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 924   // Size of instruction in bytes
 925   virtual uint size(PhaseRegAlloc *ra_) const;
 926 
 927   // Convenience function to extract an integer constant from a node.
 928   // If it is not an integer constant (either Con, CastII, or Mach),
 929   // return value_if_unknown.
 930   jint find_int_con(jint value_if_unknown) const {
 931     const TypeInt* t = find_int_type();
 932     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 933   }
 934   // Return the constant, knowing it is an integer constant already
 935   jint get_int() const {
 936     const TypeInt* t = find_int_type();
 937     guarantee(t != NULL, "must be con");
 938     return t->get_con();
 939   }
 940   // Here's where the work is done.  Can produce non-constant int types too.
 941   const TypeInt* find_int_type() const;
 942 
 943   // Same thing for long (and intptr_t, via type.hpp):
 944   jlong get_long() const {
 945     const TypeLong* t = find_long_type();
 946     guarantee(t != NULL, "must be con");
 947     return t->get_con();
 948   }
 949   jlong find_long_con(jint value_if_unknown) const {
 950     const TypeLong* t = find_long_type();
 951     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 952   }
 953   const TypeLong* find_long_type() const;
 954 
 955   // These guys are called by code generated by ADLC:
 956   intptr_t get_ptr() const;
 957   intptr_t get_narrowcon() const;
 958   jdouble getd() const;
 959   jfloat getf() const;
 960 
 961   // Nodes which are pinned into basic blocks
 962   virtual bool pinned() const { return false; }
 963 
 964   // Nodes which use memory without consuming it, hence need antidependences
 965   // More specifically, needs_anti_dependence_check returns true iff the node
 966   // (a) does a load, and (b) does not perform a store (except perhaps to a
 967   // stack slot or some other unaliased location).
 968   bool needs_anti_dependence_check() const;
 969 
 970   // Return which operand this instruction may cisc-spill. In other words,
 971   // return operand position that can convert from reg to memory access
 972   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 973   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 974 
 975 //----------------- Graph walking
 976 public:
 977   // Walk and apply member functions recursively.
 978   // Supplied (this) pointer is root.
 979   void walk(NFunc pre, NFunc post, void *env);
 980   static void nop(Node &, void*); // Dummy empty function
 981   static void packregion( Node &n, void* );
 982 private:
 983   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 984 
 985 //----------------- Printing, etc
 986 public:
 987 #ifndef PRODUCT
 988   Node* find(int idx) const;         // Search the graph for the given idx.
 989   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 990   void dump() const;                 // Print this node,
 991   void dump(int depth) const;        // Print this node, recursively to depth d
 992   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
 993   virtual void dump_req() const;     // Print required-edge info
 994   virtual void dump_prec() const;    // Print precedence-edge info
 995   virtual void dump_out() const;     // Print the output edge info
 996   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
 997   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
 998   void verify() const;               // Check Def-Use info for my subgraph
 999   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1000 
1001   // This call defines a class-unique string used to identify class instances
1002   virtual const char *Name() const;
1003 
1004   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1005   // RegMask Print Functions
1006   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1007   void dump_out_regmask() { out_RegMask().dump(); }
1008   static int _in_dump_cnt;
1009   static bool in_dump() { return _in_dump_cnt > 0; }
1010   void fast_dump() const {
1011     tty->print("%4d: %-17s", _idx, Name());
1012     for (uint i = 0; i < len(); i++)
1013       if (in(i))
1014         tty->print(" %4d", in(i)->_idx);
1015       else
1016         tty->print(" NULL");
1017     tty->print("\n");
1018   }
1019 #endif
1020 #ifdef ASSERT
1021   void verify_construction();
1022   bool verify_jvms(const JVMState* jvms) const;
1023   int  _debug_idx;                     // Unique value assigned to every node.
1024   int   debug_idx() const              { return _debug_idx; }
1025   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1026 
1027   Node* _debug_orig;                   // Original version of this, if any.
1028   Node*  debug_orig() const            { return _debug_orig; }
1029   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1030 
1031   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1032   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1033   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1034 
1035   static void init_NodeProperty();
1036 
1037   #if OPTO_DU_ITERATOR_ASSERT
1038   const Node* _last_del;               // The last deleted node.
1039   uint        _del_tick;               // Bumped when a deletion happens..
