1 /*
   2  * Copyright (c) 2001, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntimeTrig.cpp.incl"
  27 
  28 // This file contains copies of the fdlibm routines used by
  29 // StrictMath. It turns out that it is almost always required to use
  30 // these runtime routines; the Intel CPU doesn't meet the Java
  31 // specification for sin/cos outside a certain limited argument range,
  32 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
  33 // also turns out that avoiding the indirect call through function
  34 // pointer out to libjava.so in SharedRuntime speeds these routines up
  35 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
  36 
  37 // Enabling optimizations in this file causes incorrect code to be
  38 // generated; can not figure out how to turn down optimization for one
  39 // file in the IDE on Windows
  40 #ifdef WIN32
  41 # pragma optimize ( "", off )
  42 #endif
  43 
  44 /* The above workaround now causes more problems with the latest MS compiler.
  45  * Visual Studio 2010's /GS option tries to guard against buffer overruns.
  46  * /GS is on by default if you specify optimizations, which we do globally
  47  * via /W3 /O2. However the above selective turning off of optimizations means
  48  * that /GS issues a warning "4748". And since we treat warnings as errors (/WX)
  49  * then the compilation fails. There are several possible solutions
  50  * (1) Remove that pragma above as obsolete with VS2010 - requires testing.
  51  * (2) Stop treating warnings as errors - would be a backward step
  52  * (3) Disable /GS - may help performance but you lose the security checks
  53  * (4) Disable the warning with "#pragma warning( disable : 4748 )"
  54  * (5) Disable planting the code with  __declspec(safebuffers)
  55  * I've opted for (5) although we should investigate the local performance
  56  * benefits of (1) and global performance benefit of (3).
  57  */
  58 #if defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1600))
  59 #define SAFEBUF __declspec(safebuffers)
  60 #else
  61 #define SAFEBUF
  62 #endif
  63 
  64 #include <math.h>
  65 
  66 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
  67 // [jk] this is not 100% correct because the float word order may different
  68 // from the byte order (e.g. on ARM)
  69 #ifdef VM_LITTLE_ENDIAN
  70 # define __HI(x) *(1+(int*)&x)
  71 # define __LO(x) *(int*)&x
  72 #else
  73 # define __HI(x) *(int*)&x
  74 # define __LO(x) *(1+(int*)&x)
  75 #endif
  76 
  77 static double copysignA(double x, double y) {
  78   __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
  79   return x;
  80 }
  81 
  82 /*
  83  * scalbn (double x, int n)
  84  * scalbn(x,n) returns x* 2**n  computed by  exponent
  85  * manipulation rather than by actually performing an
  86  * exponentiation or a multiplication.
  87  */
  88 
  89 static const double
  90 two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
  91 twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
  92 hugeX  = 1.0e+300,
  93 tiny   = 1.0e-300;
  94 
  95 static double scalbnA (double x, int n) {
  96   int  k,hx,lx;
  97   hx = __HI(x);
  98   lx = __LO(x);
  99   k = (hx&0x7ff00000)>>20;              /* extract exponent */
 100   if (k==0) {                           /* 0 or subnormal x */
 101     if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
 102     x *= two54;
 103     hx = __HI(x);
 104     k = ((hx&0x7ff00000)>>20) - 54;
 105     if (n< -50000) return tiny*x;       /*underflow*/
 106   }
 107   if (k==0x7ff) return x+x;             /* NaN or Inf */
 108   k = k+n;
 109   if (k >  0x7fe) return hugeX*copysignA(hugeX,x); /* overflow  */
 110   if (k > 0)                            /* normal result */
 111     {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
 112   if (k <= -54) {
 113     if (n > 50000)      /* in case integer overflow in n+k */
 114       return hugeX*copysignA(hugeX,x);  /*overflow*/
 115     else return tiny*copysignA(tiny,x); /*underflow*/
 116   }
 117   k += 54;                              /* subnormal result */
 118   __HI(x) = (hx&0x800fffff)|(k<<20);
 119   return x*twom54;
 120 }
 121 
 122 /*
 123  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 124  * double x[],y[]; int e0,nx,prec; int ipio2[];
 125  *
 126  * __kernel_rem_pio2 return the last three digits of N with
 127  *              y = x - N*pi/2
 128  * so that |y| < pi/2.
