1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/debugInfo.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/output.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "utilities/xmlstream.hpp"
  43 
  44 extern uint size_java_to_interp();
  45 extern uint reloc_java_to_interp();
  46 extern uint size_exception_handler();
  47 extern uint size_deopt_handler();
  48 
  49 #ifndef PRODUCT
  50 #define DEBUG_ARG(x) , x
  51 #else
  52 #define DEBUG_ARG(x)
  53 #endif
  54 
  55 extern int emit_exception_handler(CodeBuffer &cbuf);
  56 extern int emit_deopt_handler(CodeBuffer &cbuf);
  57 
  58 //------------------------------Output-----------------------------------------
  59 // Convert Nodes to instruction bits and pass off to the VM
  60 void Compile::Output() {
  61   // RootNode goes
  62   assert( _cfg->_broot->_nodes.size() == 0, "" );
  63 
  64   // Initialize the space for the BufferBlob used to find and verify
  65   // instruction size in MachNode::emit_size()
  66   init_scratch_buffer_blob();
  67   if (failing())  return; // Out of memory
  68 
  69   // The number of new nodes (mostly MachNop) is proportional to
  70   // the number of java calls and inner loops which are aligned.
  71   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  72                             C->inner_loops()*(OptoLoopAlignment-1)),
  73                            "out of nodes before code generation" ) ) {
  74     return;
  75   }
  76   // Make sure I can find the Start Node
  77   Block_Array& bbs = _cfg->_bbs;
  78   Block *entry = _cfg->_blocks[1];
  79   Block *broot = _cfg->_broot;
  80 
  81   const StartNode *start = entry->_nodes[0]->as_Start();
  82 
  83   // Replace StartNode with prolog
  84   MachPrologNode *prolog = new (this) MachPrologNode();
  85   entry->_nodes.map( 0, prolog );
  86   bbs.map( prolog->_idx, entry );
  87   bbs.map( start->_idx, NULL ); // start is no longer in any block
  88 
  89   // Virtual methods need an unverified entry point
  90 
  91   if( is_osr_compilation() ) {
  92     if( PoisonOSREntry ) {
  93       // TODO: Should use a ShouldNotReachHereNode...
  94       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  95     }
  96   } else {
  97     if( _method && !_method->flags().is_static() ) {
  98       // Insert unvalidated entry point
  99       _cfg->insert( broot, 0, new (this) MachUEPNode() );
 100     }
 101 
 102   }
 103 
 104 
 105   // Break before main entry point
 106   if( (_method && _method->break_at_execute())
 107 #ifndef PRODUCT
 108     ||(OptoBreakpoint && is_method_compilation())
 109     ||(OptoBreakpointOSR && is_osr_compilation())
 110     ||(OptoBreakpointC2R && !_method)
 111 #endif
 112     ) {
 113     // checking for _method means that OptoBreakpoint does not apply to
 114     // runtime stubs or frame converters
 115     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 116   }
 117 
 118   // Insert epilogs before every return
 119   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 120     Block *b = _cfg->_blocks[i];
 121     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 122       Node *m = b->end();
 123       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 124         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 125         b->add_inst( epilog );
 126         bbs.map(epilog->_idx, b);
 127         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 128       }
 129     }
 130   }
 131 
 132 # ifdef ENABLE_ZAP_DEAD_LOCALS
 133   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 134 # endif
 135 
 136   ScheduleAndBundle();
 137 
 138 #ifndef PRODUCT
 139   if (trace_opto_output()) {
 140     tty->print("\n---- After ScheduleAndBundle ----\n");
 141     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 142       tty->print("\nBB#%03d:\n", i);
 143       Block *bb = _cfg->_blocks[i];
 144       for (uint j = 0; j < bb->_nodes.size(); j++) {
 145         Node *n = bb->_nodes[j];
 146         OptoReg::Name reg = _regalloc->get_reg_first(n);
 147         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 148         n->dump();
 149       }
 150     }
 151   }
 152 #endif
 153 
 154   if (failing())  return;
 155 
 156   BuildOopMaps();
 157 
 158   if (failing())  return;
 159 
 160   Fill_buffer();
 161 }
 162 
 163 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 164   // Determine if we need to generate a stack overflow check.
 165   // Do it if the method is not a stub function and
 166   // has java calls or has frame size > vm_page_size/8.
 167   return (stub_function() == NULL &&
 168           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 169 }
 170 
 171 bool Compile::need_register_stack_bang() const {
 172   // Determine if we need to generate a register stack overflow check.
 173   // This is only used on architectures which have split register
 174   // and memory stacks (ie. IA64).
 175   // Bang if the method is not a stub function and has java calls
 176   return (stub_function() == NULL && has_java_calls());
 177 }
 178 
 179 # ifdef ENABLE_ZAP_DEAD_LOCALS
 180 
 181 
 182 // In order to catch compiler oop-map bugs, we have implemented
 183 // a debugging mode called ZapDeadCompilerLocals.
 184 // This mode causes the compiler to insert a call to a runtime routine,
 185 // "zap_dead_locals", right before each place in compiled code
 186 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 187 // The runtime routine checks that locations mapped as oops are really
 188 // oops, that locations mapped as values do not look like oops,
 189 // and that locations mapped as dead are not used later
 190 // (by zapping them to an invalid address).
 191 
 192 int Compile::_CompiledZap_count = 0;
 193 
 194 void Compile::Insert_zap_nodes() {
 195   bool skip = false;
 196 
 197 
 198   // Dink with static counts because code code without the extra
 199   // runtime calls is MUCH faster for debugging purposes
 200 
 201        if ( CompileZapFirst  ==  0  ) ; // nothing special
 202   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 203   else if ( CompileZapFirst  == CompiledZap_count() )
 204     warning("starting zap compilation after skipping");
 205 
 206        if ( CompileZapLast  ==  -1  ) ; // nothing special
 207   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 208   else if ( CompileZapLast  ==  CompiledZap_count() )
 209     warning("about to compile last zap");
 210 
 211   ++_CompiledZap_count; // counts skipped zaps, too
 212 
 213   if ( skip )  return;
 214 
 215 
 216   if ( _method == NULL )
 217     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 218 
 219   // Insert call to zap runtime stub before every node with an oop map
 220   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 221     Block *b = _cfg->_blocks[i];
 222     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 223       Node *n = b->_nodes[j];
 224 
 225       // Determining if we should insert a zap-a-lot node in output.
 226       // We do that for all nodes that has oopmap info, except for calls
 227       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 228       // and expect the C code to reset it.  Hence, there can be no safepoints between
 229       // the inlined-allocation and the call to new_Java, etc.
 230       // We also cannot zap monitor calls, as they must hold the microlock
 231       // during the call to Zap, which also wants to grab the microlock.
 232       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 233       if ( insert ) { // it is MachSafePoint
 234         if ( !n->is_MachCall() ) {
 235           insert = false;
 236         } else if ( n->is_MachCall() ) {
 237           MachCallNode* call = n->as_MachCall();
 238           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 239               call->entry_point() == OptoRuntime::new_array_Java() ||
 240               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 241               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 242               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 244               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 245               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 246               ) {
 247             insert = false;
 248           }
 249         }
 250         if (insert) {
 251           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 252           b->_nodes.insert( j, zap );
 253           _cfg->_bbs.map( zap->_idx, b );
 254           ++j;
 255         }
 256       }
 257     }
 258   }
 259 }
 260 
 261 
 262 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 263   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 264   CallStaticJavaNode* ideal_node =
 265     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
 266          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 267                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
 268   // We need to copy the OopMap from the site we're zapping at.
 269   // We have to make a copy, because the zap site might not be
 270   // a call site, and zap_dead is a call site.
 271   OopMap* clone = node_to_check->oop_map()->deep_copy();
 272 
 273   // Add the cloned OopMap to the zap node
 274   ideal_node->set_oop_map(clone);
 275   return _matcher->match_sfpt(ideal_node);
 276 }
 277 
 278 //------------------------------is_node_getting_a_safepoint--------------------
 279 bool Compile::is_node_getting_a_safepoint( Node* n) {
 280   // This code duplicates the logic prior to the call of add_safepoint
 281   // below in this file.
 282   if( n->is_MachSafePoint() ) return true;
 283   return false;
 284 }
 285 
 286 # endif // ENABLE_ZAP_DEAD_LOCALS
 287 
 288 //------------------------------compute_loop_first_inst_sizes------------------
 289 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 290 // of a loop. When aligning a loop we need to provide enough instructions
 291 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 292 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 293 // By default, the size is set to 999999 by Block's constructor so that
 294 // a loop will be aligned if the size is not reset here.
 295 //
 296 // Note: Mach instructions could contain several HW instructions
 297 // so the size is estimated only.
 298 //
 299 void Compile::compute_loop_first_inst_sizes() {
 300   // The next condition is used to gate the loop alignment optimization.
 301   // Don't aligned a loop if there are enough instructions at the head of a loop
 302   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 303   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 304   // equal to 11 bytes which is the largest address NOP instruction.
 305   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 306     uint last_block = _cfg->_num_blocks-1;
 307     for( uint i=1; i <= last_block; i++ ) {
 308       Block *b = _cfg->_blocks[i];
 309       // Check the first loop's block which requires an alignment.
 310       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 311         uint sum_size = 0;
 312         uint inst_cnt = NumberOfLoopInstrToAlign;
 313         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 314 
 315         // Check subsequent fallthrough blocks if the loop's first
 316         // block(s) does not have enough instructions.
 317         Block *nb = b;
 318         while( inst_cnt > 0 &&
 319                i < last_block &&
 320                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 321                !nb->has_successor(b) ) {
 322           i++;
 323           nb = _cfg->_blocks[i];
 324           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 325         } // while( inst_cnt > 0 && i < last_block  )
 326 
 327         b->set_first_inst_size(sum_size);
 328       } // f( b->head()->is_Loop() )
 329     } // for( i <= last_block )
 330   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 331 }
 332 
 333 //----------------------Shorten_branches---------------------------------------
 334 // The architecture description provides short branch variants for some long
 335 // branch instructions. Replace eligible long branches with short branches.
 336 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
 337 
 338   // fill in the nop array for bundling computations
 339   MachNode *_nop_list[Bundle::_nop_count];
 340   Bundle::initialize_nops(_nop_list, this);
 341 
 342   // ------------------
 343   // Compute size of each block, method size, and relocation information size
 344   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
 345   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 346   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 347   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 348   blk_starts[0]    = 0;
 349 
 350   // Initialize the sizes to 0
 351   code_size  = 0;          // Size in bytes of generated code
 352   stub_size  = 0;          // Size in bytes of all stub entries
 353   // Size in bytes of all relocation entries, including those in local stubs.
 354   // Start with 2-bytes of reloc info for the unvalidated entry point
 355   reloc_size = 1;          // Number of relocation entries
 356   const_size = 0;          // size of fp constants in words
 357 
 358   // Make three passes.  The first computes pessimistic blk_starts,
 359   // relative jmp_end, reloc_size and const_size information.
 360   // The second performs short branch substitution using the pessimistic
 361   // sizing. The third inserts nops where needed.
 362 
 363   Node *nj; // tmp
 364 
 365   // Step one, perform a pessimistic sizing pass.
