1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/matcher.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 extern int explicit_null_checks_inserted,
  44            explicit_null_checks_elided;
  45 
  46 //---------------------------------array_load----------------------------------
  47 void Parse::array_load(BasicType elem_type) {
  48   const Type* elem = Type::TOP;
  49   Node* adr = array_addressing(elem_type, 0, &elem);
  50   if (stopped())  return;     // guaranteed null or range check
  51   _sp -= 2;                   // Pop array and index
  52   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  53   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
  54   push(ld);
  55 }
  56 
  57 
  58 //--------------------------------array_store----------------------------------
  59 void Parse::array_store(BasicType elem_type) {
  60   Node* adr = array_addressing(elem_type, 1);
  61   if (stopped())  return;     // guaranteed null or range check
  62   Node* val = pop();
  63   _sp -= 2;                   // Pop array and index
  64   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  65   store_to_memory(control(), adr, val, elem_type, adr_type);
  66 }
  67 
  68 
  69 //------------------------------array_addressing-------------------------------
  70 // Pull array and index from the stack.  Compute pointer-to-element.
  71 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  72   Node *idx   = peek(0+vals);   // Get from stack without popping
  73   Node *ary   = peek(1+vals);   // in case of exception
  74 
  75   // Null check the array base, with correct stack contents
  76   ary = do_null_check(ary, T_ARRAY);
  77   // Compile-time detect of null-exception?
  78   if (stopped())  return top();
  79 
  80   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  81   const TypeInt*    sizetype = arytype->size();
  82   const Type*       elemtype = arytype->elem();
  83 
  84   if (UseUniqueSubclasses && result2 != NULL) {
  85     const Type* el = elemtype->make_ptr();
  86     if (el && el->isa_instptr()) {
  87       const TypeInstPtr* toop = el->is_instptr();
  88       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
  89         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
  90         const Type* subklass = Type::get_const_type(toop->klass());
  91         elemtype = subklass->join(el);
  92       }
  93     }
  94   }
  95 
  96   // Check for big class initializers with all constant offsets
  97   // feeding into a known-size array.
  98   const TypeInt* idxtype = _gvn.type(idx)->is_int();
  99   // See if the highest idx value is less than the lowest array bound,
 100   // and if the idx value cannot be negative:
 101   bool need_range_check = true;
 102   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 103     need_range_check = false;
 104     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 105   }
 106 
 107   if (!arytype->klass()->is_loaded()) {
 108     // Only fails for some -Xcomp runs
 109     // The class is unloaded.  We have to run this bytecode in the interpreter.
 110     uncommon_trap(Deoptimization::Reason_unloaded,
 111                   Deoptimization::Action_reinterpret,
 112                   arytype->klass(), "!loaded array");
 113     return top();
 114   }
 115 
 116   // Do the range check
 117   if (GenerateRangeChecks && need_range_check) {
 118     Node* tst;
 119     if (sizetype->_hi <= 0) {
 120       // The greatest array bound is negative, so we can conclude that we're
 121       // compiling unreachable code, but the unsigned compare trick used below
 122       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 123       // the uncommon_trap path will always be taken.
 124       tst = _gvn.intcon(0);
 125     } else {
 126       // Range is constant in array-oop, so we can use the original state of mem
 127       Node* len = load_array_length(ary);
 128 
 129       // Test length vs index (standard trick using unsigned compare)
 130       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
 131       BoolTest::mask btest = BoolTest::lt;
 132       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
 133     }
 134     // Branch to failure if out of bounds
 135     { BuildCutout unless(this, tst, PROB_MAX);
 136       if (C->allow_range_check_smearing()) {
 137         // Do not use builtin_throw, since range checks are sometimes
 138         // made more stringent by an optimistic transformation.
 139         // This creates "tentative" range checks at this point,
 140         // which are not guaranteed to throw exceptions.
 141         // See IfNode::Ideal, is_range_check, adjust_check.
 142         uncommon_trap(Deoptimization::Reason_range_check,
 143                       Deoptimization::Action_make_not_entrant,
 144                       NULL, "range_check");
 145       } else {
 146         // If we have already recompiled with the range-check-widening
 147         // heroic optimization turned off, then we must really be throwing
 148         // range check exceptions.
 149         builtin_throw(Deoptimization::Reason_range_check, idx);
 150       }
 151     }
 152   }
 153   // Check for always knowing you are throwing a range-check exception
 154   if (stopped())  return top();
 155 
 156   Node* ptr = array_element_address(ary, idx, type, sizetype);
 157 
 158   if (result2 != NULL)  *result2 = elemtype;
 159 
 160   assert(ptr != top(), "top should go hand-in-hand with stopped");
 161 
 162   return ptr;
 163 }
 164 
 165 
 166 // returns IfNode
 167 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 168   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 169   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
 170   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 171   return iff;
 172 }
 173 
 174 // return Region node
 175 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 176   Node *region  = new (C, 3) RegionNode(3); // 2 results
 177   record_for_igvn(region);
 178   region->init_req(1, iffalse);
 179   region->init_req(2, iftrue );
 180   _gvn.set_type(region, Type::CONTROL);
 181   region = _gvn.transform(region);
 182   set_control (region);
 183   return region;
 184 }
 185 
 186 
 187 //------------------------------helper for tableswitch-------------------------
 188 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 189   // True branch, use existing map info
 190   { PreserveJVMState pjvms(this);
 191     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
 192     set_control( iftrue );
 193     profile_switch_case(prof_table_index);
 194     merge_new_path(dest_bci_if_true);
 195   }
 196 
 197   // False branch
 198   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 199   set_control( iffalse );
 200 }
 201 
 202 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 203   // True branch, use existing map info
 204   { PreserveJVMState pjvms(this);
 205     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
 206     set_control( iffalse );
 207     profile_switch_case(prof_table_index);
 208     merge_new_path(dest_bci_if_true);
 209   }
 210 
 211   // False branch
 212   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 213   set_control( iftrue );
 214 }
 215 
 216 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 217   // False branch, use existing map and control()
 218   profile_switch_case(prof_table_index);
 219   merge_new_path(dest_bci);
 220 }
 221 
 222 
 223 extern "C" {
 224   static int jint_cmp(const void *i, const void *j) {
 225     int a = *(jint *)i;
 226     int b = *(jint *)j;
 227     return a > b ? 1 : a < b ? -1 : 0;
 228   }
 229 }
 230 
 231 
 232 // Default value for methodData switch indexing. Must be a negative value to avoid
 233 // conflict with any legal switch index.