 129  *
 130  * The method is to compute the integer (mod 8) and fraction parts of
 131  * (2/pi)*x without doing the full multiplication. In general we
 132  * skip the part of the product that are known to be a huge integer (
 133  * more accurately, = 0 mod 8 ). Thus the number of operations are
 134  * independent of the exponent of the input.
 135  *
 136  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 137  *
 138  * Input parameters:
 139  *      x[]     The input value (must be positive) is broken into nx
 140  *              pieces of 24-bit integers in double precision format.
 141  *              x[i] will be the i-th 24 bit of x. The scaled exponent
 142  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 143  *              match x's up to 24 bits.
 144  *
 145  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
 146  *                      e0 = ilogb(z)-23
 147  *                      z  = scalbn(z,-e0)
 148  *              for i = 0,1,2
 149  *                      x[i] = floor(z)
 150  *                      z    = (z-x[i])*2**24
 151  *
 152  *
 153  *      y[]     ouput result in an array of double precision numbers.
 154  *              The dimension of y[] is:
 155  *                      24-bit  precision       1
 156  *                      53-bit  precision       2
 157  *                      64-bit  precision       2
 158  *                      113-bit precision       3
 159  *              The actual value is the sum of them. Thus for 113-bit
 160  *              precsion, one may have to do something like:
 161  *
 162  *              long double t,w,r_head, r_tail;
 163  *              t = (long double)y[2] + (long double)y[1];
 164  *              w = (long double)y[0];
 165  *              r_head = t+w;
 166  *              r_tail = w - (r_head - t);
 167  *
 168  *      e0      The exponent of x[0]
 169  *
 170  *      nx      dimension of x[]
 171  *
 172  *      prec    an interger indicating the precision:
 173  *                      0       24  bits (single)
 174  *                      1       53  bits (double)
 175  *                      2       64  bits (extended)
 176  *                      3       113 bits (quad)
 177  *
 178  *      ipio2[]
 179  *              integer array, contains the (24*i)-th to (24*i+23)-th
 180  *              bit of 2/pi after binary point. The corresponding
 181  *              floating value is
 182  *
 183  *                      ipio2[i] * 2^(-24(i+1)).
 184  *
 185  * External function:
 186  *      double scalbn(), floor();
 187  *
 188  *
 189  * Here is the description of some local variables:
 190  *
 191  *      jk      jk+1 is the initial number of terms of ipio2[] needed
 192  *              in the computation. The recommended value is 2,3,4,
 193  *              6 for single, double, extended,and quad.
 194  *
 195  *      jz      local integer variable indicating the number of
 196  *              terms of ipio2[] used.
 197  *
 198  *      jx      nx - 1
 199  *
 200  *      jv      index for pointing to the suitable ipio2[] for the
 201  *              computation. In general, we want
 202  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 203  *              is an integer. Thus
 204  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 205  *              Hence jv = max(0,(e0-3)/24).
 206  *
 207  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 208  *
 209  *      q[]     double array with integral value, representing the
 210  *              24-bits chunk of the product of x and 2/pi.
 211  *
 212  *      q0      the corresponding exponent of q[0]. Note that the
 213  *              exponent for q[i] would be q0-24*i.
 214  *
 215  *      PIo2[]  double precision array, obtained by cutting pi/2
 216  *              into 24 bits chunks.
 217  *
 218  *      f[]     ipio2[] in floating point
 219  *
 220  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 221  *
 222  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 223  *
 224  *      ih      integer. If >0 it indicats q[] is >= 0.5, hence
 225  *              it also indicates the *sign* of the result.
 226  *
 227  */
 228 
 229 
 230 /*
 231  * Constants:
 232  * The hexadecimal values are the intended ones for the following
 233  * constants. The decimal values may be used, provided that the
 234  * compiler will convert from decimal to binary accurately enough
 235  * to produce the hexadecimal values shown.