 366   uint i;
 367   uint min_offset_from_last_call = 1;  // init to a positive value
 368   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 369   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 370     Block *b = _cfg->_blocks[i];
 371 
 372     // Sum all instruction sizes to compute block size
 373     uint last_inst = b->_nodes.size();
 374     uint blk_size = 0;
 375     for( uint j = 0; j<last_inst; j++ ) {
 376       nj = b->_nodes[j];
 377       uint inst_size = nj->size(_regalloc);
 378       blk_size += inst_size;
 379       // Handle machine instruction nodes
 380       if( nj->is_Mach() ) {
 381         MachNode *mach = nj->as_Mach();
 382         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 383         reloc_size += mach->reloc();
 384         const_size += mach->const_size();
 385         if( mach->is_MachCall() ) {
 386           MachCallNode *mcall = mach->as_MachCall();
 387           // This destination address is NOT PC-relative
 388 
 389           mcall->method_set((intptr_t)mcall->entry_point());
 390 
 391           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 392             stub_size  += size_java_to_interp();
 393             reloc_size += reloc_java_to_interp();
 394           }
 395         } else if (mach->is_MachSafePoint()) {
 396           // If call/safepoint are adjacent, account for possible
 397           // nop to disambiguate the two safepoints.
 398           if (min_offset_from_last_call == 0) {
 399             blk_size += nop_size;
 400           }
 401         } else if (mach->ideal_Opcode() == Op_Jump) {
 402           const_size += b->_num_succs; // Address table size
 403           // The size is valid even for 64 bit since it is
 404           // multiplied by 2*jintSize on this method exit.
 405         }
 406       }
 407       min_offset_from_last_call += inst_size;
 408       // Remember end of call offset
 409       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 410         min_offset_from_last_call = 0;
 411       }
 412     }
 413 
 414     // During short branch replacement, we store the relative (to blk_starts)
 415     // end of jump in jmp_end, rather than the absolute end of jump.  This
 416     // is so that we do not need to recompute sizes of all nodes when we compute
 417     // correct blk_starts in our next sizing pass.
 418     jmp_end[i] = blk_size;
 419     DEBUG_ONLY( jmp_target[i] = 0; )
 420 
 421     // When the next block starts a loop, we may insert pad NOP
 422     // instructions.  Since we cannot know our future alignment,
 423     // assume the worst.
 424     if( i<_cfg->_num_blocks-1 ) {
 425       Block *nb = _cfg->_blocks[i+1];
 426       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 427       if( max_loop_pad > 0 ) {
 428         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 429         blk_size += max_loop_pad;
 430       }
 431     }
 432 
 433     // Save block size; update total method size
 434     blk_starts[i+1] = blk_starts[i]+blk_size;
 435   }
 436 
 437   // Step two, replace eligible long jumps.
 438 
 439   // Note: this will only get the long branches within short branch
 440   //   range. Another pass might detect more branches that became
 441   //   candidates because the shortening in the first pass exposed
 442   //   more opportunities. Unfortunately, this would require
 443   //   recomputing the starting and ending positions for the blocks
 444   for( i=0; i<_cfg->_num_blocks; i++ ) {
 445     Block *b = _cfg->_blocks[i];
 446 
 447     int j;
 448     // Find the branch; ignore trailing NOPs.
 449     for( j = b->_nodes.size()-1; j>=0; j-- ) {
 450       nj = b->_nodes[j];
 451       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
 452         break;
 453     }
 454 
 455     if (j >= 0) {
 456       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
 457         MachNode *mach = nj->as_Mach();
 458         // This requires the TRUE branch target be in succs[0]
 459         uint bnum = b->non_connector_successor(0)->_pre_order;
 460         uintptr_t target = blk_starts[bnum];
 461         if( mach->is_pc_relative() ) {
 462           int offset = target-(blk_starts[i] + jmp_end[i]);
 463           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
 464             // We've got a winner.  Replace this branch.
 465             MachNode* replacement = mach->short_branch_version(this);
 466             b->_nodes.map(j, replacement);
 467             mach->subsume_by(replacement);
 468 
 469             // Update the jmp_end size to save time in our
 470             // next pass.
 471             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
 472             DEBUG_ONLY( jmp_target[i] = bnum; );
 473             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 474           }
 475         } else {
 476 #ifndef PRODUCT
 477           mach->dump(3);
 478 #endif
 479           Unimplemented();
 480         }
 481       }
 482     }
 483   }
 484 
 485   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
 486   // of a loop. It is used to determine the padding for loop alignment.
 487   compute_loop_first_inst_sizes();
 488 
 489   // Step 3, compute the offsets of all the labels
 490   uint last_call_adr = max_uint;
 491   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 492     // copy the offset of the beginning to the corresponding label
 493     assert(labels[i].is_unused(), "cannot patch at this point");
 494     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
 495 
 496     // insert padding for any instructions that need it
 497     Block *b = _cfg->_blocks[i];
 498     uint last_inst = b->_nodes.size();
 499     uint adr = blk_starts[i];
 500     for( uint j = 0; j<last_inst; j++ ) {
 501       nj = b->_nodes[j];
 502       if( nj->is_Mach() ) {
 503         int padding = nj->as_Mach()->compute_padding(adr);
 504         // If call/safepoint are adjacent insert a nop (5010568)
 505         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
 506             adr == last_call_adr ) {
 507           padding = nop_size;
 508         }
 509         if(padding > 0) {
 510           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
 511           int nops_cnt = padding / nop_size;
 512           MachNode *nop = new (this) MachNopNode(nops_cnt);
 513           b->_nodes.insert(j++, nop);
 514           _cfg->_bbs.map( nop->_idx, b );
 515           adr += padding;
 516           last_inst++;
 517         }
 518       }
 519       adr += nj->size(_regalloc);
 520 
 521       // Remember end of call offset
 522       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 523         last_call_adr = adr;
 524       }
 525     }
 526 
 527     if ( i != _cfg->_num_blocks-1) {
 528       // Get the size of the block
 529       uint blk_size = adr - blk_starts[i];
 530 
 531       // When the next block is the top of a loop, we may insert pad NOP
 532       // instructions.
 533       Block *nb = _cfg->_blocks[i+1];
 534       int current_offset = blk_starts[i] + blk_size;
 535       current_offset += nb->alignment_padding(current_offset);
 536       // Save block size; update total method size
 537       blk_starts[i+1] = current_offset;
 538     }
 539   }
 540 
 541 #ifdef ASSERT
 542   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 543     if( jmp_target[i] != 0 ) {
 544       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
 545       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
 546         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
 547       }
 548       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
 549     }
 550   }
 551 #endif
 552 
 553   // ------------------
 554   // Compute size for code buffer
 555   code_size   = blk_starts[i-1] + jmp_end[i-1];
 556 
 557   // Relocation records
 558   reloc_size += 1;              // Relo entry for exception handler
 559 
 560   // Adjust reloc_size to number of record of relocation info
 561   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 562   // a relocation index.
 563   // The CodeBuffer will expand the locs array if this estimate is too low.
 564   reloc_size   *= 10 / sizeof(relocInfo);
 565 
 566   // Adjust const_size to number of bytes
 567   const_size   *= 2*jintSize; // both float and double take two words per entry
 568 
 569 }
 570 
 571 //------------------------------FillLocArray-----------------------------------
 572 // Create a bit of debug info and append it to the array.  The mapping is from
 573 // Java local or expression stack to constant, register or stack-slot.  For
 574 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 575 // entry has been taken care of and caller should skip it).
 576 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 577   // This should never have accepted Bad before
 578   assert(OptoReg::is_valid(regnum), "location must be valid");
 579   return (OptoReg::is_reg(regnum))
 580     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 581     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 582 }
 583 
 584 
 585 ObjectValue*
 586 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 587   for (int i = 0; i < objs->length(); i++) {
 588     assert(objs->at(i)->is_object(), "corrupt object cache");
 589     ObjectValue* sv = (ObjectValue*) objs->at(i);
 590     if (sv->id() == id) {
 591       return sv;
 592     }
 593   }
 594   // Otherwise..
 595   return NULL;
 596 }
 597 
 598 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 599                                      ObjectValue* sv ) {
 600   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 601   objs->append(sv);
 602 }
 603 
 604 
 605 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 606                             GrowableArray<ScopeValue*> *array,
 607                             GrowableArray<ScopeValue*> *objs ) {
 608   assert( local, "use _top instead of null" );
 609   if (array->length() != idx) {
 610     assert(array->length() == idx + 1, "Unexpected array count");
 611     // Old functionality:
 612     //   return
 613     // New functionality:
 614     //   Assert if the local is not top. In product mode let the new node
 615     //   override the old entry.
 616     assert(local == top(), "LocArray collision");
 617     if (local == top()) {
 618       return;
 619     }
 620     array->pop();
 621   }
 622   const Type *t = local->bottom_type();
 623 
 624   // Is it a safepoint scalar object node?
 625   if (local->is_SafePointScalarObject()) {
 626     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 627 
 628     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 629     if (sv == NULL) {
 630       ciKlass* cik = t->is_oopptr()->klass();
 631       assert(cik->is_instance_klass() ||
 632              cik->is_array_klass(), "Not supported allocation.");
 633       sv = new ObjectValue(spobj->_idx,
 634                            new ConstantOopWriteValue(cik->constant_encoding()));
 635       Compile::set_sv_for_object_node(objs, sv);
 636 
 637       uint first_ind = spobj->first_index();
 638       for (uint i = 0; i < spobj->n_fields(); i++) {
 639         Node* fld_node = sfpt->in(first_ind+i);
 640         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 641       }
 642     }
 643     array->append(sv);
 644     return;
 645   }
 646 
 647   // Grab the register number for the local
 648   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 649   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 650     // Record the double as two float registers.
 651     // The register mask for such a value always specifies two adjacent
 652     // float registers, with the lower register number even.
 653     // Normally, the allocation of high and low words to these registers
 654     // is irrelevant, because nearly all operations on register pairs
 655     // (e.g., StoreD) treat them as a single unit.
 656     // Here, we assume in addition that the words in these two registers
 657     // stored "naturally" (by operations like StoreD and double stores
 658     // within the interpreter) such that the lower-numbered register
 659     // is written to the lower memory address.  This may seem like
 660     // a machine dependency, but it is not--it is a requirement on
 661     // the author of the <arch>.ad file to ensure that, for every
 662     // even/odd double-register pair to which a double may be allocated,
 663     // the word in the even single-register is stored to the first
 664     // memory word.  (Note that register numbers are completely
 665     // arbitrary, and are not tied to any machine-level encodings.)
 666 #ifdef _LP64
 667     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 668       array->append(new ConstantIntValue(0));
 669       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 670     } else if ( t->base() == Type::Long ) {
 671       array->append(new ConstantIntValue(0));
 672       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 673     } else if ( t->base() == Type::RawPtr ) {
 674       // jsr/ret return address which must be restored into a the full
 675       // width 64-bit stack slot.
 676       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 677     }
 678 #else //_LP64
 679 #ifdef SPARC
 680     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 681       // For SPARC we have to swap high and low words for
 682       // long values stored in a single-register (g0-g7).
 683       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 684       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 685     } else
 686 #endif //SPARC
 687     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 688       // Repack the double/long as two jints.
 689       // The convention the interpreter uses is that the second local
 690       // holds the first raw word of the native double representation.
 691       // This is actually reasonable, since locals and stack arrays
 692       // grow downwards in all implementations.
 693       // (If, on some machine, the interpreter's Java locals or stack
 694       // were to grow upwards, the embedded doubles would be word-swapped.)
 695       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 696       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 697     }
 698 #endif //_LP64
 699     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 700                OptoReg::is_reg(regnum) ) {
 701       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 702                                    ? Location::float_in_dbl : Location::normal ));
 703     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 704       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 705                                    ? Location::int_in_long : Location::normal ));
 706     } else if( t->base() == Type::NarrowOop ) {
 707       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 708     } else {
 709       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 710     }
 711     return;
 712   }
 713 
 714   // No register.  It must be constant data.