 234 #define NullTableIndex -1
 235 
 236 class SwitchRange : public StackObj {
 237   // a range of integers coupled with a bci destination
 238   jint _lo;                     // inclusive lower limit
 239   jint _hi;                     // inclusive upper limit
 240   int _dest;
 241   int _table_index;             // index into method data table
 242 
 243 public:
 244   jint lo() const              { return _lo;   }
 245   jint hi() const              { return _hi;   }
 246   int  dest() const            { return _dest; }
 247   int  table_index() const     { return _table_index; }
 248   bool is_singleton() const    { return _lo == _hi; }
 249 
 250   void setRange(jint lo, jint hi, int dest, int table_index) {
 251     assert(lo <= hi, "must be a non-empty range");
 252     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 253   }
 254   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 255     assert(lo <= hi, "must be a non-empty range");
 256     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 257       _hi = hi;
 258       return true;
 259     }
 260     return false;
 261   }
 262 
 263   void set (jint value, int dest, int table_index) {
 264     setRange(value, value, dest, table_index);
 265   }
 266   bool adjoin(jint value, int dest, int table_index) {
 267     return adjoinRange(value, value, dest, table_index);
 268   }
 269 
 270   void print(ciEnv* env) {
 271     if (is_singleton())
 272       tty->print(" {%d}=>%d", lo(), dest());
 273     else if (lo() == min_jint)
 274       tty->print(" {..%d}=>%d", hi(), dest());
 275     else if (hi() == max_jint)
 276       tty->print(" {%d..}=>%d", lo(), dest());
 277     else
 278       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 279   }
 280 };
 281 
 282 
 283 //-------------------------------do_tableswitch--------------------------------
 284 void Parse::do_tableswitch() {
 285   Node* lookup = pop();
 286 
 287   // Get information about tableswitch
 288   int default_dest = iter().get_dest_table(0);
 289   int lo_index     = iter().get_int_table(1);
 290   int hi_index     = iter().get_int_table(2);
 291   int len          = hi_index - lo_index + 1;
 292 
 293   if (len < 1) {
 294     // If this is a backward branch, add safepoint
 295     maybe_add_safepoint(default_dest);
 296     if (should_add_predicate(default_dest)){
 297       _sp += 1; // set original stack for use by uncommon_trap
 298       add_predicate();
 299       _sp -= 1;
 300     }
 301     merge(default_dest);
 302     return;
 303   }
 304 
 305   // generate decision tree, using trichotomy when possible
 306   int rnum = len+2;
 307   bool makes_backward_branch = false;
 308   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 309   int rp = -1;
 310   if (lo_index != min_jint) {
 311     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 312   }
 313   for (int j = 0; j < len; j++) {
 314     jint match_int = lo_index+j;
 315     int  dest      = iter().get_dest_table(j+3);
 316     makes_backward_branch |= (dest <= bci());
 317     int  table_index = method_data_update() ? j : NullTableIndex;
 318     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 319       ranges[++rp].set(match_int, dest, table_index);
 320     }
 321   }
 322   jint highest = lo_index+(len-1);
 323   assert(ranges[rp].hi() == highest, "");
 324   if (highest != max_jint
 325       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 326     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 327   }
 328   assert(rp < len+2, "not too many ranges");
 329 
 330   // Safepoint in case if backward branch observed
 331   if( makes_backward_branch && UseLoopSafepoints )
 332     add_safepoint();
 333 
 334   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 335 }
 336 
 337 
 338 //------------------------------do_lookupswitch--------------------------------
 339 void Parse::do_lookupswitch() {
 340   Node *lookup = pop();         // lookup value
 341   // Get information about lookupswitch
 342   int default_dest = iter().get_dest_table(0);
 343   int len          = iter().get_int_table(1);
 344 
 345   if (len < 1) {    // If this is a backward branch, add safepoint
 346     maybe_add_safepoint(default_dest);
 347     if (should_add_predicate(default_dest)){
 348       _sp += 1; // set original stack for use by uncommon_trap
 349       add_predicate();
 350       _sp -= 1;
 351     }
 352     merge(default_dest);
 353     return;
 354   }
 355 
 356   // generate decision tree, using trichotomy when possible
 357   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 358   {
 359     for( int j = 0; j < len; j++ ) {
 360       table[j+j+0] = iter().get_int_table(2+j+j);
 361       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 362     }
 363     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 364   }
 365 
 366   int rnum = len*2+1;
 367   bool makes_backward_branch = false;
 368   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 369   int rp = -1;
 370   for( int j = 0; j < len; j++ ) {
 371     jint match_int   = table[j+j+0];
 372     int  dest        = table[j+j+1];
 373     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 374     int  table_index = method_data_update() ? j : NullTableIndex;
 375     makes_backward_branch |= (dest <= bci());
 376     if( match_int != next_lo ) {
 377       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 378     }
 379     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 380       ranges[++rp].set(match_int, dest, table_index);
 381     }
 382   }
 383   jint highest = table[2*(len-1)];
 384   assert(ranges[rp].hi() == highest, "");
 385   if( highest != max_jint
 386       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 387     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 388   }
 389   assert(rp < rnum, "not too many ranges");
 390 
 391   // Safepoint in case backward branch observed
 392   if( makes_backward_branch && UseLoopSafepoints )
 393     add_safepoint();
 394 
 395   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 396 }
 397 
 398 //----------------------------create_jump_tables-------------------------------
 399 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 400   // Are jumptables enabled
 401   if (!UseJumpTables)  return false;
 402 
 403   // Are jumptables supported
 404   if (!Matcher::has_match_rule(Op_Jump))  return false;
 405 
 406   // Don't make jump table if profiling
 407   if (method_data_update())  return false;
 408 
 409   // Decide if a guard is needed to lop off big ranges at either (or
 410   // both) end(s) of the input set. We'll call this the default target
 411   // even though we can't be sure that it is the true "default".
 412 
 413   bool needs_guard = false;
 414   int default_dest;
 415   int64 total_outlier_size = 0;
 416   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
 417   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
 418 
 419   if (lo->dest() == hi->dest()) {
 420     total_outlier_size = hi_size + lo_size;
 421     default_dest = lo->dest();
 422   } else if (lo_size > hi_size) {
 423     total_outlier_size = lo_size;
 424     default_dest = lo->dest();
 425   } else {
 426     total_outlier_size = hi_size;
 427     default_dest = hi->dest();
 428   }
 429 
 430   // If a guard test will eliminate very sparse end ranges, then
 431   // it is worth the cost of an extra jump.
 432   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 433     needs_guard = true;
 434     if (default_dest == lo->dest()) lo++;
 435     if (default_dest == hi->dest()) hi--;
 436   }
 437 
 438   // Find the total number of cases and ranges
 439   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
 440   int num_range = hi - lo + 1;
 441 
 442   // Don't create table if: too large, too small, or too sparse.
 443   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 444     return false;
 445   if (num_cases > (MaxJumpTableSparseness * num_range))
 446     return false;
 447 
 448   // Normalize table lookups to zero
 449   int lowval = lo->lo();
 450   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
 451 
 452   // Generate a guard to protect against input keyvals that aren't
 453   // in the switch domain.
 454   if (needs_guard) {
 455     Node*   size = _gvn.intcon(num_cases);
 456     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
 457     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
 458     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 459     jump_if_true_fork(iff, default_dest, NullTableIndex);
 460   }
 461 
 462   // Create an ideal node JumpTable that has projections
 463   // of all possible ranges for a switch statement
 464   // The key_val input must be converted to a pointer offset and scaled.
 465   // Compare Parse::array_addressing above.
 466 #ifdef _LP64
 467   // Clean the 32-bit int into a real 64-bit offset.
 468   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 469   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
 470   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
 471 #endif
 472   // Shift the value by wordsize so we have an index into the table, rather
 473   // than a switch value
 474   Node *shiftWord = _gvn.MakeConX(wordSize);
 475   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
 476 
 477   // Create the JumpNode
 478   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
 479 
 480   // These are the switch destinations hanging off the jumpnode
 481   int i = 0;
 482   for (SwitchRange* r = lo; r <= hi; r++) {
 483     for (int j = r->lo(); j <= r->hi(); j++, i++) {
 484       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
 485       {
 486         PreserveJVMState pjvms(this);
 487         set_control(input);
 488         jump_if_always_fork(r->dest(), r->table_index());
 489       }
 490     }
 491   }
 492   assert(i == num_cases, "miscount of cases");
 493   stop_and_kill_map();  // no more uses for this JVMS
 494   return true;
 495 }
 496 
 497 //----------------------------jump_switch_ranges-------------------------------
 498 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 499   Block* switch_block = block();
 500 
 501   if (switch_depth == 0) {
 502     // Do special processing for the top-level call.
 503     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 504     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 505 
 506     // Decrement pred-numbers for the unique set of nodes.
 507 #ifdef ASSERT
 508     // Ensure that the block's successors are a (duplicate-free) set.
 509     int successors_counted = 0;  // block occurrences in [hi..lo]
 510     int unique_successors = switch_block->num_successors();
 511     for (int i = 0; i < unique_successors; i++) {
 512       Block* target = switch_block->successor_at(i);
 513 
 514       // Check that the set of successors is the same in both places.
 515       int successors_found = 0;
 516       for (SwitchRange* p = lo; p <= hi; p++) {
 517         if (p->dest() == target->start())  successors_found++;
 518       }
 519       assert(successors_found > 0, "successor must be known");
 520       successors_counted += successors_found;
 521     }
 522     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 523 #endif
 524 
 525     // Maybe prune the inputs, based on the type of key_val.
 526     jint min_val = min_jint;
 527     jint max_val = max_jint;
 528     const TypeInt* ti = key_val->bottom_type()->isa_int();
 529     if (ti != NULL) {
 530       min_val = ti->_lo;
 531       max_val = ti->_hi;
 532       assert(min_val <= max_val, "invalid int type");
 533     }
 534     while (lo->hi() < min_val)  lo++;
 535     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 536     while (hi->lo() > max_val)  hi--;
 537     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 538   }
 539 
 540 #ifndef PRODUCT
 541   if (switch_depth == 0) {
 542     _max_switch_depth = 0;
 543     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 544   }
 545 #endif
 546 
 547   assert(lo <= hi, "must be a non-empty set of ranges");
 548   if (lo == hi) {
 549     jump_if_always_fork(lo->dest(), lo->table_index());
 550   } else {
 551     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 552     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 553 
 554     if (create_jump_tables(key_val, lo, hi)) return;
 555 
 556     int nr = hi - lo + 1;
 557 
 558     SwitchRange* mid = lo + nr/2;
 559     // if there is an easy choice, pivot at a singleton:
 560     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 561 
 562     assert(lo < mid && mid <= hi, "good pivot choice");
 563     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 564     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 565 
 566     Node *test_val = _gvn.intcon(mid->lo());
 567 
 568     if (mid->is_singleton()) {
 569       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 570       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 571 
 572       // Special Case:  If there are exactly three ranges, and the high
 573       // and low range each go to the same place, omit the "gt" test,
 574       // since it will not discriminate anything.
 575       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 576       if (eq_test_only) {
 577         assert(mid == hi-1, "");
 578       }
 579 
 580       // if there is a higher range, test for it and process it:
 581       if (mid < hi && !eq_test_only) {
 582         // two comparisons of same values--should enable 1 test for 2 branches
 583         // Use BoolTest::le instead of BoolTest::gt
 584         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 585         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
 586         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
 587         { PreserveJVMState pjvms(this);
 588           set_control(iffalse);
 589           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 590         }
 591         set_control(iftrue);
 592       }
 593 
 594     } else {
 595       // mid is a range, not a singleton, so treat mid..hi as a unit
 596       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 597 
 598       // if there is a higher range, test for it and process it:
 599       if (mid == hi) {
 600         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 601       } else {
 602         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
 603         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
 604         { PreserveJVMState pjvms(this);
 605           set_control(iftrue);
 606           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 607         }
 608         set_control(iffalse);
 609       }
 610     }
 611 
 612     // in any case, process the lower range
 613     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 614   }
 615 
 616   // Decrease pred_count for each successor after all is done.
