1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/methodOop.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #ifdef TARGET_ARCH_MODEL_x86_32
  64 # include "adfiles/ad_x86_32.hpp"
  65 #endif
  66 #ifdef TARGET_ARCH_MODEL_x86_64
  67 # include "adfiles/ad_x86_64.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_MODEL_sparc
  70 # include "adfiles/ad_sparc.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_zero
  73 # include "adfiles/ad_zero.hpp"
  74 #endif
  75 #endif
  76 
  77 bool DeoptimizationMarker::_is_active = false;
  78 
  79 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  80                                          int  caller_adjustment,
  81                                          int  number_of_frames,
  82                                          intptr_t* frame_sizes,
  83                                          address* frame_pcs,
  84                                          BasicType return_type) {
  85   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  86   _caller_adjustment         = caller_adjustment;
  87   _number_of_frames          = number_of_frames;
  88   _frame_sizes               = frame_sizes;
  89   _frame_pcs                 = frame_pcs;
  90   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  91   _return_type               = return_type;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _initial_fp                = 0;
  95   _unpack_kind               = 0;
  96   _sender_sp_temp            = 0;
  97 
  98   _total_frame_sizes         = size_of_frames();
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print("%d ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   thread->inc_in_deopt_handler();
 153 
 154   return fetch_unroll_info_helper(thread);
 155 JRT_END
 156 
 157 
 158 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 159 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 160 
 161   // Note: there is a safepoint safety issue here. No matter whether we enter
 162   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 163   // the vframeArray is created.
 164   //
 165 
 166   // Allocate our special deoptimization ResourceMark
 167   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 168   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 169   thread->set_deopt_mark(dmark);
 170 
 171   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 172   RegisterMap map(thread, true);
 173   RegisterMap dummy_map(thread, false);
 174   // Now get the deoptee with a valid map
 175   frame deoptee = stub_frame.sender(&map);
 176   // Set the deoptee nmethod
 177   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 178   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 179 
 180   // Create a growable array of VFrames where each VFrame represents an inlined
 181   // Java frame.  This storage is allocated with the usual system arena.
 182   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 183   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 184   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 185   while (!vf->is_top()) {
 186     assert(vf->is_compiled_frame(), "Wrong frame type");
 187     chunk->push(compiledVFrame::cast(vf));
 188     vf = vf->sender();
 189   }
 190   assert(vf->is_compiled_frame(), "Wrong frame type");
 191   chunk->push(compiledVFrame::cast(vf));
 192 
 193 #ifdef COMPILER2
 194   // Reallocate the non-escaping objects and restore their fields. Then
 195   // relock objects if synchronization on them was eliminated.
 196   if (DoEscapeAnalysis) {
 197     if (EliminateAllocations) {
 198       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 199       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 200 
 201       // The flag return_oop() indicates call sites which return oop
 202       // in compiled code. Such sites include java method calls,
 203       // runtime calls (for example, used to allocate new objects/arrays
 204       // on slow code path) and any other calls generated in compiled code.
 205       // It is not guaranteed that we can get such information here only
 206       // by analyzing bytecode in deoptimized frames. This is why this flag
 207       // is set during method compilation (see Compile::Process_OopMap_Node()).
 208       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 209       Handle return_value;
 210       if (save_oop_result) {
 211         // Reallocation may trigger GC. If deoptimization happened on return from
 212         // call which returns oop we need to save it since it is not in oopmap.
 213         oop result = deoptee.saved_oop_result(&map);
 214         assert(result == NULL || result->is_oop(), "must be oop");
 215         return_value = Handle(thread, result);
 216         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 217         if (TraceDeoptimization) {
 218           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 219         }
 220       }
 221       bool reallocated = false;
 222       if (objects != NULL) {
 223         JRT_BLOCK
 224           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 225         JRT_END
 226       }
 227       if (reallocated) {
 228         reassign_fields(&deoptee, &map, objects);
 229 #ifndef PRODUCT
 230         if (TraceDeoptimization) {
 231           ttyLocker ttyl;
 232           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 233           print_objects(objects);
 234         }
 235 #endif
 236       }
 237       if (save_oop_result) {
 238         // Restore result.
 239         deoptee.set_saved_oop_result(&map, return_value());
 240       }
 241     }
 242     if (EliminateLocks) {
 243 #ifndef PRODUCT
 244       bool first = true;
 245 #endif
 246       for (int i = 0; i < chunk->length(); i++) {
 247         compiledVFrame* cvf = chunk->at(i);
 248         assert (cvf->scope() != NULL,"expect only compiled java frames");
 249         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 250         if (monitors->is_nonempty()) {
 251           relock_objects(monitors, thread);
 252 #ifndef PRODUCT
 253           if (TraceDeoptimization) {
 254             ttyLocker ttyl;
 255             for (int j = 0; j < monitors->length(); j++) {
 256               MonitorInfo* mi = monitors->at(j);
 257               if (mi->eliminated()) {
 258                 if (first) {
 259                   first = false;
 260                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 261                 }
 262                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 263               }
 264             }
 265           }
 266 #endif
 267         }
 268       }
 269     }
 270   }
 271 #endif // COMPILER2
 272   // Ensure that no safepoint is taken after pointers have been stored
 273   // in fields of rematerialized objects.  If a safepoint occurs from here on
 274   // out the java state residing in the vframeArray will be missed.
 275   No_Safepoint_Verifier no_safepoint;
 276 
 277   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 278 
 279   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 280   thread->set_vframe_array_head(array);
 281 
 282   // Now that the vframeArray has been created if we have any deferred local writes
 283   // added by jvmti then we can free up that structure as the data is now in the
 284   // vframeArray
 285 
 286   if (thread->deferred_locals() != NULL) {
 287     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 288     int i = 0;
 289     do {
 290       // Because of inlining we could have multiple vframes for a single frame
 291       // and several of the vframes could have deferred writes. Find them all.
 292       if (list->at(i)->id() == array->original().id()) {
 293         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 294         list->remove_at(i);
 295         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 296         delete dlv;
 297       } else {
 298         i++;
 299       }
 300     } while ( i < list->length() );
 301     if (list->length() == 0) {
 302       thread->set_deferred_locals(NULL);
 303       // free the list and elements back to C heap.
 304       delete list;
 305     }
 306 
 307   }
 308 
 309 #ifndef SHARK
 310   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 311   CodeBlob* cb = stub_frame.cb();
 312   // Verify we have the right vframeArray
 313   assert(cb->frame_size() >= 0, "Unexpected frame size");
 314   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 315 
 316   // If the deopt call site is a MethodHandle invoke call site we have
 317   // to adjust the unpack_sp.
 318   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 319   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 320     unpack_sp = deoptee.unextended_sp();
 321 
 322 #ifdef ASSERT
 323   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 324   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 325 #endif
 326 #else
 327   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 328 #endif // !SHARK
 329 
 330   // This is a guarantee instead of an assert because if vframe doesn't match
 331   // we will unpack the wrong deoptimized frame and wind up in strange places
 332   // where it will be very difficult to figure out what went wrong. Better
 333   // to die an early death here than some very obscure death later when the
 334   // trail is cold.
 335   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 336   // in that it will fail to detect a problem when there is one. This needs
 337   // more work in tiger timeframe.
 338   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 339 
 340   int number_of_frames = array->frames();
 341 
 342   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 343   // virtual activation, which is the reverse of the elements in the vframes array.
 344   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 345   // +1 because we always have an interpreter return address for the final slot.
