1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_output.cpp.incl"
  27 
  28 extern uint size_java_to_interp();
  29 extern uint reloc_java_to_interp();
  30 extern uint size_exception_handler();
  31 extern uint size_deopt_handler();
  32 
  33 #ifndef PRODUCT
  34 #define DEBUG_ARG(x) , x
  35 #else
  36 #define DEBUG_ARG(x)
  37 #endif
  38 
  39 extern int emit_exception_handler(CodeBuffer &cbuf);
  40 extern int emit_deopt_handler(CodeBuffer &cbuf);
  41 
  42 //------------------------------Output-----------------------------------------
  43 // Convert Nodes to instruction bits and pass off to the VM
  44 void Compile::Output() {
  45   // RootNode goes
  46   assert( _cfg->_broot->_nodes.size() == 0, "" );
  47 
  48   // Initialize the space for the BufferBlob used to find and verify
  49   // instruction size in MachNode::emit_size()
  50   init_scratch_buffer_blob();
  51   if (failing())  return; // Out of memory
  52 
  53   // The number of new nodes (mostly MachNop) is proportional to
  54   // the number of java calls and inner loops which are aligned.
  55   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  56                             C->inner_loops()*(OptoLoopAlignment-1)),
  57                            "out of nodes before code generation" ) ) {
  58     return;
  59   }
  60   // Make sure I can find the Start Node
  61   Block_Array& bbs = _cfg->_bbs;
  62   Block *entry = _cfg->_blocks[1];
  63   Block *broot = _cfg->_broot;
  64 
  65   const StartNode *start = entry->_nodes[0]->as_Start();
  66 
  67   // Replace StartNode with prolog
  68   MachPrologNode *prolog = new (this) MachPrologNode();
  69   entry->_nodes.map( 0, prolog );
  70   bbs.map( prolog->_idx, entry );
  71   bbs.map( start->_idx, NULL ); // start is no longer in any block
  72 
  73   // Virtual methods need an unverified entry point
  74 
  75   if( is_osr_compilation() ) {
  76     if( PoisonOSREntry ) {
  77       // TODO: Should use a ShouldNotReachHereNode...
  78       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  79     }
  80   } else {
  81     if( _method && !_method->flags().is_static() ) {
  82       // Insert unvalidated entry point
  83       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  84     }
  85 
  86   }
  87 
  88 
  89   // Break before main entry point
  90   if( (_method && _method->break_at_execute())
  91 #ifndef PRODUCT
  92     ||(OptoBreakpoint && is_method_compilation())
  93     ||(OptoBreakpointOSR && is_osr_compilation())
  94     ||(OptoBreakpointC2R && !_method)
  95 #endif
  96     ) {
  97     // checking for _method means that OptoBreakpoint does not apply to
  98     // runtime stubs or frame converters
  99     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 100   }
 101 
 102   // Insert epilogs before every return
 103   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 104     Block *b = _cfg->_blocks[i];
 105     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 106       Node *m = b->end();
 107       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 108         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 109         b->add_inst( epilog );
 110         bbs.map(epilog->_idx, b);
 111         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 112       }
 113     }
 114   }
 115 
 116 # ifdef ENABLE_ZAP_DEAD_LOCALS
 117   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 118 # endif
 119 
 120   ScheduleAndBundle();
 121 
 122 #ifndef PRODUCT
 123   if (trace_opto_output()) {
 124     tty->print("\n---- After ScheduleAndBundle ----\n");
 125     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 126       tty->print("\nBB#%03d:\n", i);
 127       Block *bb = _cfg->_blocks[i];
 128       for (uint j = 0; j < bb->_nodes.size(); j++) {
 129         Node *n = bb->_nodes[j];
 130         OptoReg::Name reg = _regalloc->get_reg_first(n);
 131         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 132         n->dump();
 133       }
 134     }
 135   }
 136 #endif
 137 
 138   if (failing())  return;
 139 
 140   BuildOopMaps();
 141 
 142   if (failing())  return;
 143 
 144   Fill_buffer();
 145 }
 146 
 147 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 148   // Determine if we need to generate a stack overflow check.
 149   // Do it if the method is not a stub function and
 150   // has java calls or has frame size > vm_page_size/8.
 151   return (stub_function() == NULL &&
 152           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 153 }
 154 
 155 bool Compile::need_register_stack_bang() const {
 156   // Determine if we need to generate a register stack overflow check.
 157   // This is only used on architectures which have split register
 158   // and memory stacks (ie. IA64).
 159   // Bang if the method is not a stub function and has java calls
 160   return (stub_function() == NULL && has_java_calls());
 161 }
 162 
 163 # ifdef ENABLE_ZAP_DEAD_LOCALS
 164 
 165 
 166 // In order to catch compiler oop-map bugs, we have implemented
 167 // a debugging mode called ZapDeadCompilerLocals.
 168 // This mode causes the compiler to insert a call to a runtime routine,
 169 // "zap_dead_locals", right before each place in compiled code
 170 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 171 // The runtime routine checks that locations mapped as oops are really
 172 // oops, that locations mapped as values do not look like oops,
 173 // and that locations mapped as dead are not used later
 174 // (by zapping them to an invalid address).
 175 
 176 int Compile::_CompiledZap_count = 0;
 177 
 178 void Compile::Insert_zap_nodes() {
 179   bool skip = false;
 180 
 181 
 182   // Dink with static counts because code code without the extra
 183   // runtime calls is MUCH faster for debugging purposes
 184 
 185        if ( CompileZapFirst  ==  0  ) ; // nothing special
 186   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 187   else if ( CompileZapFirst  == CompiledZap_count() )
 188     warning("starting zap compilation after skipping");
 189 
 190        if ( CompileZapLast  ==  -1  ) ; // nothing special
 191   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 192   else if ( CompileZapLast  ==  CompiledZap_count() )
 193     warning("about to compile last zap");
 194 
 195   ++_CompiledZap_count; // counts skipped zaps, too
 196 
 197   if ( skip )  return;
 198 
 199 
 200   if ( _method == NULL )
 201     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 202 
 203   // Insert call to zap runtime stub before every node with an oop map
 204   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 205     Block *b = _cfg->_blocks[i];
 206     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 207       Node *n = b->_nodes[j];
 208 
 209       // Determining if we should insert a zap-a-lot node in output.
 210       // We do that for all nodes that has oopmap info, except for calls
 211       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 212       // and expect the C code to reset it.  Hence, there can be no safepoints between
 213       // the inlined-allocation and the call to new_Java, etc.
 214       // We also cannot zap monitor calls, as they must hold the microlock
 215       // during the call to Zap, which also wants to grab the microlock.
 216       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 217       if ( insert ) { // it is MachSafePoint
 218         if ( !n->is_MachCall() ) {
 219           insert = false;
 220         } else if ( n->is_MachCall() ) {
 221           MachCallNode* call = n->as_MachCall();
 222           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 223               call->entry_point() == OptoRuntime::new_array_Java() ||
 224               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 225               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 226               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 227               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 228               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 229               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 230               ) {
 231             insert = false;
 232           }
 233         }
 234         if (insert) {
 235           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 236           b->_nodes.insert( j, zap );
 237           _cfg->_bbs.map( zap->_idx, b );
 238           ++j;
 239         }
 240       }
 241     }
 242   }
 243 }
 244 
 245 
 246 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 247   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 248   CallStaticJavaNode* ideal_node =
 249     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
 250          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 251                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
 252   // We need to copy the OopMap from the site we're zapping at.
 253   // We have to make a copy, because the zap site might not be
 254   // a call site, and zap_dead is a call site.
 255   OopMap* clone = node_to_check->oop_map()->deep_copy();
 256 
 257   // Add the cloned OopMap to the zap node
 258   ideal_node->set_oop_map(clone);
 259   return _matcher->match_sfpt(ideal_node);
 260 }
 261 
 262 //------------------------------is_node_getting_a_safepoint--------------------
 263 bool Compile::is_node_getting_a_safepoint( Node* n) {
 264   // This code duplicates the logic prior to the call of add_safepoint
 265   // below in this file.
 266   if( n->is_MachSafePoint() ) return true;
 267   return false;
 268 }
 269 
 270 # endif // ENABLE_ZAP_DEAD_LOCALS
 271 
 272 //------------------------------compute_loop_first_inst_sizes------------------
 273 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 274 // of a loop. When aligning a loop we need to provide enough instructions
 275 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 276 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 277 // By default, the size is set to 999999 by Block's constructor so that
 278 // a loop will be aligned if the size is not reset here.
 279 //
 280 // Note: Mach instructions could contain several HW instructions
 281 // so the size is estimated only.
 282 //
 283 void Compile::compute_loop_first_inst_sizes() {
 284   // The next condition is used to gate the loop alignment optimization.
 285   // Don't aligned a loop if there are enough instructions at the head of a loop
 286   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 287   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 288   // equal to 11 bytes which is the largest address NOP instruction.
 289   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 290     uint last_block = _cfg->_num_blocks-1;
 291     for( uint i=1; i <= last_block; i++ ) {
 292       Block *b = _cfg->_blocks[i];
 293       // Check the first loop's block which requires an alignment.
 294       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 295         uint sum_size = 0;
 296         uint inst_cnt = NumberOfLoopInstrToAlign;
 297         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 298 
 299         // Check subsequent fallthrough blocks if the loop's first
 300         // block(s) does not have enough instructions.
 301         Block *nb = b;
 302         while( inst_cnt > 0 &&
 303                i < last_block &&
 304                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 305                !nb->has_successor(b) ) {
 306           i++;
 307           nb = _cfg->_blocks[i];
 308           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 309         } // while( inst_cnt > 0 && i < last_block  )
 310 
 311         b->set_first_inst_size(sum_size);
 312       } // f( b->head()->is_Loop() )
 313     } // for( i <= last_block )
 314   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 315 }
 316 
 317 //----------------------Shorten_branches---------------------------------------
 318 // The architecture description provides short branch variants for some long
 319 // branch instructions. Replace eligible long branches with short branches.
 320 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
 321 
 322   // fill in the nop array for bundling computations
 323   MachNode *_nop_list[Bundle::_nop_count];
 324   Bundle::initialize_nops(_nop_list, this);
 325 
 326   // ------------------
 327   // Compute size of each block, method size, and relocation information size
 328   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
 329   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 330   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 331   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 332   blk_starts[0]    = 0;
 333 
 334   // Initialize the sizes to 0
 335   code_size  = 0;          // Size in bytes of generated code
 336   stub_size  = 0;          // Size in bytes of all stub entries
 337   // Size in bytes of all relocation entries, including those in local stubs.
 338   // Start with 2-bytes of reloc info for the unvalidated entry point
 339   reloc_size = 1;          // Number of relocation entries
 340   const_size = 0;          // size of fp constants in words
 341 
 342   // Make three passes.  The first computes pessimistic blk_starts,
 343   // relative jmp_end, reloc_size and const_size information.
 344   // The second performs short branch substitution using the pessimistic
 345   // sizing. The third inserts nops where needed.
 346 
 347   Node *nj; // tmp
 348 
 349   // Step one, perform a pessimistic sizing pass.