 617   if (switch_depth == 0) {
 618     int unique_successors = switch_block->num_successors();
 619     for (int i = 0; i < unique_successors; i++) {
 620       Block* target = switch_block->successor_at(i);
 621       // Throw away the pre-allocated path for each unique successor.
 622       target->next_path_num();
 623     }
 624   }
 625 
 626 #ifndef PRODUCT
 627   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 628   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 629     SwitchRange* r;
 630     int nsing = 0;
 631     for( r = lo; r <= hi; r++ ) {
 632       if( r->is_singleton() )  nsing++;
 633     }
 634     tty->print(">>> ");
 635     _method->print_short_name();
 636     tty->print_cr(" switch decision tree");
 637     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 638                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
 639     if (_max_switch_depth > _est_switch_depth) {
 640       tty->print_cr("******** BAD SWITCH DEPTH ********");
 641     }
 642     tty->print("   ");
 643     for( r = lo; r <= hi; r++ ) {
 644       r->print(env());
 645     }
 646     tty->print_cr("");
 647   }
 648 #endif
 649 }
 650 
 651 void Parse::modf() {
 652   Node *f2 = pop();
 653   Node *f1 = pop();
 654   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 655                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 656                               "frem", NULL, //no memory effects
 657                               f1, f2);
 658   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 659 
 660   push(res);
 661 }
 662 
 663 void Parse::modd() {
 664   Node *d2 = pop_pair();
 665   Node *d1 = pop_pair();
 666   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 667                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 668                               "drem", NULL, //no memory effects
 669                               d1, top(), d2, top());
 670   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 671 
 672 #ifdef ASSERT
 673   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
 674   assert(res_top == top(), "second value must be top");
 675 #endif
 676 
 677   push_pair(res_d);
 678 }
 679 
 680 void Parse::l2f() {
 681   Node* f2 = pop();
 682   Node* f1 = pop();
 683   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 684                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 685                               "l2f", NULL, //no memory effects
 686                               f1, f2);
 687   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 688 
 689   push(res);
 690 }
 691 
 692 void Parse::do_irem() {
 693   // Must keep both values on the expression-stack during null-check
 694   do_null_check(peek(), T_INT);
 695   // Compile-time detect of null-exception?
 696   if (stopped())  return;
 697 
 698   Node* b = pop();
 699   Node* a = pop();
 700 
 701   const Type *t = _gvn.type(b);
 702   if (t != Type::TOP) {
 703     const TypeInt *ti = t->is_int();
 704     if (ti->is_con()) {
 705       int divisor = ti->get_con();
 706       // check for positive power of 2
 707       if (divisor > 0 &&
 708           (divisor & ~(divisor-1)) == divisor) {
 709         // yes !
 710         Node *mask = _gvn.intcon((divisor - 1));
 711         // Sigh, must handle negative dividends
 712         Node *zero = _gvn.intcon(0);
 713         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 714         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
 715         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
 716         Node *reg = jump_if_join(ift, iff);
 717         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 718         // Negative path; negate/and/negate
 719         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
 720         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
 721         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
 722         phi->init_req(1, negn);
 723         // Fast positive case
 724         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
 725         phi->init_req(2, andx);
 726         // Push the merge
 727         push( _gvn.transform(phi) );
 728         return;
 729       }
 730     }
 731   }
 732   // Default case
 733   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
 734 }
 735 
 736 // Handle jsr and jsr_w bytecode
 737 void Parse::do_jsr() {
 738   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 739 
 740   // Store information about current state, tagged with new _jsr_bci
 741   int return_bci = iter().next_bci();
 742   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 743 
 744   // Update method data
 745   profile_taken_branch(jsr_bci);
 746 
 747   // The way we do things now, there is only one successor block
 748   // for the jsr, because the target code is cloned by ciTypeFlow.
 749   Block* target = successor_for_bci(jsr_bci);
 750 
 751   // What got pushed?
 752   const Type* ret_addr = target->peek();
 753   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 754 
 755   // Effect on jsr on stack
 756   push(_gvn.makecon(ret_addr));
 757 
 758   // Flow to the jsr.
 759   if (should_add_predicate(jsr_bci)){
 760     add_predicate();
 761   }
 762   merge(jsr_bci);
 763 }
 764 
 765 // Handle ret bytecode
 766 void Parse::do_ret() {
 767   // Find to whom we return.
 768 #if 0 // %%%% MAKE THIS WORK
 769   Node* con = local();
 770   const TypePtr* tp = con->bottom_type()->isa_ptr();
 771   assert(tp && tp->singleton(), "");
 772   int return_bci = (int) tp->get_con();
 773   merge(return_bci);
 774 #else
 775   assert(block()->num_successors() == 1, "a ret can only go one place now");
 776   Block* target = block()->successor_at(0);
 777   assert(!target->is_ready(), "our arrival must be expected");
 778   profile_ret(target->flow()->start());
 779   int pnum = target->next_path_num();
 780   merge_common(target, pnum);
 781 #endif
 782 }
 783 
 784 //--------------------------dynamic_branch_prediction--------------------------
 785 // Try to gather dynamic branch prediction behavior.  Return a probability
 786 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 787 // if we need to use static prediction for some reason.
 788 float Parse::dynamic_branch_prediction(float &cnt) {
 789   ResourceMark rm;
 790 
 791   cnt  = COUNT_UNKNOWN;
 792 
 793   // Use MethodData information if it is available
 794   // FIXME: free the ProfileData structure
 795   ciMethodData* methodData = method()->method_data();
 796   if (!methodData->is_mature())  return PROB_UNKNOWN;
 797   ciProfileData* data = methodData->bci_to_data(bci());
 798   if (!data->is_JumpData())  return PROB_UNKNOWN;
 799 
 800   // get taken and not taken values
 801   int     taken = data->as_JumpData()->taken();
 802   int not_taken = 0;
 803   if (data->is_BranchData()) {
 804     not_taken = data->as_BranchData()->not_taken();
 805   }
 806 
 807   // scale the counts to be commensurate with invocation counts:
 808   taken = method()->scale_count(taken);
 809   not_taken = method()->scale_count(not_taken);
 810 
 811   // Give up if too few counts to be meaningful
 812   if (taken + not_taken < 40) {
 813     if (C->log() != NULL) {
 814       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 815     }
 816     return PROB_UNKNOWN;
 817   }
 818 
 819   // Compute frequency that we arrive here
 820   int sum = taken + not_taken;
 821   // Adjust, if this block is a cloned private block but the
 822   // Jump counts are shared.  Taken the private counts for
 823   // just this path instead of the shared counts.
 824   if( block()->count() > 0 )
 825     sum = block()->count();
 826   cnt = (float)sum / (float)FreqCountInvocations;
 827 
 828   // Pin probability to sane limits
 829   float prob;
 830   if( !taken )
 831     prob = (0+PROB_MIN) / 2;
 832   else if( !not_taken )
 833     prob = (1+PROB_MAX) / 2;
 834   else {                         // Compute probability of true path
 835     prob = (float)taken / (float)(taken + not_taken);
 836     if (prob > PROB_MAX)  prob = PROB_MAX;
 837     if (prob < PROB_MIN)   prob = PROB_MIN;
 838   }
 839 
 840   assert((cnt > 0.0f) && (prob > 0.0f),
 841          "Bad frequency assignment in if");
 842 
 843   if (C->log() != NULL) {
 844     const char* prob_str = NULL;
 845     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 846     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 847     char prob_str_buf[30];
 848     if (prob_str == NULL) {
 849       sprintf(prob_str_buf, "%g", prob);
 850       prob_str = prob_str_buf;
 851     }
 852     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
 853                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 854   }
 855   return prob;
 856 }
 857 
 858 //-----------------------------branch_prediction-------------------------------
 859 float Parse::branch_prediction(float& cnt,
 860                                BoolTest::mask btest,
 861                                int target_bci) {
 862   float prob = dynamic_branch_prediction(cnt);
 863   // If prob is unknown, switch to static prediction
 864   if (prob != PROB_UNKNOWN)  return prob;
 865 
 866   prob = PROB_FAIR;                   // Set default value
 867   if (btest == BoolTest::eq)          // Exactly equal test?
 868     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 869   else if (btest == BoolTest::ne)
 870     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 871 
 872   // If this is a conditional test guarding a backwards branch,
 873   // assume its a loop-back edge.  Make it a likely taken branch.
 874   if (target_bci < bci()) {
 875     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 876       // Since it's an OSR, we probably have profile data, but since
 877       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 878       // Let's make a special check here for completely zero counts.