1040   #endif
1041 #endif
1042 };
1043 
1044 //-----------------------------------------------------------------------------
1045 // Iterators over DU info, and associated Node functions.
1046 
1047 #if OPTO_DU_ITERATOR_ASSERT
1048 
1049 // Common code for assertion checking on DU iterators.
1050 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1051 #ifdef ASSERT
1052  protected:
1053   bool         _vdui;               // cached value of VerifyDUIterators
1054   const Node*  _node;               // the node containing the _out array
1055   uint         _outcnt;             // cached node->_outcnt
1056   uint         _del_tick;           // cached node->_del_tick
1057   Node*        _last;               // last value produced by the iterator
1058 
1059   void sample(const Node* node);    // used by c'tor to set up for verifies
1060   void verify(const Node* node, bool at_end_ok = false);
1061   void verify_resync();
1062   void reset(const DUIterator_Common& that);
1063 
1064 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1065   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1066 #else
1067   #define I_VDUI_ONLY(i,x) { }
1068 #endif //ASSERT
1069 };
1070 
1071 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1072 
1073 // Default DU iterator.  Allows appends onto the out array.
1074 // Allows deletion from the out array only at the current point.
1075 // Usage:
1076 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1077 //    Node* y = x->out(i);
1078 //    ...
1079 //  }
1080 // Compiles in product mode to a unsigned integer index, which indexes
1081 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1082 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1083 // before continuing the loop.  You must delete only the last-produced
1084 // edge.  You must delete only a single copy of the last-produced edge,
1085 // or else you must delete all copies at once (the first time the edge
1086 // is produced by the iterator).
1087 class DUIterator : public DUIterator_Common {
1088   friend class Node;
1089 
1090   // This is the index which provides the product-mode behavior.
1091   // Whatever the product-mode version of the system does to the
1092   // DUI index is done to this index.  All other fields in
1093   // this class are used only for assertion checking.
1094   uint         _idx;
1095 
1096   #ifdef ASSERT
1097   uint         _refresh_tick;    // Records the refresh activity.
1098 
1099   void sample(const Node* node); // Initialize _refresh_tick etc.
1100   void verify(const Node* node, bool at_end_ok = false);
1101   void verify_increment();       // Verify an increment operation.
1102   void verify_resync();          // Verify that we can back up over a deletion.
1103   void verify_finish();          // Verify that the loop terminated properly.
1104   void refresh();                // Resample verification info.
1105   void reset(const DUIterator& that);  // Resample after assignment.
1106   #endif
1107 
1108   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1109     { _idx = 0;                         debug_only(sample(node)); }
1110 
1111  public:
1112   // initialize to garbage; clear _vdui to disable asserts
1113   DUIterator()
1114     { /*initialize to garbage*/         debug_only(_vdui = false); }
1115 
1116   void operator++(int dummy_to_specify_postfix_op)
1117     { _idx++;                           VDUI_ONLY(verify_increment()); }
1118 
1119   void operator--()
1120     { VDUI_ONLY(verify_resync());       --_idx; }
1121 
1122   ~DUIterator()
1123     { VDUI_ONLY(verify_finish()); }
1124 
1125   void operator=(const DUIterator& that)
1126     { _idx = that._idx;                 debug_only(reset(that)); }
1127 };
1128 
1129 DUIterator Node::outs() const
1130   { return DUIterator(this, 0); }
1131 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1132   { I_VDUI_ONLY(i, i.refresh());        return i; }
1133 bool Node::has_out(DUIterator& i) const
1134   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1135 Node*    Node::out(DUIterator& i) const
1136   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1137 
1138 
1139 // Faster DU iterator.  Disallows insertions into the out array.
1140 // Allows deletion from the out array only at the current point.
1141 // Usage:
1142 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1143 //    Node* y = x->fast_out(i);
1144 //    ...
1145 //  }
1146 // Compiles in product mode to raw Node** pointer arithmetic, with
1147 // no reloading of pointers from the original node x.  If you delete,
1148 // you must perform "--i; --imax" just before continuing the loop.
1149 // If you delete multiple copies of the same edge, you must decrement
1150 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1151 class DUIterator_Fast : public DUIterator_Common {
1152   friend class Node;
1153   friend class DUIterator_Last;
1154 
1155   // This is the pointer which provides the product-mode behavior.
1156   // Whatever the product-mode version of the system does to the
1157   // DUI pointer is done to this pointer.  All other fields in
1158   // this class are used only for assertion checking.