 350   uint i;
 351   uint min_offset_from_last_call = 1;  // init to a positive value
 352   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 353   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 354     Block *b = _cfg->_blocks[i];
 355 
 356     // Sum all instruction sizes to compute block size
 357     uint last_inst = b->_nodes.size();
 358     uint blk_size = 0;
 359     for( uint j = 0; j<last_inst; j++ ) {
 360       nj = b->_nodes[j];
 361       uint inst_size = nj->size(_regalloc);
 362       blk_size += inst_size;
 363       // Handle machine instruction nodes
 364       if( nj->is_Mach() ) {
 365         MachNode *mach = nj->as_Mach();
 366         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 367         reloc_size += mach->reloc();
 368         const_size += mach->const_size();
 369         if( mach->is_MachCall() ) {
 370           MachCallNode *mcall = mach->as_MachCall();
 371           // This destination address is NOT PC-relative
 372 
 373           mcall->method_set((intptr_t)mcall->entry_point());
 374 
 375           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 376             stub_size  += size_java_to_interp();
 377             reloc_size += reloc_java_to_interp();
 378           }
 379         } else if (mach->is_MachSafePoint()) {
 380           // If call/safepoint are adjacent, account for possible
 381           // nop to disambiguate the two safepoints.
 382           if (min_offset_from_last_call == 0) {
 383             blk_size += nop_size;
 384           }
 385         } else if (mach->ideal_Opcode() == Op_Jump) {
 386           const_size += b->_num_succs; // Address table size
 387           // The size is valid even for 64 bit since it is
 388           // multiplied by 2*jintSize on this method exit.
 389         }
 390       }
 391       min_offset_from_last_call += inst_size;
 392       // Remember end of call offset
 393       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 394         min_offset_from_last_call = 0;
 395       }
 396     }
 397 
 398     // During short branch replacement, we store the relative (to blk_starts)
 399     // end of jump in jmp_end, rather than the absolute end of jump.  This
 400     // is so that we do not need to recompute sizes of all nodes when we compute
 401     // correct blk_starts in our next sizing pass.
 402     jmp_end[i] = blk_size;
 403     DEBUG_ONLY( jmp_target[i] = 0; )
 404 
 405     // When the next block starts a loop, we may insert pad NOP
 406     // instructions.  Since we cannot know our future alignment,
 407     // assume the worst.
 408     if( i<_cfg->_num_blocks-1 ) {
 409       Block *nb = _cfg->_blocks[i+1];
 410       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 411       if( max_loop_pad > 0 ) {
 412         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 413         blk_size += max_loop_pad;
 414       }
 415     }
 416 
 417     // Save block size; update total method size
 418     blk_starts[i+1] = blk_starts[i]+blk_size;
 419   }
 420 
 421   // Step two, replace eligible long jumps.
 422 
 423   // Note: this will only get the long branches within short branch
 424   //   range. Another pass might detect more branches that became
 425   //   candidates because the shortening in the first pass exposed
 426   //   more opportunities. Unfortunately, this would require
 427   //   recomputing the starting and ending positions for the blocks
 428   for( i=0; i<_cfg->_num_blocks; i++ ) {
 429     Block *b = _cfg->_blocks[i];
 430 
 431     int j;
 432     // Find the branch; ignore trailing NOPs.
 433     for( j = b->_nodes.size()-1; j>=0; j-- ) {
 434       nj = b->_nodes[j];
 435       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
 436         break;
 437     }
 438 
 439     if (j >= 0) {
 440       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
 441         MachNode *mach = nj->as_Mach();
 442         // This requires the TRUE branch target be in succs[0]
 443         uint bnum = b->non_connector_successor(0)->_pre_order;
 444         uintptr_t target = blk_starts[bnum];
 445         if( mach->is_pc_relative() ) {
 446           int offset = target-(blk_starts[i] + jmp_end[i]);
 447           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
 448             // We've got a winner.  Replace this branch.
 449             MachNode* replacement = mach->short_branch_version(this);
 450             b->_nodes.map(j, replacement);
 451             mach->subsume_by(replacement);
 452 
 453             // Update the jmp_end size to save time in our
 454             // next pass.
 455             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
 456             DEBUG_ONLY( jmp_target[i] = bnum; );
 457             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 458           }
 459         } else {
 460 #ifndef PRODUCT
 461           mach->dump(3);
 462 #endif
 463           Unimplemented();
 464         }
 465       }
 466     }
 467   }
 468 
 469   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
 470   // of a loop. It is used to determine the padding for loop alignment.
 471   compute_loop_first_inst_sizes();
 472 
 473   // Step 3, compute the offsets of all the labels
 474   uint last_call_adr = max_uint;
 475   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 476     // copy the offset of the beginning to the corresponding label
 477     assert(labels[i].is_unused(), "cannot patch at this point");
 478     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
 479 
 480     // insert padding for any instructions that need it
 481     Block *b = _cfg->_blocks[i];
 482     uint last_inst = b->_nodes.size();
 483     uint adr = blk_starts[i];
 484     for( uint j = 0; j<last_inst; j++ ) {
 485       nj = b->_nodes[j];
 486       if( nj->is_Mach() ) {
 487         int padding = nj->as_Mach()->compute_padding(adr);
 488         // If call/safepoint are adjacent insert a nop (5010568)
 489         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
 490             adr == last_call_adr ) {
 491           padding = nop_size;
 492         }
 493         if(padding > 0) {
 494           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
 495           int nops_cnt = padding / nop_size;
 496           MachNode *nop = new (this) MachNopNode(nops_cnt);
 497           b->_nodes.insert(j++, nop);
 498           _cfg->_bbs.map( nop->_idx, b );
 499           adr += padding;
 500           last_inst++;
 501         }
 502       }
 503       adr += nj->size(_regalloc);
 504 
 505       // Remember end of call offset
 506       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 507         last_call_adr = adr;
 508       }
 509     }
 510 
 511     if ( i != _cfg->_num_blocks-1) {
 512       // Get the size of the block
 513       uint blk_size = adr - blk_starts[i];
 514 
 515       // When the next block is the top of a loop, we may insert pad NOP
 516       // instructions.
 517       Block *nb = _cfg->_blocks[i+1];
 518       int current_offset = blk_starts[i] + blk_size;
 519       current_offset += nb->alignment_padding(current_offset);
 520       // Save block size; update total method size
 521       blk_starts[i+1] = current_offset;
 522     }
 523   }
 524 
 525 #ifdef ASSERT
 526   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 527     if( jmp_target[i] != 0 ) {
 528       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
 529       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
 530         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
 531       }
 532       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
 533     }
 534   }
 535 #endif
 536 
 537   // ------------------
 538   // Compute size for code buffer
 539   code_size   = blk_starts[i-1] + jmp_end[i-1];
 540 
 541   // Relocation records
 542   reloc_size += 1;              // Relo entry for exception handler
 543 
 544   // Adjust reloc_size to number of record of relocation info
 545   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 546   // a relocation index.
 547   // The CodeBuffer will expand the locs array if this estimate is too low.
 548   reloc_size   *= 10 / sizeof(relocInfo);
 549 
 550   // Adjust const_size to number of bytes
 551   const_size   *= 2*jintSize; // both float and double take two words per entry
 552 
 553 }
 554 
 555 //------------------------------FillLocArray-----------------------------------
 556 // Create a bit of debug info and append it to the array.  The mapping is from
 557 // Java local or expression stack to constant, register or stack-slot.  For
 558 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 559 // entry has been taken care of and caller should skip it).
 560 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 561   // This should never have accepted Bad before
 562   assert(OptoReg::is_valid(regnum), "location must be valid");
 563   return (OptoReg::is_reg(regnum))
 564     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 565     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 566 }
 567 
 568 
 569 ObjectValue*
 570 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 571   for (int i = 0; i < objs->length(); i++) {
 572     assert(objs->at(i)->is_object(), "corrupt object cache");
 573     ObjectValue* sv = (ObjectValue*) objs->at(i);
 574     if (sv->id() == id) {
 575       return sv;
 576     }
 577   }
 578   // Otherwise..
 579   return NULL;
 580 }
 581 
 582 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 583                                      ObjectValue* sv ) {
 584   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 585   objs->append(sv);
 586 }
 587 
 588 
 589 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 590                             GrowableArray<ScopeValue*> *array,
 591                             GrowableArray<ScopeValue*> *objs ) {
 592   assert( local, "use _top instead of null" );
 593   if (array->length() != idx) {
 594     assert(array->length() == idx + 1, "Unexpected array count");
 595     // Old functionality:
 596     //   return
 597     // New functionality:
 598     //   Assert if the local is not top. In product mode let the new node
 599     //   override the old entry.
 600     assert(local == top(), "LocArray collision");
 601     if (local == top()) {
 602       return;
 603     }
 604     array->pop();
 605   }
 606   const Type *t = local->bottom_type();
 607 
 608   // Is it a safepoint scalar object node?
 609   if (local->is_SafePointScalarObject()) {
 610     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 611 
 612     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 613     if (sv == NULL) {
 614       ciKlass* cik = t->is_oopptr()->klass();
 615       assert(cik->is_instance_klass() ||
 616              cik->is_array_klass(), "Not supported allocation.");
 617       sv = new ObjectValue(spobj->_idx,
 618                            new ConstantOopWriteValue(cik->constant_encoding()));
 619       Compile::set_sv_for_object_node(objs, sv);
 620 
 621       uint first_ind = spobj->first_index();
 622       for (uint i = 0; i < spobj->n_fields(); i++) {
 623         Node* fld_node = sfpt->in(first_ind+i);
 624         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 625       }
 626     }
 627     array->append(sv);
 628     return;
 629   }
 630 
 631   // Grab the register number for the local
 632   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 633   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 634     // Record the double as two float registers.
 635     // The register mask for such a value always specifies two adjacent
 636     // float registers, with the lower register number even.
 637     // Normally, the allocation of high and low words to these registers
 638     // is irrelevant, because nearly all operations on register pairs
 639     // (e.g., StoreD) treat them as a single unit.
 640     // Here, we assume in addition that the words in these two registers
 641     // stored "naturally" (by operations like StoreD and double stores
 642     // within the interpreter) such that the lower-numbered register
 643     // is written to the lower memory address.  This may seem like
 644     // a machine dependency, but it is not--it is a requirement on
 645     // the author of the <arch>.ad file to ensure that, for every
 646     // even/odd double-register pair to which a double may be allocated,
 647     // the word in the even single-register is stored to the first
 648     // memory word.  (Note that register numbers are completely
 649     // arbitrary, and are not tied to any machine-level encodings.)
 650 #ifdef _LP64
 651     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 652       array->append(new ConstantIntValue(0));
 653       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 654     } else if ( t->base() == Type::Long ) {
 655       array->append(new ConstantIntValue(0));
 656       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 657     } else if ( t->base() == Type::RawPtr ) {
 658       // jsr/ret return address which must be restored into a the full
 659       // width 64-bit stack slot.
 660       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 661     }
 662 #else //_LP64
 663 #ifdef SPARC
 664     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 665       // For SPARC we have to swap high and low words for
 666       // long values stored in a single-register (g0-g7).
 667       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 668       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 669     } else
 670 #endif //SPARC
 671     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 672       // Repack the double/long as two jints.
 673       // The convention the interpreter uses is that the second local
 674       // holds the first raw word of the native double representation.
 675       // This is actually reasonable, since locals and stack arrays
 676       // grow downwards in all implementations.
 677       // (If, on some machine, the interpreter's Java locals or stack
 678       // were to grow upwards, the embedded doubles would be word-swapped.)
 679       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 680       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 681     }
 682 #endif //_LP64
 683     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 684                OptoReg::is_reg(regnum) ) {
 685       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 686                                    ? Location::float_in_dbl : Location::normal ));
 687     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 688       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 689                                    ? Location::int_in_long : Location::normal ));
 690     } else if( t->base() == Type::NarrowOop ) {
 691       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 692     } else {
 693       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 694     }
 695     return;
 696   }
 697 
 698   // No register.  It must be constant data.