 879       ciMethodData* methodData = method()->method_data();
 880       if (!methodData->is_empty()) {
 881         ciProfileData* data = methodData->bci_to_data(bci());
 882         // Only stop for truly zero counts, which mean an unknown part
 883         // of the OSR-ed method, and we want to deopt to gather more stats.
 884         // If you have ANY counts, then this loop is simply 'cold' relative
 885         // to the OSR loop.
 886         if (data->as_BranchData()->taken() +
 887             data->as_BranchData()->not_taken() == 0 ) {
 888           // This is the only way to return PROB_UNKNOWN:
 889           return PROB_UNKNOWN;
 890         }
 891       }
 892     }
 893     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 894   }
 895 
 896   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 897   return prob;
 898 }
 899 
 900 // The magic constants are chosen so as to match the output of
 901 // branch_prediction() when the profile reports a zero taken count.
 902 // It is important to distinguish zero counts unambiguously, because
 903 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 904 // very small but nonzero probabilities, which if confused with zero
 905 // counts would keep the program recompiling indefinitely.
 906 bool Parse::seems_never_taken(float prob) {
 907   return prob < PROB_MIN;
 908 }
 909 
 910 // True if the comparison seems to be the kind that will not change its
 911 // statistics from true to false.  See comments in adjust_map_after_if.
 912 // This question is only asked along paths which are already
 913 // classifed as untaken (by seems_never_taken), so really,
 914 // if a path is never taken, its controlling comparison is
 915 // already acting in a stable fashion.  If the comparison
 916 // seems stable, we will put an expensive uncommon trap
 917 // on the untaken path.  To be conservative, and to allow
 918 // partially executed counted loops to be compiled fully,
 919 // we will plant uncommon traps only after pointer comparisons.
 920 bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
 921   for (int depth = 4; depth > 0; depth--) {
 922     // The following switch can find CmpP here over half the time for
 923     // dynamic language code rich with type tests.
 924     // Code using counted loops or array manipulations (typical
 925     // of benchmarks) will have many (>80%) CmpI instructions.
 926     switch (cmp->Opcode()) {
 927     case Op_CmpP:
 928       // A never-taken null check looks like CmpP/BoolTest::eq.
 929       // These certainly should be closed off as uncommon traps.
 930       if (btest == BoolTest::eq)
 931         return true;
 932       // A never-failed type check looks like CmpP/BoolTest::ne.
 933       // Let's put traps on those, too, so that we don't have to compile
 934       // unused paths with indeterminate dynamic type information.
 935       if (ProfileDynamicTypes)
 936         return true;
 937       return false;
 938 
 939     case Op_CmpI:
 940       // A small minority (< 10%) of CmpP are masked as CmpI,
 941       // as if by boolean conversion ((p == q? 1: 0) != 0).
 942       // Detect that here, even if it hasn't optimized away yet.
 943       // Specifically, this covers the 'instanceof' operator.
 944       if (btest == BoolTest::ne || btest == BoolTest::eq) {
 945         if (_gvn.type(cmp->in(2))->singleton() &&
 946             cmp->in(1)->is_Phi()) {
 947           PhiNode* phi = cmp->in(1)->as_Phi();
 948           int true_path = phi->is_diamond_phi();
 949           if (true_path > 0 &&
 950               _gvn.type(phi->in(1))->singleton() &&
 951               _gvn.type(phi->in(2))->singleton()) {
 952             // phi->region->if_proj->ifnode->bool->cmp
 953             BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
 954             btest = bol->_test._test;
 955             cmp = bol->in(1);
 956             continue;
 957           }
 958         }
 959       }
 960       return false;
 961     }
 962   }
 963   return false;
 964 }
 965 
 966 //-------------------------------repush_if_args--------------------------------
 967 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 968 inline int Parse::repush_if_args() {
 969 #ifndef PRODUCT
 970   if (PrintOpto && WizardMode) {
 971     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 972                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 973     method()->print_name(); tty->cr();
 974   }
 975 #endif
 976   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 977   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 978   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 979   assert(argument(0) != NULL, "must exist");
 980   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 981   _sp += bc_depth;
 982   return bc_depth;
 983 }
 984 
 985 //----------------------------------do_ifnull----------------------------------
 986 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 987   int target_bci = iter().get_dest();
 988 
 989   Block* branch_block = successor_for_bci(target_bci);
 990   Block* next_block   = successor_for_bci(iter().next_bci());
 991 
 992   float cnt;
 993   float prob = branch_prediction(cnt, btest, target_bci);
 994   if (prob == PROB_UNKNOWN) {
 995     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 996 #ifndef PRODUCT
 997     if (PrintOpto && Verbose)
 998       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
 999 #endif
1000     repush_if_args(); // to gather stats on loop
1001     // We need to mark this branch as taken so that if we recompile we will
1002     // see that it is possible. In the tiered system the interpreter doesn't
1003     // do profiling and by the time we get to the lower tier from the interpreter
1004     // the path may be cold again. Make sure it doesn't look untaken
1005     profile_taken_branch(target_bci, !ProfileInterpreter);
1006     uncommon_trap(Deoptimization::Reason_unreached,
1007                   Deoptimization::Action_reinterpret,
1008                   NULL, "cold");
1009     if (EliminateAutoBox) {
1010       // Mark the successor blocks as parsed
1011       branch_block->next_path_num();
1012       next_block->next_path_num();
1013     }
1014     return;
1015   }
1016 
1017   explicit_null_checks_inserted++;
1018 
1019   // Generate real control flow
1020   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
1021 
1022   // Sanity check the probability value
1023   assert(prob > 0.0f,"Bad probability in Parser");
1024  // Need xform to put node in hash table
1025   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1026   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1027   // True branch
1028   { PreserveJVMState pjvms(this);
1029     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
1030     set_control(iftrue);
1031 
1032     if (stopped()) {            // Path is dead?
1033       explicit_null_checks_elided++;
1034       if (EliminateAutoBox) {
1035         // Mark the successor block as parsed
1036         branch_block->next_path_num();
1037       }
1038     } else {                    // Path is live.
1039       // Update method data
1040       profile_taken_branch(target_bci);
1041       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1042       if (!stopped()) {
1043         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
1044           int nargs = repush_if_args(); // set original stack for uncommon_trap
1045           add_predicate();
1046           _sp -= nargs;
1047         }
1048         merge(target_bci);
1049       }
1050     }
1051   }
1052 
1053   // False branch
1054   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
1055   set_control(iffalse);
1056 
1057   if (stopped()) {              // Path is dead?
1058     explicit_null_checks_elided++;
1059     if (EliminateAutoBox) {
1060       // Mark the successor block as parsed
1061       next_block->next_path_num();
1062     }
1063   } else  {                     // Path is live.
1064     // Update method data
1065     profile_not_taken_branch();
1066     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1067                         next_block, branch_block);
1068   }
1069 }
1070 
1071 //------------------------------------do_if------------------------------------
1072 void Parse::do_if(BoolTest::mask btest, Node* c) {
1073   int target_bci = iter().get_dest();
1074 
1075   Block* branch_block = successor_for_bci(target_bci);
1076   Block* next_block   = successor_for_bci(iter().next_bci());
1077 
1078   float cnt;
1079   float prob = branch_prediction(cnt, btest, target_bci);
1080   float untaken_prob = 1.0 - prob;
1081 
1082   if (prob == PROB_UNKNOWN) {
1083 #ifndef PRODUCT
1084     if (PrintOpto && Verbose)
1085       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1086 #endif
1087     repush_if_args(); // to gather stats on loop
1088     // We need to mark this branch as taken so that if we recompile we will
1089     // see that it is possible. In the tiered system the interpreter doesn't
1090     // do profiling and by the time we get to the lower tier from the interpreter
1091     // the path may be cold again. Make sure it doesn't look untaken
1092     profile_taken_branch(target_bci, !ProfileInterpreter);
1093     uncommon_trap(Deoptimization::Reason_unreached,
1094                   Deoptimization::Action_reinterpret,
1095                   NULL, "cold");
1096     if (EliminateAutoBox) {
1097       // Mark the successor blocks as parsed
1098       branch_block->next_path_num();
1099       next_block->next_path_num();
1100     }
1101     return;
1102   }
1103 
1104   // Sanity check the probability value
1105   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1106 
1107   bool taken_if_true = true;
1108   // Convert BoolTest to canonical form:
1109   if (!BoolTest(btest).is_canonical()) {
1110     btest         = BoolTest(btest).negate();
1111     taken_if_true = false;
1112     // prob is NOT updated here; it remains the probability of the taken
1113     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1114   }
1115   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1116 
1117   Node* tst0 = new (C, 2) BoolNode(c, btest);
1118   Node* tst = _gvn.transform(tst0);
1119   BoolTest::mask taken_btest   = BoolTest::illegal;
1120   BoolTest::mask untaken_btest = BoolTest::illegal;
1121 
1122   if (tst->is_Bool()) {
1123     // Refresh c from the transformed bool node, since it may be
1124     // simpler than the original c.  Also re-canonicalize btest.
1125     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1126     // That can arise from statements like: if (x instanceof C) ...