1159   Node**       _outp;
1160 
1161   #ifdef ASSERT
1162   void verify(const Node* node, bool at_end_ok = false);
1163   void verify_limit();
1164   void verify_resync();
1165   void verify_relimit(uint n);
1166   void reset(const DUIterator_Fast& that);
1167   #endif
1168 
1169   // Note:  offset must be signed, since -1 is sometimes passed
1170   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1171     { _outp = node->_out + offset;      debug_only(sample(node)); }
1172 
1173  public:
1174   // initialize to garbage; clear _vdui to disable asserts
1175   DUIterator_Fast()
1176     { /*initialize to garbage*/         debug_only(_vdui = false); }
1177 
1178   void operator++(int dummy_to_specify_postfix_op)
1179     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1180 
1181   void operator--()
1182     { VDUI_ONLY(verify_resync());       --_outp; }
1183 
1184   void operator-=(uint n)   // applied to the limit only
1185     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1186 
1187   bool operator<(DUIterator_Fast& limit) {
1188     I_VDUI_ONLY(*this, this->verify(_node, true));
1189     I_VDUI_ONLY(limit, limit.verify_limit());
1190     return _outp < limit._outp;
1191   }
1192 
1193   void operator=(const DUIterator_Fast& that)
1194     { _outp = that._outp;               debug_only(reset(that)); }
1195 };
1196 
1197 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1198   // Assign a limit pointer to the reference argument:
1199   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1200   // Return the base pointer:
1201   return DUIterator_Fast(this, 0);
1202 }
1203 Node* Node::fast_out(DUIterator_Fast& i) const {
1204   I_VDUI_ONLY(i, i.verify(this));
1205   return debug_only(i._last=) *i._outp;
1206 }
1207 
1208 
1209 // Faster DU iterator.  Requires each successive edge to be removed.
1210 // Does not allow insertion of any edges.
1211 // Usage:
1212 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1213 //    Node* y = x->last_out(i);
1214 //    ...
1215 //  }
1216 // Compiles in product mode to raw Node** pointer arithmetic, with
1217 // no reloading of pointers from the original node x.
1218 class DUIterator_Last : private DUIterator_Fast {
1219   friend class Node;
1220 
1221   #ifdef ASSERT
1222   void verify(const Node* node, bool at_end_ok = false);
1223   void verify_limit();
1224   void verify_step(uint num_edges);
1225   #endif
1226 
1227   // Note:  offset must be signed, since -1 is sometimes passed
1228   DUIterator_Last(const Node* node, ptrdiff_t offset)
1229     : DUIterator_Fast(node, offset) { }
1230 
1231   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1232   void operator<(int)                              {} // do not use
1233 
1234  public:
1235   DUIterator_Last() { }
1236   // initialize to garbage
1237 
1238   void operator--()
1239     { _outp--;              VDUI_ONLY(verify_step(1));  }
1240 
1241   void operator-=(uint n)
1242     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1243 
1244   bool operator>=(DUIterator_Last& limit) {
1245     I_VDUI_ONLY(*this, this->verify(_node, true));
1246     I_VDUI_ONLY(limit, limit.verify_limit());
1247     return _outp >= limit._outp;
1248   }
1249 
1250   void operator=(const DUIterator_Last& that)
1251     { DUIterator_Fast::operator=(that); }
1252 };
1253 
1254 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1255   // Assign a limit pointer to the reference argument:
1256   imin = DUIterator_Last(this, 0);
1257   // Return the initial pointer:
1258   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1259 }
1260 Node* Node::last_out(DUIterator_Last& i) const {
1261   I_VDUI_ONLY(i, i.verify(this));
1262   return debug_only(i._last=) *i._outp;
1263 }
1264 
1265 #endif //OPTO_DU_ITERATOR_ASSERT
1266 
1267 #undef I_VDUI_ONLY
1268 #undef VDUI_ONLY
1269 
1270 // An Iterator that truly follows the iterator pattern.  Doesn't
1271 // support deletion but could be made to.
1272 //
1273 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1274 //     Node* m = i.get();
1275 //
1276 class SimpleDUIterator : public StackObj {
1277  private:
1278   Node* node;
1279   DUIterator_Fast i;
1280   DUIterator_Fast imax;
1281  public:
1282   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1283   bool has_next() { return i < imax; }
1284   void next() { i++; }
1285   Node* get() { return node->fast_out(i); }
1286 };
1287 
1288 
1289 //-----------------------------------------------------------------------------
1290 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1291 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1292 // Note that the constructor just zeros things, and since I use Arena
1293 // allocation I do not need a destructor to reclaim storage.