 699   switch (t->base()) {
 700   case Type::Half:              // Second half of a double
 701     ShouldNotReachHere();       // Caller should skip 2nd halves
 702     break;
 703   case Type::AnyPtr:
 704     array->append(new ConstantOopWriteValue(NULL));
 705     break;
 706   case Type::AryPtr:
 707   case Type::InstPtr:
 708   case Type::KlassPtr:          // fall through
 709     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 710     break;
 711   case Type::NarrowOop:
 712     if (t == TypeNarrowOop::NULL_PTR) {
 713       array->append(new ConstantOopWriteValue(NULL));
 714     } else {
 715       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 716     }
 717     break;
 718   case Type::Int:
 719     array->append(new ConstantIntValue(t->is_int()->get_con()));
 720     break;
 721   case Type::RawPtr:
 722     // A return address (T_ADDRESS).
 723     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 724 #ifdef _LP64
 725     // Must be restored to the full-width 64-bit stack slot.
 726     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 727 #else
 728     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 729 #endif
 730     break;
 731   case Type::FloatCon: {
 732     float f = t->is_float_constant()->getf();
 733     array->append(new ConstantIntValue(jint_cast(f)));
 734     break;
 735   }
 736   case Type::DoubleCon: {
 737     jdouble d = t->is_double_constant()->getd();
 738 #ifdef _LP64
 739     array->append(new ConstantIntValue(0));
 740     array->append(new ConstantDoubleValue(d));
 741 #else
 742     // Repack the double as two jints.
 743     // The convention the interpreter uses is that the second local
 744     // holds the first raw word of the native double representation.
 745     // This is actually reasonable, since locals and stack arrays
 746     // grow downwards in all implementations.
 747     // (If, on some machine, the interpreter's Java locals or stack
 748     // were to grow upwards, the embedded doubles would be word-swapped.)
 749     jint   *dp = (jint*)&d;
 750     array->append(new ConstantIntValue(dp[1]));
 751     array->append(new ConstantIntValue(dp[0]));
 752 #endif
 753     break;
 754   }
 755   case Type::Long: {
 756     jlong d = t->is_long()->get_con();
 757 #ifdef _LP64
 758     array->append(new ConstantIntValue(0));
 759     array->append(new ConstantLongValue(d));
 760 #else
 761     // Repack the long as two jints.
 762     // The convention the interpreter uses is that the second local
 763     // holds the first raw word of the native double representation.
 764     // This is actually reasonable, since locals and stack arrays
 765     // grow downwards in all implementations.
 766     // (If, on some machine, the interpreter's Java locals or stack
 767     // were to grow upwards, the embedded doubles would be word-swapped.)
 768     jint *dp = (jint*)&d;
 769     array->append(new ConstantIntValue(dp[1]));
 770     array->append(new ConstantIntValue(dp[0]));
 771 #endif
 772     break;
 773   }
 774   case Type::Top:               // Add an illegal value here
 775     array->append(new LocationValue(Location()));
 776     break;
 777   default:
 778     ShouldNotReachHere();
 779     break;
 780   }
 781 }
 782 
 783 // Determine if this node starts a bundle
 784 bool Compile::starts_bundle(const Node *n) const {
 785   return (_node_bundling_limit > n->_idx &&
 786           _node_bundling_base[n->_idx].starts_bundle());
 787 }
 788 
 789 //--------------------------Process_OopMap_Node--------------------------------
 790 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 791 
 792   // Handle special safepoint nodes for synchronization
 793   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 794   MachCallNode      *mcall;
 795 
 796 #ifdef ENABLE_ZAP_DEAD_LOCALS
 797   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 798 #endif
 799 
 800   int safepoint_pc_offset = current_offset;
 801   bool is_method_handle_invoke = false;
 802   bool return_oop = false;
 803 
 804   // Add the safepoint in the DebugInfoRecorder
 805   if( !mach->is_MachCall() ) {
 806     mcall = NULL;
 807     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 808   } else {
 809     mcall = mach->as_MachCall();
 810 
 811     // Is the call a MethodHandle call?
 812     if (mcall->is_MachCallJava()) {
 813       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 814         assert(has_method_handle_invokes(), "must have been set during call generation");
 815         is_method_handle_invoke = true;
 816       }
 817     }
 818 
 819     // Check if a call returns an object.
 820     if (mcall->return_value_is_used() &&
 821         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 822       return_oop = true;
 823     }
 824     safepoint_pc_offset += mcall->ret_addr_offset();
 825     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 826   }
 827 
 828   // Loop over the JVMState list to add scope information
 829   // Do not skip safepoints with a NULL method, they need monitor info
 830   JVMState* youngest_jvms = sfn->jvms();
 831   int max_depth = youngest_jvms->depth();
 832 
 833   // Allocate the object pool for scalar-replaced objects -- the map from
 834   // small-integer keys (which can be recorded in the local and ostack
 835   // arrays) to descriptions of the object state.
 836   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 837 
 838   // Visit scopes from oldest to youngest.
 839   for (int depth = 1; depth <= max_depth; depth++) {
 840     JVMState* jvms = youngest_jvms->of_depth(depth);
 841     int idx;
 842     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 843     // Safepoints that do not have method() set only provide oop-map and monitor info
 844     // to support GC; these do not support deoptimization.
 845     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 846     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 847     int num_mon  = jvms->nof_monitors();
 848     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 849            "JVMS local count must match that of the method");
 850 
 851     // Add Local and Expression Stack Information
 852 
 853     // Insert locals into the locarray
 854     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 855     for( idx = 0; idx < num_locs; idx++ ) {
 856       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 857     }
 858 
 859     // Insert expression stack entries into the exparray
 860     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 861     for( idx = 0; idx < num_exps; idx++ ) {
 862       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 863     }
 864 
 865     // Add in mappings of the monitors
 866     assert( !method ||
 867             !method->is_synchronized() ||
 868             method->is_native() ||
 869             num_mon > 0 ||
 870             !GenerateSynchronizationCode,
 871             "monitors must always exist for synchronized methods");
 872 
 873     // Build the growable array of ScopeValues for exp stack
 874     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 875 
 876     // Loop over monitors and insert into array
 877     for(idx = 0; idx < num_mon; idx++) {
 878       // Grab the node that defines this monitor
 879       Node* box_node = sfn->monitor_box(jvms, idx);
 880       Node* obj_node = sfn->monitor_obj(jvms, idx);
 881 
 882       // Create ScopeValue for object
 883       ScopeValue *scval = NULL;
 884 
 885       if( obj_node->is_SafePointScalarObject() ) {
 886         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 887         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 888         if (scval == NULL) {
 889           const Type *t = obj_node->bottom_type();
 890           ciKlass* cik = t->is_oopptr()->klass();
 891           assert(cik->is_instance_klass() ||
 892                  cik->is_array_klass(), "Not supported allocation.");
 893           ObjectValue* sv = new ObjectValue(spobj->_idx,
 894                                 new ConstantOopWriteValue(cik->constant_encoding()));
 895           Compile::set_sv_for_object_node(objs, sv);
 896 
 897           uint first_ind = spobj->first_index();
 898           for (uint i = 0; i < spobj->n_fields(); i++) {
 899             Node* fld_node = sfn->in(first_ind+i);
 900             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 901           }
 902           scval = sv;
 903         }
 904       } else if( !obj_node->is_Con() ) {
 905         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 906         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 907           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 908         } else {
 909           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 910         }
 911       } else {
 912         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 913         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
 914       }
 915 
 916       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
 917       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 918       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
 919       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
 920     }
 921 
 922     // We dump the object pool first, since deoptimization reads it in first.
 923     debug_info()->dump_object_pool(objs);
 924 
 925     // Build first class objects to pass to scope
 926     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 927     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 928     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 929 
 930     // Make method available for all Safepoints
 931     ciMethod* scope_method = method ? method : _method;
 932     // Describe the scope here
 933     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 934     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 935     // Now we can describe the scope.
 936     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 937   } // End jvms loop
 938 
 939   // Mark the end of the scope set.
 940   debug_info()->end_safepoint(safepoint_pc_offset);
 941 }
 942 
 943 
 944 
 945 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 946 class NonSafepointEmitter {
 947   Compile*  C;
 948   JVMState* _pending_jvms;
 949   int       _pending_offset;
 950 
 951   void emit_non_safepoint();
 952 
 953  public:
 954   NonSafepointEmitter(Compile* compile) {
 955     this->C = compile;
 956     _pending_jvms = NULL;
 957     _pending_offset = 0;
 958   }
 959 
 960   void observe_instruction(Node* n, int pc_offset) {
 961     if (!C->debug_info()->recording_non_safepoints())  return;
 962 
 963     Node_Notes* nn = C->node_notes_at(n->_idx);
 964     if (nn == NULL || nn->jvms() == NULL)  return;
 965     if (_pending_jvms != NULL &&
 966         _pending_jvms->same_calls_as(nn->jvms())) {
 967       // Repeated JVMS?  Stretch it up here.
 968       _pending_offset = pc_offset;
 969     } else {
 970       if (_pending_jvms != NULL &&
 971           _pending_offset < pc_offset) {
 972         emit_non_safepoint();
 973       }
 974       _pending_jvms = NULL;
 975       if (pc_offset > C->debug_info()->last_pc_offset()) {
 976         // This is the only way _pending_jvms can become non-NULL:
 977         _pending_jvms = nn->jvms();
 978         _pending_offset = pc_offset;
 979       }
 980     }
 981   }
 982 
 983   // Stay out of the way of real safepoints:
 984   void observe_safepoint(JVMState* jvms, int pc_offset) {
 985     if (_pending_jvms != NULL &&
 986         !_pending_jvms->same_calls_as(jvms) &&
 987         _pending_offset < pc_offset) {
 988       emit_non_safepoint();
 989     }
 990     _pending_jvms = NULL;
 991   }
 992 
 993   void flush_at_end() {
 994     if (_pending_jvms != NULL) {
 995       emit_non_safepoint();
 996     }
 997     _pending_jvms = NULL;
 998   }
 999 };
1000 
1001 void NonSafepointEmitter::emit_non_safepoint() {
1002   JVMState* youngest_jvms = _pending_jvms;
1003   int       pc_offset     = _pending_offset;
1004 
1005   // Clear it now:
1006   _pending_jvms = NULL;
1007 
1008   DebugInformationRecorder* debug_info = C->debug_info();
1009   assert(debug_info->recording_non_safepoints(), "sanity");
1010 
1011   debug_info->add_non_safepoint(pc_offset);
1012   int max_depth = youngest_jvms->depth();
1013 
1014   // Visit scopes from oldest to youngest.
1015   for (int depth = 1; depth <= max_depth; depth++) {
1016     JVMState* jvms = youngest_jvms->of_depth(depth);
1017     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1018     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1019     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1020   }
1021 
1022   // Mark the end of the scope set.
1023   debug_info->end_non_safepoint(pc_offset);
1024 }
1025 
1026 
1027 
1028 // helper for Fill_buffer bailout logic
1029 static void turn_off_compiler(Compile* C) {
1030   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
1031     // Do not turn off compilation if a single giant method has
1032     // blown the code cache size.
1033     C->record_failure("excessive request to CodeCache");
1034   } else {
1035     // Let CompilerBroker disable further compilations.
1036     C->record_failure("CodeCache is full");
1037   }
1038 }
1039 
1040 
1041 //------------------------------Fill_buffer------------------------------------
1042 void Compile::Fill_buffer() {
1043 
1044   // Set the initially allocated size
1045   int  code_req   = initial_code_capacity;
1046   int  locs_req   = initial_locs_capacity;
1047   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1048   int  const_req  = initial_const_capacity;
1049   bool labels_not_set = true;
1050 
1051   int  pad_req    = NativeCall::instruction_size;
1052   // The extra spacing after the code is necessary on some platforms.