1127     if (tst != tst0) {
1128       // Canonicalize one more time since transform can change it.
1129       btest = tst->as_Bool()->_test._test;
1130       if (!BoolTest(btest).is_canonical()) {
1131         // Reverse edges one more time...
1132         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1133         btest = tst->as_Bool()->_test._test;
1134         assert(BoolTest(btest).is_canonical(), "sanity");
1135         taken_if_true = !taken_if_true;
1136       }
1137       c = tst->in(1);
1138     }
1139     BoolTest::mask neg_btest = BoolTest(btest).negate();
1140     taken_btest   = taken_if_true ?     btest : neg_btest;
1141     untaken_btest = taken_if_true ? neg_btest :     btest;
1142   }
1143 
1144   // Generate real control flow
1145   float true_prob = (taken_if_true ? prob : untaken_prob);
1146   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1147   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1148   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
1149   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
1150   if (!taken_if_true) {  // Finish conversion to canonical form
1151     Node* tmp      = taken_branch;
1152     taken_branch   = untaken_branch;
1153     untaken_branch = tmp;
1154   }
1155 
1156   // Branch is taken:
1157   { PreserveJVMState pjvms(this);
1158     taken_branch = _gvn.transform(taken_branch);
1159     set_control(taken_branch);
1160 
1161     if (stopped()) {
1162       if (EliminateAutoBox) {
1163         // Mark the successor block as parsed
1164         branch_block->next_path_num();
1165       }
1166     } else {
1167       // Update method data
1168       profile_taken_branch(target_bci);
1169       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1170       if (!stopped()) {
1171         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
1172           int nargs = repush_if_args(); // set original stack for the uncommon_trap
1173           add_predicate();
1174           _sp -= nargs;
1175         }
1176         merge(target_bci);
1177       }
1178     }
1179   }
1180 
1181   untaken_branch = _gvn.transform(untaken_branch);
1182   set_control(untaken_branch);
1183 
1184   // Branch not taken.
1185   if (stopped()) {
1186     if (EliminateAutoBox) {
1187       // Mark the successor block as parsed
1188       next_block->next_path_num();
1189     }
1190   } else {
1191     // Update method data
1192     profile_not_taken_branch();
1193     adjust_map_after_if(untaken_btest, c, untaken_prob,
1194                         next_block, branch_block);
1195   }
1196 }
1197 
1198 //----------------------------adjust_map_after_if------------------------------
1199 // Adjust the JVM state to reflect the result of taking this path.
1200 // Basically, it means inspecting the CmpNode controlling this
1201 // branch, seeing how it constrains a tested value, and then
1202 // deciding if it's worth our while to encode this constraint
1203 // as graph nodes in the current abstract interpretation map.
1204 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1205                                 Block* path, Block* other_path) {
1206   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1207     return;                             // nothing to do
1208 
1209   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1210 
1211   if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1212     // If this might possibly turn into an implicit null check,
1213     // and the null has never yet been seen, we need to generate
1214     // an uncommon trap, so as to recompile instead of suffering
1215     // with very slow branches.  (We'll get the slow branches if
1216     // the program ever changes phase and starts seeing nulls here.)
1217     //
1218     // We do not inspect for a null constant, since a node may
1219     // optimize to 'null' later on.
1220     //
1221     // Null checks, and other tests which expect inequality,
1222     // show btest == BoolTest::eq along the non-taken branch.
1223     // On the other hand, type tests, must-be-null tests,
1224     // and other tests which expect pointer equality,
1225     // show btest == BoolTest::ne along the non-taken branch.
1226     // We prune both types of branches if they look unused.
1227     repush_if_args();
1228     // We need to mark this branch as taken so that if we recompile we will
1229     // see that it is possible. In the tiered system the interpreter doesn't
1230     // do profiling and by the time we get to the lower tier from the interpreter
1231     // the path may be cold again. Make sure it doesn't look untaken
1232     if (is_fallthrough) {
1233       profile_not_taken_branch(!ProfileInterpreter);
1234     } else {
1235       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1236     }
1237     uncommon_trap(Deoptimization::Reason_unreached,
1238                   Deoptimization::Action_reinterpret,
1239                   NULL,
1240                   (is_fallthrough ? "taken always" : "taken never"));
1241     return;
1242   }
1243 
1244   Node* val = c->in(1);
1245   Node* con = c->in(2);
1246   const Type* tcon = _gvn.type(con);
1247   const Type* tval = _gvn.type(val);
1248   bool have_con = tcon->singleton();
1249   if (tval->singleton()) {
1250     if (!have_con) {
1251       // Swap, so constant is in con.
1252       con  = val;
1253       tcon = tval;
1254       val  = c->in(2);
1255       tval = _gvn.type(val);
1256       btest = BoolTest(btest).commute();
1257       have_con = true;
1258     } else {
1259       // Do we have two constants?  Then leave well enough alone.
1260       have_con = false;
1261     }
1262   }
1263   if (!have_con)                        // remaining adjustments need a con
1264     return;
1265 
1266 
1267   int val_in_map = map()->find_edge(val);
1268   if (val_in_map < 0)  return;          // replace_in_map would be useless
1269   {
1270     JVMState* jvms = this->jvms();
1271     if (!(jvms->is_loc(val_in_map) ||
1272           jvms->is_stk(val_in_map)))
1273       return;                           // again, it would be useless
1274   }
1275 
1276   // Check for a comparison to a constant, and "know" that the compared
1277   // value is constrained on this path.
1278   assert(tcon->singleton(), "");
1279   ConstraintCastNode* ccast = NULL;
1280   Node* cast = NULL;
1281 
1282   switch (btest) {
1283   case BoolTest::eq:                    // Constant test?
1284     {
1285       const Type* tboth = tcon->join(tval);
1286       if (tboth == tval)  break;        // Nothing to gain.
1287       if (tcon->isa_int()) {
1288         ccast = new (C, 2) CastIINode(val, tboth);
1289       } else if (tcon == TypePtr::NULL_PTR) {
1290         // Cast to null, but keep the pointer identity temporarily live.
1291         ccast = new (C, 2) CastPPNode(val, tboth);
1292       } else {
1293         const TypeF* tf = tcon->isa_float_constant();
1294         const TypeD* td = tcon->isa_double_constant();
1295         // Exclude tests vs float/double 0 as these could be
1296         // either +0 or -0.  Just because you are equal to +0
1297         // doesn't mean you ARE +0!
1298         if ((!tf || tf->_f != 0.0) &&
1299             (!td || td->_d != 0.0))
1300           cast = con;                   // Replace non-constant val by con.
1301       }
1302     }
1303     break;
1304 
1305   case BoolTest::ne:
1306     if (tcon == TypePtr::NULL_PTR) {
1307       cast = cast_not_null(val, false);
1308     }
1309     break;
1310 
1311   default:
1312     // (At this point we could record int range types with CastII.)
1313     break;
1314   }
1315 
1316   if (ccast != NULL) {
1317     const Type* tcc = ccast->as_Type()->type();
1318     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1319     // Delay transform() call to allow recovery of pre-cast value
1320     // at the control merge.
1321     ccast->set_req(0, control());
1322     _gvn.set_type_bottom(ccast);
1323     record_for_igvn(ccast);
1324     cast = ccast;
1325   }
1326 
1327   if (cast != NULL) {                   // Here's the payoff.
1328     replace_in_map(val, cast);
1329   }
1330 }
1331 
1332 
1333 //------------------------------do_one_bytecode--------------------------------
1334 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1335 void Parse::do_one_bytecode() {
1336   Node *a, *b, *c, *d;          // Handy temps
1337   BoolTest::mask btest;
1338   int i;
1339 
1340   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1341 
1342   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1343                           "out of nodes parsing method")) {
1344     return;
1345   }
1346 
1347 #ifdef ASSERT
1348   // for setting breakpoints
1349   if (TraceOptoParse) {
1350     tty->print(" @");
1351     dump_bci(bci());
1352   }
1353 #endif
1354 
1355   switch (bc()) {
1356   case Bytecodes::_nop:
1357     // do nothing
1358     break;
1359   case Bytecodes::_lconst_0:
1360     push_pair(longcon(0));
1361     break;
1362 
1363   case Bytecodes::_lconst_1:
1364     push_pair(longcon(1));
1365     break;
1366 
1367   case Bytecodes::_fconst_0:
1368     push(zerocon(T_FLOAT));
1369     break;
1370 
1371   case Bytecodes::_fconst_1:
1372     push(makecon(TypeF::ONE));
1373     break;
1374 
1375   case Bytecodes::_fconst_2:
1376     push(makecon(TypeF::make(2.0f)));
1377     break;
1378 
1379   case Bytecodes::_dconst_0:
1380     push_pair(zerocon(T_DOUBLE));
1381     break;
1382 
1383   case Bytecodes::_dconst_1:
1384     push_pair(makecon(TypeD::ONE));
1385     break;
1386 
1387   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1388   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1389   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1390   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1391   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1392   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1393   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1394   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1395   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1396   case Bytecodes::_aconst_null: push(null());  break;
1397   case Bytecodes::_ldc:
1398   case Bytecodes::_ldc_w:
1399   case Bytecodes::_ldc2_w:
1400     // If the constant is unresolved, run this BC once in the interpreter.