1294 class Node_Array : public ResourceObj {
1295 protected:
1296   Arena *_a;                    // Arena to allocate in
1297   uint   _max;
1298   Node **_nodes;
1299   void   grow( uint i );        // Grow array node to fit
1300 public:
1301   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1302     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1303     for( int i = 0; i < OptoNodeListSize; i++ ) {
1304       _nodes[i] = NULL;
1305     }
1306   }
1307 
1308   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1309   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1310   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1311   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1312   Node **adr() { return _nodes; }
1313   // Extend the mapping: index i maps to Node *n.
1314   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1315   void insert( uint i, Node *n );
1316   void remove( uint i );        // Remove, preserving order
1317   void sort( C_sort_func_t func);
1318   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1319   void clear();                 // Set all entries to NULL, keep storage
1320   uint Size() const { return _max; }
1321   void dump() const;
1322 };
1323 
1324 class Node_List : public Node_Array {
1325   uint _cnt;
1326 public:
1327   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1328   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1329   bool contains(Node* n) {
1330     for (uint e = 0; e < size(); e++) {
1331       if (at(e) == n) return true;
1332     }
1333     return false;
1334   }
1335   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1336   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1337   void push( Node *b ) { map(_cnt++,b); }
1338   void yank( Node *n );         // Find and remove
1339   Node *pop() { return _nodes[--_cnt]; }
1340   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1341   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1342   uint size() const { return _cnt; }
1343   void dump() const;
1344 };
1345 
1346 //------------------------------Unique_Node_List-------------------------------
1347 class Unique_Node_List : public Node_List {
1348   VectorSet _in_worklist;
1349   uint _clock_index;            // Index in list where to pop from next
1350 public:
1351   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1352   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1353 
1354   void remove( Node *n );
1355   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1356   VectorSet &member_set(){ return _in_worklist; }
1357 
1358   void push( Node *b ) {
1359     if( !_in_worklist.test_set(b->_idx) )
1360       Node_List::push(b);
1361   }
1362   Node *pop() {
1363     if( _clock_index >= size() ) _clock_index = 0;
1364     Node *b = at(_clock_index);
1365     map( _clock_index, Node_List::pop());
1366     if (size() != 0) _clock_index++; // Always start from 0
1367     _in_worklist >>= b->_idx;
1368     return b;
1369   }
1370   Node *remove( uint i ) {
1371     Node *b = Node_List::at(i);
1372     _in_worklist >>= b->_idx;
1373     map(i,Node_List::pop());
1374     return b;
1375   }
1376   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1377   void  clear() {
1378     _in_worklist.Clear();        // Discards storage but grows automatically
1379     Node_List::clear();
1380     _clock_index = 0;
1381   }
1382 
1383   // Used after parsing to remove useless nodes before Iterative GVN
1384   void remove_useless_nodes(VectorSet &useful);
1385 
1386 #ifndef PRODUCT
1387   void print_set() const { _in_worklist.print(); }
1388 #endif
1389 };
1390 
1391 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1392 inline void Compile::record_for_igvn(Node* n) {
1393   _for_igvn->push(n);
1394 }
1395 
1396 //------------------------------Node_Stack-------------------------------------
1397 class Node_Stack {
1398 protected:
1399   struct INode {
1400     Node *node; // Processed node
1401     uint  indx; // Index of next node's child
1402   };
1403   INode *_inode_top; // tos, stack grows up
1404   INode *_inode_max; // End of _inodes == _inodes + _max
1405   INode *_inodes;    // Array storage for the stack
1406   Arena *_a;         // Arena to allocate in
1407   void grow();
1408 public:
1409   Node_Stack(int size) {
1410     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1411     _a = Thread::current()->resource_area();
1412     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1413     _inode_max = _inodes + max;
1414     _inode_top = _inodes - 1; // stack is empty
1415   }
1416 
1417   Node_Stack(Arena *a, int size) : _a(a) {
1418     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1419     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1420     _inode_max = _inodes + max;
1421     _inode_top = _inodes - 1; // stack is empty