 236  */
 237 
 238 
 239 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
 240 
 241 static const double PIo2[] = {
 242   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
 243   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
 244   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
 245   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
 246   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
 247   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
 248   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
 249   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 250 };
 251 
 252 static const double
 253 zeroB   = 0.0,
 254 one     = 1.0,
 255 two24B  = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 256 twon24  = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
 257 
 258 static SAFEBUF int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
 259   int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
 260   double z,fw,f[20],fq[20],q[20];
 261 
 262   /* initialize jk*/
 263   jk = init_jk[prec];
 264   jp = jk;
 265 
 266   /* determine jx,jv,q0, note that 3>q0 */
 267   jx =  nx-1;
 268   jv = (e0-3)/24; if(jv<0) jv=0;
 269   q0 =  e0-24*(jv+1);
 270 
 271   /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
 272   j = jv-jx; m = jx+jk;
 273   for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];
 274 
 275   /* compute q[0],q[1],...q[jk] */
 276   for (i=0;i<=jk;i++) {
 277     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
 278   }
 279 
 280   jz = jk;
 281 recompute:
 282   /* distill q[] into iq[] reversingly */
 283   for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
 284     fw    =  (double)((int)(twon24* z));
 285     iq[i] =  (int)(z-two24B*fw);
 286     z     =  q[j-1]+fw;
 287   }
 288 
 289   /* compute n */
 290   z  = scalbnA(z,q0);           /* actual value of z */
 291   z -= 8.0*floor(z*0.125);              /* trim off integer >= 8 */
 292   n  = (int) z;
 293   z -= (double)n;
 294   ih = 0;
 295   if(q0>0) {    /* need iq[jz-1] to determine n */
 296     i  = (iq[jz-1]>>(24-q0)); n += i;
 297     iq[jz-1] -= i<<(24-q0);
 298     ih = iq[jz-1]>>(23-q0);
 299   }
 300   else if(q0==0) ih = iq[jz-1]>>23;
 301   else if(z>=0.5) ih=2;
 302 
 303   if(ih>0) {    /* q > 0.5 */
 304     n += 1; carry = 0;
 305     for(i=0;i<jz ;i++) {        /* compute 1-q */
 306       j = iq[i];
 307       if(carry==0) {
 308         if(j!=0) {
 309           carry = 1; iq[i] = 0x1000000- j;
 310         }
 311       } else  iq[i] = 0xffffff - j;
 312     }
 313     if(q0>0) {          /* rare case: chance is 1 in 12 */
 314       switch(q0) {
 315       case 1:
 316         iq[jz-1] &= 0x7fffff; break;
 317       case 2:
 318         iq[jz-1] &= 0x3fffff; break;
 319       }
 320     }
 321     if(ih==2) {
 322       z = one - z;
 323       if(carry!=0) z -= scalbnA(one,q0);
 324     }
 325   }
 326 
 327   /* check if recomputation is needed */
 328   if(z==zeroB) {
 329     j = 0;
 330     for (i=jz-1;i>=jk;i--) j |= iq[i];
 331     if(j==0) { /* need recomputation */
 332       for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
 333 
 334       for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
 335         f[jx+i] = (double) ipio2[jv+i];
 336         for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 337         q[i] = fw;
 338       }
 339       jz += k;
 340       goto recompute;
 341     }
 342   }
 343 
 344   /* chop off zero terms */
 345   if(z==0.0) {
 346     jz -= 1; q0 -= 24;
 347     while(iq[jz]==0) { jz--; q0-=24;}
 348   } else { /* break z into 24-bit if neccessary */
 349     z = scalbnA(z,-q0);
 350     if(z>=two24B) {
 351       fw = (double)((int)(twon24*z));
 352       iq[jz] = (int)(z-two24B*fw);
 353       jz += 1; q0 += 24;
 354       iq[jz] = (int) fw;
 355     } else iq[jz] = (int) z ;
 356   }
 357 
 358   /* convert integer "bit" chunk to floating-point value */
 359   fw = scalbnA(one,q0);
 360   for(i=jz;i>=0;i--) {
 361     q[i] = fw*(double)iq[i]; fw*=twon24;
 362   }
 363 
 364   /* compute PIo2[0,...,jp]*q[jz,...,0] */
 365   for(i=jz;i>=0;i--) {
 366     for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
 367     fq[jz-i] = fw;
 368   }
 369 
 370   /* compress fq[] into y[] */
 371   switch(prec) {
 372   case 0:
 373     fw = 0.0;
 374     for (i=jz;i>=0;i--) fw += fq[i];
 375     y[0] = (ih==0)? fw: -fw;
 376     break;
 377   case 1:
 378   case 2:
 379     fw = 0.0;
 380     for (i=jz;i>=0;i--) fw += fq[i];
 381     y[0] = (ih==0)? fw: -fw;