 346   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 347   int callee_parameters = 0;
 348   int callee_locals = 0;
 349   int popframe_extra_args = 0;
 350   // Create an interpreter return address for the stub to use as its return
 351   // address so the skeletal frames are perfectly walkable
 352   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 353 
 354   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 355   // activation be put back on the expression stack of the caller for reexecution
 356   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 357     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 358   }
 359 
 360   //
 361   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 362   // frame_sizes/frame_pcs[1] next oldest frame (int)
 363   // frame_sizes/frame_pcs[n] youngest frame (int)
 364   //
 365   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 366   // owns the space for the return address to it's caller).  Confusing ain't it.
 367   //
 368   // The vframe array can address vframes with indices running from
 369   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 370   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 371   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 372   // so things look a little strange in this loop.
 373   //
 374   for (int index = 0; index < array->frames(); index++ ) {
 375     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 376     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 377     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 378     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 379                                                                                                     callee_locals,
 380                                                                                                     index == 0,
 381                                                                                                     popframe_extra_args);
 382     // This pc doesn't have to be perfect just good enough to identify the frame
 383     // as interpreted so the skeleton frame will be walkable
 384     // The correct pc will be set when the skeleton frame is completely filled out
 385     // The final pc we store in the loop is wrong and will be overwritten below
 386     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 387 
 388     callee_parameters = array->element(index)->method()->size_of_parameters();
 389     callee_locals = array->element(index)->method()->max_locals();
 390     popframe_extra_args = 0;
 391   }
 392 
 393   // Compute whether the root vframe returns a float or double value.
 394   BasicType return_type;
 395   {
 396     HandleMark hm;
 397     methodHandle method(thread, array->element(0)->method());
 398     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 399     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 400   }
 401 
 402   // Compute information for handling adapters and adjusting the frame size of the caller.
 403   int caller_adjustment = 0;
 404 
 405   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 406   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 407   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 408   //
 409   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 410   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 411 
 412   // Compute the amount the oldest interpreter frame will have to adjust
 413   // its caller's stack by. If the caller is a compiled frame then
 414   // we pretend that the callee has no parameters so that the
 415   // extension counts for the full amount of locals and not just
 416   // locals-parms. This is because without a c2i adapter the parm
 417   // area as created by the compiled frame will not be usable by
 418   // the interpreter. (Depending on the calling convention there
 419   // may not even be enough space).
 420 
 421   // QQQ I'd rather see this pushed down into last_frame_adjust
 422   // and have it take the sender (aka caller).
 423 
 424   if (deopt_sender.is_compiled_frame()) {
 425     caller_adjustment = last_frame_adjust(0, callee_locals);
 426   } else if (callee_locals > callee_parameters) {
 427     // The caller frame may need extending to accommodate
 428     // non-parameter locals of the first unpacked interpreted frame.
 429     // Compute that adjustment.
 430     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 431   }
 432 
 433 
 434   // If the sender is deoptimized the we must retrieve the address of the handler
 435   // since the frame will "magically" show the original pc before the deopt
 436   // and we'd undo the deopt.
 437 
 438   frame_pcs[0] = deopt_sender.raw_pc();
 439 
 440 #ifndef SHARK
 441   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 442 #endif // SHARK
 443 
 444   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 445                                       caller_adjustment * BytesPerWord,
 446                                       number_of_frames,
 447                                       frame_sizes,
 448                                       frame_pcs,
 449                                       return_type);
 450 #if defined(IA32) || defined(AMD64)
 451   // We need a way to pass fp to the unpacking code so the skeletal frames
 452   // come out correct. This is only needed for x86 because of c2 using ebp
 453   // as an allocatable register. So this update is useless (and harmless)
 454   // on the other platforms. It would be nice to do this in a different
 455   // way but even the old style deoptimization had a problem with deriving
 456   // this value. NEEDS_CLEANUP
 457   // Note: now that c1 is using c2's deopt blob we must do this on all
 458   // x86 based platforms
 459   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 460   *fp_addr = array->sender().fp(); // was adapter_caller
 461 #endif /* IA32 || AMD64 */
 462 
 463   if (array->frames() > 1) {
 464     if (VerifyStack && TraceDeoptimization) {
 465       tty->print_cr("Deoptimizing method containing inlining");
 466     }
 467   }
 468 
 469   array->set_unroll_block(info);
 470   return info;
 471 }
 472 
 473 // Called to cleanup deoptimization data structures in normal case
 474 // after unpacking to stack and when stack overflow error occurs
 475 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 476                                         vframeArray *array) {
 477 
 478   // Get array if coming from exception
 479   if (array == NULL) {
 480     array = thread->vframe_array_head();
 481   }
 482   thread->set_vframe_array_head(NULL);
 483 
 484   // Free the previous UnrollBlock
 485   vframeArray* old_array = thread->vframe_array_last();
 486   thread->set_vframe_array_last(array);
 487 
 488   if (old_array != NULL) {
 489     UnrollBlock* old_info = old_array->unroll_block();
 490     old_array->set_unroll_block(NULL);
 491     delete old_info;
 492     delete old_array;
 493   }
 494 
 495   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 496   // inside the vframeArray (StackValueCollections)
 497 
 498   delete thread->deopt_mark();
 499   thread->set_deopt_mark(NULL);
 500   thread->set_deopt_nmethod(NULL);
 501 
 502 
 503   if (JvmtiExport::can_pop_frame()) {
 504 #ifndef CC_INTERP
 505     // Regardless of whether we entered this routine with the pending
 506     // popframe condition bit set, we should always clear it now
 507     thread->clear_popframe_condition();
 508 #else
 509     // C++ interpeter will clear has_pending_popframe when it enters
 510     // with method_resume. For deopt_resume2 we clear it now.
 511     if (thread->popframe_forcing_deopt_reexecution())
 512         thread->clear_popframe_condition();
 513 #endif /* CC_INTERP */
 514   }
 515 
 516   // unpack_frames() is called at the end of the deoptimization handler
 517   // and (in C2) at the end of the uncommon trap handler. Note this fact
 518   // so that an asynchronous stack walker can work again. This counter is
 519   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 520   // the beginning of uncommon_trap().
 521   thread->dec_in_deopt_handler();
 522 }
 523 
 524 
 525 // Return BasicType of value being returned
 526 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 527 
 528   // We are already active int he special DeoptResourceMark any ResourceObj's we
 529   // allocate will be freed at the end of the routine.
 530 
 531   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 532   // but makes the entry a little slower. There is however a little dance we have to
 533   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 534   ResetNoHandleMark rnhm; // No-op in release/product versions
 535   HandleMark hm;
 536 
 537   frame stub_frame = thread->last_frame();
 538 
 539   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 540   // must point to the vframeArray for the unpack frame.
 541   vframeArray* array = thread->vframe_array_head();
 542 
 543 #ifndef PRODUCT
 544   if (TraceDeoptimization) {
 545     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 546   }
 547 #endif
 548 
 549   UnrollBlock* info = array->unroll_block();
 550 
 551   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 552   array->unpack_to_stack(stub_frame, exec_mode);
 553 
 554   BasicType bt = info->return_type();
 555 
 556   // If we have an exception pending, claim that the return type is an oop
 557   // so the deopt_blob does not overwrite the exception_oop.
