1 /*
   2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "incls/_precompiled.incl"
  25 #include "incls/_superword.cpp.incl"
  26 
  27 //
  28 //                  S U P E R W O R D   T R A N S F O R M
  29 //=============================================================================
  30 
  31 //------------------------------SuperWord---------------------------
  32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  33   _phase(phase),
  34   _igvn(phase->_igvn),
  35   _arena(phase->C->comp_arena()),
  36   _packset(arena(), 8,  0, NULL),         // packs for the current block
  37   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  38   _block(arena(), 8,  0, NULL),           // nodes in current block
  39   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  40   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  41   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  42   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  43   _align_to_ref(NULL),                    // memory reference to align vectors to
  44   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  45   _dg(_arena),                            // dependence graph
  46   _visited(arena()),                      // visited node set
  47   _post_visited(arena()),                 // post visited node set
  48   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  49   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  50   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  51   _lpt(NULL),                             // loop tree node
  52   _lp(NULL),                              // LoopNode
  53   _bb(NULL),                              // basic block
  54   _iv(NULL)                               // induction var
  55 {}
  56 
  57 //------------------------------transform_loop---------------------------
  58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
  59   assert(lpt->_head->is_CountedLoop(), "must be");
  60   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
  61 
  62   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
  63 
  64   // Check for no control flow in body (other than exit)
  65   Node *cl_exit = cl->loopexit();
  66   if (cl_exit->in(0) != lpt->_head) return;
  67 
  68   // Make sure the are no extra control users of the loop backedge
  69   if (cl->back_control()->outcnt() != 1) {
  70     return;
  71   }
  72 
  73   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
  74   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
  75   if (pre_end == NULL) return;
  76   Node *pre_opaq1 = pre_end->limit();
  77   if (pre_opaq1->Opcode() != Op_Opaque1) return;
  78 
  79   // Do vectors exist on this architecture?
  80   if (vector_width_in_bytes() == 0) return;
  81 
  82   init(); // initialize data structures
  83 
  84   set_lpt(lpt);
  85   set_lp(cl);
  86 
  87  // For now, define one block which is the entire loop body
  88   set_bb(cl);
  89 
  90   assert(_packset.length() == 0, "packset must be empty");
  91   SLP_extract();
  92 }
  93 
  94 //------------------------------SLP_extract---------------------------
  95 // Extract the superword level parallelism
  96 //
  97 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
  98 //    this list from first to last, all definitions are visited before their uses.
  99 //
 100 // 2) A point-to-point dependence graph is constructed between memory references.
 101 //    This simplies the upcoming "independence" checker.
 102 //
 103 // 3) The maximum depth in the node graph from the beginning of the block
 104 //    to each node is computed.  This is used to prune the graph search
 105 //    in the independence checker.
 106 //
 107 // 4) For integer types, the necessary bit width is propagated backwards
 108 //    from stores to allow packed operations on byte, char, and short
 109 //    integers.  This reverses the promotion to type "int" that javac
 110 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 111 //
 112 // 5) One of the memory references is picked to be an aligned vector reference.
 113 //    The pre-loop trip count is adjusted to align this reference in the
 114 //    unrolled body.
 115 //
 116 // 6) The initial set of pack pairs is seeded with memory references.
 117 //
 118 // 7) The set of pack pairs is extended by following use->def and def->use links.
 119 //
 120 // 8) The pairs are combined into vector sized packs.
 121 //
 122 // 9) Reorder the memory slices to co-locate members of the memory packs.
 123 //
 124 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 125 //    inserting scalar promotion, vector creation from multiple scalars, and
 126 //    extraction of scalar values from vectors.
 127 //
 128 void SuperWord::SLP_extract() {
 129 
 130   // Ready the block
 131 
 132   construct_bb();
 133 
 134   dependence_graph();
 135 
 136   compute_max_depth();
 137 
 138   compute_vector_element_type();
 139 
 140   // Attempt vectorization
 141 
 142   find_adjacent_refs();
 143 
 144   extend_packlist();
 145 
 146   combine_packs();
 147 
 148   construct_my_pack_map();
 149 
 150   filter_packs();
 151 
 152   schedule();
 153 
 154   output();
 155 }
 156 
 157 //------------------------------find_adjacent_refs---------------------------
 158 // Find the adjacent memory references and create pack pairs for them.
 159 // This is the initial set of packs that will then be extended by
 160 // following use->def and def->use links.  The align positions are
 161 // assigned relative to the reference "align_to_ref"
 162 void SuperWord::find_adjacent_refs() {
 163   // Get list of memory operations
 164   Node_List memops;
 165   for (int i = 0; i < _block.length(); i++) {
 166     Node* n = _block.at(i);
 167     if (n->is_Mem() && in_bb(n) &&
 168         is_java_primitive(n->as_Mem()->memory_type())) {
 169       int align = memory_alignment(n->as_Mem(), 0);
 170       if (align != bottom_align) {
 171         memops.push(n);
 172       }
 173     }
 174   }
 175   if (memops.size() == 0) return;
 176 
 177   // Find a memory reference to align to.  The pre-loop trip count
 178   // is modified to align this reference to a vector-aligned address
 179   find_align_to_ref(memops);
 180   if (align_to_ref() == NULL) return;
 181 
 182   SWPointer align_to_ref_p(align_to_ref(), this);
 183   int offset = align_to_ref_p.offset_in_bytes();
 184   int scale  = align_to_ref_p.scale_in_bytes();
 185   int vw              = vector_width_in_bytes();
 186   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
 187   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
 188 
 189 #ifndef PRODUCT
 190   if (TraceSuperWord)
 191     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
 192                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
 193 #endif
 194 
 195   // Set alignment relative to "align_to_ref"
 196   for (int i = memops.size() - 1; i >= 0; i--) {
 197     MemNode* s = memops.at(i)->as_Mem();
 198     SWPointer p2(s, this);
 199     if (p2.comparable(align_to_ref_p)) {
 200       int align = memory_alignment(s, iv_adjustment);
 201       set_alignment(s, align);
 202     } else {
 203       memops.remove(i);
 204     }
 205   }
 206 
 207   // Create initial pack pairs of memory operations
 208   for (uint i = 0; i < memops.size(); i++) {
 209     Node* s1 = memops.at(i);
 210     for (uint j = 0; j < memops.size(); j++) {
 211       Node* s2 = memops.at(j);
 212       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 213         int align = alignment(s1);
 214         if (stmts_can_pack(s1, s2, align)) {
 215           Node_List* pair = new Node_List();
 216           pair->push(s1);
 217           pair->push(s2);
 218           _packset.append(pair);
 219         }
 220       }
 221     }
 222   }
 223 
 224 #ifndef PRODUCT
 225   if (TraceSuperWord) {
 226     tty->print_cr("\nAfter find_adjacent_refs");
 227     print_packset();
 228   }
 229 #endif
 230 }
 231 
 232 //------------------------------find_align_to_ref---------------------------
 233 // Find a memory reference to align the loop induction variable to.
 234 // Looks first at stores then at loads, looking for a memory reference
 235 // with the largest number of references similar to it.
 236 void SuperWord::find_align_to_ref(Node_List &memops) {
 237   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 238 
 239   // Count number of comparable memory ops
 240   for (uint i = 0; i < memops.size(); i++) {
 241     MemNode* s1 = memops.at(i)->as_Mem();
 242     SWPointer p1(s1, this);
 243     // Discard if pre loop can't align this reference
 244     if (!ref_is_alignable(p1)) {
 245       *cmp_ct.adr_at(i) = 0;
 246       continue;
 247     }
 248     for (uint j = i+1; j < memops.size(); j++) {
 249       MemNode* s2 = memops.at(j)->as_Mem();
 250       if (isomorphic(s1, s2)) {
 251         SWPointer p2(s2, this);
 252         if (p1.comparable(p2)) {
 253           (*cmp_ct.adr_at(i))++;
 254           (*cmp_ct.adr_at(j))++;
 255         }
 256       }
 257     }
 258   }
 259 
 260   // Find Store (or Load) with the greatest number of "comparable" references
 261   int max_ct        = 0;
 262   int max_idx       = -1;
 263   int min_size      = max_jint;
 264   int min_iv_offset = max_jint;
 265   for (uint j = 0; j < memops.size(); j++) {
 266     MemNode* s = memops.at(j)->as_Mem();
 267     if (s->is_Store()) {
 268       SWPointer p(s, this);
 269       if (cmp_ct.at(j) > max_ct ||
 270           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
 271                                      data_size(s) == min_size &&
 272                                         p.offset_in_bytes() < min_iv_offset)) {
 273         max_ct = cmp_ct.at(j);
 274         max_idx = j;
 275         min_size = data_size(s);
 276         min_iv_offset = p.offset_in_bytes();
 277       }
 278     }
 279   }
 280   // If no stores, look at loads
 281   if (max_ct == 0) {
 282     for (uint j = 0; j < memops.size(); j++) {
 283       MemNode* s = memops.at(j)->as_Mem();
 284       if (s->is_Load()) {
 285         SWPointer p(s, this);
 286         if (cmp_ct.at(j) > max_ct ||
 287             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
 288                                        data_size(s) == min_size &&
 289                                           p.offset_in_bytes() < min_iv_offset)) {
 290           max_ct = cmp_ct.at(j);
 291           max_idx = j;
 292           min_size = data_size(s);
 293           min_iv_offset = p.offset_in_bytes();
 294         }
 295       }
 296     }
 297   }
 298 
 299   if (max_ct > 0)
 300     set_align_to_ref(memops.at(max_idx)->as_Mem());
 301 
 302 #ifndef PRODUCT
 303   if (TraceSuperWord && Verbose) {
 304     tty->print_cr("\nVector memops after find_align_to_refs");
 305     for (uint i = 0; i < memops.size(); i++) {
 306       MemNode* s = memops.at(i)->as_Mem();
 307       s->dump();
 308     }
 309   }
 310 #endif
 311 }
 312 
 313 //------------------------------ref_is_alignable---------------------------
 314 // Can the preloop align the reference to position zero in the vector?