 715   switch (t->base()) {
 716   case Type::Half:              // Second half of a double
 717     ShouldNotReachHere();       // Caller should skip 2nd halves
 718     break;
 719   case Type::AnyPtr:
 720     array->append(new ConstantOopWriteValue(NULL));
 721     break;
 722   case Type::AryPtr:
 723   case Type::InstPtr:
 724   case Type::KlassPtr:          // fall through
 725     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 726     break;
 727   case Type::NarrowOop:
 728     if (t == TypeNarrowOop::NULL_PTR) {
 729       array->append(new ConstantOopWriteValue(NULL));
 730     } else {
 731       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 732     }
 733     break;
 734   case Type::Int:
 735     array->append(new ConstantIntValue(t->is_int()->get_con()));
 736     break;
 737   case Type::RawPtr:
 738     // A return address (T_ADDRESS).
 739     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 740 #ifdef _LP64
 741     // Must be restored to the full-width 64-bit stack slot.
 742     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 743 #else
 744     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 745 #endif
 746     break;
 747   case Type::FloatCon: {
 748     float f = t->is_float_constant()->getf();
 749     array->append(new ConstantIntValue(jint_cast(f)));
 750     break;
 751   }
 752   case Type::DoubleCon: {
 753     jdouble d = t->is_double_constant()->getd();
 754 #ifdef _LP64
 755     array->append(new ConstantIntValue(0));
 756     array->append(new ConstantDoubleValue(d));
 757 #else
 758     // Repack the double as two jints.
 759     // The convention the interpreter uses is that the second local
 760     // holds the first raw word of the native double representation.
 761     // This is actually reasonable, since locals and stack arrays
 762     // grow downwards in all implementations.
 763     // (If, on some machine, the interpreter's Java locals or stack
 764     // were to grow upwards, the embedded doubles would be word-swapped.)
 765     jint   *dp = (jint*)&d;
 766     array->append(new ConstantIntValue(dp[1]));
 767     array->append(new ConstantIntValue(dp[0]));
 768 #endif
 769     break;
 770   }
 771   case Type::Long: {
 772     jlong d = t->is_long()->get_con();
 773 #ifdef _LP64
 774     array->append(new ConstantIntValue(0));
 775     array->append(new ConstantLongValue(d));
 776 #else
 777     // Repack the long as two jints.
 778     // The convention the interpreter uses is that the second local
 779     // holds the first raw word of the native double representation.
 780     // This is actually reasonable, since locals and stack arrays
 781     // grow downwards in all implementations.
 782     // (If, on some machine, the interpreter's Java locals or stack
 783     // were to grow upwards, the embedded doubles would be word-swapped.)
 784     jint *dp = (jint*)&d;
 785     array->append(new ConstantIntValue(dp[1]));
 786     array->append(new ConstantIntValue(dp[0]));
 787 #endif
 788     break;
 789   }
 790   case Type::Top:               // Add an illegal value here
 791     array->append(new LocationValue(Location()));
 792     break;
 793   default:
 794     ShouldNotReachHere();
 795     break;
 796   }
 797 }
 798 
 799 // Determine if this node starts a bundle
 800 bool Compile::starts_bundle(const Node *n) const {
 801   return (_node_bundling_limit > n->_idx &&
 802           _node_bundling_base[n->_idx].starts_bundle());
 803 }
 804 
 805 //--------------------------Process_OopMap_Node--------------------------------
 806 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 807 
 808   // Handle special safepoint nodes for synchronization
 809   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 810   MachCallNode      *mcall;
 811 
 812 #ifdef ENABLE_ZAP_DEAD_LOCALS
 813   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 814 #endif
 815 
 816   int safepoint_pc_offset = current_offset;
 817   bool is_method_handle_invoke = false;
 818   bool return_oop = false;
 819 
 820   // Add the safepoint in the DebugInfoRecorder
 821   if( !mach->is_MachCall() ) {
 822     mcall = NULL;
 823     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 824   } else {
 825     mcall = mach->as_MachCall();
 826 
 827     // Is the call a MethodHandle call?
 828     if (mcall->is_MachCallJava()) {
 829       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 830         assert(has_method_handle_invokes(), "must have been set during call generation");
 831         is_method_handle_invoke = true;
 832       }
 833     }
 834 
 835     // Check if a call returns an object.
 836     if (mcall->return_value_is_used() &&
 837         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 838       return_oop = true;
 839     }
 840     safepoint_pc_offset += mcall->ret_addr_offset();
 841     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 842   }
 843 
 844   // Loop over the JVMState list to add scope information
 845   // Do not skip safepoints with a NULL method, they need monitor info
 846   JVMState* youngest_jvms = sfn->jvms();
 847   int max_depth = youngest_jvms->depth();
 848 
 849   // Allocate the object pool for scalar-replaced objects -- the map from
 850   // small-integer keys (which can be recorded in the local and ostack
 851   // arrays) to descriptions of the object state.
 852   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 853 
 854   // Visit scopes from oldest to youngest.
 855   for (int depth = 1; depth <= max_depth; depth++) {
 856     JVMState* jvms = youngest_jvms->of_depth(depth);
 857     int idx;
 858     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 859     // Safepoints that do not have method() set only provide oop-map and monitor info
 860     // to support GC; these do not support deoptimization.
 861     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 862     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 863     int num_mon  = jvms->nof_monitors();
 864     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 865            "JVMS local count must match that of the method");
 866 
 867     // Add Local and Expression Stack Information
 868 
 869     // Insert locals into the locarray
 870     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 871     for( idx = 0; idx < num_locs; idx++ ) {
 872       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 873     }
 874 
 875     // Insert expression stack entries into the exparray
 876     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 877     for( idx = 0; idx < num_exps; idx++ ) {
 878       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 879     }
 880 
 881     // Add in mappings of the monitors
 882     assert( !method ||
 883             !method->is_synchronized() ||
 884             method->is_native() ||
 885             num_mon > 0 ||
 886             !GenerateSynchronizationCode,
 887             "monitors must always exist for synchronized methods");
 888 
 889     // Build the growable array of ScopeValues for exp stack
 890     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 891 
 892     // Loop over monitors and insert into array
 893     for(idx = 0; idx < num_mon; idx++) {
 894       // Grab the node that defines this monitor
 895       Node* box_node = sfn->monitor_box(jvms, idx);
 896       Node* obj_node = sfn->monitor_obj(jvms, idx);
 897 
 898       // Create ScopeValue for object
 899       ScopeValue *scval = NULL;
 900 
 901       if( obj_node->is_SafePointScalarObject() ) {
 902         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 903         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 904         if (scval == NULL) {
 905           const Type *t = obj_node->bottom_type();
 906           ciKlass* cik = t->is_oopptr()->klass();
 907           assert(cik->is_instance_klass() ||
 908                  cik->is_array_klass(), "Not supported allocation.");
 909           ObjectValue* sv = new ObjectValue(spobj->_idx,
 910                                 new ConstantOopWriteValue(cik->constant_encoding()));
 911           Compile::set_sv_for_object_node(objs, sv);
 912 
 913           uint first_ind = spobj->first_index();
 914           for (uint i = 0; i < spobj->n_fields(); i++) {
 915             Node* fld_node = sfn->in(first_ind+i);
 916             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 917           }
 918           scval = sv;
 919         }
 920       } else if( !obj_node->is_Con() ) {
 921         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 922         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 923           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 924         } else {
 925           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 926         }
 927       } else {
 928         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 929         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
 930       }
 931 
 932       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
 933       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 934       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
 935       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
 936     }
 937 
 938     // We dump the object pool first, since deoptimization reads it in first.
 939     debug_info()->dump_object_pool(objs);
 940 
 941     // Build first class objects to pass to scope
 942     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 943     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 944     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 945 
 946     // Make method available for all Safepoints
 947     ciMethod* scope_method = method ? method : _method;
 948     // Describe the scope here
 949     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 950     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 951     // Now we can describe the scope.
 952     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 953   } // End jvms loop
 954 
 955   // Mark the end of the scope set.
 956   debug_info()->end_safepoint(safepoint_pc_offset);
 957 }
 958 
 959 
 960 
 961 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 962 class NonSafepointEmitter {
 963   Compile*  C;
 964   JVMState* _pending_jvms;
 965   int       _pending_offset;
 966 
 967   void emit_non_safepoint();
 968 
 969  public:
 970   NonSafepointEmitter(Compile* compile) {
 971     this->C = compile;
 972     _pending_jvms = NULL;
 973     _pending_offset = 0;
 974   }
 975 
 976   void observe_instruction(Node* n, int pc_offset) {
 977     if (!C->debug_info()->recording_non_safepoints())  return;
 978 
 979     Node_Notes* nn = C->node_notes_at(n->_idx);
 980     if (nn == NULL || nn->jvms() == NULL)  return;
 981     if (_pending_jvms != NULL &&
 982         _pending_jvms->same_calls_as(nn->jvms())) {
 983       // Repeated JVMS?  Stretch it up here.
 984       _pending_offset = pc_offset;
 985     } else {
 986       if (_pending_jvms != NULL &&
 987           _pending_offset < pc_offset) {
 988         emit_non_safepoint();
 989       }
 990       _pending_jvms = NULL;
 991       if (pc_offset > C->debug_info()->last_pc_offset()) {
 992         // This is the only way _pending_jvms can become non-NULL:
 993         _pending_jvms = nn->jvms();
 994         _pending_offset = pc_offset;
 995       }
 996     }
 997   }
 998 
 999   // Stay out of the way of real safepoints:
1000   void observe_safepoint(JVMState* jvms, int pc_offset) {
1001     if (_pending_jvms != NULL &&
1002         !_pending_jvms->same_calls_as(jvms) &&
1003         _pending_offset < pc_offset) {
1004       emit_non_safepoint();
1005     }
1006     _pending_jvms = NULL;
1007   }
1008 
1009   void flush_at_end() {
1010     if (_pending_jvms != NULL) {
1011       emit_non_safepoint();
1012     }
1013     _pending_jvms = NULL;
1014   }
1015 };
1016 
1017 void NonSafepointEmitter::emit_non_safepoint() {
1018   JVMState* youngest_jvms = _pending_jvms;
1019   int       pc_offset     = _pending_offset;
1020 
1021   // Clear it now:
1022   _pending_jvms = NULL;
1023 
1024   DebugInformationRecorder* debug_info = C->debug_info();
1025   assert(debug_info->recording_non_safepoints(), "sanity");
1026 
1027   debug_info->add_non_safepoint(pc_offset);
1028   int max_depth = youngest_jvms->depth();
1029 
1030   // Visit scopes from oldest to youngest.
1031   for (int depth = 1; depth <= max_depth; depth++) {
1032     JVMState* jvms = youngest_jvms->of_depth(depth);
1033     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1034     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1035     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1036   }
1037 
1038   // Mark the end of the scope set.
1039   debug_info->end_non_safepoint(pc_offset);
1040 }
1041 
1042 
1043 
1044 // helper for Fill_buffer bailout logic
1045 static void turn_off_compiler(Compile* C) {
1046   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
1047     // Do not turn off compilation if a single giant method has
1048     // blown the code cache size.
1049     C->record_failure("excessive request to CodeCache");
1050   } else {
1051     // Let CompilerBroker disable further compilations.
1052     C->record_failure("CodeCache is full");
1053   }
1054 }
1055 
1056 
1057 //------------------------------Fill_buffer------------------------------------
1058 void Compile::Fill_buffer() {
1059 
1060   // Set the initially allocated size
1061   int  code_req   = initial_code_capacity;
1062   int  locs_req   = initial_locs_capacity;
1063   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1064   int  const_req  = initial_const_capacity;
1065   bool labels_not_set = true;
1066 
1067   int  pad_req    = NativeCall::instruction_size;
1068   // The extra spacing after the code is necessary on some platforms.