 558 
 559   if (exec_mode == Unpack_exception)
 560     bt = T_OBJECT;
 561 
 562   // Cleanup thread deopt data
 563   cleanup_deopt_info(thread, array);
 564 
 565 #ifndef PRODUCT
 566   if (VerifyStack) {
 567     ResourceMark res_mark;
 568 
 569     // Verify that the just-unpacked frames match the interpreter's
 570     // notions of expression stack and locals
 571     vframeArray* cur_array = thread->vframe_array_last();
 572     RegisterMap rm(thread, false);
 573     rm.set_include_argument_oops(false);
 574     bool is_top_frame = true;
 575     int callee_size_of_parameters = 0;
 576     int callee_max_locals = 0;
 577     for (int i = 0; i < cur_array->frames(); i++) {
 578       vframeArrayElement* el = cur_array->element(i);
 579       frame* iframe = el->iframe();
 580       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 581 
 582       // Get the oop map for this bci
 583       InterpreterOopMap mask;
 584       int cur_invoke_parameter_size = 0;
 585       bool try_next_mask = false;
 586       int next_mask_expression_stack_size = -1;
 587       int top_frame_expression_stack_adjustment = 0;
 588       methodHandle mh(thread, iframe->interpreter_frame_method());
 589       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 590       BytecodeStream str(mh);
 591       str.set_start(iframe->interpreter_frame_bci());
 592       int max_bci = mh->code_size();
 593       // Get to the next bytecode if possible
 594       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 595       // Check to see if we can grab the number of outgoing arguments
 596       // at an uncommon trap for an invoke (where the compiler
 597       // generates debug info before the invoke has executed)
 598       Bytecodes::Code cur_code = str.next();
 599       if (cur_code == Bytecodes::_invokevirtual ||
 600           cur_code == Bytecodes::_invokespecial ||
 601           cur_code == Bytecodes::_invokestatic  ||
 602           cur_code == Bytecodes::_invokeinterface) {
 603         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 604         symbolHandle signature(thread, invoke->signature());
 605         ArgumentSizeComputer asc(signature);
 606         cur_invoke_parameter_size = asc.size();
 607         if (cur_code != Bytecodes::_invokestatic) {
 608           // Add in receiver
 609           ++cur_invoke_parameter_size;
 610         }
 611       }
 612       if (str.bci() < max_bci) {
 613         Bytecodes::Code bc = str.next();
 614         if (bc >= 0) {
 615           // The interpreter oop map generator reports results before
 616           // the current bytecode has executed except in the case of
 617           // calls. It seems to be hard to tell whether the compiler
 618           // has emitted debug information matching the "state before"
 619           // a given bytecode or the state after, so we try both
 620           switch (cur_code) {
 621             case Bytecodes::_invokevirtual:
 622             case Bytecodes::_invokespecial:
 623             case Bytecodes::_invokestatic:
 624             case Bytecodes::_invokeinterface:
 625             case Bytecodes::_athrow:
 626               break;
 627             default: {
 628               InterpreterOopMap next_mask;
 629               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 630               next_mask_expression_stack_size = next_mask.expression_stack_size();
 631               // Need to subtract off the size of the result type of
 632               // the bytecode because this is not described in the
 633               // debug info but returned to the interpreter in the TOS
 634               // caching register
 635               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 636               if (bytecode_result_type != T_ILLEGAL) {
 637                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 638               }
 639               assert(top_frame_expression_stack_adjustment >= 0, "");
 640               try_next_mask = true;
 641               break;
 642             }
 643           }
 644         }
 645       }
 646 
 647       // Verify stack depth and oops in frame
 648       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 649       if (!(
 650             /* SPARC */
 651             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 652             /* x86 */
 653             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 654             (try_next_mask &&
 655              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 656                                                                     top_frame_expression_stack_adjustment))) ||
 657             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 658             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 659              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 660             )) {
 661         ttyLocker ttyl;
 662 
 663         // Print out some information that will help us debug the problem
 664         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 665         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 666         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 667                       iframe->interpreter_frame_expression_stack_size());
 668         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 669         tty->print_cr("  try_next_mask = %d", try_next_mask);
 670         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 671         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 672         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 673         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 674         tty->print_cr("  exec_mode = %d", exec_mode);
 675         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 676         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 677         tty->print_cr("  Interpreted frames:");
 678         for (int k = 0; k < cur_array->frames(); k++) {
 679           vframeArrayElement* el = cur_array->element(k);
 680           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 681         }
 682         cur_array->print_on_2(tty);
 683         guarantee(false, "wrong number of expression stack elements during deopt");
 684       }
 685       VerifyOopClosure verify;
 686       iframe->oops_interpreted_do(&verify, &rm, false);
 687       callee_size_of_parameters = mh->size_of_parameters();
 688       callee_max_locals = mh->max_locals();
 689       is_top_frame = false;
 690     }
 691   }
 692 #endif /* !PRODUCT */
 693 
 694 
 695   return bt;
 696 JRT_END
 697 
 698 
 699 int Deoptimization::deoptimize_dependents() {
 700   Threads::deoptimized_wrt_marked_nmethods();
 701   return 0;
 702 }
 703 
 704 
 705 #ifdef COMPILER2
 706 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 707   Handle pending_exception(thread->pending_exception());
 708   const char* exception_file = thread->exception_file();
 709   int exception_line = thread->exception_line();
 710   thread->clear_pending_exception();
 711 
 712   for (int i = 0; i < objects->length(); i++) {
 713     assert(objects->at(i)->is_object(), "invalid debug information");
 714     ObjectValue* sv = (ObjectValue*) objects->at(i);
 715 
 716     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 717     oop obj = NULL;
 718 
 719     if (k->oop_is_instance()) {
 720       instanceKlass* ik = instanceKlass::cast(k());
 721       obj = ik->allocate_instance(CHECK_(false));
 722     } else if (k->oop_is_typeArray()) {
 723       typeArrayKlass* ak = typeArrayKlass::cast(k());
 724       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 725       int len = sv->field_size() / type2size[ak->element_type()];
 726       obj = ak->allocate(len, CHECK_(false));
 727     } else if (k->oop_is_objArray()) {
 728       objArrayKlass* ak = objArrayKlass::cast(k());
 729       obj = ak->allocate(sv->field_size(), CHECK_(false));
 730     }
 731 
 732     assert(obj != NULL, "allocation failed");
 733     assert(sv->value().is_null(), "redundant reallocation");
 734     sv->set_value(obj);
 735   }
 736 
 737   if (pending_exception.not_null()) {
 738     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 739   }
 740 
 741   return true;
 742 }
 743 
 744 // This assumes that the fields are stored in ObjectValue in the same order
 745 // they are yielded by do_nonstatic_fields.
 746 class FieldReassigner: public FieldClosure {
 747   frame* _fr;
 748   RegisterMap* _reg_map;
 749   ObjectValue* _sv;
 750   instanceKlass* _ik;
 751   oop _obj;
 752 
 753   int _i;
 754 public:
 755   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 756     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 757 
 758   int i() const { return _i; }
 759 
 760 
 761   void do_field(fieldDescriptor* fd) {
 762     intptr_t val;
 763     StackValue* value =
 764       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 765     int offset = fd->offset();
 766     switch (fd->field_type()) {
 767     case T_OBJECT: case T_ARRAY:
 768       assert(value->type() == T_OBJECT, "Agreement.");
 769       _obj->obj_field_put(offset, value->get_obj()());
 770       break;
 771 
 772     case T_LONG: case T_DOUBLE: {
 773       assert(value->type() == T_INT, "Agreement.");
 774       StackValue* low =
 775         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 776 #ifdef _LP64
 777       jlong res = (jlong)low->get_int();
 778 #else
 779 #ifdef SPARC
 780       // For SPARC we have to swap high and low words.
 781       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 782 #else
 783       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 784 #endif //SPARC
 785 #endif
 786       _obj->long_field_put(offset, res);
 787       break;
 788     }
 789     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 790     case T_INT: case T_FLOAT: // 4 bytes.