 315 bool SuperWord::ref_is_alignable(SWPointer& p) {
 316   if (!p.has_iv()) {
 317     return true;   // no induction variable
 318   }
 319   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 320   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 321   int preloop_stride = pre_end->stride_con();
 322 
 323   int span = preloop_stride * p.scale_in_bytes();
 324 
 325   // Stride one accesses are alignable.
 326   if (ABS(span) == p.memory_size())
 327     return true;
 328 
 329   // If initial offset from start of object is computable,
 330   // compute alignment within the vector.
 331   int vw = vector_width_in_bytes();
 332   if (vw % span == 0) {
 333     Node* init_nd = pre_end->init_trip();
 334     if (init_nd->is_Con() && p.invar() == NULL) {
 335       int init = init_nd->bottom_type()->is_int()->get_con();
 336 
 337       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
 338       assert(init_offset >= 0, "positive offset from object start");
 339 
 340       if (span > 0) {
 341         return (vw - (init_offset % vw)) % span == 0;
 342       } else {
 343         assert(span < 0, "nonzero stride * scale");
 344         return (init_offset % vw) % -span == 0;
 345       }
 346     }
 347   }
 348   return false;
 349 }
 350 
 351 //---------------------------dependence_graph---------------------------
 352 // Construct dependency graph.
 353 // Add dependence edges to load/store nodes for memory dependence
 354 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 355 void SuperWord::dependence_graph() {
 356   // First, assign a dependence node to each memory node
 357   for (int i = 0; i < _block.length(); i++ ) {
 358     Node *n = _block.at(i);
 359     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 360       _dg.make_node(n);
 361     }
 362   }
 363 
 364   // For each memory slice, create the dependences
 365   for (int i = 0; i < _mem_slice_head.length(); i++) {
 366     Node* n      = _mem_slice_head.at(i);
 367     Node* n_tail = _mem_slice_tail.at(i);
 368 
 369     // Get slice in predecessor order (last is first)
 370     mem_slice_preds(n_tail, n, _nlist);
 371 
 372     // Make the slice dependent on the root
 373     DepMem* slice = _dg.dep(n);
 374     _dg.make_edge(_dg.root(), slice);
 375 
 376     // Create a sink for the slice
 377     DepMem* slice_sink = _dg.make_node(NULL);
 378     _dg.make_edge(slice_sink, _dg.tail());
 379 
 380     // Now visit each pair of memory ops, creating the edges
 381     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 382       Node* s1 = _nlist.at(j);
 383 
 384       // If no dependency yet, use slice
 385       if (_dg.dep(s1)->in_cnt() == 0) {
 386         _dg.make_edge(slice, s1);
 387       }
 388       SWPointer p1(s1->as_Mem(), this);
 389       bool sink_dependent = true;
 390       for (int k = j - 1; k >= 0; k--) {
 391         Node* s2 = _nlist.at(k);
 392         if (s1->is_Load() && s2->is_Load())
 393           continue;
 394         SWPointer p2(s2->as_Mem(), this);
 395 
 396         int cmp = p1.cmp(p2);
 397         if (SuperWordRTDepCheck &&
 398             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 399           // Create a runtime check to disambiguate
 400           OrderedPair pp(p1.base(), p2.base());
 401           _disjoint_ptrs.append_if_missing(pp);
 402         } else if (!SWPointer::not_equal(cmp)) {
 403           // Possibly same address
 404           _dg.make_edge(s1, s2);
 405           sink_dependent = false;
 406         }
 407       }
 408       if (sink_dependent) {
 409         _dg.make_edge(s1, slice_sink);
 410       }
 411     }
 412 #ifndef PRODUCT
 413     if (TraceSuperWord) {
 414       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 415       for (int q = 0; q < _nlist.length(); q++) {
 416         _dg.print(_nlist.at(q));
 417       }
 418       tty->cr();
 419     }
 420 #endif
 421     _nlist.clear();
 422   }
 423 
 424 #ifndef PRODUCT
 425   if (TraceSuperWord) {
 426     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 427     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 428       _disjoint_ptrs.at(r).print();
 429       tty->cr();
 430     }
 431     tty->cr();
 432   }
 433 #endif
 434 }
 435 
 436 //---------------------------mem_slice_preds---------------------------
 437 // Return a memory slice (node list) in predecessor order starting at "start"
 438 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 439   assert(preds.length() == 0, "start empty");
 440   Node* n = start;
 441   Node* prev = NULL;
 442   while (true) {
 443     assert(in_bb(n), "must be in block");
 444     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 445       Node* out = n->fast_out(i);
 446       if (out->is_Load()) {
 447         if (in_bb(out)) {
 448           preds.push(out);
 449         }
 450       } else {
 451         // FIXME
 452         if (out->is_MergeMem() && !in_bb(out)) {
 453           // Either unrolling is causing a memory edge not to disappear,
 454           // or need to run igvn.optimize() again before SLP
 455         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 456           // Ditto.  Not sure what else to check further.
 457         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 458           // StoreCM has an input edge used as a precedence edge.
 459           // Maybe an issue when oop stores are vectorized.
 460         } else {
 461           assert(out == prev || prev == NULL, "no branches off of store slice");
 462         }
 463       }
 464     }
 465     if (n == stop) break;
 466     preds.push(n);
 467     prev = n;
 468     n = n->in(MemNode::Memory);
 469   }
 470 }
 471 
 472 //------------------------------stmts_can_pack---------------------------
 473 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 474 // s1 aligned at "align"
 475 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 476 
 477   // Do not use superword for non-primitives
 478   if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
 479      (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
 480     return false;
 481 
 482   if (isomorphic(s1, s2)) {
 483     if (independent(s1, s2)) {
 484       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 485         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 486           int s1_align = alignment(s1);
 487           int s2_align = alignment(s2);
 488           if (s1_align == top_align || s1_align == align) {
 489             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 490               return true;
 491             }
 492           }
 493         }
 494       }
 495     }
 496   }
 497   return false;
 498 }
 499 
 500 //------------------------------exists_at---------------------------
 501 // Does s exist in a pack at position pos?
 502 bool SuperWord::exists_at(Node* s, uint pos) {
 503   for (int i = 0; i < _packset.length(); i++) {
 504     Node_List* p = _packset.at(i);
 505     if (p->at(pos) == s) {
 506       return true;
 507     }
 508   }
 509   return false;
 510 }
 511 
 512 //------------------------------are_adjacent_refs---------------------------
 513 // Is s1 immediately before s2 in memory?
 514 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 515   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 516   if (!in_bb(s1)    || !in_bb(s2))    return false;
 517 
 518   // Do not use superword for non-primitives
 519   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 520       !is_java_primitive(s2->as_Mem()->memory_type())) {
 521     return false;
 522   }
 523 
 524   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
 525   // only pack memops that are in the same alias set until that's fixed.
 526   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
 527       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
 528     return false;
 529   SWPointer p1(s1->as_Mem(), this);
 530   SWPointer p2(s2->as_Mem(), this);
 531   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
 532   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
 533   return diff == data_size(s1);
 534 }
 535 
 536 //------------------------------isomorphic---------------------------
 537 // Are s1 and s2 similar?
 538 bool SuperWord::isomorphic(Node* s1, Node* s2) {
 539   if (s1->Opcode() != s2->Opcode()) return false;
 540   if (s1->req() != s2->req()) return false;
 541   if (s1->in(0) != s2->in(0)) return false;
 542   if (velt_type(s1) != velt_type(s2)) return false;
 543   return true;
 544 }
 545 
 546 //------------------------------independent---------------------------
 547 // Is there no data path from s1 to s2 or s2 to s1?
 548 bool SuperWord::independent(Node* s1, Node* s2) {
 549   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
 550   int d1 = depth(s1);
 551   int d2 = depth(s2);
 552   if (d1 == d2) return s1 != s2;
 553   Node* deep    = d1 > d2 ? s1 : s2;
 554   Node* shallow = d1 > d2 ? s2 : s1;
 555 
 556   visited_clear();
 557 
 558   return independent_path(shallow, deep);
 559 }
 560 
 561 //------------------------------independent_path------------------------------
 562 // Helper for independent
 563 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
 564   if (dp >= 1000) return false; // stop deep recursion
 565   visited_set(deep);
 566   int shal_depth = depth(shallow);
 567   assert(shal_depth <= depth(deep), "must be");
 568   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
 569     Node* pred = preds.current();
 570     if (in_bb(pred) && !visited_test(pred)) {
 571       if (shallow == pred) {
 572         return false;
 573       }
 574       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
 575         return false;
 576       }
 577     }
 578   }
 579   return true;
 580 }
 581 
 582 //------------------------------set_alignment---------------------------
 583 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
 584   set_alignment(s1, align);
 585   set_alignment(s2, align + data_size(s1));
 586 }
 587 
 588 //------------------------------data_size---------------------------
 589 int SuperWord::data_size(Node* s) {
 590   const Type* t = velt_type(s);
 591   BasicType  bt = t->array_element_basic_type();
 592   int bsize = type2aelembytes(bt);
 593   assert(bsize != 0, "valid size");
 594   return bsize;
 595 }
 596 
 597 //------------------------------extend_packlist---------------------------
 598 // Extend packset by following use->def and def->use links from pack members.