1069   // Sometimes we need to patch in a jump after the last instruction,
1070   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1071 
1072   uint i;
1073   // Compute the byte offset where we can store the deopt pc.
1074   if (fixed_slots() != 0) {
1075     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1076   }
1077 
1078   // Compute prolog code size
1079   _method_size = 0;
1080   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1081 #ifdef IA64
1082   if (save_argument_registers()) {
1083     // 4815101: this is a stub with implicit and unknown precision fp args.
1084     // The usual spill mechanism can only generate stfd's in this case, which
1085     // doesn't work if the fp reg to spill contains a single-precision denorm.
1086     // Instead, we hack around the normal spill mechanism using stfspill's and
1087     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1088     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1089     //
1090     // If we ever implement 16-byte 'registers' == stack slots, we can
1091     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1092     // instead of stfd/stfs/ldfd/ldfs.
1093     _frame_slots += 8*(16/BytesPerInt);
1094   }
1095 #endif
1096   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1097 
1098   // Create an array of unused labels, one for each basic block
1099   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1100 
1101   for( i=0; i <= _cfg->_num_blocks; i++ ) {
1102     blk_labels[i].init();
1103   }
1104 
1105   // If this machine supports different size branch offsets, then pre-compute
1106   // the length of the blocks
1107   if( _matcher->is_short_branch_offset(-1, 0) ) {
1108     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
1109     labels_not_set = false;
1110   }
1111 
1112   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1113   int exception_handler_req = size_exception_handler();
1114   int deopt_handler_req = size_deopt_handler();
1115   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1116   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1117   stub_req += MAX_stubs_size;   // ensure per-stub margin
1118   code_req += MAX_inst_size;    // ensure per-instruction margin
1119 
1120   if (StressCodeBuffers)
1121     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1122 
1123   int total_req =
1124     code_req +
1125     pad_req +
1126     stub_req +
1127     exception_handler_req +
1128     deopt_handler_req +              // deopt handler
1129     const_req;
1130 
1131   if (has_method_handle_invokes())
1132     total_req += deopt_handler_req;  // deopt MH handler
1133 
1134   CodeBuffer* cb = code_buffer();
1135   cb->initialize(total_req, locs_req);
1136 
1137   // Have we run out of code space?
1138   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1139     turn_off_compiler(this);
1140     return;
1141   }
1142   // Configure the code buffer.
1143   cb->initialize_consts_size(const_req);
1144   cb->initialize_stubs_size(stub_req);
1145   cb->initialize_oop_recorder(env()->oop_recorder());
1146 
1147   // fill in the nop array for bundling computations
1148   MachNode *_nop_list[Bundle::_nop_count];
1149   Bundle::initialize_nops(_nop_list, this);
1150 
1151   // Create oopmap set.
1152   _oop_map_set = new OopMapSet();
1153 
1154   // !!!!! This preserves old handling of oopmaps for now
1155   debug_info()->set_oopmaps(_oop_map_set);
1156 
1157   // Count and start of implicit null check instructions
1158   uint inct_cnt = 0;
1159   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1160 
1161   // Count and start of calls
1162   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1163 
1164   uint  return_offset = 0;
1165   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1166 
1167   int previous_offset = 0;
1168   int current_offset  = 0;
1169   int last_call_offset = -1;
1170 
1171   // Create an array of unused labels, one for each basic block, if printing is enabled
1172 #ifndef PRODUCT
1173   int *node_offsets      = NULL;
1174   uint  node_offset_limit = unique();
1175 
1176 
1177   if ( print_assembly() )
1178     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1179 #endif
1180 
1181   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1182 
1183   // ------------------
1184   // Now fill in the code buffer
1185   Node *delay_slot = NULL;
1186 
1187   for( i=0; i < _cfg->_num_blocks; i++ ) {
1188     Block *b = _cfg->_blocks[i];
1189 
1190     Node *head = b->head();
1191 
1192     // If this block needs to start aligned (i.e, can be reached other
1193     // than by falling-thru from the previous block), then force the
1194     // start of a new bundle.
1195     if( Pipeline::requires_bundling() && starts_bundle(head) )
1196       cb->flush_bundle(true);
1197 
1198     // Define the label at the beginning of the basic block
1199     if( labels_not_set )
1200       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1201 
1202     else
1203       assert( blk_labels[b->_pre_order].loc_pos() == cb->insts_size(),
1204               "label position does not match code offset" );
1205 
1206     uint last_inst = b->_nodes.size();
1207 
1208     // Emit block normally, except for last instruction.
1209     // Emit means "dump code bits into code buffer".
1210     for( uint j = 0; j<last_inst; j++ ) {
1211 
1212       // Get the node
1213       Node* n = b->_nodes[j];
1214 
1215       // See if delay slots are supported
1216       if (valid_bundle_info(n) &&
1217           node_bundling(n)->used_in_unconditional_delay()) {
1218         assert(delay_slot == NULL, "no use of delay slot node");
1219         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1220 
1221         delay_slot = n;
1222         continue;
1223       }
1224 
1225       // If this starts a new instruction group, then flush the current one
1226       // (but allow split bundles)
1227       if( Pipeline::requires_bundling() && starts_bundle(n) )
1228         cb->flush_bundle(false);
1229 
1230       // The following logic is duplicated in the code ifdeffed for
1231       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1232       // should be factored out.  Or maybe dispersed to the nodes?
1233 
1234       // Special handling for SafePoint/Call Nodes
1235       bool is_mcall = false;
1236       if( n->is_Mach() ) {
1237         MachNode *mach = n->as_Mach();
1238         is_mcall = n->is_MachCall();
1239         bool is_sfn = n->is_MachSafePoint();
1240 
1241         // If this requires all previous instructions be flushed, then do so
1242         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1243           cb->flush_bundle(true);
1244           current_offset = cb->insts_size();
1245         }
1246 
1247         // align the instruction if necessary
1248         int padding = mach->compute_padding(current_offset);
1249         // Make sure safepoint node for polling is distinct from a call's
1250         // return by adding a nop if needed.
1251         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1252           padding = nop_size;
1253         }
1254         assert( labels_not_set || padding == 0, "instruction should already be aligned");
1255 
1256         if(padding > 0) {
1257           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1258           int nops_cnt = padding / nop_size;
1259           MachNode *nop = new (this) MachNopNode(nops_cnt);
1260           b->_nodes.insert(j++, nop);
1261           last_inst++;
1262           _cfg->_bbs.map( nop->_idx, b );
1263           nop->emit(*cb, _regalloc);
1264           cb->flush_bundle(true);
1265           current_offset = cb->insts_size();
1266         }
1267 
1268         // Remember the start of the last call in a basic block
1269         if (is_mcall) {
1270           MachCallNode *mcall = mach->as_MachCall();
1271 
1272           // This destination address is NOT PC-relative
1273           mcall->method_set((intptr_t)mcall->entry_point());
1274 
1275           // Save the return address
1276           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1277 
1278           if (!mcall->is_safepoint_node()) {
1279             is_mcall = false;
1280             is_sfn = false;
1281           }
1282         }
1283 
1284         // sfn will be valid whenever mcall is valid now because of inheritance
1285         if( is_sfn || is_mcall ) {
1286 
1287           // Handle special safepoint nodes for synchronization
1288           if( !is_mcall ) {
1289             MachSafePointNode *sfn = mach->as_MachSafePoint();
1290             // !!!!! Stubs only need an oopmap right now, so bail out
1291             if( sfn->jvms()->method() == NULL) {
1292               // Write the oopmap directly to the code blob??!!
1293 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1294               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1295 #             endif
1296               continue;
1297             }
1298           } // End synchronization
1299 
1300           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1301                                            current_offset);
1302           Process_OopMap_Node(mach, current_offset);
1303         } // End if safepoint
1304 
1305         // If this is a null check, then add the start of the previous instruction to the list
1306         else if( mach->is_MachNullCheck() ) {
1307           inct_starts[inct_cnt++] = previous_offset;
1308         }
1309 
1310         // If this is a branch, then fill in the label with the target BB's label
1311         else if ( mach->is_Branch() ) {
1312 
1313           if ( mach->ideal_Opcode() == Op_Jump ) {
1314             for (uint h = 0; h < b->_num_succs; h++ ) {
1315               Block* succs_block = b->_succs[h];
1316               for (uint j = 1; j < succs_block->num_preds(); j++) {
1317                 Node* jpn = succs_block->pred(j);
1318                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1319                   uint block_num = succs_block->non_connector()->_pre_order;
1320                   Label *blkLabel = &blk_labels[block_num];
1321                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1322                 }
1323               }
1324             }
1325           } else {
1326             // For Branchs
1327             // This requires the TRUE branch target be in succs[0]
1328             uint block_num = b->non_connector_successor(0)->_pre_order;
1329             mach->label_set( blk_labels[block_num], block_num );
1330           }
1331         }
1332 
1333 #ifdef ASSERT
1334         // Check that oop-store precedes the card-mark
1335         else if( mach->ideal_Opcode() == Op_StoreCM ) {
1336           uint storeCM_idx = j;
1337           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1338           assert( oop_store != NULL, "storeCM expects a precedence edge");
1339           uint i4;
1340           for( i4 = 0; i4 < last_inst; ++i4 ) {
1341             if( b->_nodes[i4] == oop_store ) break;
1342           }
1343           // Note: This test can provide a false failure if other precedence
1344           // edges have been added to the storeCMNode.
1345           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1346         }
1347 #endif
1348 
1349         else if( !n->is_Proj() ) {
1350           // Remember the beginning of the previous instruction, in case
1351           // it's followed by a flag-kill and a null-check.  Happens on
1352           // Intel all the time, with add-to-memory kind of opcodes.
1353           previous_offset = current_offset;
1354         }
1355       }
1356 
1357       // Verify that there is sufficient space remaining
1358       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1359       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1360         turn_off_compiler(this);
1361         return;
1362       }
1363 
1364       // Save the offset for the listing
1365 #ifndef PRODUCT
1366       if( node_offsets && n->_idx < node_offset_limit )
1367         node_offsets[n->_idx] = cb->insts_size();
1368 #endif
1369 
1370       // "Normal" instruction case
1371       n->emit(*cb, _regalloc);
1372       current_offset  = cb->insts_size();
1373       non_safepoints.observe_instruction(n, current_offset);
1374 
1375       // mcall is last "call" that can be a safepoint
1376       // record it so we can see if a poll will directly follow it
1377       // in which case we'll need a pad to make the PcDesc sites unique
1378       // see  5010568. This can be slightly inaccurate but conservative
1379       // in the case that return address is not actually at current_offset.
1380       // This is a small price to pay.
1381 
1382       if (is_mcall) {
1383         last_call_offset = current_offset;
1384       }
1385 
1386       // See if this instruction has a delay slot
1387       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1388         assert(delay_slot != NULL, "expecting delay slot node");
1389 
1390         // Back up 1 instruction
1391         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1392 
1393         // Save the offset for the listing
1394 #ifndef PRODUCT
1395         if( node_offsets && delay_slot->_idx < node_offset_limit )
1396           node_offsets[delay_slot->_idx] = cb->insts_size();
1397 #endif
1398 
1399         // Support a SafePoint in the delay slot
1400         if( delay_slot->is_MachSafePoint() ) {
1401           MachNode *mach = delay_slot->as_Mach();
1402           // !!!!! Stubs only need an oopmap right now, so bail out
1403           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1404             // Write the oopmap directly to the code blob??!!