1422   }
1423 
1424   void pop() {
1425     assert(_inode_top >= _inodes, "node stack underflow");
1426     --_inode_top;
1427   }
1428   void push(Node *n, uint i) {
1429     ++_inode_top;
1430     if (_inode_top >= _inode_max) grow();
1431     INode *top = _inode_top; // optimization
1432     top->node = n;
1433     top->indx = i;
1434   }
1435   Node *node() const {
1436     return _inode_top->node;
1437   }
1438   Node* node_at(uint i) const {
1439     assert(_inodes + i <= _inode_top, "in range");
1440     return _inodes[i].node;
1441   }
1442   uint index() const {
1443     return _inode_top->indx;
1444   }
1445   uint index_at(uint i) const {
1446     assert(_inodes + i <= _inode_top, "in range");
1447     return _inodes[i].indx;
1448   }
1449   void set_node(Node *n) {
1450     _inode_top->node = n;
1451   }
1452   void set_index(uint i) {
1453     _inode_top->indx = i;
1454   }
1455   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1456   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1457   bool is_nonempty() const { return (_inode_top >= _inodes); }
1458   bool is_empty() const { return (_inode_top < _inodes); }
1459   void clear() { _inode_top = _inodes - 1; } // retain storage
1460 };
1461 
1462 
1463 //-----------------------------Node_Notes--------------------------------------
1464 // Debugging or profiling annotations loosely and sparsely associated
1465 // with some nodes.  See Compile::node_notes_at for the accessor.
1466 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1467   JVMState* _jvms;
1468 
1469 public:
1470   Node_Notes(JVMState* jvms = NULL) {
1471     _jvms = jvms;
1472   }
1473 
1474   JVMState* jvms()            { return _jvms; }
1475   void  set_jvms(JVMState* x) {        _jvms = x; }
1476 
1477   // True if there is nothing here.
1478   bool is_clear() {
1479     return (_jvms == NULL);
1480   }
1481 
1482   // Make there be nothing here.
1483   void clear() {
1484     _jvms = NULL;
1485   }
1486 
1487   // Make a new, clean node notes.
1488   static Node_Notes* make(Compile* C) {
1489     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1490     nn->clear();
1491     return nn;
1492   }
1493 
1494   Node_Notes* clone(Compile* C) {
1495     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1496     (*nn) = (*this);
1497     return nn;
1498   }
1499 
1500   // Absorb any information from source.
1501   bool update_from(Node_Notes* source) {
1502     bool changed = false;
1503     if (source != NULL) {
1504       if (source->jvms() != NULL) {
1505         set_jvms(source->jvms());
1506         changed = true;
1507       }
1508     }
1509     return changed;
1510   }
1511 };
1512 
1513 // Inlined accessors for Compile::node_nodes that require the preceding class:
1514 inline Node_Notes*
1515 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1516                            int idx, bool can_grow) {
1517   assert(idx >= 0, "oob");
1518   int block_idx = (idx >> _log2_node_notes_block_size);
1519   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1520   if (grow_by >= 0) {
1521     if (!can_grow)  return NULL;
1522     grow_node_notes(arr, grow_by + 1);
1523   }
1524   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1525   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1526 }
1527 
1528 inline bool
1529 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1530   if (value == NULL || value->is_clear())
1531     return false;  // nothing to write => write nothing
1532   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1533   assert(loc != NULL, "");
1534   return loc->update_from(value);
1535 }
1536 
1537 
1538 //------------------------------TypeNode---------------------------------------
1539 // Node with a Type constant.
1540 class TypeNode : public Node {
1541 protected:
1542   virtual uint hash() const;    // Check the type
1543   virtual uint cmp( const Node &n ) const;
1544   virtual uint size_of() const; // Size is bigger
1545   const Type* const _type;
1546 public:
1547   void set_type(const Type* t) {
1548     assert(t != NULL, "sanity");
1549     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1550     *(const Type**)&_type = t;   // cast away const-ness
1551     // If this node is in the hash table, make sure it doesn't need a rehash.
1552     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1553   }
1554   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1555   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1556     init_class_id(Class_Type);
1557   }
1558   virtual const Type *Value( PhaseTransform *phase ) const;
1559   virtual const Type *bottom_type() const;
1560   virtual       uint  ideal_reg() const;
1561 #ifndef PRODUCT
1562   virtual void dump_spec(outputStream *st) const;
1563 #endif
1564 };
1565 
1566 #endif // SHARE_VM_OPTO_NODE_HPP