 599 void SuperWord::extend_packlist() {
 600   bool changed;
 601   do {
 602     changed = false;
 603     for (int i = 0; i < _packset.length(); i++) {
 604       Node_List* p = _packset.at(i);
 605       changed |= follow_use_defs(p);
 606       changed |= follow_def_uses(p);
 607     }
 608   } while (changed);
 609 
 610 #ifndef PRODUCT
 611   if (TraceSuperWord) {
 612     tty->print_cr("\nAfter extend_packlist");
 613     print_packset();
 614   }
 615 #endif
 616 }
 617 
 618 //------------------------------follow_use_defs---------------------------
 619 // Extend the packset by visiting operand definitions of nodes in pack p
 620 bool SuperWord::follow_use_defs(Node_List* p) {
 621   Node* s1 = p->at(0);
 622   Node* s2 = p->at(1);
 623   assert(p->size() == 2, "just checking");
 624   assert(s1->req() == s2->req(), "just checking");
 625   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 626 
 627   if (s1->is_Load()) return false;
 628 
 629   int align = alignment(s1);
 630   bool changed = false;
 631   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
 632   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
 633   for (int j = start; j < end; j++) {
 634     Node* t1 = s1->in(j);
 635     Node* t2 = s2->in(j);
 636     if (!in_bb(t1) || !in_bb(t2))
 637       continue;
 638     if (stmts_can_pack(t1, t2, align)) {
 639       if (est_savings(t1, t2) >= 0) {
 640         Node_List* pair = new Node_List();
 641         pair->push(t1);
 642         pair->push(t2);
 643         _packset.append(pair);
 644         set_alignment(t1, t2, align);
 645         changed = true;
 646       }
 647     }
 648   }
 649   return changed;
 650 }
 651 
 652 //------------------------------follow_def_uses---------------------------
 653 // Extend the packset by visiting uses of nodes in pack p
 654 bool SuperWord::follow_def_uses(Node_List* p) {
 655   bool changed = false;
 656   Node* s1 = p->at(0);
 657   Node* s2 = p->at(1);
 658   assert(p->size() == 2, "just checking");
 659   assert(s1->req() == s2->req(), "just checking");
 660   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 661 
 662   if (s1->is_Store()) return false;
 663 
 664   int align = alignment(s1);
 665   int savings = -1;
 666   Node* u1 = NULL;
 667   Node* u2 = NULL;
 668   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 669     Node* t1 = s1->fast_out(i);
 670     if (!in_bb(t1)) continue;
 671     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
 672       Node* t2 = s2->fast_out(j);
 673       if (!in_bb(t2)) continue;
 674       if (!opnd_positions_match(s1, t1, s2, t2))
 675         continue;
 676       if (stmts_can_pack(t1, t2, align)) {
 677         int my_savings = est_savings(t1, t2);
 678         if (my_savings > savings) {
 679           savings = my_savings;
 680           u1 = t1;
 681           u2 = t2;
 682         }
 683       }
 684     }
 685   }
 686   if (savings >= 0) {
 687     Node_List* pair = new Node_List();
 688     pair->push(u1);
 689     pair->push(u2);
 690     _packset.append(pair);
 691     set_alignment(u1, u2, align);
 692     changed = true;
 693   }
 694   return changed;
 695 }
 696 
 697 //---------------------------opnd_positions_match-------------------------
 698 // Is the use of d1 in u1 at the same operand position as d2 in u2?
 699 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
 700   uint ct = u1->req();
 701   if (ct != u2->req()) return false;
 702   uint i1 = 0;
 703   uint i2 = 0;
 704   do {
 705     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
 706     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
 707     if (i1 != i2) {
 708       return false;
 709     }
 710   } while (i1 < ct);
 711   return true;
 712 }
 713 
 714 //------------------------------est_savings---------------------------
 715 // Estimate the savings from executing s1 and s2 as a pack
 716 int SuperWord::est_savings(Node* s1, Node* s2) {
 717   int save = 2 - 1; // 2 operations per instruction in packed form
 718 
 719   // inputs
 720   for (uint i = 1; i < s1->req(); i++) {
 721     Node* x1 = s1->in(i);
 722     Node* x2 = s2->in(i);
 723     if (x1 != x2) {
 724       if (are_adjacent_refs(x1, x2)) {
 725         save += adjacent_profit(x1, x2);
 726       } else if (!in_packset(x1, x2)) {
 727         save -= pack_cost(2);
 728       } else {
 729         save += unpack_cost(2);
 730       }
 731     }
 732   }
 733 
 734   // uses of result
 735   uint ct = 0;
 736   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 737     Node* s1_use = s1->fast_out(i);
 738     for (int j = 0; j < _packset.length(); j++) {
 739       Node_List* p = _packset.at(j);
 740       if (p->at(0) == s1_use) {
 741         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
 742           Node* s2_use = s2->fast_out(k);
 743           if (p->at(p->size()-1) == s2_use) {
 744             ct++;
 745             if (are_adjacent_refs(s1_use, s2_use)) {
 746               save += adjacent_profit(s1_use, s2_use);
 747             }
 748           }
 749         }
 750       }
 751     }
 752   }
 753 
 754   if (ct < s1->outcnt()) save += unpack_cost(1);
 755   if (ct < s2->outcnt()) save += unpack_cost(1);
 756 
 757   return save;
 758 }
 759 
 760 //------------------------------costs---------------------------
 761 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
 762 int SuperWord::pack_cost(int ct)   { return ct; }
 763 int SuperWord::unpack_cost(int ct) { return ct; }
 764 
 765 //------------------------------combine_packs---------------------------
 766 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
 767 void SuperWord::combine_packs() {
 768   bool changed;
 769   do {
 770     changed = false;
 771     for (int i = 0; i < _packset.length(); i++) {
 772       Node_List* p1 = _packset.at(i);
 773       if (p1 == NULL) continue;
 774       for (int j = 0; j < _packset.length(); j++) {
 775         Node_List* p2 = _packset.at(j);
 776         if (p2 == NULL) continue;
 777         if (p1->at(p1->size()-1) == p2->at(0)) {
 778           for (uint k = 1; k < p2->size(); k++) {
 779             p1->push(p2->at(k));
 780           }
 781           _packset.at_put(j, NULL);
 782           changed = true;
 783         }
 784       }
 785     }
 786   } while (changed);
 787 
 788   for (int i = _packset.length() - 1; i >= 0; i--) {
 789     Node_List* p1 = _packset.at(i);
 790     if (p1 == NULL) {
 791       _packset.remove_at(i);
 792     }
 793   }
 794 
 795 #ifndef PRODUCT
 796   if (TraceSuperWord) {
 797     tty->print_cr("\nAfter combine_packs");
 798     print_packset();
 799   }
 800 #endif
 801 }
 802 
 803 //-----------------------------construct_my_pack_map--------------------------
 804 // Construct the map from nodes to packs.  Only valid after the
 805 // point where a node is only in one pack (after combine_packs).
 806 void SuperWord::construct_my_pack_map() {
 807   Node_List* rslt = NULL;
 808   for (int i = 0; i < _packset.length(); i++) {
 809     Node_List* p = _packset.at(i);
 810     for (uint j = 0; j < p->size(); j++) {
 811       Node* s = p->at(j);
 812       assert(my_pack(s) == NULL, "only in one pack");
 813       set_my_pack(s, p);
 814     }
 815   }
 816 }
 817 
 818 //------------------------------filter_packs---------------------------
 819 // Remove packs that are not implemented or not profitable.
 820 void SuperWord::filter_packs() {
 821 
 822   // Remove packs that are not implemented
 823   for (int i = _packset.length() - 1; i >= 0; i--) {
 824     Node_List* pk = _packset.at(i);
 825     bool impl = implemented(pk);
 826     if (!impl) {
 827 #ifndef PRODUCT
 828       if (TraceSuperWord && Verbose) {
 829         tty->print_cr("Unimplemented");
 830         pk->at(0)->dump();
 831       }
 832 #endif
 833       remove_pack_at(i);
 834     }
 835   }
 836 
 837   // Remove packs that are not profitable
 838   bool changed;
 839   do {
 840     changed = false;
 841     for (int i = _packset.length() - 1; i >= 0; i--) {
 842       Node_List* pk = _packset.at(i);
 843       bool prof = profitable(pk);
 844       if (!prof) {
 845 #ifndef PRODUCT
 846         if (TraceSuperWord && Verbose) {
 847           tty->print_cr("Unprofitable");
 848           pk->at(0)->dump();
 849         }
 850 #endif
 851         remove_pack_at(i);
 852         changed = true;
 853       }
 854     }
 855   } while (changed);
 856 
 857 #ifndef PRODUCT
 858   if (TraceSuperWord) {
 859     tty->print_cr("\nAfter filter_packs");
 860     print_packset();
 861     tty->cr();
 862   }
 863 #endif
 864 }
 865 
 866 //------------------------------implemented---------------------------
 867 // Can code be generated for pack p?
 868 bool SuperWord::implemented(Node_List* p) {
 869   Node* p0 = p->at(0);
 870   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
 871   return vopc > 0 && Matcher::has_match_rule(vopc);
 872 }
 873 
 874 //------------------------------profitable---------------------------
 875 // For pack p, are all operands and all uses (with in the block) vector?