1405 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1406             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1407 #           endif
1408             delay_slot = NULL;
1409             continue;
1410           }
1411 
1412           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1413           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1414                                            adjusted_offset);
1415           // Generate an OopMap entry
1416           Process_OopMap_Node(mach, adjusted_offset);
1417         }
1418 
1419         // Insert the delay slot instruction
1420         delay_slot->emit(*cb, _regalloc);
1421 
1422         // Don't reuse it
1423         delay_slot = NULL;
1424       }
1425 
1426     } // End for all instructions in block
1427 
1428     // If the next block is the top of a loop, pad this block out to align
1429     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1430     if( i<_cfg->_num_blocks-1 ) {
1431       Block *nb = _cfg->_blocks[i+1];
1432       uint padding = nb->alignment_padding(current_offset);
1433       if( padding > 0 ) {
1434         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1435         b->_nodes.insert( b->_nodes.size(), nop );
1436         _cfg->_bbs.map( nop->_idx, b );
1437         nop->emit(*cb, _regalloc);
1438         current_offset = cb->insts_size();
1439       }
1440     }
1441 
1442   } // End of for all blocks
1443 
1444   non_safepoints.flush_at_end();
1445 
1446   // Offset too large?
1447   if (failing())  return;
1448 
1449   // Define a pseudo-label at the end of the code
1450   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1451 
1452   // Compute the size of the first block
1453   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1454 
1455   assert(cb->insts_size() < 500000, "method is unreasonably large");
1456 
1457   // ------------------
1458 
1459 #ifndef PRODUCT
1460   // Information on the size of the method, without the extraneous code
1461   Scheduling::increment_method_size(cb->insts_size());
1462 #endif
1463 
1464   // ------------------
1465   // Fill in exception table entries.
1466   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1467 
1468   // Only java methods have exception handlers and deopt handlers
1469   if (_method) {
1470     // Emit the exception handler code.
1471     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1472     // Emit the deopt handler code.
1473     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1474 
1475     // Emit the MethodHandle deopt handler code (if required).
1476     if (has_method_handle_invokes()) {
1477       // We can use the same code as for the normal deopt handler, we
1478       // just need a different entry point address.
1479       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1480     }
1481   }
1482 
1483   // One last check for failed CodeBuffer::expand:
1484   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1485     turn_off_compiler(this);
1486     return;
1487   }
1488 
1489 #ifndef PRODUCT
1490   // Dump the assembly code, including basic-block numbers
1491   if (print_assembly()) {
1492     ttyLocker ttyl;  // keep the following output all in one block
1493     if (!VMThread::should_terminate()) {  // test this under the tty lock
1494       // This output goes directly to the tty, not the compiler log.
1495       // To enable tools to match it up with the compilation activity,
1496       // be sure to tag this tty output with the compile ID.
1497       if (xtty != NULL) {
1498         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1499                    is_osr_compilation()    ? " compile_kind='osr'" :
1500                    "");
1501       }
1502       if (method() != NULL) {
1503         method()->print_oop();
1504         print_codes();
1505       }
1506       dump_asm(node_offsets, node_offset_limit);
1507       if (xtty != NULL) {
1508         xtty->tail("opto_assembly");
1509       }
1510     }
1511   }
1512 #endif
1513 
1514 }
1515 
1516 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1517   _inc_table.set_size(cnt);
1518 
1519   uint inct_cnt = 0;
1520   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1521     Block *b = _cfg->_blocks[i];
1522     Node *n = NULL;
1523     int j;
1524 
1525     // Find the branch; ignore trailing NOPs.
1526     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1527       n = b->_nodes[j];
1528       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1529         break;
1530     }
1531 
1532     // If we didn't find anything, continue
1533     if( j < 0 ) continue;
1534 
1535     // Compute ExceptionHandlerTable subtable entry and add it
1536     // (skip empty blocks)
1537     if( n->is_Catch() ) {
1538 
1539       // Get the offset of the return from the call
1540       uint call_return = call_returns[b->_pre_order];
1541 #ifdef ASSERT
1542       assert( call_return > 0, "no call seen for this basic block" );
1543       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1544       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1545 #endif
1546       // last instruction is a CatchNode, find it's CatchProjNodes
1547       int nof_succs = b->_num_succs;
1548       // allocate space
1549       GrowableArray<intptr_t> handler_bcis(nof_succs);
1550       GrowableArray<intptr_t> handler_pcos(nof_succs);
1551       // iterate through all successors
1552       for (int j = 0; j < nof_succs; j++) {
1553         Block* s = b->_succs[j];
1554         bool found_p = false;
1555         for( uint k = 1; k < s->num_preds(); k++ ) {
1556           Node *pk = s->pred(k);
1557           if( pk->is_CatchProj() && pk->in(0) == n ) {
1558             const CatchProjNode* p = pk->as_CatchProj();
1559             found_p = true;
1560             // add the corresponding handler bci & pco information
1561             if( p->_con != CatchProjNode::fall_through_index ) {
1562               // p leads to an exception handler (and is not fall through)
1563               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1564               // no duplicates, please
1565               if( !handler_bcis.contains(p->handler_bci()) ) {
1566                 uint block_num = s->non_connector()->_pre_order;
1567                 handler_bcis.append(p->handler_bci());
1568                 handler_pcos.append(blk_labels[block_num].loc_pos());
1569               }
1570             }
1571           }
1572         }
1573         assert(found_p, "no matching predecessor found");
1574         // Note:  Due to empty block removal, one block may have
1575         // several CatchProj inputs, from the same Catch.
1576       }
1577 
1578       // Set the offset of the return from the call
1579       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1580       continue;
1581     }
1582 
1583     // Handle implicit null exception table updates
1584     if( n->is_MachNullCheck() ) {
1585       uint block_num = b->non_connector_successor(0)->_pre_order;
1586       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1587       continue;
1588     }
1589   } // End of for all blocks fill in exception table entries
1590 }
1591 
1592 // Static Variables
1593 #ifndef PRODUCT
1594 uint Scheduling::_total_nop_size = 0;
1595 uint Scheduling::_total_method_size = 0;
1596 uint Scheduling::_total_branches = 0;
1597 uint Scheduling::_total_unconditional_delays = 0;
1598 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1599 #endif
1600 
1601 // Initializer for class Scheduling
1602 
1603 Scheduling::Scheduling(Arena *arena, Compile &compile)
1604   : _arena(arena),
1605     _cfg(compile.cfg()),
1606     _bbs(compile.cfg()->_bbs),
1607     _regalloc(compile.regalloc()),
1608     _reg_node(arena),
1609     _bundle_instr_count(0),
1610     _bundle_cycle_number(0),
1611     _scheduled(arena),
1612     _available(arena),
1613     _next_node(NULL),
1614     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1615     _pinch_free_list(arena)
1616 #ifndef PRODUCT
1617   , _branches(0)
1618   , _unconditional_delays(0)
1619 #endif
1620 {
1621   // Create a MachNopNode
1622   _nop = new (&compile) MachNopNode();
1623 
1624   // Now that the nops are in the array, save the count
1625   // (but allow entries for the nops)
1626   _node_bundling_limit = compile.unique();
1627   uint node_max = _regalloc->node_regs_max_index();
1628 
1629   compile.set_node_bundling_limit(_node_bundling_limit);
1630 
1631   // This one is persistent within the Compile class
1632   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1633 
1634   // Allocate space for fixed-size arrays
1635   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1636   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1637   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1638 
1639   // Clear the arrays
1640   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1641   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1642   memset(_uses,               0, node_max * sizeof(short));
1643   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1644 
1645   // Clear the bundling information
1646   memcpy(_bundle_use_elements,
1647     Pipeline_Use::elaborated_elements,
1648     sizeof(Pipeline_Use::elaborated_elements));
1649 
1650   // Get the last node
1651   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1652 
1653   _next_node = bb->_nodes[bb->_nodes.size()-1];
1654 }
1655 
1656 #ifndef PRODUCT
1657 // Scheduling destructor
1658 Scheduling::~Scheduling() {
1659   _total_branches             += _branches;
1660   _total_unconditional_delays += _unconditional_delays;
1661 }
1662 #endif
1663 
1664 // Step ahead "i" cycles
1665 void Scheduling::step(uint i) {
1666 
1667   Bundle *bundle = node_bundling(_next_node);
1668   bundle->set_starts_bundle();
1669 
1670   // Update the bundle record, but leave the flags information alone
1671   if (_bundle_instr_count > 0) {
1672     bundle->set_instr_count(_bundle_instr_count);
1673     bundle->set_resources_used(_bundle_use.resourcesUsed());
1674   }
1675 
1676   // Update the state information
1677   _bundle_instr_count = 0;
1678   _bundle_cycle_number += i;
1679   _bundle_use.step(i);
1680 }
1681 
1682 void Scheduling::step_and_clear() {
1683   Bundle *bundle = node_bundling(_next_node);
1684   bundle->set_starts_bundle();
1685 
1686   // Update the bundle record
1687   if (_bundle_instr_count > 0) {
1688     bundle->set_instr_count(_bundle_instr_count);
1689     bundle->set_resources_used(_bundle_use.resourcesUsed());
1690 
1691     _bundle_cycle_number += 1;
1692   }
1693 
1694   // Clear the bundling information
1695   _bundle_instr_count = 0;
1696   _bundle_use.reset();
1697 
1698   memcpy(_bundle_use_elements,
1699     Pipeline_Use::elaborated_elements,
1700     sizeof(Pipeline_Use::elaborated_elements));
1701 }
1702 
1703 //------------------------------ScheduleAndBundle------------------------------
1704 // Perform instruction scheduling and bundling over the sequence of
1705 // instructions in backwards order.
1706 void Compile::ScheduleAndBundle() {
1707 
1708   // Don't optimize this if it isn't a method
1709   if (!_method)
1710     return;
1711 
1712   // Don't optimize this if scheduling is disabled
1713   if (!do_scheduling())
1714     return;
1715 
1716   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1717 
1718   // Create a data structure for all the scheduling information
1719   Scheduling scheduling(Thread::current()->resource_area(), *this);
1720 
1721   // Walk backwards over each basic block, computing the needed alignment
1722   // Walk over all the basic blocks
1723   scheduling.DoScheduling();
1724 }
1725 
1726 //------------------------------ComputeLocalLatenciesForward-------------------
1727 // Compute the latency of all the instructions.  This is fairly simple,
1728 // because we already have a legal ordering.  Walk over the instructions
1729 // from first to last, and compute the latency of the instruction based
1730 // on the latency of the preceding instruction(s).
1731 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1732 #ifndef PRODUCT
1733   if (_cfg->C->trace_opto_output())
1734     tty->print("# -> ComputeLocalLatenciesForward\n");
1735 #endif
1736 
1737   // Walk over all the schedulable instructions
1738   for( uint j=_bb_start; j < _bb_end; j++ ) {
1739 
1740     // This is a kludge, forcing all latency calculations to start at 1.