 791       assert(value->type() == T_INT, "Agreement.");
 792       val = value->get_int();
 793       _obj->int_field_put(offset, (jint)*((jint*)&val));
 794       break;
 795 
 796     case T_SHORT: case T_CHAR: // 2 bytes
 797       assert(value->type() == T_INT, "Agreement.");
 798       val = value->get_int();
 799       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 800       break;
 801 
 802     case T_BOOLEAN: case T_BYTE: // 1 byte
 803       assert(value->type() == T_INT, "Agreement.");
 804       val = value->get_int();
 805       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 806       break;
 807 
 808     default:
 809       ShouldNotReachHere();
 810     }
 811     _i++;
 812   }
 813 };
 814 
 815 // restore elements of an eliminated type array
 816 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 817   int index = 0;
 818   intptr_t val;
 819 
 820   for (int i = 0; i < sv->field_size(); i++) {
 821     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 822     switch(type) {
 823     case T_LONG: case T_DOUBLE: {
 824       assert(value->type() == T_INT, "Agreement.");
 825       StackValue* low =
 826         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 827 #ifdef _LP64
 828       jlong res = (jlong)low->get_int();
 829 #else
 830 #ifdef SPARC
 831       // For SPARC we have to swap high and low words.
 832       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 833 #else
 834       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 835 #endif //SPARC
 836 #endif
 837       obj->long_at_put(index, res);
 838       break;
 839     }
 840 
 841     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 842     case T_INT: case T_FLOAT: // 4 bytes.
 843       assert(value->type() == T_INT, "Agreement.");
 844       val = value->get_int();
 845       obj->int_at_put(index, (jint)*((jint*)&val));
 846       break;
 847 
 848     case T_SHORT: case T_CHAR: // 2 bytes
 849       assert(value->type() == T_INT, "Agreement.");
 850       val = value->get_int();
 851       obj->short_at_put(index, (jshort)*((jint*)&val));
 852       break;
 853 
 854     case T_BOOLEAN: case T_BYTE: // 1 byte
 855       assert(value->type() == T_INT, "Agreement.");
 856       val = value->get_int();
 857       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 858       break;
 859 
 860       default:
 861         ShouldNotReachHere();
 862     }
 863     index++;
 864   }
 865 }
 866 
 867 
 868 // restore fields of an eliminated object array
 869 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 870   for (int i = 0; i < sv->field_size(); i++) {
 871     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 872     assert(value->type() == T_OBJECT, "object element expected");
 873     obj->obj_at_put(i, value->get_obj()());
 874   }
 875 }
 876 
 877 
 878 // restore fields of all eliminated objects and arrays
 879 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 880   for (int i = 0; i < objects->length(); i++) {
 881     ObjectValue* sv = (ObjectValue*) objects->at(i);
 882     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 883     Handle obj = sv->value();
 884     assert(obj.not_null(), "reallocation was missed");
 885 
 886     if (k->oop_is_instance()) {
 887       instanceKlass* ik = instanceKlass::cast(k());
 888       FieldReassigner reassign(fr, reg_map, sv, obj());
 889       ik->do_nonstatic_fields(&reassign);
 890     } else if (k->oop_is_typeArray()) {
 891       typeArrayKlass* ak = typeArrayKlass::cast(k());
 892       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 893     } else if (k->oop_is_objArray()) {
 894       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 895     }
 896   }
 897 }
 898 
 899 
 900 // relock objects for which synchronization was eliminated
 901 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 902   for (int i = 0; i < monitors->length(); i++) {
 903     MonitorInfo* mon_info = monitors->at(i);
 904     if (mon_info->eliminated()) {
 905       assert(mon_info->owner() != NULL, "reallocation was missed");
 906       Handle obj = Handle(mon_info->owner());
 907       markOop mark = obj->mark();
 908       if (UseBiasedLocking && mark->has_bias_pattern()) {
 909         // New allocated objects may have the mark set to anonymously biased.
 910         // Also the deoptimized method may called methods with synchronization
 911         // where the thread-local object is bias locked to the current thread.
 912         assert(mark->is_biased_anonymously() ||
 913                mark->biased_locker() == thread, "should be locked to current thread");
 914         // Reset mark word to unbiased prototype.
 915         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 916         obj->set_mark(unbiased_prototype);
 917       }
 918       BasicLock* lock = mon_info->lock();
 919       ObjectSynchronizer::slow_enter(obj, lock, thread);
 920     }
 921     assert(mon_info->owner()->is_locked(), "object must be locked now");
 922   }
 923 }
 924 
 925 
 926 #ifndef PRODUCT
 927 // print information about reallocated objects
 928 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 929   fieldDescriptor fd;
 930 
 931   for (int i = 0; i < objects->length(); i++) {
 932     ObjectValue* sv = (ObjectValue*) objects->at(i);
 933     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 934     Handle obj = sv->value();
 935 
 936     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 937     k->as_klassOop()->print_value();
 938     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 939     tty->cr();
 940 
 941     if (Verbose) {
 942       k->oop_print_on(obj(), tty);
 943     }
 944   }
 945 }
 946 #endif
 947 #endif // COMPILER2
 948 
 949 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 950 
 951 #ifndef PRODUCT
 952   if (TraceDeoptimization) {
 953     ttyLocker ttyl;
 954     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 955     fr.print_on(tty);
 956     tty->print_cr("     Virtual frames (innermost first):");
 957     for (int index = 0; index < chunk->length(); index++) {
 958       compiledVFrame* vf = chunk->at(index);
 959       tty->print("       %2d - ", index);
 960       vf->print_value();
 961       int bci = chunk->at(index)->raw_bci();
 962       const char* code_name;
 963       if (bci == SynchronizationEntryBCI) {
 964         code_name = "sync entry";
 965       } else {
 966         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 967         code_name = Bytecodes::name(code);
 968       }
 969       tty->print(" - %s", code_name);
 970       tty->print_cr(" @ bci %d ", bci);
 971       if (Verbose) {
 972         vf->print();
 973         tty->cr();
 974       }
 975     }
 976   }
 977 #endif
 978 
 979   // Register map for next frame (used for stack crawl).  We capture
 980   // the state of the deopt'ing frame's caller.  Thus if we need to
 981   // stuff a C2I adapter we can properly fill in the callee-save
 982   // register locations.
 983   frame caller = fr.sender(reg_map);
 984   int frame_size = caller.sp() - fr.sp();
 985 
 986   frame sender = caller;
 987 
 988   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 989   // the vframeArray containing the unpacking information is allocated in the C heap.
 990   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 991   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 992 
 993   // Compare the vframeArray to the collected vframes
 994   assert(array->structural_compare(thread, chunk), "just checking");
 995   Events::log("# vframes = %d", (intptr_t)chunk->length());
 996 
 997 #ifndef PRODUCT
 998   if (TraceDeoptimization) {
 999     ttyLocker ttyl;
1000     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1001   }
1002 #endif // PRODUCT
1003 
1004   return array;
1005 }
1006 
1007 
1008 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1009   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1010   for (int i = 0; i < monitors->length(); i++) {
1011     MonitorInfo* mon_info = monitors->at(i);
1012     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1013       objects_to_revoke->append(Handle(mon_info->owner()));
1014     }
1015   }
1016 }
1017 
1018 
1019 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1020   if (!UseBiasedLocking) {
1021     return;
1022   }
1023 
1024   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1025 
1026   // Unfortunately we don't have a RegisterMap available in most of
1027   // the places we want to call this routine so we need to walk the
1028   // stack again to update the register map.