1401     {
1402       ciConstant constant = iter().get_constant();
1403       if (constant.basic_type() == T_OBJECT &&
1404           !constant.as_object()->is_loaded()) {
1405         int index = iter().get_constant_pool_index();
1406         constantTag tag = iter().get_constant_pool_tag(index);
1407         uncommon_trap(Deoptimization::make_trap_request
1408                       (Deoptimization::Reason_unloaded,
1409                        Deoptimization::Action_reinterpret,
1410                        index),
1411                       NULL, tag.internal_name());
1412         break;
1413       }
1414       assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
1415              "must be java_mirror of klass");
1416       bool pushed = push_constant(constant, true);
1417       guarantee(pushed, "must be possible to push this constant");
1418     }
1419 
1420     break;
1421 
1422   case Bytecodes::_aload_0:
1423     push( local(0) );
1424     break;
1425   case Bytecodes::_aload_1:
1426     push( local(1) );
1427     break;
1428   case Bytecodes::_aload_2:
1429     push( local(2) );
1430     break;
1431   case Bytecodes::_aload_3:
1432     push( local(3) );
1433     break;
1434   case Bytecodes::_aload:
1435     push( local(iter().get_index()) );
1436     break;
1437 
1438   case Bytecodes::_fload_0:
1439   case Bytecodes::_iload_0:
1440     push( local(0) );
1441     break;
1442   case Bytecodes::_fload_1:
1443   case Bytecodes::_iload_1:
1444     push( local(1) );
1445     break;
1446   case Bytecodes::_fload_2:
1447   case Bytecodes::_iload_2:
1448     push( local(2) );
1449     break;
1450   case Bytecodes::_fload_3:
1451   case Bytecodes::_iload_3:
1452     push( local(3) );
1453     break;
1454   case Bytecodes::_fload:
1455   case Bytecodes::_iload:
1456     push( local(iter().get_index()) );
1457     break;
1458   case Bytecodes::_lload_0:
1459     push_pair_local( 0 );
1460     break;
1461   case Bytecodes::_lload_1:
1462     push_pair_local( 1 );
1463     break;
1464   case Bytecodes::_lload_2:
1465     push_pair_local( 2 );
1466     break;
1467   case Bytecodes::_lload_3:
1468     push_pair_local( 3 );
1469     break;
1470   case Bytecodes::_lload:
1471     push_pair_local( iter().get_index() );
1472     break;
1473 
1474   case Bytecodes::_dload_0:
1475     push_pair_local(0);
1476     break;
1477   case Bytecodes::_dload_1:
1478     push_pair_local(1);
1479     break;
1480   case Bytecodes::_dload_2:
1481     push_pair_local(2);
1482     break;
1483   case Bytecodes::_dload_3:
1484     push_pair_local(3);
1485     break;
1486   case Bytecodes::_dload:
1487     push_pair_local(iter().get_index());
1488     break;
1489   case Bytecodes::_fstore_0:
1490   case Bytecodes::_istore_0:
1491   case Bytecodes::_astore_0:
1492     set_local( 0, pop() );
1493     break;
1494   case Bytecodes::_fstore_1:
1495   case Bytecodes::_istore_1:
1496   case Bytecodes::_astore_1:
1497     set_local( 1, pop() );
1498     break;
1499   case Bytecodes::_fstore_2:
1500   case Bytecodes::_istore_2:
1501   case Bytecodes::_astore_2:
1502     set_local( 2, pop() );
1503     break;
1504   case Bytecodes::_fstore_3:
1505   case Bytecodes::_istore_3:
1506   case Bytecodes::_astore_3:
1507     set_local( 3, pop() );
1508     break;
1509   case Bytecodes::_fstore:
1510   case Bytecodes::_istore:
1511   case Bytecodes::_astore:
1512     set_local( iter().get_index(), pop() );
1513     break;
1514   // long stores
1515   case Bytecodes::_lstore_0:
1516     set_pair_local( 0, pop_pair() );
1517     break;
1518   case Bytecodes::_lstore_1:
1519     set_pair_local( 1, pop_pair() );
1520     break;
1521   case Bytecodes::_lstore_2:
1522     set_pair_local( 2, pop_pair() );
1523     break;
1524   case Bytecodes::_lstore_3:
1525     set_pair_local( 3, pop_pair() );
1526     break;
1527   case Bytecodes::_lstore:
1528     set_pair_local( iter().get_index(), pop_pair() );
1529     break;
1530 
1531   // double stores
1532   case Bytecodes::_dstore_0:
1533     set_pair_local( 0, dstore_rounding(pop_pair()) );
1534     break;
1535   case Bytecodes::_dstore_1:
1536     set_pair_local( 1, dstore_rounding(pop_pair()) );
1537     break;
1538   case Bytecodes::_dstore_2:
1539     set_pair_local( 2, dstore_rounding(pop_pair()) );
1540     break;
1541   case Bytecodes::_dstore_3:
1542     set_pair_local( 3, dstore_rounding(pop_pair()) );
1543     break;
1544   case Bytecodes::_dstore:
1545     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1546     break;
1547 
1548   case Bytecodes::_pop:  _sp -= 1;   break;
1549   case Bytecodes::_pop2: _sp -= 2;   break;
1550   case Bytecodes::_swap:
1551     a = pop();
1552     b = pop();
1553     push(a);
1554     push(b);
1555     break;
1556   case Bytecodes::_dup:
1557     a = pop();
1558     push(a);
1559     push(a);
1560     break;
1561   case Bytecodes::_dup_x1:
1562     a = pop();
1563     b = pop();
1564     push( a );
1565     push( b );
1566     push( a );
1567     break;
1568   case Bytecodes::_dup_x2:
1569     a = pop();
1570     b = pop();
1571     c = pop();
1572     push( a );
1573     push( c );
1574     push( b );
1575     push( a );
1576     break;
1577   case Bytecodes::_dup2:
1578     a = pop();
1579     b = pop();
1580     push( b );
1581     push( a );
1582     push( b );
1583     push( a );
1584     break;
1585 
1586   case Bytecodes::_dup2_x1:
1587     // before: .. c, b, a
1588     // after:  .. b, a, c, b, a
1589     // not tested
1590     a = pop();
1591     b = pop();
1592     c = pop();
1593     push( b );
1594     push( a );
1595     push( c );
1596     push( b );
1597     push( a );
1598     break;
1599   case Bytecodes::_dup2_x2:
1600     // before: .. d, c, b, a
1601     // after:  .. b, a, d, c, b, a
1602     // not tested
1603     a = pop();
1604     b = pop();
1605     c = pop();
1606     d = pop();
1607     push( b );
1608     push( a );
1609     push( d );
1610     push( c );
1611     push( b );
1612     push( a );
1613     break;
1614 
1615   case Bytecodes::_arraylength: {
1616     // Must do null-check with value on expression stack
1617     Node *ary = do_null_check(peek(), T_ARRAY);
1618     // Compile-time detect of null-exception?
1619     if (stopped())  return;
1620     a = pop();
1621     push(load_array_length(a));
1622     break;
1623   }
1624 
1625   case Bytecodes::_baload: array_load(T_BYTE);   break;
1626   case Bytecodes::_caload: array_load(T_CHAR);   break;
1627   case Bytecodes::_iaload: array_load(T_INT);    break;
1628   case Bytecodes::_saload: array_load(T_SHORT);  break;
1629   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1630   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1631   case Bytecodes::_laload: {
1632     a = array_addressing(T_LONG, 0);
1633     if (stopped())  return;     // guaranteed null or range check
1634     _sp -= 2;                   // Pop array and index
1635     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1636     break;
1637   }
1638   case Bytecodes::_daload: {
1639     a = array_addressing(T_DOUBLE, 0);
1640     if (stopped())  return;     // guaranteed null or range check
1641     _sp -= 2;                   // Pop array and index
1642     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1643     break;
1644   }
1645   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1646   case Bytecodes::_castore: array_store(T_CHAR);  break;
1647   case Bytecodes::_iastore: array_store(T_INT);   break;
1648   case Bytecodes::_sastore: array_store(T_SHORT); break;
1649   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1650   case Bytecodes::_aastore: {
1651     d = array_addressing(T_OBJECT, 1);
1652     if (stopped())  return;     // guaranteed null or range check
1653     array_store_check();
1654     c = pop();                  // Oop to store
1655     b = pop();                  // index (already used)
1656     a = pop();                  // the array itself
1657     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1658     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1659     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1660     break;
1661   }
1662   case Bytecodes::_lastore: {
1663     a = array_addressing(T_LONG, 2);
1664     if (stopped())  return;     // guaranteed null or range check
1665     c = pop_pair();
1666     _sp -= 2;                   // Pop array and index
1667     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1668     break;
1669   }
1670   case Bytecodes::_dastore: {
1671     a = array_addressing(T_DOUBLE, 2);
1672     if (stopped())  return;     // guaranteed null or range check
1673     c = pop_pair();
1674     _sp -= 2;                   // Pop array and index
1675     c = dstore_rounding(c);
1676     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1677     break;
1678   }
1679   case Bytecodes::_getfield:
1680     do_getfield();
1681     break;
1682 
1683   case Bytecodes::_getstatic:
1684     do_getstatic();
1685     break;
1686 
1687   case Bytecodes::_putfield:
1688     do_putfield();
1689     break;
1690 
1691   case Bytecodes::_putstatic:
1692     do_putstatic();
1693     break;
1694 
1695   case Bytecodes::_irem:
1696     do_irem();
1697     break;
1698   case Bytecodes::_idiv:
1699     // Must keep both values on the expression-stack during null-check
1700     do_null_check(peek(), T_INT);
1701     // Compile-time detect of null-exception?