 876 bool SuperWord::profitable(Node_List* p) {
 877   Node* p0 = p->at(0);
 878   uint start, end;
 879   vector_opd_range(p0, &start, &end);
 880 
 881   // Return false if some input is not vector and inside block
 882   for (uint i = start; i < end; i++) {
 883     if (!is_vector_use(p0, i)) {
 884       // For now, return false if not scalar promotion case (inputs are the same.)
 885       // Later, implement PackNode and allow differing, non-vector inputs
 886       // (maybe just the ones from outside the block.)
 887       Node* p0_def = p0->in(i);
 888       for (uint j = 1; j < p->size(); j++) {
 889         Node* use = p->at(j);
 890         Node* def = use->in(i);
 891         if (p0_def != def)
 892           return false;
 893       }
 894     }
 895   }
 896   if (!p0->is_Store()) {
 897     // For now, return false if not all uses are vector.
 898     // Later, implement ExtractNode and allow non-vector uses (maybe
 899     // just the ones outside the block.)
 900     for (uint i = 0; i < p->size(); i++) {
 901       Node* def = p->at(i);
 902       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
 903         Node* use = def->fast_out(j);
 904         for (uint k = 0; k < use->req(); k++) {
 905           Node* n = use->in(k);
 906           if (def == n) {
 907             if (!is_vector_use(use, k)) {
 908               return false;
 909             }
 910           }
 911         }
 912       }
 913     }
 914   }
 915   return true;
 916 }
 917 
 918 //------------------------------schedule---------------------------
 919 // Adjust the memory graph for the packed operations
 920 void SuperWord::schedule() {
 921 
 922   // Co-locate in the memory graph the members of each memory pack
 923   for (int i = 0; i < _packset.length(); i++) {
 924     co_locate_pack(_packset.at(i));
 925   }
 926 }
 927 
 928 //-------------------------------remove_and_insert-------------------
 929 //remove "current" from its current position in the memory graph and insert
 930 //it after the appropriate insertion point (lip or uip)
 931 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
 932                                   Node *uip, Unique_Node_List &sched_before) {
 933   Node* my_mem = current->in(MemNode::Memory);
 934   _igvn.hash_delete(current);
 935   _igvn.hash_delete(my_mem);
 936 
 937   //remove current_store from its current position in the memmory graph
 938   for (DUIterator i = current->outs(); current->has_out(i); i++) {
 939     Node* use = current->out(i);
 940     if (use->is_Mem()) {
 941       assert(use->in(MemNode::Memory) == current, "must be");
 942       _igvn.hash_delete(use);
 943       if (use == prev) { // connect prev to my_mem
 944         use->set_req(MemNode::Memory, my_mem);
 945       } else if (sched_before.member(use)) {
 946         _igvn.hash_delete(uip);
 947         use->set_req(MemNode::Memory, uip);
 948       } else {
 949         _igvn.hash_delete(lip);
 950         use->set_req(MemNode::Memory, lip);
 951       }
 952       _igvn._worklist.push(use);
 953       --i; //deleted this edge; rescan position
 954     }
 955   }
 956 
 957   bool sched_up = sched_before.member(current);
 958   Node *insert_pt =  sched_up ?  uip : lip;
 959   _igvn.hash_delete(insert_pt);
 960 
 961   // all uses of insert_pt's memory state should use current's instead
 962   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
 963     Node* use = insert_pt->out(i);
 964     if (use->is_Mem()) {
 965       assert(use->in(MemNode::Memory) == insert_pt, "must be");
 966       _igvn.hash_delete(use);
 967       use->set_req(MemNode::Memory, current);
 968       _igvn._worklist.push(use);
 969       --i; //deleted this edge; rescan position
 970     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
 971       uint pos; //lip (lower insert point) must be the last one in the memory slice
 972       _igvn.hash_delete(use);
 973       for (pos=1; pos < use->req(); pos++) {
 974         if (use->in(pos) == insert_pt) break;
 975       }
 976       use->set_req(pos, current);
 977       _igvn._worklist.push(use);
 978       --i;
 979     }
 980   }
 981 
 982   //connect current to insert_pt
 983   current->set_req(MemNode::Memory, insert_pt);
 984   _igvn._worklist.push(current);
 985 }
 986 
 987 //------------------------------co_locate_pack----------------------------------
 988 // To schedule a store pack, we need to move any sandwiched memory ops either before
 989 // or after the pack, based upon dependence information:
 990 // (1) If any store in the pack depends on the sandwiched memory op, the
 991 //     sandwiched memory op must be scheduled BEFORE the pack;
 992 // (2) If a sandwiched memory op depends on any store in the pack, the
 993 //     sandwiched memory op must be scheduled AFTER the pack;
 994 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
 995 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
 996 //     scheduled before the pack, memB must also be scheduled before the pack;
 997 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
 998 //     schedule this store AFTER the pack
 999 // (5) We know there is no dependence cycle, so there in no other case;
1000 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1001 //
1002 // To schedule a load pack, we use the memory state of either the first or the last load in
1003 // the pack, based on the dependence constraint.
1004 void SuperWord::co_locate_pack(Node_List* pk) {
1005   if (pk->at(0)->is_Store()) {
1006     MemNode* first     = executed_first(pk)->as_Mem();
1007     MemNode* last      = executed_last(pk)->as_Mem();
1008     Unique_Node_List schedule_before_pack;
1009     Unique_Node_List memops;
1010 
1011     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1012     MemNode* previous  = last;
1013     while (true) {
1014       assert(in_bb(current), "stay in block");
1015       memops.push(previous);
1016       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1017         Node* use = current->out(i);
1018         if (use->is_Mem() && use != previous)
1019           memops.push(use);
1020       }
1021       if(current == first) break;
1022       previous = current;
1023       current  = current->in(MemNode::Memory)->as_Mem();
1024     }
1025 
1026     // determine which memory operations should be scheduled before the pack
1027     for (uint i = 1; i < memops.size(); i++) {
1028       Node *s1 = memops.at(i);
1029       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1030         for (uint j = 0; j< i; j++) {
1031           Node *s2 = memops.at(j);
1032           if (!independent(s1, s2)) {
1033             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1034               schedule_before_pack.push(s1); //s1 must be scheduled before
1035               Node_List* mem_pk = my_pack(s1);
1036               if (mem_pk != NULL) {
1037                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1038                   Node* s = mem_pk->at(ii); // follow partner
1039                   if (memops.member(s) && !schedule_before_pack.member(s))
1040                     schedule_before_pack.push(s);
1041                 }
1042               }
1043             }
1044           }
1045         }
1046       }
1047     }
1048 
1049     MemNode* lower_insert_pt = last;
1050     Node*    upper_insert_pt = first->in(MemNode::Memory);
1051     previous                 = last; //previous store in pk
1052     current                  = last->in(MemNode::Memory)->as_Mem();
1053 
1054     //start scheduling from "last" to "first"
1055     while (true) {
1056       assert(in_bb(current), "stay in block");
1057       assert(in_pack(previous, pk), "previous stays in pack");
1058       Node* my_mem = current->in(MemNode::Memory);
1059 
1060       if (in_pack(current, pk)) {
1061         // Forward users of my memory state (except "previous) to my input memory state
1062         _igvn.hash_delete(current);
1063         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1064           Node* use = current->out(i);
1065           if (use->is_Mem() && use != previous) {
1066             assert(use->in(MemNode::Memory) == current, "must be");
1067             _igvn.hash_delete(use);
1068             if (schedule_before_pack.member(use)) {
1069               _igvn.hash_delete(upper_insert_pt);
1070               use->set_req(MemNode::Memory, upper_insert_pt);
1071             } else {
1072               _igvn.hash_delete(lower_insert_pt);
1073               use->set_req(MemNode::Memory, lower_insert_pt);
1074             }
1075             _igvn._worklist.push(use);
1076             --i; // deleted this edge; rescan position
1077           }
1078         }
1079         previous = current;
1080       } else { // !in_pack(current, pk) ==> a sandwiched store
1081         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1082       }
1083 
1084       if (current == first) break;
1085       current = my_mem->as_Mem();
1086     } // end while
1087   } else if (pk->at(0)->is_Load()) { //load
1088     // all loads in the pack should have the same memory state. By default,
1089     // we use the memory state of the last load. However, if any load could
1090     // not be moved down due to the dependence constraint, we use the memory
1091     // state of the first load.