1029   if (map == NULL || !map->update_map()) {
1030     StackFrameStream sfs(thread, true);
1031     bool found = false;
1032     while (!found && !sfs.is_done()) {
1033       frame* cur = sfs.current();
1034       sfs.next();
1035       found = cur->id() == fr.id();
1036     }
1037     assert(found, "frame to be deoptimized not found on target thread's stack");
1038     map = sfs.register_map();
1039   }
1040 
1041   vframe* vf = vframe::new_vframe(&fr, map, thread);
1042   compiledVFrame* cvf = compiledVFrame::cast(vf);
1043   // Revoke monitors' biases in all scopes
1044   while (!cvf->is_top()) {
1045     collect_monitors(cvf, objects_to_revoke);
1046     cvf = compiledVFrame::cast(cvf->sender());
1047   }
1048   collect_monitors(cvf, objects_to_revoke);
1049 
1050   if (SafepointSynchronize::is_at_safepoint()) {
1051     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1052   } else {
1053     BiasedLocking::revoke(objects_to_revoke);
1054   }
1055 }
1056 
1057 
1058 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1059   if (!UseBiasedLocking) {
1060     return;
1061   }
1062 
1063   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1064   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1065   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1066     if (jt->has_last_Java_frame()) {
1067       StackFrameStream sfs(jt, true);
1068       while (!sfs.is_done()) {
1069         frame* cur = sfs.current();
1070         if (cb->contains(cur->pc())) {
1071           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1072           compiledVFrame* cvf = compiledVFrame::cast(vf);
1073           // Revoke monitors' biases in all scopes
1074           while (!cvf->is_top()) {
1075             collect_monitors(cvf, objects_to_revoke);
1076             cvf = compiledVFrame::cast(cvf->sender());
1077           }
1078           collect_monitors(cvf, objects_to_revoke);
1079         }
1080         sfs.next();
1081       }
1082     }
1083   }
1084   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1085 }
1086 
1087 
1088 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1089   assert(fr.can_be_deoptimized(), "checking frame type");
1090 
1091   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1092 
1093   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1094 
1095   // Patch the nmethod so that when execution returns to it we will
1096   // deopt the execution state and return to the interpreter.
1097   fr.deoptimize(thread);
1098 }
1099 
1100 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1101   // Deoptimize only if the frame comes from compile code.
1102   // Do not deoptimize the frame which is already patched
1103   // during the execution of the loops below.
1104   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1105     return;
1106   }
1107   ResourceMark rm;
1108   DeoptimizationMarker dm;
1109   if (UseBiasedLocking) {
1110     revoke_biases_of_monitors(thread, fr, map);
1111   }
1112   deoptimize_single_frame(thread, fr);
1113 
1114 }
1115 
1116 
1117 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1118   // Compute frame and register map based on thread and sp.
1119   RegisterMap reg_map(thread, UseBiasedLocking);
1120   frame fr = thread->last_frame();
1121   while (fr.id() != id) {
1122     fr = fr.sender(&reg_map);
1123   }
1124   deoptimize(thread, fr, &reg_map);
1125 }
1126 
1127 
1128 // JVMTI PopFrame support
1129 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1130 {
1131   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1132 }
1133 JRT_END
1134 
1135 
1136 #if defined(COMPILER2) || defined(SHARK)
1137 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1138   // in case of an unresolved klass entry, load the class.
1139   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1140     klassOop tk = constant_pool->klass_at(index, CHECK);
1141     return;
1142   }
1143 
1144   if (!constant_pool->tag_at(index).is_symbol()) return;
1145 
1146   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1147   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1148 
1149   // class name?
1150   if (symbol->byte_at(0) != '(') {
1151     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1152     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1153     return;
1154   }
1155 
1156   // then it must be a signature!
1157   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1158     if (ss.is_object()) {
1159       symbolOop s = ss.as_symbol(CHECK);
1160       symbolHandle class_name (THREAD, s);
1161       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1162       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1163     }
1164   }
1165 }
1166 
1167 
1168 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1169   EXCEPTION_MARK;
1170   load_class_by_index(constant_pool, index, THREAD);
1171   if (HAS_PENDING_EXCEPTION) {
1172     // Exception happened during classloading. We ignore the exception here, since it
1173     // is going to be rethrown since the current activation is going to be deoptimzied and
1174     // the interpreter will re-execute the bytecode.
1175     CLEAR_PENDING_EXCEPTION;
1176   }
1177 }
1178 
1179 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1180   HandleMark hm;
1181 
1182   // uncommon_trap() is called at the beginning of the uncommon trap
1183   // handler. Note this fact before we start generating temporary frames
1184   // that can confuse an asynchronous stack walker. This counter is
1185   // decremented at the end of unpack_frames().
1186   thread->inc_in_deopt_handler();
1187 
1188   // We need to update the map if we have biased locking.
1189   RegisterMap reg_map(thread, UseBiasedLocking);
1190   frame stub_frame = thread->last_frame();
1191   frame fr = stub_frame.sender(&reg_map);
1192   // Make sure the calling nmethod is not getting deoptimized and removed
1193   // before we are done with it.
1194   nmethodLocker nl(fr.pc());
1195 
1196   {
1197     ResourceMark rm;
1198 
1199     // Revoke biases of any monitors in the frame to ensure we can migrate them
1200     revoke_biases_of_monitors(thread, fr, &reg_map);
1201 
1202     DeoptReason reason = trap_request_reason(trap_request);
1203     DeoptAction action = trap_request_action(trap_request);
1204     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1205 
1206     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1207     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1208     compiledVFrame* cvf = compiledVFrame::cast(vf);
1209 
1210     nmethod* nm = cvf->code();
1211 
1212     ScopeDesc*      trap_scope  = cvf->scope();
1213     methodHandle    trap_method = trap_scope->method();
1214     int             trap_bci    = trap_scope->bci();
1215     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1216 
1217     // Record this event in the histogram.
1218     gather_statistics(reason, action, trap_bc);
1219 
1220     // Ensure that we can record deopt. history:
1221     bool create_if_missing = ProfileTraps;
1222 
1223     methodDataHandle trap_mdo
1224       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1225 
1226     // Print a bunch of diagnostics, if requested.
1227     if (TraceDeoptimization || LogCompilation) {
1228       ResourceMark rm;
1229       ttyLocker ttyl;
1230       char buf[100];
1231       if (xtty != NULL) {
1232         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1233                          os::current_thread_id(),
1234                          format_trap_request(buf, sizeof(buf), trap_request));
1235         nm->log_identity(xtty);
1236       }
1237       symbolHandle class_name;
1238       bool unresolved = false;
1239       if (unloaded_class_index >= 0) {
1240         constantPoolHandle constants (THREAD, trap_method->constants());
1241         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1242           class_name = symbolHandle(THREAD,
1243             constants->klass_name_at(unloaded_class_index));
1244           unresolved = true;
1245           if (xtty != NULL)
1246             xtty->print(" unresolved='1'");
1247         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1248           class_name = symbolHandle(THREAD,
1249             constants->symbol_at(unloaded_class_index));
1250         }
1251         if (xtty != NULL)
1252           xtty->name(class_name);
1253       }
1254       if (xtty != NULL && trap_mdo.not_null()) {
1255         // Dump the relevant MDO state.
1256         // This is the deopt count for the current reason, any previous
1257         // reasons or recompiles seen at this point.