1053   // Sometimes we need to patch in a jump after the last instruction,
1054   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1055 
1056   uint i;
1057   // Compute the byte offset where we can store the deopt pc.
1058   if (fixed_slots() != 0) {
1059     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1060   }
1061 
1062   // Compute prolog code size
1063   _method_size = 0;
1064   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1065 #ifdef IA64
1066   if (save_argument_registers()) {
1067     // 4815101: this is a stub with implicit and unknown precision fp args.
1068     // The usual spill mechanism can only generate stfd's in this case, which
1069     // doesn't work if the fp reg to spill contains a single-precision denorm.
1070     // Instead, we hack around the normal spill mechanism using stfspill's and
1071     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1072     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1073     //
1074     // If we ever implement 16-byte 'registers' == stack slots, we can
1075     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1076     // instead of stfd/stfs/ldfd/ldfs.
1077     _frame_slots += 8*(16/BytesPerInt);
1078   }
1079 #endif
1080   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1081 
1082   // Create an array of unused labels, one for each basic block
1083   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1084 
1085   for( i=0; i <= _cfg->_num_blocks; i++ ) {
1086     blk_labels[i].init();
1087   }
1088 
1089   // If this machine supports different size branch offsets, then pre-compute
1090   // the length of the blocks
1091   if( _matcher->is_short_branch_offset(-1, 0) ) {
1092     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
1093     labels_not_set = false;
1094   }
1095 
1096   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1097   int exception_handler_req = size_exception_handler();
1098   int deopt_handler_req = size_deopt_handler();
1099   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1100   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1101   stub_req += MAX_stubs_size;   // ensure per-stub margin
1102   code_req += MAX_inst_size;    // ensure per-instruction margin
1103 
1104   if (StressCodeBuffers)
1105     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1106 
1107   int total_req =
1108     code_req +
1109     pad_req +
1110     stub_req +
1111     exception_handler_req +
1112     deopt_handler_req +              // deopt handler
1113     const_req;
1114 
1115   if (has_method_handle_invokes())
1116     total_req += deopt_handler_req;  // deopt MH handler
1117 
1118   CodeBuffer* cb = code_buffer();
1119   cb->initialize(total_req, locs_req);
1120 
1121   // Have we run out of code space?
1122   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1123     turn_off_compiler(this);
1124     return;
1125   }
1126   // Configure the code buffer.
1127   cb->initialize_consts_size(const_req);
1128   cb->initialize_stubs_size(stub_req);
1129   cb->initialize_oop_recorder(env()->oop_recorder());
1130 
1131   // fill in the nop array for bundling computations
1132   MachNode *_nop_list[Bundle::_nop_count];
1133   Bundle::initialize_nops(_nop_list, this);
1134 
1135   // Create oopmap set.
1136   _oop_map_set = new OopMapSet();
1137 
1138   // !!!!! This preserves old handling of oopmaps for now
1139   debug_info()->set_oopmaps(_oop_map_set);
1140 
1141   // Count and start of implicit null check instructions
1142   uint inct_cnt = 0;
1143   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1144 
1145   // Count and start of calls
1146   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1147 
1148   uint  return_offset = 0;
1149   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1150 
1151   int previous_offset = 0;
1152   int current_offset  = 0;
1153   int last_call_offset = -1;
1154 
1155   // Create an array of unused labels, one for each basic block, if printing is enabled
1156 #ifndef PRODUCT
1157   int *node_offsets      = NULL;
1158   uint  node_offset_limit = unique();
1159 
1160 
1161   if ( print_assembly() )
1162     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1163 #endif
1164 
1165   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1166 
1167   // ------------------
1168   // Now fill in the code buffer
1169   Node *delay_slot = NULL;
1170 
1171   for( i=0; i < _cfg->_num_blocks; i++ ) {
1172     Block *b = _cfg->_blocks[i];
1173 
1174     Node *head = b->head();
1175 
1176     // If this block needs to start aligned (i.e, can be reached other
1177     // than by falling-thru from the previous block), then force the
1178     // start of a new bundle.
1179     if( Pipeline::requires_bundling() && starts_bundle(head) )
1180       cb->flush_bundle(true);
1181 
1182     // Define the label at the beginning of the basic block
1183     if( labels_not_set )
1184       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1185 
1186     else
1187       assert( blk_labels[b->_pre_order].loc_pos() == cb->insts_size(),
1188               "label position does not match code offset" );
1189 
1190     uint last_inst = b->_nodes.size();
1191 
1192     // Emit block normally, except for last instruction.
1193     // Emit means "dump code bits into code buffer".
1194     for( uint j = 0; j<last_inst; j++ ) {
1195 
1196       // Get the node
1197       Node* n = b->_nodes[j];
1198 
1199       // See if delay slots are supported
1200       if (valid_bundle_info(n) &&
1201           node_bundling(n)->used_in_unconditional_delay()) {
1202         assert(delay_slot == NULL, "no use of delay slot node");
1203         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1204 
1205         delay_slot = n;
1206         continue;
1207       }
1208 
1209       // If this starts a new instruction group, then flush the current one
1210       // (but allow split bundles)
1211       if( Pipeline::requires_bundling() && starts_bundle(n) )
1212         cb->flush_bundle(false);
1213 
1214       // The following logic is duplicated in the code ifdeffed for
1215       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1216       // should be factored out.  Or maybe dispersed to the nodes?
1217 
1218       // Special handling for SafePoint/Call Nodes
1219       bool is_mcall = false;
1220       if( n->is_Mach() ) {
1221         MachNode *mach = n->as_Mach();
1222         is_mcall = n->is_MachCall();
1223         bool is_sfn = n->is_MachSafePoint();
1224 
1225         // If this requires all previous instructions be flushed, then do so
1226         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1227           cb->flush_bundle(true);
1228           current_offset = cb->insts_size();
1229         }
1230 
1231         // align the instruction if necessary
1232         int padding = mach->compute_padding(current_offset);
1233         // Make sure safepoint node for polling is distinct from a call's
1234         // return by adding a nop if needed.
1235         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1236           padding = nop_size;
1237         }
1238         assert( labels_not_set || padding == 0, "instruction should already be aligned");
1239 
1240         if(padding > 0) {
1241           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1242           int nops_cnt = padding / nop_size;
1243           MachNode *nop = new (this) MachNopNode(nops_cnt);
1244           b->_nodes.insert(j++, nop);
1245           last_inst++;
1246           _cfg->_bbs.map( nop->_idx, b );
1247           nop->emit(*cb, _regalloc);
1248           cb->flush_bundle(true);
1249           current_offset = cb->insts_size();
1250         }
1251 
1252         // Remember the start of the last call in a basic block
1253         if (is_mcall) {
1254           MachCallNode *mcall = mach->as_MachCall();
1255 
1256           // This destination address is NOT PC-relative
1257           mcall->method_set((intptr_t)mcall->entry_point());
1258 
1259           // Save the return address
1260           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1261 
1262           if (!mcall->is_safepoint_node()) {
1263             is_mcall = false;
1264             is_sfn = false;
1265           }
1266         }
1267 
1268         // sfn will be valid whenever mcall is valid now because of inheritance
1269         if( is_sfn || is_mcall ) {
1270 
1271           // Handle special safepoint nodes for synchronization
1272           if( !is_mcall ) {
1273             MachSafePointNode *sfn = mach->as_MachSafePoint();
1274             // !!!!! Stubs only need an oopmap right now, so bail out
1275             if( sfn->jvms()->method() == NULL) {
1276               // Write the oopmap directly to the code blob??!!
1277 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1278               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1279 #             endif
1280               continue;
1281             }
1282           } // End synchronization
1283 
1284           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1285                                            current_offset);
1286           Process_OopMap_Node(mach, current_offset);
1287         } // End if safepoint
1288 
1289         // If this is a null check, then add the start of the previous instruction to the list
1290         else if( mach->is_MachNullCheck() ) {
1291           inct_starts[inct_cnt++] = previous_offset;
1292         }
1293 
1294         // If this is a branch, then fill in the label with the target BB's label
1295         else if ( mach->is_Branch() ) {
1296 
1297           if ( mach->ideal_Opcode() == Op_Jump ) {
1298             for (uint h = 0; h < b->_num_succs; h++ ) {
1299               Block* succs_block = b->_succs[h];
1300               for (uint j = 1; j < succs_block->num_preds(); j++) {
1301                 Node* jpn = succs_block->pred(j);
1302                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1303                   uint block_num = succs_block->non_connector()->_pre_order;
1304                   Label *blkLabel = &blk_labels[block_num];
1305                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1306                 }
1307               }
1308             }
1309           } else {
1310             // For Branchs
1311             // This requires the TRUE branch target be in succs[0]
1312             uint block_num = b->non_connector_successor(0)->_pre_order;
1313             mach->label_set( blk_labels[block_num], block_num );
1314           }
1315         }
1316 
1317 #ifdef ASSERT
1318         // Check that oop-store precedes the card-mark
1319         else if( mach->ideal_Opcode() == Op_StoreCM ) {
1320           uint storeCM_idx = j;
1321           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1322           assert( oop_store != NULL, "storeCM expects a precedence edge");
1323           uint i4;
1324           for( i4 = 0; i4 < last_inst; ++i4 ) {
1325             if( b->_nodes[i4] == oop_store ) break;
1326           }
1327           // Note: This test can provide a false failure if other precedence
1328           // edges have been added to the storeCMNode.
1329           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1330         }
1331 #endif
1332 
1333         else if( !n->is_Proj() ) {
1334           // Remember the beginning of the previous instruction, in case
1335           // it's followed by a flag-kill and a null-check.  Happens on
1336           // Intel all the time, with add-to-memory kind of opcodes.
1337           previous_offset = current_offset;
1338         }
1339       }
1340 
1341       // Verify that there is sufficient space remaining
1342       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1343       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1344         turn_off_compiler(this);
1345         return;
1346       }
1347 
1348       // Save the offset for the listing
1349 #ifndef PRODUCT
1350       if( node_offsets && n->_idx < node_offset_limit )
1351         node_offsets[n->_idx] = cb->insts_size();
1352 #endif
1353 
1354       // "Normal" instruction case
1355       n->emit(*cb, _regalloc);
1356       current_offset  = cb->insts_size();
1357       non_safepoints.observe_instruction(n, current_offset);
1358 
1359       // mcall is last "call" that can be a safepoint
1360       // record it so we can see if a poll will directly follow it
1361       // in which case we'll need a pad to make the PcDesc sites unique
1362       // see  5010568. This can be slightly inaccurate but conservative
1363       // in the case that return address is not actually at current_offset.
1364       // This is a small price to pay.
1365 
1366       if (is_mcall) {
1367         last_call_offset = current_offset;
1368       }
1369 
1370       // See if this instruction has a delay slot
1371       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1372         assert(delay_slot != NULL, "expecting delay slot node");
1373 
1374         // Back up 1 instruction
1375         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1376 
1377         // Save the offset for the listing
1378 #ifndef PRODUCT
1379         if( node_offsets && delay_slot->_idx < node_offset_limit )
1380           node_offsets[delay_slot->_idx] = cb->insts_size();
1381 #endif
1382 
1383         // Support a SafePoint in the delay slot
1384         if( delay_slot->is_MachSafePoint() ) {
1385           MachNode *mach = delay_slot->as_Mach();
1386           // !!!!! Stubs only need an oopmap right now, so bail out
1387           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1388             // Write the oopmap directly to the code blob??!!