1741     // Used to allow latency 0 to force an instruction to the beginning
1742     // of the bb
1743     uint latency = 1;
1744     Node *use = bb->_nodes[j];
1745     uint nlen = use->len();
1746 
1747     // Walk over all the inputs
1748     for ( uint k=0; k < nlen; k++ ) {
1749       Node *def = use->in(k);
1750       if (!def)
1751         continue;
1752 
1753       uint l = _node_latency[def->_idx] + use->latency(k);
1754       if (latency < l)
1755         latency = l;
1756     }
1757 
1758     _node_latency[use->_idx] = latency;
1759 
1760 #ifndef PRODUCT
1761     if (_cfg->C->trace_opto_output()) {
1762       tty->print("# latency %4d: ", latency);
1763       use->dump();
1764     }
1765 #endif
1766   }
1767 
1768 #ifndef PRODUCT
1769   if (_cfg->C->trace_opto_output())
1770     tty->print("# <- ComputeLocalLatenciesForward\n");
1771 #endif
1772 
1773 } // end ComputeLocalLatenciesForward
1774 
1775 // See if this node fits into the present instruction bundle
1776 bool Scheduling::NodeFitsInBundle(Node *n) {
1777   uint n_idx = n->_idx;
1778 
1779   // If this is the unconditional delay instruction, then it fits
1780   if (n == _unconditional_delay_slot) {
1781 #ifndef PRODUCT
1782     if (_cfg->C->trace_opto_output())
1783       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1784 #endif
1785     return (true);
1786   }
1787 
1788   // If the node cannot be scheduled this cycle, skip it
1789   if (_current_latency[n_idx] > _bundle_cycle_number) {
1790 #ifndef PRODUCT
1791     if (_cfg->C->trace_opto_output())
1792       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1793         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1794 #endif
1795     return (false);
1796   }
1797 
1798   const Pipeline *node_pipeline = n->pipeline();
1799 
1800   uint instruction_count = node_pipeline->instructionCount();
1801   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1802     instruction_count = 0;
1803   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1804     instruction_count++;
1805 
1806   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1807 #ifndef PRODUCT
1808     if (_cfg->C->trace_opto_output())
1809       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1810         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1811 #endif
1812     return (false);
1813   }
1814 
1815   // Don't allow non-machine nodes to be handled this way
1816   if (!n->is_Mach() && instruction_count == 0)
1817     return (false);
1818 
1819   // See if there is any overlap
1820   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1821 
1822   if (delay > 0) {
1823 #ifndef PRODUCT
1824     if (_cfg->C->trace_opto_output())
1825       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1826 #endif
1827     return false;
1828   }
1829 
1830 #ifndef PRODUCT
1831   if (_cfg->C->trace_opto_output())
1832     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1833 #endif
1834 
1835   return true;
1836 }
1837 
1838 Node * Scheduling::ChooseNodeToBundle() {
1839   uint siz = _available.size();
1840 
1841   if (siz == 0) {
1842 
1843 #ifndef PRODUCT
1844     if (_cfg->C->trace_opto_output())
1845       tty->print("#   ChooseNodeToBundle: NULL\n");
1846 #endif
1847     return (NULL);
1848   }
1849 
1850   // Fast path, if only 1 instruction in the bundle
1851   if (siz == 1) {
1852 #ifndef PRODUCT
1853     if (_cfg->C->trace_opto_output()) {
1854       tty->print("#   ChooseNodeToBundle (only 1): ");
1855       _available[0]->dump();
1856     }
1857 #endif
1858     return (_available[0]);
1859   }
1860 
1861   // Don't bother, if the bundle is already full
1862   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1863     for ( uint i = 0; i < siz; i++ ) {
1864       Node *n = _available[i];
1865 
1866       // Skip projections, we'll handle them another way
1867       if (n->is_Proj())
1868         continue;
1869 
1870       // This presupposed that instructions are inserted into the
1871       // available list in a legality order; i.e. instructions that
1872       // must be inserted first are at the head of the list
1873       if (NodeFitsInBundle(n)) {
1874 #ifndef PRODUCT
1875         if (_cfg->C->trace_opto_output()) {
1876           tty->print("#   ChooseNodeToBundle: ");
1877           n->dump();
1878         }
1879 #endif
1880         return (n);
1881       }
1882     }
1883   }
1884 
1885   // Nothing fits in this bundle, choose the highest priority
1886 #ifndef PRODUCT
1887   if (_cfg->C->trace_opto_output()) {
1888     tty->print("#   ChooseNodeToBundle: ");
1889     _available[0]->dump();
1890   }
1891 #endif
1892 
1893   return _available[0];
1894 }
1895 
1896 //------------------------------AddNodeToAvailableList-------------------------
1897 void Scheduling::AddNodeToAvailableList(Node *n) {
1898   assert( !n->is_Proj(), "projections never directly made available" );
1899 #ifndef PRODUCT
1900   if (_cfg->C->trace_opto_output()) {
1901     tty->print("#   AddNodeToAvailableList: ");
1902     n->dump();
1903   }
1904 #endif
1905 
1906   int latency = _current_latency[n->_idx];
1907 
1908   // Insert in latency order (insertion sort)
1909   uint i;
1910   for ( i=0; i < _available.size(); i++ )
1911     if (_current_latency[_available[i]->_idx] > latency)
1912       break;
1913 
1914   // Special Check for compares following branches
1915   if( n->is_Mach() && _scheduled.size() > 0 ) {
1916     int op = n->as_Mach()->ideal_Opcode();
1917     Node *last = _scheduled[0];
1918     if( last->is_MachIf() && last->in(1) == n &&
1919         ( op == Op_CmpI ||
1920           op == Op_CmpU ||
1921           op == Op_CmpP ||
1922           op == Op_CmpF ||
1923           op == Op_CmpD ||
1924           op == Op_CmpL ) ) {
1925 
1926       // Recalculate position, moving to front of same latency
1927       for ( i=0 ; i < _available.size(); i++ )
1928         if (_current_latency[_available[i]->_idx] >= latency)
1929           break;
1930     }
1931   }
1932 
1933   // Insert the node in the available list
1934   _available.insert(i, n);
1935 
1936 #ifndef PRODUCT
1937   if (_cfg->C->trace_opto_output())
1938     dump_available();
1939 #endif
1940 }
1941 
1942 //------------------------------DecrementUseCounts-----------------------------
1943 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1944   for ( uint i=0; i < n->len(); i++ ) {
1945     Node *def = n->in(i);
1946     if (!def) continue;
1947     if( def->is_Proj() )        // If this is a machine projection, then
1948       def = def->in(0);         // propagate usage thru to the base instruction
1949 
1950     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1951       continue;
1952 
1953     // Compute the latency
1954     uint l = _bundle_cycle_number + n->latency(i);
1955     if (_current_latency[def->_idx] < l)
1956       _current_latency[def->_idx] = l;
1957 
1958     // If this does not have uses then schedule it
1959     if ((--_uses[def->_idx]) == 0)
1960       AddNodeToAvailableList(def);
1961   }
1962 }
1963 
1964 //------------------------------AddNodeToBundle--------------------------------
1965 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1966 #ifndef PRODUCT
1967   if (_cfg->C->trace_opto_output()) {
1968     tty->print("#   AddNodeToBundle: ");
1969     n->dump();
1970   }
1971 #endif
1972 
1973   // Remove this from the available list
1974   uint i;
1975   for (i = 0; i < _available.size(); i++)
1976     if (_available[i] == n)
1977       break;
1978   assert(i < _available.size(), "entry in _available list not found");
1979   _available.remove(i);
1980 
1981   // See if this fits in the current bundle
1982   const Pipeline *node_pipeline = n->pipeline();
1983   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1984 
1985   // Check for instructions to be placed in the delay slot. We
1986   // do this before we actually schedule the current instruction,
1987   // because the delay slot follows the current instruction.
1988   if (Pipeline::_branch_has_delay_slot &&
1989       node_pipeline->hasBranchDelay() &&
1990       !_unconditional_delay_slot) {
1991 
1992     uint siz = _available.size();
1993 
1994     // Conditional branches can support an instruction that
1995     // is unconditionally executed and not dependent by the
1996     // branch, OR a conditionally executed instruction if
1997     // the branch is taken.  In practice, this means that
1998     // the first instruction at the branch target is
1999     // copied to the delay slot, and the branch goes to
2000     // the instruction after that at the branch target
2001     if ( n->is_Mach() && n->is_Branch() ) {
2002 
2003       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2004       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2005 
2006 #ifndef PRODUCT
2007       _branches++;
2008 #endif
2009 
2010       // At least 1 instruction is on the available list
2011       // that is not dependent on the branch
2012       for (uint i = 0; i < siz; i++) {
2013         Node *d = _available[i];
2014         const Pipeline *avail_pipeline = d->pipeline();
2015 
2016         // Don't allow safepoints in the branch shadow, that will
2017         // cause a number of difficulties
2018         if ( avail_pipeline->instructionCount() == 1 &&
2019             !avail_pipeline->hasMultipleBundles() &&
2020             !avail_pipeline->hasBranchDelay() &&
2021             Pipeline::instr_has_unit_size() &&
2022             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2023             NodeFitsInBundle(d) &&
2024             !node_bundling(d)->used_in_delay()) {
2025 
2026           if (d->is_Mach() && !d->is_MachSafePoint()) {
2027             // A node that fits in the delay slot was found, so we need to
2028             // set the appropriate bits in the bundle pipeline information so
2029             // that it correctly indicates resource usage.  Later, when we
2030             // attempt to add this instruction to the bundle, we will skip
2031             // setting the resource usage.
2032             _unconditional_delay_slot = d;
2033             node_bundling(n)->set_use_unconditional_delay();
2034             node_bundling(d)->set_used_in_unconditional_delay();
2035             _bundle_use.add_usage(avail_pipeline->resourceUse());
2036             _current_latency[d->_idx] = _bundle_cycle_number;
2037             _next_node = d;
2038             ++_bundle_instr_count;
2039 #ifndef PRODUCT
2040             _unconditional_delays++;
2041 #endif
2042             break;
2043           }
2044         }
2045       }
2046     }
2047 
2048     // No delay slot, add a nop to the usage
2049     if (!_unconditional_delay_slot) {
2050       // See if adding an instruction in the delay slot will overflow
2051       // the bundle.
2052       if (!NodeFitsInBundle(_nop)) {
2053 #ifndef PRODUCT
2054         if (_cfg->C->trace_opto_output())
2055           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2056 #endif
2057         step(1);
2058       }
2059 
2060       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2061       _next_node = _nop;
2062       ++_bundle_instr_count;
2063     }
2064 
2065     // See if the instruction in the delay slot requires a
2066     // step of the bundles
2067     if (!NodeFitsInBundle(n)) {
2068 #ifndef PRODUCT
2069         if (_cfg->C->trace_opto_output())
2070           tty->print("#  *** STEP(branch won't fit) ***\n");
2071 #endif
2072         // Update the state information
2073         _bundle_instr_count = 0;
2074         _bundle_cycle_number += 1;
2075         _bundle_use.step(1);
2076     }
2077   }
2078 
2079   // Get the number of instructions
2080   uint instruction_count = node_pipeline->instructionCount();
2081   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2082     instruction_count = 0;
2083 
2084   // Compute the latency information
2085   uint delay = 0;
2086 
2087   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2088     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2089     if (relative_latency < 0)
2090       relative_latency = 0;
2091 
2092     delay = _bundle_use.full_latency(relative_latency, node_usage);
2093 
2094     // Does not fit in this bundle, start a new one
2095     if (delay > 0) {
2096       step(delay);
2097 
2098 #ifndef PRODUCT
2099       if (_cfg->C->trace_opto_output())
2100         tty->print("#  *** STEP(%d) ***\n", delay);
2101 #endif
2102     }
2103   }
2104 
2105   // If this was placed in the delay slot, ignore it
2106   if (n != _unconditional_delay_slot) {
2107 
2108     if (delay == 0) {
2109       if (node_pipeline->hasMultipleBundles()) {
2110 #ifndef PRODUCT
2111         if (_cfg->C->trace_opto_output())
2112           tty->print("#  *** STEP(multiple instructions) ***\n");
2113 #endif
2114         step(1);
2115       }
2116 
2117       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2118 #ifndef PRODUCT
2119         if (_cfg->C->trace_opto_output())
2120           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2121             instruction_count + _bundle_instr_count,
2122             Pipeline::_max_instrs_per_cycle);
2123 #endif
2124         step(1);
2125       }
2126     }
2127 
2128     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2129       _bundle_instr_count++;
2130 
2131     // Set the node's latency
2132     _current_latency[n->_idx] = _bundle_cycle_number;
2133 
2134     // Now merge the functional unit information
2135     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2136       _bundle_use.add_usage(node_usage);
2137 
2138     // Increment the number of instructions in this bundle
2139     _bundle_instr_count += instruction_count;
2140 
2141     // Remember this node for later
2142     if (n->is_Mach())
2143       _next_node = n;
2144   }
2145 
2146   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2147   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2148   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2149   // into the block.  All other scheduled nodes get put in the schedule here.