1258         int dcnt = trap_mdo->trap_count(reason);
1259         if (dcnt != 0)
1260           xtty->print(" count='%d'", dcnt);
1261         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1262         int dos = (pdata == NULL)? 0: pdata->trap_state();
1263         if (dos != 0) {
1264           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1265           if (trap_state_is_recompiled(dos)) {
1266             int recnt2 = trap_mdo->overflow_recompile_count();
1267             if (recnt2 != 0)
1268               xtty->print(" recompiles2='%d'", recnt2);
1269           }
1270         }
1271       }
1272       if (xtty != NULL) {
1273         xtty->stamp();
1274         xtty->end_head();
1275       }
1276       if (TraceDeoptimization) {  // make noise on the tty
1277         tty->print("Uncommon trap occurred in");
1278         nm->method()->print_short_name(tty);
1279         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1280                    fr.pc(),
1281                    (int) os::current_thread_id(),
1282                    trap_reason_name(reason),
1283                    trap_action_name(action),
1284                    unloaded_class_index);
1285         if (class_name.not_null()) {
1286           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1287           class_name->print_symbol_on(tty);
1288         }
1289         tty->cr();
1290       }
1291       if (xtty != NULL) {
1292         // Log the precise location of the trap.
1293         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1294           xtty->begin_elem("jvms bci='%d'", sd->bci());
1295           xtty->method(sd->method());
1296           xtty->end_elem();
1297           if (sd->is_top())  break;
1298         }
1299         xtty->tail("uncommon_trap");
1300       }
1301     }
1302     // (End diagnostic printout.)
1303 
1304     // Load class if necessary
1305     if (unloaded_class_index >= 0) {
1306       constantPoolHandle constants(THREAD, trap_method->constants());
1307       load_class_by_index(constants, unloaded_class_index);
1308     }
1309 
1310     // Flush the nmethod if necessary and desirable.
1311     //
1312     // We need to avoid situations where we are re-flushing the nmethod
1313     // because of a hot deoptimization site.  Repeated flushes at the same
1314     // point need to be detected by the compiler and avoided.  If the compiler
1315     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1316     // module must take measures to avoid an infinite cycle of recompilation
1317     // and deoptimization.  There are several such measures:
1318     //
1319     //   1. If a recompilation is ordered a second time at some site X
1320     //   and for the same reason R, the action is adjusted to 'reinterpret',
1321     //   to give the interpreter time to exercise the method more thoroughly.
1322     //   If this happens, the method's overflow_recompile_count is incremented.
1323     //
1324     //   2. If the compiler fails to reduce the deoptimization rate, then
1325     //   the method's overflow_recompile_count will begin to exceed the set
1326     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1327     //   is adjusted to 'make_not_compilable', and the method is abandoned
1328     //   to the interpreter.  This is a performance hit for hot methods,
1329     //   but is better than a disastrous infinite cycle of recompilations.
1330     //   (Actually, only the method containing the site X is abandoned.)
1331     //
1332     //   3. In parallel with the previous measures, if the total number of
1333     //   recompilations of a method exceeds the much larger set limit
1334     //   PerMethodRecompilationCutoff, the method is abandoned.
1335     //   This should only happen if the method is very large and has
1336     //   many "lukewarm" deoptimizations.  The code which enforces this
1337     //   limit is elsewhere (class nmethod, class methodOopDesc).
1338     //
1339     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1340     // to recompile at each bytecode independently of the per-BCI cutoff.
1341     //
1342     // The decision to update code is up to the compiler, and is encoded
1343     // in the Action_xxx code.  If the compiler requests Action_none
1344     // no trap state is changed, no compiled code is changed, and the
1345     // computation suffers along in the interpreter.
1346     //
1347     // The other action codes specify various tactics for decompilation
1348     // and recompilation.  Action_maybe_recompile is the loosest, and
1349     // allows the compiled code to stay around until enough traps are seen,
1350     // and until the compiler gets around to recompiling the trapping method.
1351     //
1352     // The other actions cause immediate removal of the present code.
1353 
1354     bool update_trap_state = true;
1355     bool make_not_entrant = false;
1356     bool make_not_compilable = false;
1357     bool reprofile = false;
1358     switch (action) {
1359     case Action_none:
1360       // Keep the old code.
1361       update_trap_state = false;
1362       break;
1363     case Action_maybe_recompile:
1364       // Do not need to invalidate the present code, but we can
1365       // initiate another
1366       // Start compiler without (necessarily) invalidating the nmethod.
1367       // The system will tolerate the old code, but new code should be
1368       // generated when possible.
1369       break;
1370     case Action_reinterpret:
1371       // Go back into the interpreter for a while, and then consider
1372       // recompiling form scratch.
1373       make_not_entrant = true;
1374       // Reset invocation counter for outer most method.
1375       // This will allow the interpreter to exercise the bytecodes
1376       // for a while before recompiling.
1377       // By contrast, Action_make_not_entrant is immediate.
1378       //
1379       // Note that the compiler will track null_check, null_assert,
1380       // range_check, and class_check events and log them as if they
1381       // had been traps taken from compiled code.  This will update
1382       // the MDO trap history so that the next compilation will
1383       // properly detect hot trap sites.
1384       reprofile = true;
1385       break;
1386     case Action_make_not_entrant:
1387       // Request immediate recompilation, and get rid of the old code.
1388       // Make them not entrant, so next time they are called they get
1389       // recompiled.  Unloaded classes are loaded now so recompile before next
1390       // time they are called.  Same for uninitialized.  The interpreter will
1391       // link the missing class, if any.
1392       make_not_entrant = true;
1393       break;
1394     case Action_make_not_compilable:
1395       // Give up on compiling this method at all.
1396       make_not_entrant = true;
1397       make_not_compilable = true;
1398       break;
1399     default:
1400       ShouldNotReachHere();
1401     }
1402 
1403     // Setting +ProfileTraps fixes the following, on all platforms:
1404     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1405     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1406     // recompile relies on a methodDataOop to record heroic opt failures.
1407 
1408     // Whether the interpreter is producing MDO data or not, we also need
1409     // to use the MDO to detect hot deoptimization points and control
1410     // aggressive optimization.
1411     bool inc_recompile_count = false;
1412     ProfileData* pdata = NULL;
1413     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1414       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1415       uint this_trap_count = 0;
1416       bool maybe_prior_trap = false;
1417       bool maybe_prior_recompile = false;
1418       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1419                                    //outputs:
1420                                    this_trap_count,
1421                                    maybe_prior_trap,
1422                                    maybe_prior_recompile);
1423       // Because the interpreter also counts null, div0, range, and class
1424       // checks, these traps from compiled code are double-counted.
1425       // This is harmless; it just means that the PerXTrapLimit values
1426       // are in effect a little smaller than they look.
1427 
1428       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1429       if (per_bc_reason != Reason_none) {
1430         // Now take action based on the partially known per-BCI history.
1431         if (maybe_prior_trap
1432             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1433           // If there are too many traps at this BCI, force a recompile.
1434           // This will allow the compiler to see the limit overflow, and
1435           // take corrective action, if possible.  The compiler generally
1436           // does not use the exact PerBytecodeTrapLimit value, but instead
1437           // changes its tactics if it sees any traps at all.  This provides
1438           // a little hysteresis, delaying a recompile until a trap happens
1439           // several times.
1440           //
1441           // Actually, since there is only one bit of counter per BCI,
1442           // the possible per-BCI counts are {0,1,(per-method count)}.
1443           // This produces accurate results if in fact there is only
1444           // one hot trap site, but begins to get fuzzy if there are
1445           // many sites.  For example, if there are ten sites each
1446           // trapping two or more times, they each get the blame for
1447           // all of their traps.