1092     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1093     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1094     bool schedule_last = true;
1095     for (uint i = 0; i < pk->size(); i++) {
1096       Node* ld = pk->at(i);
1097       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1098            current=current->in(MemNode::Memory)) {
1099         assert(current != first_mem, "corrupted memory graph");
1100         if(current->is_Mem() && !independent(current, ld)){
1101           schedule_last = false; // a later store depends on this load
1102           break;
1103         }
1104       }
1105     }
1106 
1107     Node* mem_input = schedule_last ? last_mem : first_mem;
1108     _igvn.hash_delete(mem_input);
1109     // Give each load the same memory state
1110     for (uint i = 0; i < pk->size(); i++) {
1111       LoadNode* ld = pk->at(i)->as_Load();
1112       _igvn.hash_delete(ld);
1113       ld->set_req(MemNode::Memory, mem_input);
1114       _igvn._worklist.push(ld);
1115     }
1116   }
1117 }
1118 
1119 //------------------------------output---------------------------
1120 // Convert packs into vector node operations
1121 void SuperWord::output() {
1122   if (_packset.length() == 0) return;
1123 
1124   // MUST ENSURE main loop's initial value is properly aligned:
1125   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
1126 
1127   align_initial_loop_index(align_to_ref());
1128 
1129   // Insert extract (unpack) operations for scalar uses
1130   for (int i = 0; i < _packset.length(); i++) {
1131     insert_extracts(_packset.at(i));
1132   }
1133 
1134   for (int i = 0; i < _block.length(); i++) {
1135     Node* n = _block.at(i);
1136     Node_List* p = my_pack(n);
1137     if (p && n == executed_last(p)) {
1138       uint vlen = p->size();
1139       Node* vn = NULL;
1140       Node* low_adr = p->at(0);
1141       Node* first   = executed_first(p);
1142       if (n->is_Load()) {
1143         int   opc = n->Opcode();
1144         Node* ctl = n->in(MemNode::Control);
1145         Node* mem = first->in(MemNode::Memory);
1146         Node* adr = low_adr->in(MemNode::Address);
1147         const TypePtr* atyp = n->adr_type();
1148         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
1149 
1150       } else if (n->is_Store()) {
1151         // Promote value to be stored to vector
1152         VectorNode* val = vector_opd(p, MemNode::ValueIn);
1153 
1154         int   opc = n->Opcode();
1155         Node* ctl = n->in(MemNode::Control);
1156         Node* mem = first->in(MemNode::Memory);
1157         Node* adr = low_adr->in(MemNode::Address);
1158         const TypePtr* atyp = n->adr_type();
1159         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
1160 
1161       } else if (n->req() == 3) {
1162         // Promote operands to vector
1163         Node* in1 = vector_opd(p, 1);
1164         Node* in2 = vector_opd(p, 2);
1165         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
1166 
1167       } else {
1168         ShouldNotReachHere();
1169       }
1170 
1171       _phase->_igvn.register_new_node_with_optimizer(vn);
1172       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1173       for (uint j = 0; j < p->size(); j++) {
1174         Node* pm = p->at(j);
1175         _igvn.replace_node(pm, vn);
1176       }
1177       _igvn._worklist.push(vn);
1178     }
1179   }
1180 }
1181 
1182 //------------------------------vector_opd---------------------------
1183 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1184 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1185   Node* p0 = p->at(0);
1186   uint vlen = p->size();
1187   Node* opd = p0->in(opd_idx);
1188 
1189   bool same_opd = true;
1190   for (uint i = 1; i < vlen; i++) {
1191     Node* pi = p->at(i);
1192     Node* in = pi->in(opd_idx);
1193     if (opd != in) {
1194       same_opd = false;
1195       break;
1196     }
1197   }
1198 
1199   if (same_opd) {
1200     if (opd->is_Vector()) {
1201       return (VectorNode*)opd; // input is matching vector
1202     }
1203     // Convert scalar input to vector. Use p0's type because it's container
1204     // maybe smaller than the operand's container.
1205     const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
1206     const Type* p0_t  = velt_type(p0);
1207     if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
1208     VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
1209 
1210     _phase->_igvn.register_new_node_with_optimizer(vn);
1211     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1212     return vn;
1213   }
1214 
1215   // Insert pack operation
1216   const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
1217   PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
1218 
1219   for (uint i = 1; i < vlen; i++) {
1220     Node* pi = p->at(i);
1221     Node* in = pi->in(opd_idx);
1222     assert(my_pack(in) == NULL, "Should already have been unpacked");
1223     assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
1224     pk->add_opd(in);
1225   }
1226   _phase->_igvn.register_new_node_with_optimizer(pk);
1227   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
1228   return pk;
1229 }
1230 
1231 //------------------------------insert_extracts---------------------------
1232 // If a use of pack p is not a vector use, then replace the
1233 // use with an extract operation.
1234 void SuperWord::insert_extracts(Node_List* p) {
1235   if (p->at(0)->is_Store()) return;
1236   assert(_n_idx_list.is_empty(), "empty (node,index) list");
1237 
1238   // Inspect each use of each pack member.  For each use that is
1239   // not a vector use, replace the use with an extract operation.
1240 
1241   for (uint i = 0; i < p->size(); i++) {
1242     Node* def = p->at(i);
1243     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1244       Node* use = def->fast_out(j);
1245       for (uint k = 0; k < use->req(); k++) {
1246         Node* n = use->in(k);
1247         if (def == n) {
1248           if (!is_vector_use(use, k)) {
1249             _n_idx_list.push(use, k);
1250           }
1251         }
1252       }
1253     }
1254   }
1255 
1256   while (_n_idx_list.is_nonempty()) {
1257     Node* use = _n_idx_list.node();
1258     int   idx = _n_idx_list.index();
1259     _n_idx_list.pop();
1260     Node* def = use->in(idx);
1261 
1262     // Insert extract operation
1263     _igvn.hash_delete(def);
1264     _igvn.hash_delete(use);
1265     int def_pos = alignment(def) / data_size(def);
1266     const Type* def_t = velt_type(def);
1267 
1268     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
1269     _phase->_igvn.register_new_node_with_optimizer(ex);
1270     _phase->set_ctrl(ex, _phase->get_ctrl(def));
1271     use->set_req(idx, ex);
1272     _igvn._worklist.push(def);
1273     _igvn._worklist.push(use);
1274 
1275     bb_insert_after(ex, bb_idx(def));
1276     set_velt_type(ex, def_t);
1277   }
1278 }
1279 
1280 //------------------------------is_vector_use---------------------------
1281 // Is use->in(u_idx) a vector use?
1282 bool SuperWord::is_vector_use(Node* use, int u_idx) {
1283   Node_List* u_pk = my_pack(use);
1284   if (u_pk == NULL) return false;
1285   Node* def = use->in(u_idx);
1286   Node_List* d_pk = my_pack(def);
1287   if (d_pk == NULL) {
1288     // check for scalar promotion
1289     Node* n = u_pk->at(0)->in(u_idx);
1290     for (uint i = 1; i < u_pk->size(); i++) {
1291       if (u_pk->at(i)->in(u_idx) != n) return false;
1292     }
1293     return true;
1294   }
1295   if (u_pk->size() != d_pk->size())
1296     return false;
1297   for (uint i = 0; i < u_pk->size(); i++) {
1298     Node* ui = u_pk->at(i);
1299     Node* di = d_pk->at(i);
1300     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
1301       return false;
1302   }
1303   return true;
1304 }
1305 
1306 //------------------------------construct_bb---------------------------
1307 // Construct reverse postorder list of block members
1308 void SuperWord::construct_bb() {
1309   Node* entry = bb();
1310 
1311   assert(_stk.length() == 0,            "stk is empty");
1312   assert(_block.length() == 0,          "block is empty");
1313   assert(_data_entry.length() == 0,     "data_entry is empty");
1314   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
1315   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
1316 
1317   // Find non-control nodes with no inputs from within block,
1318   // create a temporary map from node _idx to bb_idx for use
1319   // by the visited and post_visited sets,
1320   // and count number of nodes in block.
1321   int bb_ct = 0;
1322   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
1323     Node *n = lpt()->_body.at(i);
1324     set_bb_idx(n, i); // Create a temporary map
1325     if (in_bb(n)) {
1326       bb_ct++;
1327       if (!n->is_CFG()) {
1328         bool found = false;
1329         for (uint j = 0; j < n->req(); j++) {
1330           Node* def = n->in(j);
1331           if (def && in_bb(def)) {
1332             found = true;
1333             break;
1334           }
1335         }
1336         if (!found) {
1337           assert(n != entry, "can't be entry");
1338           _data_entry.push(n);
1339         }
1340       }
1341     }
1342   }
1343 
1344   // Find memory slices (head and tail)
1345   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
1346     Node *n = lp()->fast_out(i);
1347     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1348       Node* n_tail  = n->in(LoopNode::LoopBackControl);
1349       if (n_tail != n->in(LoopNode::EntryControl)) {
1350         _mem_slice_head.push(n);
1351         _mem_slice_tail.push(n_tail);
1352       }
1353     }
1354   }
1355 
1356   // Create an RPO list of nodes in block
1357 
1358   visited_clear();
1359   post_visited_clear();
1360 
1361   // Push all non-control nodes with no inputs from within block, then control entry
1362   for (int j = 0; j < _data_entry.length(); j++) {
1363     Node* n = _data_entry.at(j);
1364     visited_set(n);
1365     _stk.push(n);
1366   }
1367   visited_set(entry);
1368   _stk.push(entry);
1369 
1370   // Do a depth first walk over out edges
1371   int rpo_idx = bb_ct - 1;
1372   int size;
1373   while ((size = _stk.length()) > 0) {
1374     Node* n = _stk.top(); // Leave node on stack
1375     if (!visited_test_set(n)) {
1376       // forward arc in graph
1377     } else if (!post_visited_test(n)) {
1378       // cross or back arc
1379       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1380         Node *use = n->fast_out(i);
1381         if (in_bb(use) && !visited_test(use) &&
1382             // Don't go around backedge
1383             (!use->is_Phi() || n == entry)) {
1384           _stk.push(use);
1385         }
1386       }
1387       if (_stk.length() == size) {
1388         // There were no additional uses, post visit node now
1389         _stk.pop(); // Remove node from stack
1390         assert(rpo_idx >= 0, "");
1391         _block.at_put_grow(rpo_idx, n);
1392         rpo_idx--;
1393         post_visited_set(n);
1394         assert(rpo_idx >= 0 || _stk.is_empty(), "");
1395       }
1396     } else {
1397       _stk.pop(); // Remove post-visited node from stack
1398     }
1399   }
1400 
1401   // Create real map of block indices for nodes
1402   for (int j = 0; j < _block.length(); j++) {
1403     Node* n = _block.at(j);
1404     set_bb_idx(n, j);
1405   }
1406 
1407   initialize_bb(); // Ensure extra info is allocated.