1389 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1390             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1391 #           endif
1392             delay_slot = NULL;
1393             continue;
1394           }
1395 
1396           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1397           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1398                                            adjusted_offset);
1399           // Generate an OopMap entry
1400           Process_OopMap_Node(mach, adjusted_offset);
1401         }
1402 
1403         // Insert the delay slot instruction
1404         delay_slot->emit(*cb, _regalloc);
1405 
1406         // Don't reuse it
1407         delay_slot = NULL;
1408       }
1409 
1410     } // End for all instructions in block
1411 
1412     // If the next block is the top of a loop, pad this block out to align
1413     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1414     if( i<_cfg->_num_blocks-1 ) {
1415       Block *nb = _cfg->_blocks[i+1];
1416       uint padding = nb->alignment_padding(current_offset);
1417       if( padding > 0 ) {
1418         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1419         b->_nodes.insert( b->_nodes.size(), nop );
1420         _cfg->_bbs.map( nop->_idx, b );
1421         nop->emit(*cb, _regalloc);
1422         current_offset = cb->insts_size();
1423       }
1424     }
1425 
1426   } // End of for all blocks
1427 
1428   non_safepoints.flush_at_end();
1429 
1430   // Offset too large?
1431   if (failing())  return;
1432 
1433   // Define a pseudo-label at the end of the code
1434   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1435 
1436   // Compute the size of the first block
1437   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1438 
1439   assert(cb->insts_size() < 500000, "method is unreasonably large");
1440 
1441   // ------------------
1442 
1443 #ifndef PRODUCT
1444   // Information on the size of the method, without the extraneous code
1445   Scheduling::increment_method_size(cb->insts_size());
1446 #endif
1447 
1448   // ------------------
1449   // Fill in exception table entries.
1450   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1451 
1452   // Only java methods have exception handlers and deopt handlers
1453   if (_method) {
1454     // Emit the exception handler code.
1455     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1456     // Emit the deopt handler code.
1457     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1458 
1459     // Emit the MethodHandle deopt handler code (if required).
1460     if (has_method_handle_invokes()) {
1461       // We can use the same code as for the normal deopt handler, we
1462       // just need a different entry point address.
1463       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1464     }
1465   }
1466 
1467   // One last check for failed CodeBuffer::expand:
1468   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1469     turn_off_compiler(this);
1470     return;
1471   }
1472 
1473 #ifndef PRODUCT
1474   // Dump the assembly code, including basic-block numbers
1475   if (print_assembly()) {
1476     ttyLocker ttyl;  // keep the following output all in one block
1477     if (!VMThread::should_terminate()) {  // test this under the tty lock
1478       // This output goes directly to the tty, not the compiler log.
1479       // To enable tools to match it up with the compilation activity,
1480       // be sure to tag this tty output with the compile ID.
1481       if (xtty != NULL) {
1482         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1483                    is_osr_compilation()    ? " compile_kind='osr'" :
1484                    "");
1485       }
1486       if (method() != NULL) {
1487         method()->print_oop();
1488         print_codes();
1489       }
1490       dump_asm(node_offsets, node_offset_limit);
1491       if (xtty != NULL) {
1492         xtty->tail("opto_assembly");
1493       }
1494     }
1495   }
1496 #endif
1497 
1498 }
1499 
1500 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1501   _inc_table.set_size(cnt);
1502 
1503   uint inct_cnt = 0;
1504   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1505     Block *b = _cfg->_blocks[i];
1506     Node *n = NULL;
1507     int j;
1508 
1509     // Find the branch; ignore trailing NOPs.
1510     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1511       n = b->_nodes[j];
1512       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1513         break;
1514     }
1515 
1516     // If we didn't find anything, continue
1517     if( j < 0 ) continue;
1518 
1519     // Compute ExceptionHandlerTable subtable entry and add it
1520     // (skip empty blocks)
1521     if( n->is_Catch() ) {
1522 
1523       // Get the offset of the return from the call
1524       uint call_return = call_returns[b->_pre_order];
1525 #ifdef ASSERT
1526       assert( call_return > 0, "no call seen for this basic block" );
1527       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1528       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1529 #endif
1530       // last instruction is a CatchNode, find it's CatchProjNodes
1531       int nof_succs = b->_num_succs;
1532       // allocate space
1533       GrowableArray<intptr_t> handler_bcis(nof_succs);
1534       GrowableArray<intptr_t> handler_pcos(nof_succs);
1535       // iterate through all successors
1536       for (int j = 0; j < nof_succs; j++) {
1537         Block* s = b->_succs[j];
1538         bool found_p = false;
1539         for( uint k = 1; k < s->num_preds(); k++ ) {
1540           Node *pk = s->pred(k);
1541           if( pk->is_CatchProj() && pk->in(0) == n ) {
1542             const CatchProjNode* p = pk->as_CatchProj();
1543             found_p = true;
1544             // add the corresponding handler bci & pco information
1545             if( p->_con != CatchProjNode::fall_through_index ) {
1546               // p leads to an exception handler (and is not fall through)
1547               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1548               // no duplicates, please
1549               if( !handler_bcis.contains(p->handler_bci()) ) {
1550                 uint block_num = s->non_connector()->_pre_order;
1551                 handler_bcis.append(p->handler_bci());
1552                 handler_pcos.append(blk_labels[block_num].loc_pos());
1553               }
1554             }
1555           }
1556         }
1557         assert(found_p, "no matching predecessor found");
1558         // Note:  Due to empty block removal, one block may have
1559         // several CatchProj inputs, from the same Catch.
1560       }
1561 
1562       // Set the offset of the return from the call
1563       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1564       continue;
1565     }
1566 
1567     // Handle implicit null exception table updates
1568     if( n->is_MachNullCheck() ) {
1569       uint block_num = b->non_connector_successor(0)->_pre_order;
1570       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1571       continue;
1572     }
1573   } // End of for all blocks fill in exception table entries
1574 }
1575 
1576 // Static Variables
1577 #ifndef PRODUCT
1578 uint Scheduling::_total_nop_size = 0;
1579 uint Scheduling::_total_method_size = 0;
1580 uint Scheduling::_total_branches = 0;
1581 uint Scheduling::_total_unconditional_delays = 0;
1582 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1583 #endif
1584 
1585 // Initializer for class Scheduling
1586 
1587 Scheduling::Scheduling(Arena *arena, Compile &compile)
1588   : _arena(arena),
1589     _cfg(compile.cfg()),
1590     _bbs(compile.cfg()->_bbs),
1591     _regalloc(compile.regalloc()),
1592     _reg_node(arena),
1593     _bundle_instr_count(0),
1594     _bundle_cycle_number(0),
1595     _scheduled(arena),
1596     _available(arena),
1597     _next_node(NULL),
1598     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1599     _pinch_free_list(arena)
1600 #ifndef PRODUCT
1601   , _branches(0)
1602   , _unconditional_delays(0)
1603 #endif
1604 {
1605   // Create a MachNopNode
1606   _nop = new (&compile) MachNopNode();
1607 
1608   // Now that the nops are in the array, save the count
1609   // (but allow entries for the nops)
1610   _node_bundling_limit = compile.unique();
1611   uint node_max = _regalloc->node_regs_max_index();
1612 
1613   compile.set_node_bundling_limit(_node_bundling_limit);
1614 
1615   // This one is persistent within the Compile class
1616   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1617 
1618   // Allocate space for fixed-size arrays
1619   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1620   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1621   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1622 
1623   // Clear the arrays
1624   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1625   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1626   memset(_uses,               0, node_max * sizeof(short));
1627   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1628 
1629   // Clear the bundling information
1630   memcpy(_bundle_use_elements,
1631     Pipeline_Use::elaborated_elements,
1632     sizeof(Pipeline_Use::elaborated_elements));
1633 
1634   // Get the last node
1635   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1636 
1637   _next_node = bb->_nodes[bb->_nodes.size()-1];
1638 }
1639 
1640 #ifndef PRODUCT
1641 // Scheduling destructor
1642 Scheduling::~Scheduling() {
1643   _total_branches             += _branches;
1644   _total_unconditional_delays += _unconditional_delays;
1645 }
1646 #endif
1647 
1648 // Step ahead "i" cycles
1649 void Scheduling::step(uint i) {
1650 
1651   Bundle *bundle = node_bundling(_next_node);
1652   bundle->set_starts_bundle();
1653 
1654   // Update the bundle record, but leave the flags information alone
1655   if (_bundle_instr_count > 0) {
1656     bundle->set_instr_count(_bundle_instr_count);
1657     bundle->set_resources_used(_bundle_use.resourcesUsed());
1658   }
1659 
1660   // Update the state information
1661   _bundle_instr_count = 0;
1662   _bundle_cycle_number += i;
1663   _bundle_use.step(i);
1664 }
1665 
1666 void Scheduling::step_and_clear() {
1667   Bundle *bundle = node_bundling(_next_node);
1668   bundle->set_starts_bundle();
1669 
1670   // Update the bundle record
1671   if (_bundle_instr_count > 0) {
1672     bundle->set_instr_count(_bundle_instr_count);
1673     bundle->set_resources_used(_bundle_use.resourcesUsed());
1674 
1675     _bundle_cycle_number += 1;
1676   }
1677 
1678   // Clear the bundling information
1679   _bundle_instr_count = 0;
1680   _bundle_use.reset();
1681 
1682   memcpy(_bundle_use_elements,
1683     Pipeline_Use::elaborated_elements,
1684     sizeof(Pipeline_Use::elaborated_elements));
1685 }
1686 
1687 //------------------------------ScheduleAndBundle------------------------------
1688 // Perform instruction scheduling and bundling over the sequence of
1689 // instructions in backwards order.
1690 void Compile::ScheduleAndBundle() {
1691 
1692   // Don't optimize this if it isn't a method
1693   if (!_method)
1694     return;
1695 
1696   // Don't optimize this if scheduling is disabled
1697   if (!do_scheduling())
1698     return;
1699 
1700   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1701 
1702   // Create a data structure for all the scheduling information
1703   Scheduling scheduling(Thread::current()->resource_area(), *this);
1704 
1705   // Walk backwards over each basic block, computing the needed alignment
1706   // Walk over all the basic blocks
1707   scheduling.DoScheduling();
1708 }
1709 
1710 //------------------------------ComputeLocalLatenciesForward-------------------
1711 // Compute the latency of all the instructions.  This is fairly simple,
1712 // because we already have a legal ordering.  Walk over the instructions
1713 // from first to last, and compute the latency of the instruction based
1714 // on the latency of the preceding instruction(s).
1715 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1716 #ifndef PRODUCT
1717   if (_cfg->C->trace_opto_output())
1718     tty->print("# -> ComputeLocalLatenciesForward\n");
1719 #endif
1720 
1721   // Walk over all the schedulable instructions
1722   for( uint j=_bb_start; j < _bb_end; j++ ) {
1723 
1724     // This is a kludge, forcing all latency calculations to start at 1.