1448           make_not_entrant = true;
1449         }
1450 
1451         // Detect repeated recompilation at the same BCI, and enforce a limit.
1452         if (make_not_entrant && maybe_prior_recompile) {
1453           // More than one recompile at this point.
1454           inc_recompile_count = maybe_prior_trap;
1455         }
1456       } else {
1457         // For reasons which are not recorded per-bytecode, we simply
1458         // force recompiles unconditionally.
1459         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1460         make_not_entrant = true;
1461       }
1462 
1463       // Go back to the compiler if there are too many traps in this method.
1464       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1465         // If there are too many traps in this method, force a recompile.
1466         // This will allow the compiler to see the limit overflow, and
1467         // take corrective action, if possible.
1468         // (This condition is an unlikely backstop only, because the
1469         // PerBytecodeTrapLimit is more likely to take effect first,
1470         // if it is applicable.)
1471         make_not_entrant = true;
1472       }
1473 
1474       // Here's more hysteresis:  If there has been a recompile at
1475       // this trap point already, run the method in the interpreter
1476       // for a while to exercise it more thoroughly.
1477       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1478         reprofile = true;
1479       }
1480 
1481     }
1482 
1483     // Take requested actions on the method:
1484 
1485     // Recompile
1486     if (make_not_entrant) {
1487       if (!nm->make_not_entrant()) {
1488         return; // the call did not change nmethod's state
1489       }
1490 
1491       if (pdata != NULL) {
1492         // Record the recompilation event, if any.
1493         int tstate0 = pdata->trap_state();
1494         int tstate1 = trap_state_set_recompiled(tstate0, true);
1495         if (tstate1 != tstate0)
1496           pdata->set_trap_state(tstate1);
1497       }
1498     }
1499 
1500     if (inc_recompile_count) {
1501       trap_mdo->inc_overflow_recompile_count();
1502       if ((uint)trap_mdo->overflow_recompile_count() >
1503           (uint)PerBytecodeRecompilationCutoff) {
1504         // Give up on the method containing the bad BCI.
1505         if (trap_method() == nm->method()) {
1506           make_not_compilable = true;
1507         } else {
1508           trap_method->set_not_compilable(CompLevel_full_optimization);
1509           // But give grace to the enclosing nm->method().
1510         }
1511       }
1512     }
1513 
1514     // Reprofile
1515     if (reprofile) {
1516       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1517     }
1518 
1519     // Give up compiling
1520     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1521       assert(make_not_entrant, "consistent");
1522       nm->method()->set_not_compilable(CompLevel_full_optimization);
1523     }
1524 
1525   } // Free marked resources
1526 
1527 }
1528 JRT_END
1529 
1530 methodDataOop
1531 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1532                                 bool create_if_missing) {
1533   Thread* THREAD = thread;
1534   methodDataOop mdo = m()->method_data();
1535   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1536     // Build an MDO.  Ignore errors like OutOfMemory;
1537     // that simply means we won't have an MDO to update.
1538     methodOopDesc::build_interpreter_method_data(m, THREAD);
1539     if (HAS_PENDING_EXCEPTION) {
1540       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1541       CLEAR_PENDING_EXCEPTION;
1542     }
1543     mdo = m()->method_data();
1544   }
1545   return mdo;
1546 }
1547 
1548 ProfileData*
1549 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1550                                          int trap_bci,
1551                                          Deoptimization::DeoptReason reason,
1552                                          //outputs:
1553                                          uint& ret_this_trap_count,
1554                                          bool& ret_maybe_prior_trap,
1555                                          bool& ret_maybe_prior_recompile) {
1556   uint prior_trap_count = trap_mdo->trap_count(reason);
1557   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1558 
1559   // If the runtime cannot find a place to store trap history,
1560   // it is estimated based on the general condition of the method.
1561   // If the method has ever been recompiled, or has ever incurred
1562   // a trap with the present reason , then this BCI is assumed
1563   // (pessimistically) to be the culprit.
1564   bool maybe_prior_trap      = (prior_trap_count != 0);
1565   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1566   ProfileData* pdata = NULL;
1567 
1568 
1569   // For reasons which are recorded per bytecode, we check per-BCI data.
1570   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1571   if (per_bc_reason != Reason_none) {
1572     // Find the profile data for this BCI.  If there isn't one,
1573     // try to allocate one from the MDO's set of spares.
1574     // This will let us detect a repeated trap at this point.
1575     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1576 
1577     if (pdata != NULL) {
1578       // Query the trap state of this profile datum.
1579       int tstate0 = pdata->trap_state();
1580       if (!trap_state_has_reason(tstate0, per_bc_reason))
1581         maybe_prior_trap = false;
1582       if (!trap_state_is_recompiled(tstate0))
1583         maybe_prior_recompile = false;
1584 
1585       // Update the trap state of this profile datum.
1586       int tstate1 = tstate0;
1587       // Record the reason.
1588       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1589       // Store the updated state on the MDO, for next time.
1590       if (tstate1 != tstate0)
1591         pdata->set_trap_state(tstate1);
1592     } else {
1593       if (LogCompilation && xtty != NULL) {
1594         ttyLocker ttyl;
1595         // Missing MDP?  Leave a small complaint in the log.
1596         xtty->elem("missing_mdp bci='%d'", trap_bci);
1597       }
1598     }
1599   }
1600 
1601   // Return results:
1602   ret_this_trap_count = this_trap_count;
1603   ret_maybe_prior_trap = maybe_prior_trap;
1604   ret_maybe_prior_recompile = maybe_prior_recompile;
1605   return pdata;
1606 }
1607 
1608 void
1609 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1610   ResourceMark rm;
1611   // Ignored outputs:
1612   uint ignore_this_trap_count;
1613   bool ignore_maybe_prior_trap;
1614   bool ignore_maybe_prior_recompile;
1615   query_update_method_data(trap_mdo, trap_bci,
1616                            (DeoptReason)reason,
1617                            ignore_this_trap_count,
1618                            ignore_maybe_prior_trap,
1619                            ignore_maybe_prior_recompile);
1620 }
1621 
1622 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1623 
1624   // Still in Java no safepoints
1625   {
1626     // This enters VM and may safepoint
1627     uncommon_trap_inner(thread, trap_request);
1628   }
1629   return fetch_unroll_info_helper(thread);
1630 }
1631 
1632 // Local derived constants.
1633 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1634 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1635 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1636 
1637 //---------------------------trap_state_reason---------------------------------
1638 Deoptimization::DeoptReason
1639 Deoptimization::trap_state_reason(int trap_state) {
1640   // This assert provides the link between the width of DataLayout::trap_bits
1641   // and the encoding of "recorded" reasons.  It ensures there are enough
1642   // bits to store all needed reasons in the per-BCI MDO profile.