1408 
1409 #ifndef PRODUCT
1410   if (TraceSuperWord) {
1411     print_bb();
1412     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
1413     for (int m = 0; m < _data_entry.length(); m++) {
1414       tty->print("%3d ", m);
1415       _data_entry.at(m)->dump();
1416     }
1417     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
1418     for (int m = 0; m < _mem_slice_head.length(); m++) {
1419       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
1420       tty->print("    ");    _mem_slice_tail.at(m)->dump();
1421     }
1422   }
1423 #endif
1424   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
1425 }
1426 
1427 //------------------------------initialize_bb---------------------------
1428 // Initialize per node info
1429 void SuperWord::initialize_bb() {
1430   Node* last = _block.at(_block.length() - 1);
1431   grow_node_info(bb_idx(last));
1432 }
1433 
1434 //------------------------------bb_insert_after---------------------------
1435 // Insert n into block after pos
1436 void SuperWord::bb_insert_after(Node* n, int pos) {
1437   int n_pos = pos + 1;
1438   // Make room
1439   for (int i = _block.length() - 1; i >= n_pos; i--) {
1440     _block.at_put_grow(i+1, _block.at(i));
1441   }
1442   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
1443     _node_info.at_put_grow(j+1, _node_info.at(j));
1444   }
1445   // Set value
1446   _block.at_put_grow(n_pos, n);
1447   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
1448   // Adjust map from node->_idx to _block index
1449   for (int i = n_pos; i < _block.length(); i++) {
1450     set_bb_idx(_block.at(i), i);
1451   }
1452 }
1453 
1454 //------------------------------compute_max_depth---------------------------
1455 // Compute max depth for expressions from beginning of block
1456 // Use to prune search paths during test for independence.
1457 void SuperWord::compute_max_depth() {
1458   int ct = 0;
1459   bool again;
1460   do {
1461     again = false;
1462     for (int i = 0; i < _block.length(); i++) {
1463       Node* n = _block.at(i);
1464       if (!n->is_Phi()) {
1465         int d_orig = depth(n);
1466         int d_in   = 0;
1467         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
1468           Node* pred = preds.current();
1469           if (in_bb(pred)) {
1470             d_in = MAX2(d_in, depth(pred));
1471           }
1472         }
1473         if (d_in + 1 != d_orig) {
1474           set_depth(n, d_in + 1);
1475           again = true;
1476         }
1477       }
1478     }
1479     ct++;
1480   } while (again);
1481 #ifndef PRODUCT
1482   if (TraceSuperWord && Verbose)
1483     tty->print_cr("compute_max_depth iterated: %d times", ct);
1484 #endif
1485 }
1486 
1487 //-------------------------compute_vector_element_type-----------------------
1488 // Compute necessary vector element type for expressions
1489 // This propagates backwards a narrower integer type when the
1490 // upper bits of the value are not needed.
1491 // Example:  char a,b,c;  a = b + c;
1492 // Normally the type of the add is integer, but for packed character
1493 // operations the type of the add needs to be char.
1494 void SuperWord::compute_vector_element_type() {
1495 #ifndef PRODUCT
1496   if (TraceSuperWord && Verbose)
1497     tty->print_cr("\ncompute_velt_type:");
1498 #endif
1499 
1500   // Initial type
1501   for (int i = 0; i < _block.length(); i++) {
1502     Node* n = _block.at(i);
1503     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
1504                                  : _igvn.type(n);
1505     const Type* vt = container_type(t);
1506     set_velt_type(n, vt);
1507   }
1508 
1509   // Propagate narrowed type backwards through operations
1510   // that don't depend on higher order bits
1511   for (int i = _block.length() - 1; i >= 0; i--) {
1512     Node* n = _block.at(i);
1513     // Only integer types need be examined
1514     if (n->bottom_type()->isa_int()) {
1515       uint start, end;
1516       vector_opd_range(n, &start, &end);
1517       const Type* vt = velt_type(n);
1518 
1519       for (uint j = start; j < end; j++) {
1520         Node* in  = n->in(j);
1521         // Don't propagate through a type conversion
1522         if (n->bottom_type() != in->bottom_type())
1523           continue;
1524         switch(in->Opcode()) {
1525         case Op_AddI:    case Op_AddL:
1526         case Op_SubI:    case Op_SubL:
1527         case Op_MulI:    case Op_MulL:
1528         case Op_AndI:    case Op_AndL:
1529         case Op_OrI:     case Op_OrL:
1530         case Op_XorI:    case Op_XorL:
1531         case Op_LShiftI: case Op_LShiftL:
1532         case Op_CMoveI:  case Op_CMoveL:
1533           if (in_bb(in)) {
1534             bool same_type = true;
1535             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
1536               Node *use = in->fast_out(k);
1537               if (!in_bb(use) || velt_type(use) != vt) {
1538                 same_type = false;
1539                 break;
1540               }
1541             }
1542             if (same_type) {
1543               set_velt_type(in, vt);
1544             }
1545           }
1546         }
1547       }
1548     }
1549   }
1550 #ifndef PRODUCT
1551   if (TraceSuperWord && Verbose) {
1552     for (int i = 0; i < _block.length(); i++) {
1553       Node* n = _block.at(i);
1554       velt_type(n)->dump();
1555       tty->print("\t");
1556       n->dump();
1557     }
1558   }
1559 #endif
1560 }
1561 
1562 //------------------------------memory_alignment---------------------------
1563 // Alignment within a vector memory reference
1564 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
1565   SWPointer p(s, this);
1566   if (!p.valid()) {
1567     return bottom_align;
1568   }
1569   int offset  = p.offset_in_bytes();
1570   offset     += iv_adjust_in_bytes;
1571   int off_rem = offset % vector_width_in_bytes();
1572   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
1573   return off_mod;
1574 }
1575 
1576 //---------------------------container_type---------------------------
1577 // Smallest type containing range of values
1578 const Type* SuperWord::container_type(const Type* t) {
1579   const Type* tp = t->make_ptr();
1580   if (tp && tp->isa_aryptr()) {
1581     t = tp->is_aryptr()->elem();
1582   }
1583   if (t->basic_type() == T_INT) {
1584     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
1585     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
1586     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
1587     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
1588     return TypeInt::INT;
1589   }
1590   return t;
1591 }
1592 
1593 //-------------------------vector_opd_range-----------------------
1594 // (Start, end] half-open range defining which operands are vector
1595 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
1596   switch (n->Opcode()) {
1597   case Op_LoadB:   case Op_LoadUS:
1598   case Op_LoadI:   case Op_LoadL:
1599   case Op_LoadF:   case Op_LoadD:
1600   case Op_LoadP:
1601     *start = 0;
1602     *end   = 0;
1603     return;
1604   case Op_StoreB:  case Op_StoreC:
1605   case Op_StoreI:  case Op_StoreL:
1606   case Op_StoreF:  case Op_StoreD:
1607   case Op_StoreP:
1608     *start = MemNode::ValueIn;
1609     *end   = *start + 1;
1610     return;
1611   case Op_LShiftI: case Op_LShiftL:
1612     *start = 1;
1613     *end   = 2;
1614     return;
1615   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
1616     *start = 2;
1617     *end   = n->req();
1618     return;
1619   }
1620   *start = 1;
1621   *end   = n->req(); // default is all operands
1622 }
1623 
1624 //------------------------------in_packset---------------------------
1625 // Are s1 and s2 in a pack pair and ordered as s1,s2?
1626 bool SuperWord::in_packset(Node* s1, Node* s2) {
1627   for (int i = 0; i < _packset.length(); i++) {
1628     Node_List* p = _packset.at(i);
1629     assert(p->size() == 2, "must be");
1630     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
1631       return true;
1632     }
1633   }
1634   return false;
1635 }
1636 
1637 //------------------------------in_pack---------------------------
1638 // Is s in pack p?
1639 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
1640   for (uint i = 0; i < p->size(); i++) {
1641     if (p->at(i) == s) {
1642       return p;
1643     }
1644   }
1645   return NULL;
1646 }
1647 
1648 //------------------------------remove_pack_at---------------------------
1649 // Remove the pack at position pos in the packset
1650 void SuperWord::remove_pack_at(int pos) {
1651   Node_List* p = _packset.at(pos);
1652   for (uint i = 0; i < p->size(); i++) {
1653     Node* s = p->at(i);
1654     set_my_pack(s, NULL);
1655   }
1656   _packset.remove_at(pos);
1657 }
1658 
1659 //------------------------------executed_first---------------------------
1660 // Return the node executed first in pack p.  Uses the RPO block list
1661 // to determine order.
1662 Node* SuperWord::executed_first(Node_List* p) {
1663   Node* n = p->at(0);
1664   int n_rpo = bb_idx(n);
1665   for (uint i = 1; i < p->size(); i++) {
1666     Node* s = p->at(i);
1667     int s_rpo = bb_idx(s);
1668     if (s_rpo < n_rpo) {
1669       n = s;
1670       n_rpo = s_rpo;
1671     }
1672   }
1673   return n;
1674 }
1675 
1676 //------------------------------executed_last---------------------------
1677 // Return the node executed last in pack p.