1725     // Used to allow latency 0 to force an instruction to the beginning
1726     // of the bb
1727     uint latency = 1;
1728     Node *use = bb->_nodes[j];
1729     uint nlen = use->len();
1730 
1731     // Walk over all the inputs
1732     for ( uint k=0; k < nlen; k++ ) {
1733       Node *def = use->in(k);
1734       if (!def)
1735         continue;
1736 
1737       uint l = _node_latency[def->_idx] + use->latency(k);
1738       if (latency < l)
1739         latency = l;
1740     }
1741 
1742     _node_latency[use->_idx] = latency;
1743 
1744 #ifndef PRODUCT
1745     if (_cfg->C->trace_opto_output()) {
1746       tty->print("# latency %4d: ", latency);
1747       use->dump();
1748     }
1749 #endif
1750   }
1751 
1752 #ifndef PRODUCT
1753   if (_cfg->C->trace_opto_output())
1754     tty->print("# <- ComputeLocalLatenciesForward\n");
1755 #endif
1756 
1757 } // end ComputeLocalLatenciesForward
1758 
1759 // See if this node fits into the present instruction bundle
1760 bool Scheduling::NodeFitsInBundle(Node *n) {
1761   uint n_idx = n->_idx;
1762 
1763   // If this is the unconditional delay instruction, then it fits
1764   if (n == _unconditional_delay_slot) {
1765 #ifndef PRODUCT
1766     if (_cfg->C->trace_opto_output())
1767       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1768 #endif
1769     return (true);
1770   }
1771 
1772   // If the node cannot be scheduled this cycle, skip it
1773   if (_current_latency[n_idx] > _bundle_cycle_number) {
1774 #ifndef PRODUCT
1775     if (_cfg->C->trace_opto_output())
1776       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1777         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1778 #endif
1779     return (false);
1780   }
1781 
1782   const Pipeline *node_pipeline = n->pipeline();
1783 
1784   uint instruction_count = node_pipeline->instructionCount();
1785   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1786     instruction_count = 0;
1787   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1788     instruction_count++;
1789 
1790   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1791 #ifndef PRODUCT
1792     if (_cfg->C->trace_opto_output())
1793       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1794         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1795 #endif
1796     return (false);
1797   }
1798 
1799   // Don't allow non-machine nodes to be handled this way
1800   if (!n->is_Mach() && instruction_count == 0)
1801     return (false);
1802 
1803   // See if there is any overlap
1804   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1805 
1806   if (delay > 0) {
1807 #ifndef PRODUCT
1808     if (_cfg->C->trace_opto_output())
1809       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1810 #endif
1811     return false;
1812   }
1813 
1814 #ifndef PRODUCT
1815   if (_cfg->C->trace_opto_output())
1816     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1817 #endif
1818 
1819   return true;
1820 }
1821 
1822 Node * Scheduling::ChooseNodeToBundle() {
1823   uint siz = _available.size();
1824 
1825   if (siz == 0) {
1826 
1827 #ifndef PRODUCT
1828     if (_cfg->C->trace_opto_output())
1829       tty->print("#   ChooseNodeToBundle: NULL\n");
1830 #endif
1831     return (NULL);
1832   }
1833 
1834   // Fast path, if only 1 instruction in the bundle
1835   if (siz == 1) {
1836 #ifndef PRODUCT
1837     if (_cfg->C->trace_opto_output()) {
1838       tty->print("#   ChooseNodeToBundle (only 1): ");
1839       _available[0]->dump();
1840     }
1841 #endif
1842     return (_available[0]);
1843   }
1844 
1845   // Don't bother, if the bundle is already full
1846   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1847     for ( uint i = 0; i < siz; i++ ) {
1848       Node *n = _available[i];
1849 
1850       // Skip projections, we'll handle them another way
1851       if (n->is_Proj())
1852         continue;
1853 
1854       // This presupposed that instructions are inserted into the
1855       // available list in a legality order; i.e. instructions that
1856       // must be inserted first are at the head of the list
1857       if (NodeFitsInBundle(n)) {
1858 #ifndef PRODUCT
1859         if (_cfg->C->trace_opto_output()) {
1860           tty->print("#   ChooseNodeToBundle: ");
1861           n->dump();
1862         }
1863 #endif
1864         return (n);
1865       }
1866     }
1867   }
1868 
1869   // Nothing fits in this bundle, choose the highest priority
1870 #ifndef PRODUCT
1871   if (_cfg->C->trace_opto_output()) {
1872     tty->print("#   ChooseNodeToBundle: ");
1873     _available[0]->dump();
1874   }
1875 #endif
1876 
1877   return _available[0];
1878 }
1879 
1880 //------------------------------AddNodeToAvailableList-------------------------
1881 void Scheduling::AddNodeToAvailableList(Node *n) {
1882   assert( !n->is_Proj(), "projections never directly made available" );
1883 #ifndef PRODUCT
1884   if (_cfg->C->trace_opto_output()) {
1885     tty->print("#   AddNodeToAvailableList: ");
1886     n->dump();
1887   }
1888 #endif
1889 
1890   int latency = _current_latency[n->_idx];
1891 
1892   // Insert in latency order (insertion sort)
1893   uint i;
1894   for ( i=0; i < _available.size(); i++ )
1895     if (_current_latency[_available[i]->_idx] > latency)
1896       break;
1897 
1898   // Special Check for compares following branches
1899   if( n->is_Mach() && _scheduled.size() > 0 ) {
1900     int op = n->as_Mach()->ideal_Opcode();
1901     Node *last = _scheduled[0];
1902     if( last->is_MachIf() && last->in(1) == n &&
1903         ( op == Op_CmpI ||
1904           op == Op_CmpU ||
1905           op == Op_CmpP ||
1906           op == Op_CmpF ||
1907           op == Op_CmpD ||
1908           op == Op_CmpL ) ) {
1909 
1910       // Recalculate position, moving to front of same latency
1911       for ( i=0 ; i < _available.size(); i++ )
1912         if (_current_latency[_available[i]->_idx] >= latency)
1913           break;
1914     }
1915   }
1916 
1917   // Insert the node in the available list
1918   _available.insert(i, n);
1919 
1920 #ifndef PRODUCT
1921   if (_cfg->C->trace_opto_output())
1922     dump_available();
1923 #endif
1924 }
1925 
1926 //------------------------------DecrementUseCounts-----------------------------
1927 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1928   for ( uint i=0; i < n->len(); i++ ) {
1929     Node *def = n->in(i);
1930     if (!def) continue;
1931     if( def->is_Proj() )        // If this is a machine projection, then
1932       def = def->in(0);         // propagate usage thru to the base instruction
1933 
1934     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1935       continue;
1936 
1937     // Compute the latency
1938     uint l = _bundle_cycle_number + n->latency(i);
1939     if (_current_latency[def->_idx] < l)
1940       _current_latency[def->_idx] = l;
1941 
1942     // If this does not have uses then schedule it
1943     if ((--_uses[def->_idx]) == 0)
1944       AddNodeToAvailableList(def);
1945   }
1946 }
1947 
1948 //------------------------------AddNodeToBundle--------------------------------
1949 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1950 #ifndef PRODUCT
1951   if (_cfg->C->trace_opto_output()) {
1952     tty->print("#   AddNodeToBundle: ");
1953     n->dump();
1954   }
1955 #endif
1956 
1957   // Remove this from the available list
1958   uint i;
1959   for (i = 0; i < _available.size(); i++)
1960     if (_available[i] == n)
1961       break;
1962   assert(i < _available.size(), "entry in _available list not found");
1963   _available.remove(i);
1964 
1965   // See if this fits in the current bundle
1966   const Pipeline *node_pipeline = n->pipeline();
1967   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1968 
1969   // Check for instructions to be placed in the delay slot. We
1970   // do this before we actually schedule the current instruction,
1971   // because the delay slot follows the current instruction.
1972   if (Pipeline::_branch_has_delay_slot &&
1973       node_pipeline->hasBranchDelay() &&
1974       !_unconditional_delay_slot) {
1975 
1976     uint siz = _available.size();
1977 
1978     // Conditional branches can support an instruction that
1979     // is unconditionally executed and not dependent by the
1980     // branch, OR a conditionally executed instruction if
1981     // the branch is taken.  In practice, this means that
1982     // the first instruction at the branch target is
1983     // copied to the delay slot, and the branch goes to
1984     // the instruction after that at the branch target
1985     if ( n->is_Mach() && n->is_Branch() ) {
1986 
1987       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1988       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
1989 
1990 #ifndef PRODUCT
1991       _branches++;
1992 #endif
1993 
1994       // At least 1 instruction is on the available list
1995       // that is not dependent on the branch
1996       for (uint i = 0; i < siz; i++) {
1997         Node *d = _available[i];
1998         const Pipeline *avail_pipeline = d->pipeline();
1999 
2000         // Don't allow safepoints in the branch shadow, that will
2001         // cause a number of difficulties
2002         if ( avail_pipeline->instructionCount() == 1 &&
2003             !avail_pipeline->hasMultipleBundles() &&
2004             !avail_pipeline->hasBranchDelay() &&
2005             Pipeline::instr_has_unit_size() &&
2006             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2007             NodeFitsInBundle(d) &&
2008             !node_bundling(d)->used_in_delay()) {
2009 
2010           if (d->is_Mach() && !d->is_MachSafePoint()) {
2011             // A node that fits in the delay slot was found, so we need to
2012             // set the appropriate bits in the bundle pipeline information so
2013             // that it correctly indicates resource usage.  Later, when we
2014             // attempt to add this instruction to the bundle, we will skip
2015             // setting the resource usage.
2016             _unconditional_delay_slot = d;
2017             node_bundling(n)->set_use_unconditional_delay();
2018             node_bundling(d)->set_used_in_unconditional_delay();
2019             _bundle_use.add_usage(avail_pipeline->resourceUse());
2020             _current_latency[d->_idx] = _bundle_cycle_number;
2021             _next_node = d;
2022             ++_bundle_instr_count;
2023 #ifndef PRODUCT
2024             _unconditional_delays++;
2025 #endif
2026             break;
2027           }
2028         }
2029       }
2030     }
2031 
2032     // No delay slot, add a nop to the usage
2033     if (!_unconditional_delay_slot) {
2034       // See if adding an instruction in the delay slot will overflow
2035       // the bundle.
2036       if (!NodeFitsInBundle(_nop)) {
2037 #ifndef PRODUCT
2038         if (_cfg->C->trace_opto_output())
2039           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2040 #endif
2041         step(1);
2042       }
2043 
2044       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2045       _next_node = _nop;
2046       ++_bundle_instr_count;
2047     }
2048 
2049     // See if the instruction in the delay slot requires a
2050     // step of the bundles
2051     if (!NodeFitsInBundle(n)) {
2052 #ifndef PRODUCT
2053         if (_cfg->C->trace_opto_output())
2054           tty->print("#  *** STEP(branch won't fit) ***\n");
2055 #endif
2056         // Update the state information
2057         _bundle_instr_count = 0;
2058         _bundle_cycle_number += 1;
2059         _bundle_use.step(1);
2060     }
2061   }
2062 
2063   // Get the number of instructions
2064   uint instruction_count = node_pipeline->instructionCount();
2065   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2066     instruction_count = 0;
2067 
2068   // Compute the latency information
2069   uint delay = 0;
2070 
2071   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2072     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2073     if (relative_latency < 0)
2074       relative_latency = 0;
2075 
2076     delay = _bundle_use.full_latency(relative_latency, node_usage);
2077 
2078     // Does not fit in this bundle, start a new one
2079     if (delay > 0) {
2080       step(delay);
2081 
2082 #ifndef PRODUCT
2083       if (_cfg->C->trace_opto_output())
2084         tty->print("#  *** STEP(%d) ***\n", delay);
2085 #endif
2086     }
2087   }
2088 
2089   // If this was placed in the delay slot, ignore it
2090   if (n != _unconditional_delay_slot) {
2091 
2092     if (delay == 0) {
2093       if (node_pipeline->hasMultipleBundles()) {
2094 #ifndef PRODUCT
2095         if (_cfg->C->trace_opto_output())
2096           tty->print("#  *** STEP(multiple instructions) ***\n");
2097 #endif
2098         step(1);
2099       }
2100 
2101       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2102 #ifndef PRODUCT
2103         if (_cfg->C->trace_opto_output())
2104           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2105             instruction_count + _bundle_instr_count,
2106             Pipeline::_max_instrs_per_cycle);
2107 #endif
2108         step(1);
2109       }
2110     }
2111 
2112     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2113       _bundle_instr_count++;
2114 
2115     // Set the node's latency
2116     _current_latency[n->_idx] = _bundle_cycle_number;
2117 
2118     // Now merge the functional unit information
2119     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2120       _bundle_use.add_usage(node_usage);
2121 
2122     // Increment the number of instructions in this bundle
2123     _bundle_instr_count += instruction_count;
2124 
2125     // Remember this node for later
2126     if (n->is_Mach())
2127       _next_node = n;
2128   }
2129 
2130   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2131   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2132   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2133   // into the block.  All other scheduled nodes get put in the schedule here.