2150   int op = n->Opcode();
2151   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2152       (op != Op_Node &&         // Not an unused antidepedence node and
2153        // not an unallocated boxlock
2154        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2155 
2156     // Push any trailing projections
2157     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2158       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2159         Node *foi = n->fast_out(i);
2160         if( foi->is_Proj() )
2161           _scheduled.push(foi);
2162       }
2163     }
2164 
2165     // Put the instruction in the schedule list
2166     _scheduled.push(n);
2167   }
2168 
2169 #ifndef PRODUCT
2170   if (_cfg->C->trace_opto_output())
2171     dump_available();
2172 #endif
2173 
2174   // Walk all the definitions, decrementing use counts, and
2175   // if a definition has a 0 use count, place it in the available list.
2176   DecrementUseCounts(n,bb);
2177 }
2178 
2179 //------------------------------ComputeUseCount--------------------------------
2180 // This method sets the use count within a basic block.  We will ignore all
2181 // uses outside the current basic block.  As we are doing a backwards walk,
2182 // any node we reach that has a use count of 0 may be scheduled.  This also
2183 // avoids the problem of cyclic references from phi nodes, as long as phi
2184 // nodes are at the front of the basic block.  This method also initializes
2185 // the available list to the set of instructions that have no uses within this
2186 // basic block.
2187 void Scheduling::ComputeUseCount(const Block *bb) {
2188 #ifndef PRODUCT
2189   if (_cfg->C->trace_opto_output())
2190     tty->print("# -> ComputeUseCount\n");
2191 #endif
2192 
2193   // Clear the list of available and scheduled instructions, just in case
2194   _available.clear();
2195   _scheduled.clear();
2196 
2197   // No delay slot specified
2198   _unconditional_delay_slot = NULL;
2199 
2200 #ifdef ASSERT
2201   for( uint i=0; i < bb->_nodes.size(); i++ )
2202     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2203 #endif
2204 
2205   // Force the _uses count to never go to zero for unscheduable pieces
2206   // of the block
2207   for( uint k = 0; k < _bb_start; k++ )
2208     _uses[bb->_nodes[k]->_idx] = 1;
2209   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2210     _uses[bb->_nodes[l]->_idx] = 1;
2211 
2212   // Iterate backwards over the instructions in the block.  Don't count the
2213   // branch projections at end or the block header instructions.
2214   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2215     Node *n = bb->_nodes[j];
2216     if( n->is_Proj() ) continue; // Projections handled another way
2217 
2218     // Account for all uses
2219     for ( uint k = 0; k < n->len(); k++ ) {
2220       Node *inp = n->in(k);
2221       if (!inp) continue;
2222       assert(inp != n, "no cycles allowed" );
2223       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2224         if( inp->is_Proj() )    // Skip through Proj's
2225           inp = inp->in(0);
2226         ++_uses[inp->_idx];     // Count 1 block-local use
2227       }
2228     }
2229 
2230     // If this instruction has a 0 use count, then it is available
2231     if (!_uses[n->_idx]) {
2232       _current_latency[n->_idx] = _bundle_cycle_number;
2233       AddNodeToAvailableList(n);
2234     }
2235 
2236 #ifndef PRODUCT
2237     if (_cfg->C->trace_opto_output()) {
2238       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2239       n->dump();
2240     }
2241 #endif
2242   }
2243 
2244 #ifndef PRODUCT
2245   if (_cfg->C->trace_opto_output())
2246     tty->print("# <- ComputeUseCount\n");
2247 #endif
2248 }
2249 
2250 // This routine performs scheduling on each basic block in reverse order,
2251 // using instruction latencies and taking into account function unit
2252 // availability.
2253 void Scheduling::DoScheduling() {
2254 #ifndef PRODUCT
2255   if (_cfg->C->trace_opto_output())
2256     tty->print("# -> DoScheduling\n");
2257 #endif
2258 
2259   Block *succ_bb = NULL;
2260   Block *bb;
2261 
2262   // Walk over all the basic blocks in reverse order
2263   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2264     bb = _cfg->_blocks[i];
2265 
2266 #ifndef PRODUCT
2267     if (_cfg->C->trace_opto_output()) {
2268       tty->print("#  Schedule BB#%03d (initial)\n", i);
2269       for (uint j = 0; j < bb->_nodes.size(); j++)
2270         bb->_nodes[j]->dump();
2271     }
2272 #endif
2273 
2274     // On the head node, skip processing
2275     if( bb == _cfg->_broot )
2276       continue;
2277 
2278     // Skip empty, connector blocks
2279     if (bb->is_connector())
2280       continue;
2281 
2282     // If the following block is not the sole successor of
2283     // this one, then reset the pipeline information
2284     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2285 #ifndef PRODUCT
2286       if (_cfg->C->trace_opto_output()) {
2287         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2288                    _next_node->_idx, _bundle_instr_count);
2289       }
2290 #endif
2291       step_and_clear();
2292     }
2293 
2294     // Leave untouched the starting instruction, any Phis, a CreateEx node
2295     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2296     _bb_end = bb->_nodes.size()-1;
2297     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2298       Node *n = bb->_nodes[_bb_start];
2299       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2300       // Also, MachIdealNodes do not get scheduled
2301       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2302       MachNode *mach = n->as_Mach();
2303       int iop = mach->ideal_Opcode();
2304       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2305       if( iop == Op_Con ) continue;      // Do not schedule Top
2306       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2307           mach->pipeline() == MachNode::pipeline_class() &&
2308           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2309         continue;
2310       break;                    // Funny loop structure to be sure...
2311     }
2312     // Compute last "interesting" instruction in block - last instruction we
2313     // might schedule.  _bb_end points just after last schedulable inst.  We
2314     // normally schedule conditional branches (despite them being forced last
2315     // in the block), because they have delay slots we can fill.  Calls all
2316     // have their delay slots filled in the template expansions, so we don't
2317     // bother scheduling them.
2318     Node *last = bb->_nodes[_bb_end];
2319     if( last->is_Catch() ||
2320        // Exclude unreachable path case when Halt node is in a separate block.
2321        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2322       // There must be a prior call.  Skip it.
2323       while( !bb->_nodes[--_bb_end]->is_Call() ) {
2324         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2325       }
2326     } else if( last->is_MachNullCheck() ) {
2327       // Backup so the last null-checked memory instruction is
2328       // outside the schedulable range. Skip over the nullcheck,
2329       // projection, and the memory nodes.
2330       Node *mem = last->in(1);
2331       do {
2332         _bb_end--;
2333       } while (mem != bb->_nodes[_bb_end]);
2334     } else {
2335       // Set _bb_end to point after last schedulable inst.
2336       _bb_end++;
2337     }
2338 
2339     assert( _bb_start <= _bb_end, "inverted block ends" );
2340 
2341     // Compute the register antidependencies for the basic block
2342     ComputeRegisterAntidependencies(bb);
2343     if (_cfg->C->failing())  return;  // too many D-U pinch points
2344 
2345     // Compute intra-bb latencies for the nodes
2346     ComputeLocalLatenciesForward(bb);
2347 
2348     // Compute the usage within the block, and set the list of all nodes
2349     // in the block that have no uses within the block.
2350     ComputeUseCount(bb);
2351 
2352     // Schedule the remaining instructions in the block
2353     while ( _available.size() > 0 ) {
2354       Node *n = ChooseNodeToBundle();
2355       AddNodeToBundle(n,bb);
2356     }
2357 
2358     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2359 #ifdef ASSERT
2360     for( uint l = _bb_start; l < _bb_end; l++ ) {
2361       Node *n = bb->_nodes[l];
2362       uint m;
2363       for( m = 0; m < _bb_end-_bb_start; m++ )
2364         if( _scheduled[m] == n )
2365           break;
2366       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2367     }
2368 #endif
2369 
2370     // Now copy the instructions (in reverse order) back to the block
2371     for ( uint k = _bb_start; k < _bb_end; k++ )
2372       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2373 
2374 #ifndef PRODUCT
2375     if (_cfg->C->trace_opto_output()) {
2376       tty->print("#  Schedule BB#%03d (final)\n", i);
2377       uint current = 0;
2378       for (uint j = 0; j < bb->_nodes.size(); j++) {
2379         Node *n = bb->_nodes[j];
2380         if( valid_bundle_info(n) ) {
2381           Bundle *bundle = node_bundling(n);
2382           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2383             tty->print("*** Bundle: ");
2384             bundle->dump();
2385           }
2386           n->dump();
2387         }
2388       }
2389     }
2390 #endif
2391 #ifdef ASSERT
2392   verify_good_schedule(bb,"after block local scheduling");
2393 #endif
2394   }
2395 
2396 #ifndef PRODUCT
2397   if (_cfg->C->trace_opto_output())
2398     tty->print("# <- DoScheduling\n");
2399 #endif
2400 
2401   // Record final node-bundling array location
2402   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2403 
2404 } // end DoScheduling
2405 
2406 //------------------------------verify_good_schedule---------------------------
2407 // Verify that no live-range used in the block is killed in the block by a
2408 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2409 
2410 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2411 static bool edge_from_to( Node *from, Node *to ) {
2412   for( uint i=0; i<from->len(); i++ )
2413     if( from->in(i) == to )
2414       return true;
2415   return false;
2416 }
2417 
2418 #ifdef ASSERT
2419 //------------------------------verify_do_def----------------------------------
2420 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2421   // Check for bad kills
2422   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2423     Node *prior_use = _reg_node[def];
2424     if( prior_use && !edge_from_to(prior_use,n) ) {
2425       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2426       n->dump();
2427       tty->print_cr("...");
2428       prior_use->dump();
2429       assert(edge_from_to(prior_use,n),msg);
2430     }
2431     _reg_node.map(def,NULL); // Kill live USEs
2432   }
2433 }
2434 
2435 //------------------------------verify_good_schedule---------------------------
2436 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2437 
2438   // Zap to something reasonable for the verify code
2439   _reg_node.clear();
2440 
2441   // Walk over the block backwards.  Check to make sure each DEF doesn't
2442   // kill a live value (other than the one it's supposed to).  Add each
2443   // USE to the live set.
2444   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2445     Node *n = b->_nodes[i];
2446     int n_op = n->Opcode();
2447     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2448       // Fat-proj kills a slew of registers
2449       RegMask rm = n->out_RegMask();// Make local copy
2450       while( rm.is_NotEmpty() ) {
2451         OptoReg::Name kill = rm.find_first_elem();
2452         rm.Remove(kill);
2453         verify_do_def( n, kill, msg );
2454       }
2455     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2456       // Get DEF'd registers the normal way
2457       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2458       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2459     }
2460 
2461     // Now make all USEs live
2462     for( uint i=1; i<n->req(); i++ ) {
2463       Node *def = n->in(i);
2464       assert(def != 0, "input edge required");
2465       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2466       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2467       if( OptoReg::is_valid(reg_lo) ) {
2468         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2469         _reg_node.map(reg_lo,n);
2470       }
2471       if( OptoReg::is_valid(reg_hi) ) {
2472         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2473         _reg_node.map(reg_hi,n);
2474       }
2475     }
2476 
2477   }
2478 
2479   // Zap to something reasonable for the Antidependence code
2480   _reg_node.clear();
2481 }
2482 #endif
2483 
2484 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2485 static void add_prec_edge_from_to( Node *from, Node *to ) {
2486   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2487     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2488     from = from->in(0);
2489   }
2490   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2491       !edge_from_to( from, to ) ) // Avoid duplicate edge
2492     from->add_prec(to);
2493 }
2494 
2495 //------------------------------anti_do_def------------------------------------
2496 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2497   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2498     return;
2499 
2500   Node *pinch = _reg_node[def_reg]; // Get pinch point
2501   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2502       is_def ) {    // Check for a true def (not a kill)
2503     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2504     return;
2505   }
2506 
2507   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2508   debug_only( def = (Node*)0xdeadbeef; )
2509 
2510   // After some number of kills there _may_ be a later def
2511   Node *later_def = NULL;
2512 
2513   // Finding a kill requires a real pinch-point.