1678 Node* SuperWord::executed_last(Node_List* p) {
1679   Node* n = p->at(0);
1680   int n_rpo = bb_idx(n);
1681   for (uint i = 1; i < p->size(); i++) {
1682     Node* s = p->at(i);
1683     int s_rpo = bb_idx(s);
1684     if (s_rpo > n_rpo) {
1685       n = s;
1686       n_rpo = s_rpo;
1687     }
1688   }
1689   return n;
1690 }
1691 
1692 //----------------------------align_initial_loop_index---------------------------
1693 // Adjust pre-loop limit so that in main loop, a load/store reference
1694 // to align_to_ref will be a position zero in the vector.
1695 //   (iv + k) mod vector_align == 0
1696 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
1697   CountedLoopNode *main_head = lp()->as_CountedLoop();
1698   assert(main_head->is_main_loop(), "");
1699   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
1700   assert(pre_end != NULL, "");
1701   Node *pre_opaq1 = pre_end->limit();
1702   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
1703   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1704   Node *lim0 = pre_opaq->in(1);
1705 
1706   // Where we put new limit calculations
1707   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1708 
1709   // Ensure the original loop limit is available from the
1710   // pre-loop Opaque1 node.
1711   Node *orig_limit = pre_opaq->original_loop_limit();
1712   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
1713 
1714   SWPointer align_to_ref_p(align_to_ref, this);
1715 
1716   // Given:
1717   //     lim0 == original pre loop limit
1718   //     V == v_align (power of 2)
1719   //     invar == extra invariant piece of the address expression
1720   //     e == k [ +/- invar ]
1721   //
1722   // When reassociating expressions involving '%' the basic rules are:
1723   //     (a - b) % k == 0   =>  a % k == b % k
1724   // and:
1725   //     (a + b) % k == 0   =>  a % k == (k - b) % k
1726   //
1727   // For stride > 0 && scale > 0,
1728   //   Derive the new pre-loop limit "lim" such that the two constraints:
1729   //     (1) lim = lim0 + N           (where N is some positive integer < V)
1730   //     (2) (e + lim) % V == 0
1731   //   are true.
1732   //
1733   //   Substituting (1) into (2),
1734   //     (e + lim0 + N) % V == 0
1735   //   solve for N:
1736   //     N = (V - (e + lim0)) % V
1737   //   substitute back into (1), so that new limit
1738   //     lim = lim0 + (V - (e + lim0)) % V
1739   //
1740   // For stride > 0 && scale < 0
1741   //   Constraints:
1742   //     lim = lim0 + N
1743   //     (e - lim) % V == 0
1744   //   Solving for lim:
1745   //     (e - lim0 - N) % V == 0
1746   //     N = (e - lim0) % V
1747   //     lim = lim0 + (e - lim0) % V
1748   //
1749   // For stride < 0 && scale > 0
1750   //   Constraints:
1751   //     lim = lim0 - N
1752   //     (e + lim) % V == 0
1753   //   Solving for lim:
1754   //     (e + lim0 - N) % V == 0
1755   //     N = (e + lim0) % V
1756   //     lim = lim0 - (e + lim0) % V
1757   //
1758   // For stride < 0 && scale < 0
1759   //   Constraints:
1760   //     lim = lim0 - N
1761   //     (e - lim) % V == 0
1762   //   Solving for lim:
1763   //     (e - lim0 + N) % V == 0
1764   //     N = (V - (e - lim0)) % V
1765   //     lim = lim0 - (V - (e - lim0)) % V
1766 
1767   int stride   = iv_stride();
1768   int scale    = align_to_ref_p.scale_in_bytes();
1769   int elt_size = align_to_ref_p.memory_size();
1770   int v_align  = vector_width_in_bytes() / elt_size;
1771   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
1772 
1773   Node *kn   = _igvn.intcon(k);
1774 
1775   Node *e = kn;
1776   if (align_to_ref_p.invar() != NULL) {
1777     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
1778     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
1779     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
1780     _phase->_igvn.register_new_node_with_optimizer(aref);
1781     _phase->set_ctrl(aref, pre_ctrl);
1782     if (align_to_ref_p.negate_invar()) {
1783       e = new (_phase->C, 3) SubINode(e, aref);
1784     } else {
1785       e = new (_phase->C, 3) AddINode(e, aref);
1786     }
1787     _phase->_igvn.register_new_node_with_optimizer(e);
1788     _phase->set_ctrl(e, pre_ctrl);
1789   }
1790 
1791   // compute e +/- lim0
1792   if (scale < 0) {
1793     e = new (_phase->C, 3) SubINode(e, lim0);
1794   } else {
1795     e = new (_phase->C, 3) AddINode(e, lim0);
1796   }
1797   _phase->_igvn.register_new_node_with_optimizer(e);
1798   _phase->set_ctrl(e, pre_ctrl);
1799 
1800   if (stride * scale > 0) {
1801     // compute V - (e +/- lim0)
1802     Node* va  = _igvn.intcon(v_align);
1803     e = new (_phase->C, 3) SubINode(va, e);
1804     _phase->_igvn.register_new_node_with_optimizer(e);
1805     _phase->set_ctrl(e, pre_ctrl);
1806   }
1807   // compute N = (exp) % V
1808   Node* va_msk = _igvn.intcon(v_align - 1);
1809   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
1810   _phase->_igvn.register_new_node_with_optimizer(N);
1811   _phase->set_ctrl(N, pre_ctrl);
1812 
1813   //   substitute back into (1), so that new limit
1814   //     lim = lim0 + N
1815   Node* lim;
1816   if (stride < 0) {
1817     lim = new (_phase->C, 3) SubINode(lim0, N);
1818   } else {
1819     lim = new (_phase->C, 3) AddINode(lim0, N);
1820   }
1821   _phase->_igvn.register_new_node_with_optimizer(lim);
1822   _phase->set_ctrl(lim, pre_ctrl);
1823   Node* constrained =
1824     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
1825                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
1826   _phase->_igvn.register_new_node_with_optimizer(constrained);
1827   _phase->set_ctrl(constrained, pre_ctrl);
1828   _igvn.hash_delete(pre_opaq);
1829   pre_opaq->set_req(1, constrained);
1830 }
1831 
1832 //----------------------------get_pre_loop_end---------------------------
1833 // Find pre loop end from main loop.  Returns null if none.
1834 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
1835   Node *ctrl = cl->in(LoopNode::EntryControl);
1836   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
1837   Node *iffm = ctrl->in(0);
1838   if (!iffm->is_If()) return NULL;
1839   Node *p_f = iffm->in(0);
1840   if (!p_f->is_IfFalse()) return NULL;
1841   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
1842   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1843   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
1844   return pre_end;
1845 }
1846 
1847 
1848 //------------------------------init---------------------------
1849 void SuperWord::init() {
1850   _dg.init();
1851   _packset.clear();
1852   _disjoint_ptrs.clear();
1853   _block.clear();
1854   _data_entry.clear();
1855   _mem_slice_head.clear();
1856   _mem_slice_tail.clear();
1857   _node_info.clear();
1858   _align_to_ref = NULL;
1859   _lpt = NULL;
1860   _lp = NULL;
1861   _bb = NULL;
1862   _iv = NULL;
1863 }
1864 
1865 //------------------------------print_packset---------------------------
1866 void SuperWord::print_packset() {
1867 #ifndef PRODUCT
1868   tty->print_cr("packset");
1869   for (int i = 0; i < _packset.length(); i++) {
1870     tty->print_cr("Pack: %d", i);
1871     Node_List* p = _packset.at(i);
1872     print_pack(p);
1873   }
1874 #endif
1875 }
1876 
1877 //------------------------------print_pack---------------------------
1878 void SuperWord::print_pack(Node_List* p) {
1879   for (uint i = 0; i < p->size(); i++) {
1880     print_stmt(p->at(i));
1881   }
1882 }
1883 
1884 //------------------------------print_bb---------------------------
1885 void SuperWord::print_bb() {
1886 #ifndef PRODUCT
1887   tty->print_cr("\nBlock");
1888   for (int i = 0; i < _block.length(); i++) {
1889     Node* n = _block.at(i);
1890     tty->print("%d ", i);
1891     if (n) {
1892       n->dump();
1893     }
1894   }
1895 #endif
1896 }
1897 
1898 //------------------------------print_stmt---------------------------
1899 void SuperWord::print_stmt(Node* s) {
1900 #ifndef PRODUCT
1901   tty->print(" align: %d \t", alignment(s));
1902   s->dump();
1903 #endif
1904 }
1905 
1906 //------------------------------blank---------------------------
1907 char* SuperWord::blank(uint depth) {
1908   static char blanks[101];
1909   assert(depth < 101, "too deep");
1910   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
1911   blanks[depth] = '\0';
1912   return blanks;
1913 }
1914 
1915 
1916 //==============================SWPointer===========================
1917 
1918 //----------------------------SWPointer------------------------
1919 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
1920   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
1921   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
1922 
1923   Node* adr = mem->in(MemNode::Address);
1924   if (!adr->is_AddP()) {
1925     assert(!valid(), "too complex");
1926     return;
1927   }
1928   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
1929   Node* base = adr->in(AddPNode::Base);
1930   //unsafe reference could not be aligned appropriately without runtime checking
1931   if (base == NULL || base->bottom_type() == Type::TOP) {
1932     assert(!valid(), "unsafe access");
1933     return;
1934   }
1935   for (int i = 0; i < 3; i++) {
1936     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
1937       assert(!valid(), "too complex");
1938       return;
1939     }
1940     adr = adr->in(AddPNode::Address);
1941     if (base == adr || !adr->is_AddP()) {
1942       break; // stop looking at addp's
1943     }
1944   }
1945   _base = base;
1946   _adr  = adr;
1947   assert(valid(), "Usable");
1948 }
1949 
1950 // Following is used to create a temporary object during
1951 // the pattern match of an address expression.