 382     fw = fq[0]-fw;
 383     for (i=1;i<=jz;i++) fw += fq[i];
 384     y[1] = (ih==0)? fw: -fw;
 385     break;
 386   case 3:       /* painful */
 387     for (i=jz;i>0;i--) {
 388       fw      = fq[i-1]+fq[i];
 389       fq[i]  += fq[i-1]-fw;
 390       fq[i-1] = fw;
 391     }
 392     for (i=jz;i>1;i--) {
 393       fw      = fq[i-1]+fq[i];
 394       fq[i]  += fq[i-1]-fw;
 395       fq[i-1] = fw;
 396     }
 397     for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
 398     if(ih==0) {
 399       y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
 400     } else {
 401       y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
 402     }
 403   }
 404   return n&7;
 405 }
 406 
 407 
 408 /*
 409  * ====================================================
 410  * Copyright (c) 1993 Oracle and/or its affilates. All rights reserved.
 411  *
 412  * Developed at SunPro, a Sun Microsystems, Inc. business.
 413  * Permission to use, copy, modify, and distribute this
 414  * software is freely granted, provided that this notice
 415  * is preserved.
 416  * ====================================================
 417  *
 418  */
 419 
 420 /* __ieee754_rem_pio2(x,y)
 421  *
 422  * return the remainder of x rem pi/2 in y[0]+y[1]
 423  * use __kernel_rem_pio2()
 424  */
 425 
 426 /*
 427  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
 428  */
 429 static const int two_over_pi[] = {
 430   0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
 431   0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
 432   0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
 433   0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
 434   0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
 435   0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
 436   0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
 437   0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
 438   0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
 439   0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
 440   0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
 441 };
 442 
 443 static const int npio2_hw[] = {
 444   0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
 445   0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
 446   0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
 447   0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
 448   0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
 449   0x404858EB, 0x404921FB,
 450 };
 451 
 452 /*
 453  * invpio2:  53 bits of 2/pi
 454  * pio2_1:   first  33 bit of pi/2
 455  * pio2_1t:  pi/2 - pio2_1
 456  * pio2_2:   second 33 bit of pi/2
 457  * pio2_2t:  pi/2 - (pio2_1+pio2_2)
 458  * pio2_3:   third  33 bit of pi/2
 459  * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
 460  */
 461 
 462 static const double
 463 zeroA =  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
 464 half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
 465 two24A =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 466 invpio2 =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
 467 pio2_1  =  1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
 468 pio2_1t =  6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
 469 pio2_2  =  6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
 470 pio2_2t =  2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
 471 pio2_3  =  2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
 472 pio2_3t =  8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
 473 
 474 static SAFEBUF int __ieee754_rem_pio2(double x, double *y) {
 475   double z,w,t,r,fn;
 476   double tx[3];
 477   int e0,i,j,nx,n,ix,hx,i0;
 478 
 479   i0 = ((*(int*)&two24A)>>30)^1;        /* high word index */
 480   hx = *(i0+(int*)&x);          /* high word of x */
 481   ix = hx&0x7fffffff;
 482   if(ix<=0x3fe921fb)   /* |x| ~<= pi/4 , no need for reduction */
 483     {y[0] = x; y[1] = 0; return 0;}
 484   if(ix<0x4002d97c) {  /* |x| < 3pi/4, special case with n=+-1 */
 485     if(hx>0) {
 486       z = x - pio2_1;
 487       if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
 488         y[0] = z - pio2_1t;
 489         y[1] = (z-y[0])-pio2_1t;
 490       } else {                /* near pi/2, use 33+33+53 bit pi */
 491         z -= pio2_2;
 492         y[0] = z - pio2_2t;
 493         y[1] = (z-y[0])-pio2_2t;
 494       }
 495       return 1;
 496     } else {    /* negative x */
 497       z = x + pio2_1;
 498       if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