2514   // Check for not already having a pinch-point.
2515   // Pinch points are Op_Node's.
2516   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2517     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2518     if ( _pinch_free_list.size() > 0) {
2519       pinch = _pinch_free_list.pop();
2520     } else {
2521       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2522     }
2523     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2524       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2525       return;
2526     }
2527     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2528     _reg_node.map(def_reg,pinch); // Record pinch-point
2529     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2530     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2531       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2532       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2533       later_def = NULL;           // and no later def
2534     }
2535     pinch->set_req(0,later_def);  // Hook later def so we can find it
2536   } else {                        // Else have valid pinch point
2537     if( pinch->in(0) )            // If there is a later-def
2538       later_def = pinch->in(0);   // Get it
2539   }
2540 
2541   // Add output-dependence edge from later def to kill
2542   if( later_def )               // If there is some original def
2543     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2544 
2545   // See if current kill is also a use, and so is forced to be the pinch-point.
2546   if( pinch->Opcode() == Op_Node ) {
2547     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2548     for( uint i=1; i<uses->req(); i++ ) {
2549       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2550           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2551         // Yes, found a use/kill pinch-point
2552         pinch->set_req(0,NULL);  //
2553         pinch->replace_by(kill); // Move anti-dep edges up
2554         pinch = kill;
2555         _reg_node.map(def_reg,pinch);
2556         return;
2557       }
2558     }
2559   }
2560 
2561   // Add edge from kill to pinch-point
2562   add_prec_edge_from_to(kill,pinch);
2563 }
2564 
2565 //------------------------------anti_do_use------------------------------------
2566 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2567   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2568     return;
2569   Node *pinch = _reg_node[use_reg]; // Get pinch point
2570   // Check for no later def_reg/kill in block
2571   if( pinch && _bbs[pinch->_idx] == b &&
2572       // Use has to be block-local as well
2573       _bbs[use->_idx] == b ) {
2574     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2575         pinch->req() == 1 ) {   // pinch not yet in block?
2576       pinch->del_req(0);        // yank pointer to later-def, also set flag
2577       // Insert the pinch-point in the block just after the last use
2578       b->_nodes.insert(b->find_node(use)+1,pinch);
2579       _bb_end++;                // Increase size scheduled region in block
2580     }
2581 
2582     add_prec_edge_from_to(pinch,use);
2583   }
2584 }
2585 
2586 //------------------------------ComputeRegisterAntidependences-----------------
2587 // We insert antidependences between the reads and following write of
2588 // allocated registers to prevent illegal code motion. Hopefully, the
2589 // number of added references should be fairly small, especially as we
2590 // are only adding references within the current basic block.
2591 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2592 
2593 #ifdef ASSERT
2594   verify_good_schedule(b,"before block local scheduling");
2595 #endif
2596 
2597   // A valid schedule, for each register independently, is an endless cycle
2598   // of: a def, then some uses (connected to the def by true dependencies),
2599   // then some kills (defs with no uses), finally the cycle repeats with a new
2600   // def.  The uses are allowed to float relative to each other, as are the
2601   // kills.  No use is allowed to slide past a kill (or def).  This requires
2602   // antidependencies between all uses of a single def and all kills that
2603   // follow, up to the next def.  More edges are redundant, because later defs
2604   // & kills are already serialized with true or antidependencies.  To keep
2605   // the edge count down, we add a 'pinch point' node if there's more than
2606   // one use or more than one kill/def.
2607 
2608   // We add dependencies in one bottom-up pass.
2609 
2610   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2611 
2612   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2613   // register.  If not, we record the DEF/KILL in _reg_node, the
2614   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2615   // "pinch point", a new Node that's in the graph but not in the block.
2616   // We put edges from the prior and current DEF/KILLs to the pinch point.
2617   // We put the pinch point in _reg_node.  If there's already a pinch point
2618   // we merely add an edge from the current DEF/KILL to the pinch point.
2619 
2620   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2621   // put an edge from the pinch point to the USE.
2622 
2623   // To be expedient, the _reg_node array is pre-allocated for the whole
2624   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2625   // or a valid def/kill/pinch-point, or a leftover node from some prior
2626   // block.  Leftover node from some prior block is treated like a NULL (no
2627   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2628   // it being in the current block.
2629   bool fat_proj_seen = false;
2630   uint last_safept = _bb_end-1;
2631   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2632   Node* last_safept_node = end_node;
2633   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2634     Node *n = b->_nodes[i];
2635     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2636     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2637       // Fat-proj kills a slew of registers
2638       // This can add edges to 'n' and obscure whether or not it was a def,
2639       // hence the is_def flag.
2640       fat_proj_seen = true;
2641       RegMask rm = n->out_RegMask();// Make local copy
2642       while( rm.is_NotEmpty() ) {
2643         OptoReg::Name kill = rm.find_first_elem();
2644         rm.Remove(kill);
2645         anti_do_def( b, n, kill, is_def );
2646       }
2647     } else {
2648       // Get DEF'd registers the normal way
2649       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2650       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2651     }
2652 
2653     // Check each register used by this instruction for a following DEF/KILL
2654     // that must occur afterward and requires an anti-dependence edge.
2655     for( uint j=0; j<n->req(); j++ ) {
2656       Node *def = n->in(j);
2657       if( def ) {
2658         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2659         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2660         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2661       }
2662     }
2663     // Do not allow defs of new derived values to float above GC
2664     // points unless the base is definitely available at the GC point.
2665 
2666     Node *m = b->_nodes[i];
2667 
2668     // Add precedence edge from following safepoint to use of derived pointer
2669     if( last_safept_node != end_node &&
2670         m != last_safept_node) {
2671       for (uint k = 1; k < m->req(); k++) {
2672         const Type *t = m->in(k)->bottom_type();
2673         if( t->isa_oop_ptr() &&
2674             t->is_ptr()->offset() != 0 ) {
2675           last_safept_node->add_prec( m );
2676           break;
2677         }
2678       }
2679     }
2680 
2681     if( n->jvms() ) {           // Precedence edge from derived to safept
2682       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2683       if( b->_nodes[last_safept] != last_safept_node ) {
2684         last_safept = b->find_node(last_safept_node);
2685       }
2686       for( uint j=last_safept; j > i; j-- ) {
2687         Node *mach = b->_nodes[j];
2688         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2689           mach->add_prec( n );
2690       }
2691       last_safept = i;
2692       last_safept_node = m;
2693     }
2694   }
2695 
2696   if (fat_proj_seen) {
2697     // Garbage collect pinch nodes that were not consumed.
2698     // They are usually created by a fat kill MachProj for a call.
2699     garbage_collect_pinch_nodes();
2700   }
2701 }
2702 
2703 //------------------------------garbage_collect_pinch_nodes-------------------------------
2704 
2705 // Garbage collect pinch nodes for reuse by other blocks.
2706 //
2707 // The block scheduler's insertion of anti-dependence
2708 // edges creates many pinch nodes when the block contains
2709 // 2 or more Calls.  A pinch node is used to prevent a
2710 // combinatorial explosion of edges.  If a set of kills for a
2711 // register is anti-dependent on a set of uses (or defs), rather
2712 // than adding an edge in the graph between each pair of kill
2713 // and use (or def), a pinch is inserted between them:
2714 //
2715 //            use1   use2  use3
2716 //                \   |   /
2717 //                 \  |  /
2718 //                  pinch
2719 //                 /  |  \
2720 //                /   |   \
2721 //            kill1 kill2 kill3
2722 //
2723 // One pinch node is created per register killed when
2724 // the second call is encountered during a backwards pass
2725 // over the block.  Most of these pinch nodes are never
2726 // wired into the graph because the register is never
2727 // used or def'ed in the block.
2728 //
2729 void Scheduling::garbage_collect_pinch_nodes() {
2730 #ifndef PRODUCT
2731     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2732 #endif
2733     int trace_cnt = 0;
2734     for (uint k = 0; k < _reg_node.Size(); k++) {
2735       Node* pinch = _reg_node[k];
2736       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2737           // no predecence input edges
2738           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2739         cleanup_pinch(pinch);
2740         _pinch_free_list.push(pinch);
2741         _reg_node.map(k, NULL);
2742 #ifndef PRODUCT
2743         if (_cfg->C->trace_opto_output()) {
2744           trace_cnt++;
2745           if (trace_cnt > 40) {
2746             tty->print("\n");
2747             trace_cnt = 0;
2748           }
2749           tty->print(" %d", pinch->_idx);
2750         }
2751 #endif
2752       }
2753     }
2754 #ifndef PRODUCT
2755     if (_cfg->C->trace_opto_output()) tty->print("\n");
2756 #endif
2757 }
2758 
2759 // Clean up a pinch node for reuse.
2760 void Scheduling::cleanup_pinch( Node *pinch ) {
2761   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2762 
2763   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2764     Node* use = pinch->last_out(i);
2765     uint uses_found = 0;
2766     for (uint j = use->req(); j < use->len(); j++) {
2767       if (use->in(j) == pinch) {
2768         use->rm_prec(j);
2769         uses_found++;
2770       }
2771     }
2772     assert(uses_found > 0, "must be a precedence edge");
2773     i -= uses_found;    // we deleted 1 or more copies of this edge
2774   }
2775   // May have a later_def entry
2776   pinch->set_req(0, NULL);
2777 }
2778 
2779 //------------------------------print_statistics-------------------------------
2780 #ifndef PRODUCT
2781 
2782 void Scheduling::dump_available() const {
2783   tty->print("#Availist  ");
2784   for (uint i = 0; i < _available.size(); i++)
2785     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2786   tty->cr();
2787 }
2788 
2789 // Print Scheduling Statistics
2790 void Scheduling::print_statistics() {
2791   // Print the size added by nops for bundling
2792   tty->print("Nops added %d bytes to total of %d bytes",
2793     _total_nop_size, _total_method_size);
2794   if (_total_method_size > 0)
2795     tty->print(", for %.2f%%",
2796       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2797   tty->print("\n");
2798 
2799   // Print the number of branch shadows filled
2800   if (Pipeline::_branch_has_delay_slot) {
2801     tty->print("Of %d branches, %d had unconditional delay slots filled",
2802       _total_branches, _total_unconditional_delays);
2803     if (_total_branches > 0)
2804       tty->print(", for %.2f%%",
2805         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2806     tty->print("\n");
2807   }
2808 
2809   uint total_instructions = 0, total_bundles = 0;
2810 
2811   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2812     uint bundle_count   = _total_instructions_per_bundle[i];
2813     total_instructions += bundle_count * i;
2814     total_bundles      += bundle_count;
2815   }
2816 
2817   if (total_bundles > 0)
2818     tty->print("Average ILP (excluding nops) is %.2f\n",
2819       ((double)total_instructions) / ((double)total_bundles));
2820 }
2821 #endif