1952 SWPointer::SWPointer(SWPointer* p) :
1953   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
1954   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
1955 
1956 //------------------------scaled_iv_plus_offset--------------------
1957 // Match: k*iv + offset
1958 // where: k is a constant that maybe zero, and
1959 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
1960 bool SWPointer::scaled_iv_plus_offset(Node* n) {
1961   if (scaled_iv(n)) {
1962     return true;
1963   }
1964   if (offset_plus_k(n)) {
1965     return true;
1966   }
1967   int opc = n->Opcode();
1968   if (opc == Op_AddI) {
1969     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
1970       return true;
1971     }
1972     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
1973       return true;
1974     }
1975   } else if (opc == Op_SubI) {
1976     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
1977       return true;
1978     }
1979     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
1980       _scale *= -1;
1981       return true;
1982     }
1983   }
1984   return false;
1985 }
1986 
1987 //----------------------------scaled_iv------------------------
1988 // Match: k*iv where k is a constant that's not zero
1989 bool SWPointer::scaled_iv(Node* n) {
1990   if (_scale != 0) {
1991     return false;  // already found a scale
1992   }
1993   if (n == iv()) {
1994     _scale = 1;
1995     return true;
1996   }
1997   int opc = n->Opcode();
1998   if (opc == Op_MulI) {
1999     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2000       _scale = n->in(2)->get_int();
2001       return true;
2002     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
2003       _scale = n->in(1)->get_int();
2004       return true;
2005     }
2006   } else if (opc == Op_LShiftI) {
2007     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2008       _scale = 1 << n->in(2)->get_int();
2009       return true;
2010     }
2011   } else if (opc == Op_ConvI2L) {
2012     if (scaled_iv_plus_offset(n->in(1))) {
2013       return true;
2014     }
2015   } else if (opc == Op_LShiftL) {
2016     if (!has_iv() && _invar == NULL) {
2017       // Need to preserve the current _offset value, so
2018       // create a temporary object for this expression subtree.
2019       // Hacky, so should re-engineer the address pattern match.
2020       SWPointer tmp(this);
2021       if (tmp.scaled_iv_plus_offset(n->in(1))) {
2022         if (tmp._invar == NULL) {
2023           int mult = 1 << n->in(2)->get_int();
2024           _scale   = tmp._scale  * mult;
2025           _offset += tmp._offset * mult;
2026           return true;
2027         }
2028       }
2029     }
2030   }
2031   return false;
2032 }
2033 
2034 //----------------------------offset_plus_k------------------------
2035 // Match: offset is (k [+/- invariant])
2036 // where k maybe zero and invariant is optional, but not both.
2037 bool SWPointer::offset_plus_k(Node* n, bool negate) {
2038   int opc = n->Opcode();
2039   if (opc == Op_ConI) {
2040     _offset += negate ? -(n->get_int()) : n->get_int();
2041     return true;
2042   } else if (opc == Op_ConL) {
2043     // Okay if value fits into an int
2044     const TypeLong* t = n->find_long_type();
2045     if (t->higher_equal(TypeLong::INT)) {
2046       jlong loff = n->get_long();
2047       jint  off  = (jint)loff;
2048       _offset += negate ? -off : loff;
2049       return true;
2050     }
2051     return false;
2052   }
2053   if (_invar != NULL) return false; // already have an invariant
2054   if (opc == Op_AddI) {
2055     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2056       _negate_invar = negate;
2057       _invar = n->in(1);
2058       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2059       return true;
2060     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2061       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2062       _negate_invar = negate;
2063       _invar = n->in(2);
2064       return true;
2065     }
2066   }
2067   if (opc == Op_SubI) {
2068     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2069       _negate_invar = negate;
2070       _invar = n->in(1);
2071       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2072       return true;
2073     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2074       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2075       _negate_invar = !negate;
2076       _invar = n->in(2);
2077       return true;
2078     }
2079   }
2080   if (invariant(n)) {
2081     _negate_invar = negate;
2082     _invar = n;
2083     return true;
2084   }
2085   return false;
2086 }
2087 
2088 //----------------------------print------------------------
2089 void SWPointer::print() {
2090 #ifndef PRODUCT
2091   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
2092              _base != NULL ? _base->_idx : 0,
2093              _adr  != NULL ? _adr->_idx  : 0,
2094              _scale, _offset,
2095              _negate_invar?'-':'+',
2096              _invar != NULL ? _invar->_idx : 0);
2097 #endif
2098 }
2099 
2100 // ========================= OrderedPair =====================
2101 
2102 const OrderedPair OrderedPair::initial;
2103 
2104 // ========================= SWNodeInfo =====================
2105 
2106 const SWNodeInfo SWNodeInfo::initial;
2107 
2108 
2109 // ============================ DepGraph ===========================
2110 
2111 //------------------------------make_node---------------------------
2112 // Make a new dependence graph node for an ideal node.
2113 DepMem* DepGraph::make_node(Node* node) {
2114   DepMem* m = new (_arena) DepMem(node);
2115   if (node != NULL) {
2116     assert(_map.at_grow(node->_idx) == NULL, "one init only");
2117     _map.at_put_grow(node->_idx, m);
2118   }
2119   return m;
2120 }
2121 
2122 //------------------------------make_edge---------------------------
2123 // Make a new dependence graph edge from dpred -> dsucc
2124 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
2125   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
2126   dpred->set_out_head(e);
2127   dsucc->set_in_head(e);
2128   return e;
2129 }
2130 
2131 // ========================== DepMem ========================
2132 
2133 //------------------------------in_cnt---------------------------
2134 int DepMem::in_cnt() {
2135   int ct = 0;
2136   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
2137   return ct;
2138 }
2139 
2140 //------------------------------out_cnt---------------------------
2141 int DepMem::out_cnt() {
2142   int ct = 0;
2143   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
2144   return ct;
2145 }
2146 
2147 //------------------------------print-----------------------------
2148 void DepMem::print() {
2149 #ifndef PRODUCT
2150   tty->print("  DepNode %d (", _node->_idx);
2151   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
2152     Node* pred = p->pred()->node();
2153     tty->print(" %d", pred != NULL ? pred->_idx : 0);
2154   }
2155   tty->print(") [");
2156   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
2157     Node* succ = s->succ()->node();
2158     tty->print(" %d", succ != NULL ? succ->_idx : 0);
2159   }
2160   tty->print_cr(" ]");
2161 #endif
2162 }
2163 
2164 // =========================== DepEdge =========================
2165 
2166 //------------------------------DepPreds---------------------------
2167 void DepEdge::print() {
2168 #ifndef PRODUCT
2169   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
2170 #endif
2171 }
2172 
2173 // =========================== DepPreds =========================
2174 // Iterator over predecessor edges in the dependence graph.
2175 
2176 //------------------------------DepPreds---------------------------
2177 DepPreds::DepPreds(Node* n, DepGraph& dg) {
2178   _n = n;
2179   _done = false;
2180   if (_n->is_Store() || _n->is_Load()) {
2181     _next_idx = MemNode::Address;
2182     _end_idx  = n->req();
2183     _dep_next = dg.dep(_n)->in_head();
2184   } else if (_n->is_Mem()) {
2185     _next_idx = 0;
2186     _end_idx  = 0;
2187     _dep_next = dg.dep(_n)->in_head();
2188   } else {
2189     _next_idx = 1;
2190     _end_idx  = _n->req();
2191     _dep_next = NULL;
2192   }
2193   next();
2194 }
2195 
2196 //------------------------------next---------------------------
2197 void DepPreds::next() {
2198   if (_dep_next != NULL) {
2199     _current  = _dep_next->pred()->node();
2200     _dep_next = _dep_next->next_in();
2201   } else if (_next_idx < _end_idx) {
2202     _current  = _n->in(_next_idx++);
2203   } else {
2204     _done = true;
2205   }
2206 }
2207 
2208 // =========================== DepSuccs =========================
2209 // Iterator over successor edges in the dependence graph.
2210 
2211 //------------------------------DepSuccs---------------------------
2212 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
2213   _n = n;
2214   _done = false;
2215   if (_n->is_Load()) {
2216     _next_idx = 0;
2217     _end_idx  = _n->outcnt();
2218     _dep_next = dg.dep(_n)->out_head();
2219   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
2220     _next_idx = 0;
2221     _end_idx  = 0;
2222     _dep_next = dg.dep(_n)->out_head();
2223   } else {
2224     _next_idx = 0;
2225     _end_idx  = _n->outcnt();
2226     _dep_next = NULL;
2227   }
2228   next();
2229 }
2230 
2231 //-------------------------------next---------------------------
2232 void DepSuccs::next() {
2233   if (_dep_next != NULL) {
2234     _current  = _dep_next->succ()->node();
2235     _dep_next = _dep_next->next_out();
2236   } else if (_next_idx < _end_idx) {
2237     _current  = _n->raw_out(_next_idx++);
2238   } else {
2239     _done = true;
2240   }
2241 }