 499         y[0] = z + pio2_1t;
 500         y[1] = (z-y[0])+pio2_1t;
 501       } else {                /* near pi/2, use 33+33+53 bit pi */
 502         z += pio2_2;
 503         y[0] = z + pio2_2t;
 504         y[1] = (z-y[0])+pio2_2t;
 505       }
 506       return -1;
 507     }
 508   }
 509   if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
 510     t  = fabsd(x);
 511     n  = (int) (t*invpio2+half);
 512     fn = (double)n;
 513     r  = t-fn*pio2_1;
 514     w  = fn*pio2_1t;    /* 1st round good to 85 bit */
 515     if(n<32&&ix!=npio2_hw[n-1]) {
 516       y[0] = r-w;       /* quick check no cancellation */
 517     } else {
 518       j  = ix>>20;
 519       y[0] = r-w;
 520       i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
 521       if(i>16) {  /* 2nd iteration needed, good to 118 */
 522         t  = r;
 523         w  = fn*pio2_2;
 524         r  = t-w;
 525         w  = fn*pio2_2t-((t-r)-w);
 526         y[0] = r-w;
 527         i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
 528         if(i>49)  {     /* 3rd iteration need, 151 bits acc */
 529           t  = r;       /* will cover all possible cases */
 530           w  = fn*pio2_3;
 531           r  = t-w;
 532           w  = fn*pio2_3t-((t-r)-w);
 533           y[0] = r-w;
 534         }
 535       }
 536     }
 537     y[1] = (r-y[0])-w;
 538     if(hx<0)    {y[0] = -y[0]; y[1] = -y[1]; return -n;}
 539     else         return n;
 540   }
 541   /*
 542    * all other (large) arguments
 543    */
 544   if(ix>=0x7ff00000) {          /* x is inf or NaN */
 545     y[0]=y[1]=x-x; return 0;
 546   }
 547   /* set z = scalbn(|x|,ilogb(x)-23) */
 548   *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
 549   e0    = (ix>>20)-1046;        /* e0 = ilogb(z)-23; */
 550   *(i0+(int*)&z) = ix - (e0<<20);
 551   for(i=0;i<2;i++) {
 552     tx[i] = (double)((int)(z));
 553     z     = (z-tx[i])*two24A;
 554   }
 555   tx[2] = z;
 556   nx = 3;
 557   while(tx[nx-1]==zeroA) nx--;  /* skip zero term */
 558   n  =  __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
 559   if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
 560   return n;
 561 }
 562 
 563 
 564 /* __kernel_sin( x, y, iy)
 565  * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 566  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 567  * Input y is the tail of x.
 568  * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 569  *
 570  * Algorithm
 571  *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
 572  *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 573  *      3. sin(x) is approximated by a polynomial of degree 13 on
 574  *         [0,pi/4]
 575  *                               3            13
 576  *              sin(x) ~ x + S1*x + ... + S6*x
 577  *         where
 578  *
 579  *      |sin(x)         2     4     6     8     10     12  |     -58
 580  *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 581  *      |  x                                               |
 582  *
 583  *      4. sin(x+y) = sin(x) + sin'(x')*y
 584  *                  ~ sin(x) + (1-x*x/2)*y
 585  *         For better accuracy, let
 586  *                   3      2      2      2      2
 587  *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 588  *         then                   3    2
 589  *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
 590  */
 591 
 592 static const double
 593 S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
 594 S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
 595 S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
 596 S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
 597 S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
 598 S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
 599 
 600 static double __kernel_sin(double x, double y, int iy)
 601 {
 602         double z,r,v;
 603         int ix;
 604         ix = __HI(x)&0x7fffffff;        /* high word of x */
 605         if(ix<0x3e400000)                       /* |x| < 2**-27 */
 606            {if((int)x==0) return x;}            /* generate inexact */
 607         z       =  x*x;
 608         v       =  z*x;
 609         r       =  S2+z*(S3+z*(S4+z*(S5+z*S6)));
 610         if(iy==0) return x+v*(S1+z*r);
 611         else      return x-((z*(half*y-v*r)-y)-v*S1);
 612 }
 613 
 614 /*
 615  * __kernel_cos( x,  y )
 616  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 617  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 618  * Input y is the tail of x.