2134   int op = n->Opcode();
2135   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2136       (op != Op_Node &&         // Not an unused antidepedence node and
2137        // not an unallocated boxlock
2138        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2139 
2140     // Push any trailing projections
2141     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2142       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2143         Node *foi = n->fast_out(i);
2144         if( foi->is_Proj() )
2145           _scheduled.push(foi);
2146       }
2147     }
2148 
2149     // Put the instruction in the schedule list
2150     _scheduled.push(n);
2151   }
2152 
2153 #ifndef PRODUCT
2154   if (_cfg->C->trace_opto_output())
2155     dump_available();
2156 #endif
2157 
2158   // Walk all the definitions, decrementing use counts, and
2159   // if a definition has a 0 use count, place it in the available list.
2160   DecrementUseCounts(n,bb);
2161 }
2162 
2163 //------------------------------ComputeUseCount--------------------------------
2164 // This method sets the use count within a basic block.  We will ignore all
2165 // uses outside the current basic block.  As we are doing a backwards walk,
2166 // any node we reach that has a use count of 0 may be scheduled.  This also
2167 // avoids the problem of cyclic references from phi nodes, as long as phi
2168 // nodes are at the front of the basic block.  This method also initializes
2169 // the available list to the set of instructions that have no uses within this
2170 // basic block.
2171 void Scheduling::ComputeUseCount(const Block *bb) {
2172 #ifndef PRODUCT
2173   if (_cfg->C->trace_opto_output())
2174     tty->print("# -> ComputeUseCount\n");
2175 #endif
2176 
2177   // Clear the list of available and scheduled instructions, just in case
2178   _available.clear();
2179   _scheduled.clear();
2180 
2181   // No delay slot specified
2182   _unconditional_delay_slot = NULL;
2183 
2184 #ifdef ASSERT
2185   for( uint i=0; i < bb->_nodes.size(); i++ )
2186     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2187 #endif
2188 
2189   // Force the _uses count to never go to zero for unscheduable pieces
2190   // of the block
2191   for( uint k = 0; k < _bb_start; k++ )
2192     _uses[bb->_nodes[k]->_idx] = 1;
2193   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2194     _uses[bb->_nodes[l]->_idx] = 1;
2195 
2196   // Iterate backwards over the instructions in the block.  Don't count the
2197   // branch projections at end or the block header instructions.
2198   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2199     Node *n = bb->_nodes[j];
2200     if( n->is_Proj() ) continue; // Projections handled another way
2201 
2202     // Account for all uses
2203     for ( uint k = 0; k < n->len(); k++ ) {
2204       Node *inp = n->in(k);
2205       if (!inp) continue;
2206       assert(inp != n, "no cycles allowed" );
2207       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2208         if( inp->is_Proj() )    // Skip through Proj's
2209           inp = inp->in(0);
2210         ++_uses[inp->_idx];     // Count 1 block-local use
2211       }
2212     }
2213 
2214     // If this instruction has a 0 use count, then it is available
2215     if (!_uses[n->_idx]) {
2216       _current_latency[n->_idx] = _bundle_cycle_number;
2217       AddNodeToAvailableList(n);
2218     }
2219 
2220 #ifndef PRODUCT
2221     if (_cfg->C->trace_opto_output()) {
2222       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2223       n->dump();
2224     }
2225 #endif
2226   }
2227 
2228 #ifndef PRODUCT
2229   if (_cfg->C->trace_opto_output())
2230     tty->print("# <- ComputeUseCount\n");
2231 #endif
2232 }
2233 
2234 // This routine performs scheduling on each basic block in reverse order,
2235 // using instruction latencies and taking into account function unit
2236 // availability.
2237 void Scheduling::DoScheduling() {
2238 #ifndef PRODUCT
2239   if (_cfg->C->trace_opto_output())
2240     tty->print("# -> DoScheduling\n");
2241 #endif
2242 
2243   Block *succ_bb = NULL;
2244   Block *bb;
2245 
2246   // Walk over all the basic blocks in reverse order
2247   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2248     bb = _cfg->_blocks[i];
2249 
2250 #ifndef PRODUCT
2251     if (_cfg->C->trace_opto_output()) {
2252       tty->print("#  Schedule BB#%03d (initial)\n", i);
2253       for (uint j = 0; j < bb->_nodes.size(); j++)
2254         bb->_nodes[j]->dump();
2255     }
2256 #endif
2257 
2258     // On the head node, skip processing
2259     if( bb == _cfg->_broot )
2260       continue;
2261 
2262     // Skip empty, connector blocks
2263     if (bb->is_connector())
2264       continue;
2265 
2266     // If the following block is not the sole successor of
2267     // this one, then reset the pipeline information
2268     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2269 #ifndef PRODUCT
2270       if (_cfg->C->trace_opto_output()) {
2271         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2272                    _next_node->_idx, _bundle_instr_count);
2273       }
2274 #endif
2275       step_and_clear();
2276     }
2277 
2278     // Leave untouched the starting instruction, any Phis, a CreateEx node
2279     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2280     _bb_end = bb->_nodes.size()-1;
2281     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2282       Node *n = bb->_nodes[_bb_start];
2283       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2284       // Also, MachIdealNodes do not get scheduled
2285       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2286       MachNode *mach = n->as_Mach();
2287       int iop = mach->ideal_Opcode();
2288       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2289       if( iop == Op_Con ) continue;      // Do not schedule Top
2290       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2291           mach->pipeline() == MachNode::pipeline_class() &&
2292           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2293         continue;
2294       break;                    // Funny loop structure to be sure...
2295     }
2296     // Compute last "interesting" instruction in block - last instruction we
2297     // might schedule.  _bb_end points just after last schedulable inst.  We
2298     // normally schedule conditional branches (despite them being forced last
2299     // in the block), because they have delay slots we can fill.  Calls all
2300     // have their delay slots filled in the template expansions, so we don't
2301     // bother scheduling them.
2302     Node *last = bb->_nodes[_bb_end];
2303     if( last->is_Catch() ||
2304        // Exclude unreachable path case when Halt node is in a separate block.
2305        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2306       // There must be a prior call.  Skip it.
2307       while( !bb->_nodes[--_bb_end]->is_Call() ) {
2308         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2309       }
2310     } else if( last->is_MachNullCheck() ) {
2311       // Backup so the last null-checked memory instruction is
2312       // outside the schedulable range. Skip over the nullcheck,
2313       // projection, and the memory nodes.
2314       Node *mem = last->in(1);
2315       do {
2316         _bb_end--;
2317       } while (mem != bb->_nodes[_bb_end]);
2318     } else {
2319       // Set _bb_end to point after last schedulable inst.
2320       _bb_end++;
2321     }
2322 
2323     assert( _bb_start <= _bb_end, "inverted block ends" );
2324 
2325     // Compute the register antidependencies for the basic block
2326     ComputeRegisterAntidependencies(bb);
2327     if (_cfg->C->failing())  return;  // too many D-U pinch points
2328 
2329     // Compute intra-bb latencies for the nodes
2330     ComputeLocalLatenciesForward(bb);
2331 
2332     // Compute the usage within the block, and set the list of all nodes
2333     // in the block that have no uses within the block.
2334     ComputeUseCount(bb);
2335 
2336     // Schedule the remaining instructions in the block
2337     while ( _available.size() > 0 ) {
2338       Node *n = ChooseNodeToBundle();
2339       AddNodeToBundle(n,bb);
2340     }
2341 
2342     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2343 #ifdef ASSERT
2344     for( uint l = _bb_start; l < _bb_end; l++ ) {
2345       Node *n = bb->_nodes[l];
2346       uint m;
2347       for( m = 0; m < _bb_end-_bb_start; m++ )
2348         if( _scheduled[m] == n )
2349           break;
2350       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2351     }
2352 #endif
2353 
2354     // Now copy the instructions (in reverse order) back to the block
2355     for ( uint k = _bb_start; k < _bb_end; k++ )
2356       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2357 
2358 #ifndef PRODUCT
2359     if (_cfg->C->trace_opto_output()) {
2360       tty->print("#  Schedule BB#%03d (final)\n", i);
2361       uint current = 0;
2362       for (uint j = 0; j < bb->_nodes.size(); j++) {
2363         Node *n = bb->_nodes[j];
2364         if( valid_bundle_info(n) ) {
2365           Bundle *bundle = node_bundling(n);
2366           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2367             tty->print("*** Bundle: ");
2368             bundle->dump();
2369           }
2370           n->dump();
2371         }
2372       }
2373     }
2374 #endif
2375 #ifdef ASSERT
2376   verify_good_schedule(bb,"after block local scheduling");
2377 #endif
2378   }
2379 
2380 #ifndef PRODUCT
2381   if (_cfg->C->trace_opto_output())
2382     tty->print("# <- DoScheduling\n");
2383 #endif
2384 
2385   // Record final node-bundling array location
2386   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2387 
2388 } // end DoScheduling
2389 
2390 //------------------------------verify_good_schedule---------------------------
2391 // Verify that no live-range used in the block is killed in the block by a
2392 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2393 
2394 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2395 static bool edge_from_to( Node *from, Node *to ) {
2396   for( uint i=0; i<from->len(); i++ )
2397     if( from->in(i) == to )
2398       return true;
2399   return false;
2400 }
2401 
2402 #ifdef ASSERT
2403 //------------------------------verify_do_def----------------------------------
2404 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2405   // Check for bad kills
2406   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2407     Node *prior_use = _reg_node[def];
2408     if( prior_use && !edge_from_to(prior_use,n) ) {
2409       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2410       n->dump();
2411       tty->print_cr("...");
2412       prior_use->dump();
2413       assert(edge_from_to(prior_use,n),msg);
2414     }
2415     _reg_node.map(def,NULL); // Kill live USEs
2416   }
2417 }
2418 
2419 //------------------------------verify_good_schedule---------------------------
2420 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2421 
2422   // Zap to something reasonable for the verify code
2423   _reg_node.clear();
2424 
2425   // Walk over the block backwards.  Check to make sure each DEF doesn't
2426   // kill a live value (other than the one it's supposed to).  Add each
2427   // USE to the live set.
2428   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2429     Node *n = b->_nodes[i];
2430     int n_op = n->Opcode();
2431     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2432       // Fat-proj kills a slew of registers
2433       RegMask rm = n->out_RegMask();// Make local copy
2434       while( rm.is_NotEmpty() ) {
2435         OptoReg::Name kill = rm.find_first_elem();
2436         rm.Remove(kill);
2437         verify_do_def( n, kill, msg );
2438       }
2439     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2440       // Get DEF'd registers the normal way
2441       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2442       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2443     }
2444 
2445     // Now make all USEs live
2446     for( uint i=1; i<n->req(); i++ ) {
2447       Node *def = n->in(i);
2448       assert(def != 0, "input edge required");
2449       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2450       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2451       if( OptoReg::is_valid(reg_lo) ) {
2452         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2453         _reg_node.map(reg_lo,n);
2454       }
2455       if( OptoReg::is_valid(reg_hi) ) {
2456         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2457         _reg_node.map(reg_hi,n);
2458       }
2459     }
2460 
2461   }
2462 
2463   // Zap to something reasonable for the Antidependence code
2464   _reg_node.clear();
2465 }
2466 #endif
2467 
2468 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2469 static void add_prec_edge_from_to( Node *from, Node *to ) {
2470   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2471     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2472     from = from->in(0);
2473   }
2474   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2475       !edge_from_to( from, to ) ) // Avoid duplicate edge
2476     from->add_prec(to);
2477 }
2478 
2479 //------------------------------anti_do_def------------------------------------
2480 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2481   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2482     return;
2483 
2484   Node *pinch = _reg_node[def_reg]; // Get pinch point
2485   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2486       is_def ) {    // Check for a true def (not a kill)
2487     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2488     return;
2489   }
2490 
2491   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2492   debug_only( def = (Node*)0xdeadbeef; )
2493 
2494   // After some number of kills there _may_ be a later def
2495   Node *later_def = NULL;
2496 
2497   // Finding a kill requires a real pinch-point.