1702     if (stopped())  return;
1703     b = pop();
1704     a = pop();
1705     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
1706     break;
1707   case Bytecodes::_imul:
1708     b = pop(); a = pop();
1709     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
1710     break;
1711   case Bytecodes::_iadd:
1712     b = pop(); a = pop();
1713     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
1714     break;
1715   case Bytecodes::_ineg:
1716     a = pop();
1717     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
1718     break;
1719   case Bytecodes::_isub:
1720     b = pop(); a = pop();
1721     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
1722     break;
1723   case Bytecodes::_iand:
1724     b = pop(); a = pop();
1725     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
1726     break;
1727   case Bytecodes::_ior:
1728     b = pop(); a = pop();
1729     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
1730     break;
1731   case Bytecodes::_ixor:
1732     b = pop(); a = pop();
1733     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
1734     break;
1735   case Bytecodes::_ishl:
1736     b = pop(); a = pop();
1737     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
1738     break;
1739   case Bytecodes::_ishr:
1740     b = pop(); a = pop();
1741     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
1742     break;
1743   case Bytecodes::_iushr:
1744     b = pop(); a = pop();
1745     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
1746     break;
1747 
1748   case Bytecodes::_fneg:
1749     a = pop();
1750     b = _gvn.transform(new (C, 2) NegFNode (a));
1751     push(b);
1752     break;
1753 
1754   case Bytecodes::_fsub:
1755     b = pop();
1756     a = pop();
1757     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
1758     d = precision_rounding(c);
1759     push( d );
1760     break;
1761 
1762   case Bytecodes::_fadd:
1763     b = pop();
1764     a = pop();
1765     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
1766     d = precision_rounding(c);
1767     push( d );
1768     break;
1769 
1770   case Bytecodes::_fmul:
1771     b = pop();
1772     a = pop();
1773     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
1774     d = precision_rounding(c);
1775     push( d );
1776     break;
1777 
1778   case Bytecodes::_fdiv:
1779     b = pop();
1780     a = pop();
1781     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
1782     d = precision_rounding(c);
1783     push( d );
1784     break;
1785 
1786   case Bytecodes::_frem:
1787     if (Matcher::has_match_rule(Op_ModF)) {
1788       // Generate a ModF node.
1789       b = pop();
1790       a = pop();
1791       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
1792       d = precision_rounding(c);
1793       push( d );
1794     }
1795     else {
1796       // Generate a call.
1797       modf();
1798     }
1799     break;
1800 
1801   case Bytecodes::_fcmpl:
1802     b = pop();
1803     a = pop();
1804     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
1805     push(c);
1806     break;
1807   case Bytecodes::_fcmpg:
1808     b = pop();
1809     a = pop();
1810 
1811     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1812     // which negates the result sign except for unordered.  Flip the unordered
1813     // as well by using CmpF3 which implements unordered-lesser instead of
1814     // unordered-greater semantics.  Finally, commute the result bits.  Result
1815     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1816     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
1817     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1818     push(c);
1819     break;
1820 
1821   case Bytecodes::_f2i:
1822     a = pop();
1823     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
1824     break;
1825 
1826   case Bytecodes::_d2i:
1827     a = pop_pair();
1828     b = _gvn.transform(new (C, 2) ConvD2INode(a));
1829     push( b );
1830     break;
1831 
1832   case Bytecodes::_f2d:
1833     a = pop();
1834     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
1835     push_pair( b );
1836     break;
1837 
1838   case Bytecodes::_d2f:
1839     a = pop_pair();
1840     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
1841     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1842     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
1843     push( b );
1844     break;
1845 
1846   case Bytecodes::_l2f:
1847     if (Matcher::convL2FSupported()) {
1848       a = pop_pair();
1849       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
1850       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1851       // Rather than storing the result into an FP register then pushing
1852       // out to memory to round, the machine instruction that implements
1853       // ConvL2D is responsible for rounding.
1854       // c = precision_rounding(b);
1855       c = _gvn.transform(b);
1856       push(c);
1857     } else {
1858       l2f();
1859     }
1860     break;
1861 
1862   case Bytecodes::_l2d:
1863     a = pop_pair();
1864     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
1865     // For i486.ad, rounding is always necessary (see _l2f above).
1866     // c = dprecision_rounding(b);
1867     c = _gvn.transform(b);
1868     push_pair(c);
1869     break;
1870 
1871   case Bytecodes::_f2l:
1872     a = pop();
1873     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
1874     push_pair(b);
1875     break;
1876 
1877   case Bytecodes::_d2l:
1878     a = pop_pair();
1879     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
1880     push_pair(b);
1881     break;
1882 
1883   case Bytecodes::_dsub:
1884     b = pop_pair();
1885     a = pop_pair();
1886     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
1887     d = dprecision_rounding(c);
1888     push_pair( d );
1889     break;
1890 
1891   case Bytecodes::_dadd:
1892     b = pop_pair();
1893     a = pop_pair();
1894     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
1895     d = dprecision_rounding(c);
1896     push_pair( d );
1897     break;
1898 
1899   case Bytecodes::_dmul:
1900     b = pop_pair();
1901     a = pop_pair();
1902     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
1903     d = dprecision_rounding(c);
1904     push_pair( d );
1905     break;
1906 
1907   case Bytecodes::_ddiv:
1908     b = pop_pair();
1909     a = pop_pair();
1910     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
1911     d = dprecision_rounding(c);
1912     push_pair( d );
1913     break;
1914 
1915   case Bytecodes::_dneg:
1916     a = pop_pair();
1917     b = _gvn.transform(new (C, 2) NegDNode (a));
1918     push_pair(b);
1919     break;
1920 
1921   case Bytecodes::_drem:
1922     if (Matcher::has_match_rule(Op_ModD)) {
1923       // Generate a ModD node.
1924       b = pop_pair();
1925       a = pop_pair();
1926       // a % b
1927 
1928       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
1929       d = dprecision_rounding(c);
1930       push_pair( d );
1931     }
1932     else {
1933       // Generate a call.
1934       modd();
1935     }
1936     break;
1937 
1938   case Bytecodes::_dcmpl:
1939     b = pop_pair();
1940     a = pop_pair();
1941     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
1942     push(c);
1943     break;
1944 
1945   case Bytecodes::_dcmpg:
1946     b = pop_pair();
1947     a = pop_pair();
1948     // Same as dcmpl but need to flip the unordered case.
1949     // Commute the inputs, which negates the result sign except for unordered.
1950     // Flip the unordered as well by using CmpD3 which implements
1951     // unordered-lesser instead of unordered-greater semantics.
1952     // Finally, negate the result bits.  Result is same as using a
1953     // CmpD3Greater except we did it with CmpD3 alone.
1954     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
1955     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1956     push(c);
1957     break;
1958 
1959 
1960     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1961   case Bytecodes::_land:
1962     b = pop_pair();
1963     a = pop_pair();
1964     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
1965     push_pair(c);
1966     break;
1967   case Bytecodes::_lor:
1968     b = pop_pair();
1969     a = pop_pair();
1970     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
1971     push_pair(c);
1972     break;
1973   case Bytecodes::_lxor:
1974     b = pop_pair();
1975     a = pop_pair();
1976     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
1977     push_pair(c);
1978     break;
1979 
1980   case Bytecodes::_lshl:
1981     b = pop();                  // the shift count
1982     a = pop_pair();             // value to be shifted
1983     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
1984     push_pair(c);
1985     break;
1986   case Bytecodes::_lshr:
1987     b = pop();                  // the shift count
1988     a = pop_pair();             // value to be shifted
1989     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
1990     push_pair(c);
1991     break;
1992   case Bytecodes::_lushr:
1993     b = pop();                  // the shift count
1994     a = pop_pair();             // value to be shifted
1995     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
1996     push_pair(c);
1997     break;
1998   case Bytecodes::_lmul:
1999     b = pop_pair();
2000     a = pop_pair();
2001     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
2002     push_pair(c);
2003     break;
2004 
2005   case Bytecodes::_lrem:
2006     // Must keep both values on the expression-stack during null-check
2007     assert(peek(0) == top(), "long word order");
2008     do_null_check(peek(1), T_LONG);
2009     // Compile-time detect of null-exception?