 619  *
 620  * Algorithm
 621  *      1. Since cos(-x) = cos(x), we need only to consider positive x.
 622  *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
 623  *      3. cos(x) is approximated by a polynomial of degree 14 on
 624  *         [0,pi/4]
 625  *                                       4            14
 626  *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
 627  *         where the remez error is
 628  *
 629  *      |              2     4     6     8     10    12     14 |     -58
 630  *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
 631  *      |                                                      |
 632  *
 633  *                     4     6     8     10    12     14
 634  *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
 635  *             cos(x) = 1 - x*x/2 + r
 636  *         since cos(x+y) ~ cos(x) - sin(x)*y
 637  *                        ~ cos(x) - x*y,
 638  *         a correction term is necessary in cos(x) and hence
 639  *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
 640  *         For better accuracy when x > 0.3, let qx = |x|/4 with
 641  *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
 642  *         Then
 643  *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
 644  *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
 645  *         magnitude of the latter is at least a quarter of x*x/2,
 646  *         thus, reducing the rounding error in the subtraction.
 647  */
 648 
 649 static const double
 650 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
 651 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
 652 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
 653 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
 654 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
 655 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
 656 
 657 static double __kernel_cos(double x, double y)
 658 {
 659   double a,hz,z,r,qx;
 660   int ix;
 661   ix = __HI(x)&0x7fffffff;      /* ix = |x|'s high word*/
 662   if(ix<0x3e400000) {                   /* if x < 2**27 */
 663     if(((int)x)==0) return one;         /* generate inexact */
 664   }
 665   z  = x*x;
 666   r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
 667   if(ix < 0x3FD33333)                   /* if |x| < 0.3 */
 668     return one - (0.5*z - (z*r - x*y));
 669   else {
 670     if(ix > 0x3fe90000) {               /* x > 0.78125 */
 671       qx = 0.28125;
 672     } else {
 673       __HI(qx) = ix-0x00200000; /* x/4 */
 674       __LO(qx) = 0;
 675     }
 676     hz = 0.5*z-qx;
 677     a  = one-qx;
 678     return a - (hz - (z*r-x*y));
 679   }
 680 }
 681 
 682 /* __kernel_tan( x, y, k )
 683  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 684  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 685  * Input y is the tail of x.
 686  * Input k indicates whether tan (if k=1) or
 687  * -1/tan (if k= -1) is returned.