2498   // Check for not already having a pinch-point.
2499   // Pinch points are Op_Node's.
2500   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2501     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2502     if ( _pinch_free_list.size() > 0) {
2503       pinch = _pinch_free_list.pop();
2504     } else {
2505       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2506     }
2507     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2508       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2509       return;
2510     }
2511     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2512     _reg_node.map(def_reg,pinch); // Record pinch-point
2513     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2514     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2515       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2516       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2517       later_def = NULL;           // and no later def
2518     }
2519     pinch->set_req(0,later_def);  // Hook later def so we can find it
2520   } else {                        // Else have valid pinch point
2521     if( pinch->in(0) )            // If there is a later-def
2522       later_def = pinch->in(0);   // Get it
2523   }
2524 
2525   // Add output-dependence edge from later def to kill
2526   if( later_def )               // If there is some original def
2527     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2528 
2529   // See if current kill is also a use, and so is forced to be the pinch-point.
2530   if( pinch->Opcode() == Op_Node ) {
2531     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2532     for( uint i=1; i<uses->req(); i++ ) {
2533       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2534           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2535         // Yes, found a use/kill pinch-point
2536         pinch->set_req(0,NULL);  //
2537         pinch->replace_by(kill); // Move anti-dep edges up
2538         pinch = kill;
2539         _reg_node.map(def_reg,pinch);
2540         return;
2541       }
2542     }
2543   }
2544 
2545   // Add edge from kill to pinch-point
2546   add_prec_edge_from_to(kill,pinch);
2547 }
2548 
2549 //------------------------------anti_do_use------------------------------------
2550 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2551   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2552     return;
2553   Node *pinch = _reg_node[use_reg]; // Get pinch point
2554   // Check for no later def_reg/kill in block
2555   if( pinch && _bbs[pinch->_idx] == b &&
2556       // Use has to be block-local as well
2557       _bbs[use->_idx] == b ) {
2558     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2559         pinch->req() == 1 ) {   // pinch not yet in block?
2560       pinch->del_req(0);        // yank pointer to later-def, also set flag
2561       // Insert the pinch-point in the block just after the last use
2562       b->_nodes.insert(b->find_node(use)+1,pinch);
2563       _bb_end++;                // Increase size scheduled region in block
2564     }
2565 
2566     add_prec_edge_from_to(pinch,use);
2567   }
2568 }
2569 
2570 //------------------------------ComputeRegisterAntidependences-----------------
2571 // We insert antidependences between the reads and following write of
2572 // allocated registers to prevent illegal code motion. Hopefully, the
2573 // number of added references should be fairly small, especially as we
2574 // are only adding references within the current basic block.
2575 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2576 
2577 #ifdef ASSERT
2578   verify_good_schedule(b,"before block local scheduling");
2579 #endif
2580 
2581   // A valid schedule, for each register independently, is an endless cycle
2582   // of: a def, then some uses (connected to the def by true dependencies),
2583   // then some kills (defs with no uses), finally the cycle repeats with a new
2584   // def.  The uses are allowed to float relative to each other, as are the
2585   // kills.  No use is allowed to slide past a kill (or def).  This requires
2586   // antidependencies between all uses of a single def and all kills that
2587   // follow, up to the next def.  More edges are redundant, because later defs
2588   // & kills are already serialized with true or antidependencies.  To keep
2589   // the edge count down, we add a 'pinch point' node if there's more than
2590   // one use or more than one kill/def.
2591 
2592   // We add dependencies in one bottom-up pass.
2593 
2594   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2595 
2596   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2597   // register.  If not, we record the DEF/KILL in _reg_node, the
2598   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2599   // "pinch point", a new Node that's in the graph but not in the block.
2600   // We put edges from the prior and current DEF/KILLs to the pinch point.
2601   // We put the pinch point in _reg_node.  If there's already a pinch point
2602   // we merely add an edge from the current DEF/KILL to the pinch point.
2603 
2604   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2605   // put an edge from the pinch point to the USE.
2606 
2607   // To be expedient, the _reg_node array is pre-allocated for the whole
2608   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2609   // or a valid def/kill/pinch-point, or a leftover node from some prior
2610   // block.  Leftover node from some prior block is treated like a NULL (no
2611   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2612   // it being in the current block.
2613   bool fat_proj_seen = false;
2614   uint last_safept = _bb_end-1;
2615   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2616   Node* last_safept_node = end_node;
2617   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2618     Node *n = b->_nodes[i];
2619     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2620     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2621       // Fat-proj kills a slew of registers
2622       // This can add edges to 'n' and obscure whether or not it was a def,
2623       // hence the is_def flag.
2624       fat_proj_seen = true;
2625       RegMask rm = n->out_RegMask();// Make local copy
2626       while( rm.is_NotEmpty() ) {
2627         OptoReg::Name kill = rm.find_first_elem();
2628         rm.Remove(kill);
2629         anti_do_def( b, n, kill, is_def );
2630       }
2631     } else {
2632       // Get DEF'd registers the normal way
2633       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2634       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2635     }
2636 
2637     // Check each register used by this instruction for a following DEF/KILL
2638     // that must occur afterward and requires an anti-dependence edge.
2639     for( uint j=0; j<n->req(); j++ ) {
2640       Node *def = n->in(j);
2641       if( def ) {
2642         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2643         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2644         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2645       }
2646     }
2647     // Do not allow defs of new derived values to float above GC
2648     // points unless the base is definitely available at the GC point.
2649 
2650     Node *m = b->_nodes[i];
2651 
2652     // Add precedence edge from following safepoint to use of derived pointer
2653     if( last_safept_node != end_node &&
2654         m != last_safept_node) {
2655       for (uint k = 1; k < m->req(); k++) {
2656         const Type *t = m->in(k)->bottom_type();
2657         if( t->isa_oop_ptr() &&
2658             t->is_ptr()->offset() != 0 ) {
2659           last_safept_node->add_prec( m );
2660           break;
2661         }
2662       }
2663     }
2664 
2665     if( n->jvms() ) {           // Precedence edge from derived to safept
2666       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2667       if( b->_nodes[last_safept] != last_safept_node ) {
2668         last_safept = b->find_node(last_safept_node);
2669       }
2670       for( uint j=last_safept; j > i; j-- ) {
2671         Node *mach = b->_nodes[j];
2672         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2673           mach->add_prec( n );
2674       }
2675       last_safept = i;
2676       last_safept_node = m;
2677     }
2678   }
2679 
2680   if (fat_proj_seen) {
2681     // Garbage collect pinch nodes that were not consumed.
2682     // They are usually created by a fat kill MachProj for a call.
2683     garbage_collect_pinch_nodes();
2684   }
2685 }
2686 
2687 //------------------------------garbage_collect_pinch_nodes-------------------------------
2688 
2689 // Garbage collect pinch nodes for reuse by other blocks.
2690 //
2691 // The block scheduler's insertion of anti-dependence
2692 // edges creates many pinch nodes when the block contains
2693 // 2 or more Calls.  A pinch node is used to prevent a
2694 // combinatorial explosion of edges.  If a set of kills for a
2695 // register is anti-dependent on a set of uses (or defs), rather
2696 // than adding an edge in the graph between each pair of kill
2697 // and use (or def), a pinch is inserted between them:
2698 //
2699 //            use1   use2  use3
2700 //                \   |   /
2701 //                 \  |  /
2702 //                  pinch
2703 //                 /  |  \
2704 //                /   |   \
2705 //            kill1 kill2 kill3
2706 //
2707 // One pinch node is created per register killed when
2708 // the second call is encountered during a backwards pass
2709 // over the block.  Most of these pinch nodes are never
2710 // wired into the graph because the register is never
2711 // used or def'ed in the block.
2712 //
2713 void Scheduling::garbage_collect_pinch_nodes() {
2714 #ifndef PRODUCT
2715     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2716 #endif
2717     int trace_cnt = 0;
2718     for (uint k = 0; k < _reg_node.Size(); k++) {
2719       Node* pinch = _reg_node[k];
2720       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2721           // no predecence input edges
2722           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2723         cleanup_pinch(pinch);
2724         _pinch_free_list.push(pinch);
2725         _reg_node.map(k, NULL);
2726 #ifndef PRODUCT
2727         if (_cfg->C->trace_opto_output()) {
2728           trace_cnt++;
2729           if (trace_cnt > 40) {
2730             tty->print("\n");
2731             trace_cnt = 0;
2732           }
2733           tty->print(" %d", pinch->_idx);
2734         }
2735 #endif
2736       }
2737     }
2738 #ifndef PRODUCT
2739     if (_cfg->C->trace_opto_output()) tty->print("\n");
2740 #endif
2741 }
2742 
2743 // Clean up a pinch node for reuse.
2744 void Scheduling::cleanup_pinch( Node *pinch ) {
2745   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2746 
2747   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2748     Node* use = pinch->last_out(i);
2749     uint uses_found = 0;
2750     for (uint j = use->req(); j < use->len(); j++) {
2751       if (use->in(j) == pinch) {
2752         use->rm_prec(j);
2753         uses_found++;
2754       }
2755     }
2756     assert(uses_found > 0, "must be a precedence edge");
2757     i -= uses_found;    // we deleted 1 or more copies of this edge
2758   }
2759   // May have a later_def entry
2760   pinch->set_req(0, NULL);
2761 }
2762 
2763 //------------------------------print_statistics-------------------------------
2764 #ifndef PRODUCT
2765 
2766 void Scheduling::dump_available() const {
2767   tty->print("#Availist  ");
2768   for (uint i = 0; i < _available.size(); i++)
2769     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2770   tty->cr();
2771 }
2772 
2773 // Print Scheduling Statistics
2774 void Scheduling::print_statistics() {
2775   // Print the size added by nops for bundling
2776   tty->print("Nops added %d bytes to total of %d bytes",
2777     _total_nop_size, _total_method_size);
2778   if (_total_method_size > 0)
2779     tty->print(", for %.2f%%",
2780       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2781   tty->print("\n");
2782 
2783   // Print the number of branch shadows filled
2784   if (Pipeline::_branch_has_delay_slot) {
2785     tty->print("Of %d branches, %d had unconditional delay slots filled",
2786       _total_branches, _total_unconditional_delays);
2787     if (_total_branches > 0)
2788       tty->print(", for %.2f%%",
2789         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2790     tty->print("\n");
2791   }
2792 
2793   uint total_instructions = 0, total_bundles = 0;
2794 
2795   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2796     uint bundle_count   = _total_instructions_per_bundle[i];
2797     total_instructions += bundle_count * i;
2798     total_bundles      += bundle_count;
2799   }
2800 
2801   if (total_bundles > 0)
2802     tty->print("Average ILP (excluding nops) is %.2f\n",
2803       ((double)total_instructions) / ((double)total_bundles));
2804 }
2805 #endif