1643   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1644   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1645   trap_state -= recompile_bit;
1646   if (trap_state == DS_REASON_MASK) {
1647     return Reason_many;
1648   } else {
1649     assert((int)Reason_none == 0, "state=0 => Reason_none");
1650     return (DeoptReason)trap_state;
1651   }
1652 }
1653 //-------------------------trap_state_has_reason-------------------------------
1654 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1655   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1656   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1657   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1658   trap_state -= recompile_bit;
1659   if (trap_state == DS_REASON_MASK) {
1660     return -1;  // true, unspecifically (bottom of state lattice)
1661   } else if (trap_state == reason) {
1662     return 1;   // true, definitely
1663   } else if (trap_state == 0) {
1664     return 0;   // false, definitely (top of state lattice)
1665   } else {
1666     return 0;   // false, definitely
1667   }
1668 }
1669 //-------------------------trap_state_add_reason-------------------------------
1670 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1671   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1672   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1673   trap_state -= recompile_bit;
1674   if (trap_state == DS_REASON_MASK) {
1675     return trap_state + recompile_bit;     // already at state lattice bottom
1676   } else if (trap_state == reason) {
1677     return trap_state + recompile_bit;     // the condition is already true
1678   } else if (trap_state == 0) {
1679     return reason + recompile_bit;          // no condition has yet been true
1680   } else {
1681     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1682   }
1683 }
1684 //-----------------------trap_state_is_recompiled------------------------------
1685 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1686   return (trap_state & DS_RECOMPILE_BIT) != 0;
1687 }
1688 //-----------------------trap_state_set_recompiled-----------------------------
1689 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1690   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1691   else    return trap_state & ~DS_RECOMPILE_BIT;
1692 }
1693 //---------------------------format_trap_state---------------------------------
1694 // This is used for debugging and diagnostics, including hotspot.log output.
1695 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1696                                               int trap_state) {
1697   DeoptReason reason      = trap_state_reason(trap_state);
1698   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1699   // Re-encode the state from its decoded components.
1700   int decoded_state = 0;
1701   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1702     decoded_state = trap_state_add_reason(decoded_state, reason);
1703   if (recomp_flag)
1704     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1705   // If the state re-encodes properly, format it symbolically.
1706   // Because this routine is used for debugging and diagnostics,
1707   // be robust even if the state is a strange value.
1708   size_t len;
1709   if (decoded_state != trap_state) {
1710     // Random buggy state that doesn't decode??
1711     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1712   } else {
1713     len = jio_snprintf(buf, buflen, "%s%s",
1714                        trap_reason_name(reason),
1715                        recomp_flag ? " recompiled" : "");
1716   }
1717   if (len >= buflen)
1718     buf[buflen-1] = '\0';
1719   return buf;
1720 }
1721 
1722 
1723 //--------------------------------statics--------------------------------------
1724 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1725   = Deoptimization::Action_reinterpret;
1726 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1727   // Note:  Keep this in sync. with enum DeoptReason.
1728   "none",
1729   "null_check",
1730   "null_assert",
1731   "range_check",
1732   "class_check",
1733   "array_check",
1734   "intrinsic",
1735   "bimorphic",
1736   "unloaded",
1737   "uninitialized",
1738   "unreached",
1739   "unhandled",
1740   "constraint",
1741   "div0_check",
1742   "age",
1743   "predicate"
1744 };
1745 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1746   // Note:  Keep this in sync. with enum DeoptAction.
1747   "none",
1748   "maybe_recompile",
1749   "reinterpret",
1750   "make_not_entrant",
1751   "make_not_compilable"
1752 };
1753 
1754 const char* Deoptimization::trap_reason_name(int reason) {
1755   if (reason == Reason_many)  return "many";
1756   if ((uint)reason < Reason_LIMIT)
1757     return _trap_reason_name[reason];
1758   static char buf[20];
1759   sprintf(buf, "reason%d", reason);
1760   return buf;
1761 }
1762 const char* Deoptimization::trap_action_name(int action) {
1763   if ((uint)action < Action_LIMIT)
1764     return _trap_action_name[action];
1765   static char buf[20];
1766   sprintf(buf, "action%d", action);
1767   return buf;
1768 }
1769 
1770 // This is used for debugging and diagnostics, including hotspot.log output.
1771 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1772                                                 int trap_request) {
1773   jint unloaded_class_index = trap_request_index(trap_request);
1774   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1775   const char* action = trap_action_name(trap_request_action(trap_request));
1776   size_t len;
1777   if (unloaded_class_index < 0) {
1778     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1779                        reason, action);
1780   } else {
1781     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1782                        reason, action, unloaded_class_index);
1783   }
1784   if (len >= buflen)
1785     buf[buflen-1] = '\0';
1786   return buf;
1787 }
1788 
1789 juint Deoptimization::_deoptimization_hist
1790         [Deoptimization::Reason_LIMIT]
1791     [1 + Deoptimization::Action_LIMIT]
1792         [Deoptimization::BC_CASE_LIMIT]
1793   = {0};
1794 
1795 enum {
1796   LSB_BITS = 8,
1797   LSB_MASK = right_n_bits(LSB_BITS)
1798 };
1799 
1800 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1801                                        Bytecodes::Code bc) {
1802   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1803   assert(action >= 0 && action < Action_LIMIT, "oob");
1804   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1805   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1806   juint* cases = _deoptimization_hist[reason][1+action];
1807   juint* bc_counter_addr = NULL;
1808   juint  bc_counter      = 0;
1809   // Look for an unused counter, or an exact match to this BC.
1810   if (bc != Bytecodes::_illegal) {
1811     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1812       juint* counter_addr = &cases[bc_case];
1813       juint  counter = *counter_addr;
1814       if ((counter == 0 && bc_counter_addr == NULL)
1815           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1816         // this counter is either free or is already devoted to this BC
1817         bc_counter_addr = counter_addr;
1818         bc_counter = counter | bc;
1819       }
1820     }
1821   }
1822   if (bc_counter_addr == NULL) {
1823     // Overflow, or no given bytecode.
1824     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1825     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1826   }
1827   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1828 }
1829 
1830 jint Deoptimization::total_deoptimization_count() {
1831   return _deoptimization_hist[Reason_none][0][0];
1832 }
1833 
1834 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1835   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1836   return _deoptimization_hist[reason][0][0];
1837 }
1838 
1839 void Deoptimization::print_statistics() {
1840   juint total = total_deoptimization_count();
1841   juint account = total;
1842   if (total != 0) {
1843     ttyLocker ttyl;
1844     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1845     tty->print_cr("Deoptimization traps recorded:");
1846     #define PRINT_STAT_LINE(name, r) \
1847       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1848     PRINT_STAT_LINE("total", total);
1849     // For each non-zero entry in the histogram, print the reason,
1850     // the action, and (if specifically known) the type of bytecode.
1851     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1852       for (int action = 0; action < Action_LIMIT; action++) {
1853         juint* cases = _deoptimization_hist[reason][1+action];
1854         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1855           juint counter = cases[bc_case];
1856           if (counter != 0) {
1857             char name[1*K];
1858             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1859             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1860               bc = Bytecodes::_illegal;
1861             sprintf(name, "%s/%s/%s",
1862                     trap_reason_name(reason),
1863                     trap_action_name(action),
1864                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1865             juint r = counter >> LSB_BITS;
1866             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1867             account -= r;
1868           }
1869         }
1870       }
1871     }
1872     if (account != 0) {
1873       PRINT_STAT_LINE("unaccounted", account);
1874     }
1875     #undef PRINT_STAT_LINE
1876     if (xtty != NULL)  xtty->tail("statistics");
1877   }
1878 }
1879 #else // COMPILER2 || SHARK
1880 
1881 
1882 // Stubs for C1 only system.
1883 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1884   return false;
1885 }
1886 
1887 const char* Deoptimization::trap_reason_name(int reason) {
1888   return "unknown";
1889 }
1890 
1891 void Deoptimization::print_statistics() {
1892   // no output
1893 }
1894 
1895 void
1896 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1897   // no udpate
1898 }
1899 
1900 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1901   return 0;
1902 }
1903 
1904 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1905                                        Bytecodes::Code bc) {
1906   // no update
1907 }
1908 
1909 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1910                                               int trap_state) {
1911   jio_snprintf(buf, buflen, "#%d", trap_state);
1912   return buf;
1913 }
1914 
1915 #endif // COMPILER2 || SHARK