2010     if (stopped())  return;
2011     b = pop_pair();
2012     a = pop_pair();
2013     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
2014     push_pair(c);
2015     break;
2016 
2017   case Bytecodes::_ldiv:
2018     // Must keep both values on the expression-stack during null-check
2019     assert(peek(0) == top(), "long word order");
2020     do_null_check(peek(1), T_LONG);
2021     // Compile-time detect of null-exception?
2022     if (stopped())  return;
2023     b = pop_pair();
2024     a = pop_pair();
2025     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
2026     push_pair(c);
2027     break;
2028 
2029   case Bytecodes::_ladd:
2030     b = pop_pair();
2031     a = pop_pair();
2032     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
2033     push_pair(c);
2034     break;
2035   case Bytecodes::_lsub:
2036     b = pop_pair();
2037     a = pop_pair();
2038     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
2039     push_pair(c);
2040     break;
2041   case Bytecodes::_lcmp:
2042     // Safepoints are now inserted _before_ branches.  The long-compare
2043     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2044     // slew of control flow.  These are usually followed by a CmpI vs zero and
2045     // a branch; this pattern then optimizes to the obvious long-compare and
2046     // branch.  However, if the branch is backwards there's a Safepoint
2047     // inserted.  The inserted Safepoint captures the JVM state at the
2048     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2049     // long-compare is used to control a loop the debug info will force
2050     // computation of the 3-way value, even though the generated code uses a
2051     // long-compare and branch.  We try to rectify the situation by inserting
2052     // a SafePoint here and have it dominate and kill the safepoint added at a
2053     // following backwards branch.  At this point the JVM state merely holds 2
2054     // longs but not the 3-way value.
2055     if( UseLoopSafepoints ) {
2056       switch( iter().next_bc() ) {
2057       case Bytecodes::_ifgt:
2058       case Bytecodes::_iflt:
2059       case Bytecodes::_ifge:
2060       case Bytecodes::_ifle:
2061       case Bytecodes::_ifne:
2062       case Bytecodes::_ifeq:
2063         // If this is a backwards branch in the bytecodes, add Safepoint
2064         maybe_add_safepoint(iter().next_get_dest());
2065       }
2066     }
2067     b = pop_pair();
2068     a = pop_pair();
2069     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
2070     push(c);
2071     break;
2072 
2073   case Bytecodes::_lneg:
2074     a = pop_pair();
2075     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
2076     push_pair(b);
2077     break;
2078   case Bytecodes::_l2i:
2079     a = pop_pair();
2080     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
2081     break;
2082   case Bytecodes::_i2l:
2083     a = pop();
2084     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
2085     push_pair(b);
2086     break;
2087   case Bytecodes::_i2b:
2088     // Sign extend
2089     a = pop();
2090     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
2091     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
2092     push( a );
2093     break;
2094   case Bytecodes::_i2s:
2095     a = pop();
2096     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
2097     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
2098     push( a );
2099     break;
2100   case Bytecodes::_i2c:
2101     a = pop();
2102     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2103     break;
2104 
2105   case Bytecodes::_i2f:
2106     a = pop();
2107     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
2108     c = precision_rounding(b);
2109     push (b);
2110     break;
2111 
2112   case Bytecodes::_i2d:
2113     a = pop();
2114     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
2115     push_pair(b);
2116     break;
2117 
2118   case Bytecodes::_iinc:        // Increment local
2119     i = iter().get_index();     // Get local index
2120     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2121     break;
2122 
2123   // Exit points of synchronized methods must have an unlock node
2124   case Bytecodes::_return:
2125     return_current(NULL);
2126     break;
2127 
2128   case Bytecodes::_ireturn:
2129   case Bytecodes::_areturn:
2130   case Bytecodes::_freturn:
2131     return_current(pop());
2132     break;
2133   case Bytecodes::_lreturn:
2134     return_current(pop_pair());
2135     break;
2136   case Bytecodes::_dreturn:
2137     return_current(pop_pair());
2138     break;
2139 
2140   case Bytecodes::_athrow:
2141     // null exception oop throws NULL pointer exception
2142     do_null_check(peek(), T_OBJECT);
2143     if (stopped())  return;
2144     // Hook the thrown exception directly to subsequent handlers.
2145     if (BailoutToInterpreterForThrows) {
2146       // Keep method interpreted from now on.
2147       uncommon_trap(Deoptimization::Reason_unhandled,
2148                     Deoptimization::Action_make_not_compilable);
2149       return;
2150     }
2151     if (env()->jvmti_can_post_on_exceptions()) {
2152       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2153       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2154     }
2155     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2156     add_exception_state(make_exception_state(peek()));
2157     break;
2158 
2159   case Bytecodes::_goto:   // fall through
2160   case Bytecodes::_goto_w: {
2161     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2162 
2163     // If this is a backwards branch in the bytecodes, add Safepoint
2164     maybe_add_safepoint(target_bci);
2165 
2166     // Update method data
2167     profile_taken_branch(target_bci);
2168 
2169     // Add loop predicate if it goes to a loop
2170     if (should_add_predicate(target_bci)){
2171       add_predicate();
2172     }
2173     // Merge the current control into the target basic block
2174     merge(target_bci);
2175 
2176     // See if we can get some profile data and hand it off to the next block
2177     Block *target_block = block()->successor_for_bci(target_bci);
2178     if (target_block->pred_count() != 1)  break;
2179     ciMethodData* methodData = method()->method_data();
2180     if (!methodData->is_mature())  break;
2181     ciProfileData* data = methodData->bci_to_data(bci());
2182     assert( data->is_JumpData(), "" );
2183     int taken = ((ciJumpData*)data)->taken();
2184     taken = method()->scale_count(taken);
2185     target_block->set_count(taken);
2186     break;
2187   }
2188 
2189   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2190   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2191   handle_if_null:
2192     // If this is a backwards branch in the bytecodes, add Safepoint
2193     maybe_add_safepoint(iter().get_dest());
2194     a = null();
2195     b = pop();
2196     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2197     do_ifnull(btest, c);
2198     break;
2199 
2200   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2201   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2202   handle_if_acmp:
2203     // If this is a backwards branch in the bytecodes, add Safepoint
2204     maybe_add_safepoint(iter().get_dest());
2205     a = pop();
2206     b = pop();
2207     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2208     do_if(btest, c);
2209     break;
2210 
2211   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2212   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2213   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2214   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2215   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2216   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2217   handle_ifxx:
2218     // If this is a backwards branch in the bytecodes, add Safepoint
2219     maybe_add_safepoint(iter().get_dest());
2220     a = _gvn.intcon(0);
2221     b = pop();
2222     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
2223     do_if(btest, c);
2224     break;
2225 
2226   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2227   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2228   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2229   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2230   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2231   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2232   handle_if_icmp:
2233     // If this is a backwards branch in the bytecodes, add Safepoint
2234     maybe_add_safepoint(iter().get_dest());
2235     a = pop();
2236     b = pop();
2237     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
2238     do_if(btest, c);
2239     break;
2240 
2241   case Bytecodes::_tableswitch:
2242     do_tableswitch();
2243     break;
2244 
2245   case Bytecodes::_lookupswitch:
2246     do_lookupswitch();
2247     break;
2248 
2249   case Bytecodes::_invokestatic:
2250   case Bytecodes::_invokedynamic:
2251   case Bytecodes::_invokespecial:
2252   case Bytecodes::_invokevirtual:
2253   case Bytecodes::_invokeinterface:
2254     do_call();
2255     break;
2256   case Bytecodes::_checkcast:
2257     do_checkcast();
2258     break;
2259   case Bytecodes::_instanceof:
2260     do_instanceof();
2261     break;
2262   case Bytecodes::_anewarray:
2263     do_anewarray();
2264     break;
2265   case Bytecodes::_newarray:
2266     do_newarray((BasicType)iter().get_index());
2267     break;
2268   case Bytecodes::_multianewarray:
2269     do_multianewarray();
2270     break;
2271   case Bytecodes::_new:
2272     do_new();
2273     break;
2274 
2275   case Bytecodes::_jsr:
2276   case Bytecodes::_jsr_w:
2277     do_jsr();
2278     break;
2279 
2280   case Bytecodes::_ret:
2281     do_ret();
2282     break;
2283 
2284 
2285   case Bytecodes::_monitorenter:
2286     do_monitor_enter();
2287     break;
2288 
2289   case Bytecodes::_monitorexit:
2290     do_monitor_exit();
2291     break;
2292 
2293   case Bytecodes::_breakpoint:
2294     // Breakpoint set concurrently to compile
2295     // %%% use an uncommon trap?
2296     C->record_failure("breakpoint in method");
2297     return;
2298 
2299   default:
2300 #ifndef PRODUCT
2301     map()->dump(99);
2302 #endif
2303     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2304     ShouldNotReachHere();
2305   }
2306 
2307 #ifndef PRODUCT
2308   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2309   if(printer) {
2310     char buffer[256];
2311     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2312     bool old = printer->traverse_outs();
2313     printer->set_traverse_outs(true);
2314     printer->print_method(C, buffer, 4);
2315     printer->set_traverse_outs(old);
2316   }
2317 #endif
2318 }