 688  *
 689  * Algorithm
 690  *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
 691  *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 692  *      3. tan(x) is approximated by a odd polynomial of degree 27 on
 693  *         [0,0.67434]
 694  *                               3             27
 695  *              tan(x) ~ x + T1*x + ... + T13*x
 696  *         where
 697  *
 698  *              |tan(x)         2     4            26   |     -59.2
 699  *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 700  *              |  x                                    |
 701  *
 702  *         Note: tan(x+y) = tan(x) + tan'(x)*y
 703  *                        ~ tan(x) + (1+x*x)*y
 704  *         Therefore, for better accuracy in computing tan(x+y), let
 705  *                   3      2      2       2       2
 706  *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 707  *         then
 708  *                                  3    2
 709  *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
 710  *
 711  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 712  *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 713  *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 714  */
 715 
 716 static const double
 717 pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
 718 pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
 719 T[] =  {
 720   3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
 721   1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
 722   5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
 723   2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
 724   8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
 725   3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
 726   1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
 727   5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
 728   2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
 729   7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
 730   7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
 731  -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
 732   2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
 733 };
 734 
 735 static double __kernel_tan(double x, double y, int iy)
 736 {
 737   double z,r,v,w,s;
 738   int ix,hx;
 739   hx = __HI(x);   /* high word of x */
 740   ix = hx&0x7fffffff;     /* high word of |x| */
 741   if(ix<0x3e300000) {                     /* x < 2**-28 */
 742     if((int)x==0) {                       /* generate inexact */
 743       if (((ix | __LO(x)) | (iy + 1)) == 0)
 744         return one / fabsd(x);
 745       else {
 746         if (iy == 1)
 747           return x;
 748         else {    /* compute -1 / (x+y) carefully */
 749           double a, t;
 750 
 751           z = w = x + y;
 752           __LO(z) = 0;
 753           v = y - (z - x);
 754           t = a = -one / w;
 755           __LO(t) = 0;
 756           s = one + t * z;
 757           return t + a * (s + t * v);
 758         }
 759       }
 760     }
 761   }
 762   if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
 763     if(hx<0) {x = -x; y = -y;}
 764     z = pio4-x;
 765     w = pio4lo-y;
 766     x = z+w; y = 0.0;
 767   }
 768   z       =  x*x;
 769   w       =  z*z;
 770   /* Break x^5*(T[1]+x^2*T[2]+...) into
 771    *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
 772    *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
 773    */
 774   r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
 775   v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
 776   s = z*x;
 777   r = y + z*(s*(r+v)+y);
 778   r += T[0]*s;
 779   w = x+r;
 780   if(ix>=0x3FE59428) {
 781     v = (double)iy;
 782     return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
 783   }
 784   if(iy==1) return w;
 785   else {          /* if allow error up to 2 ulp,
 786                      simply return -1.0/(x+r) here */
 787     /*  compute -1.0/(x+r) accurately */
 788     double a,t;
 789     z  = w;
 790     __LO(z) = 0;
 791     v  = r-(z - x);     /* z+v = r+x */
 792     t = a  = -1.0/w;    /* a = -1.0/w */
 793     __LO(t) = 0;
 794     s  = 1.0+t*z;
 795     return t+a*(s+t*v);
 796   }
 797 }
 798 
 799 
 800 //----------------------------------------------------------------------
 801 //
 802 // Routines for new sin/cos implementation
 803 //
 804 //----------------------------------------------------------------------
 805 
 806 /* sin(x)
 807  * Return sine function of x.
 808  *
 809  * kernel function:
 810  *      __kernel_sin            ... sine function on [-pi/4,pi/4]
 811  *      __kernel_cos            ... cose function on [-pi/4,pi/4]
 812  *      __ieee754_rem_pio2      ... argument reduction routine
 813  *
 814  * Method.
 815  *      Let S,C and T denote the sin, cos and tan respectively on
 816  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 817  *      in [-pi/4 , +pi/4], and let n = k mod 4.
 818  *      We have
 819  *
 820  *          n        sin(x)      cos(x)        tan(x)
 821  *     ----------------------------------------------------------
 822  *          0          S           C             T
 823  *          1          C          -S            -1/T
 824  *          2         -S          -C             T
 825  *          3         -C           S            -1/T
 826  *     ----------------------------------------------------------
 827  *
 828  * Special cases:
 829  *      Let trig be any of sin, cos, or tan.
 830  *      trig(+-INF)  is NaN, with signals;
 831  *      trig(NaN)    is that NaN;
 832  *
 833  * Accuracy:
 834  *      TRIG(x) returns trig(x) nearly rounded
 835  */
 836 
 837 JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
 838   double y[2],z=0.0;
 839   int n, ix;
 840 
 841   /* High word of x. */
 842   ix = __HI(x);
 843 
 844   /* |x| ~< pi/4 */
 845   ix &= 0x7fffffff;
 846   if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
 847 
 848   /* sin(Inf or NaN) is NaN */
 849   else if (ix>=0x7ff00000) return x-x;
 850 
 851   /* argument reduction needed */
 852   else {
 853     n = __ieee754_rem_pio2(x,y);
 854     switch(n&3) {
 855     case 0: return  __kernel_sin(y[0],y[1],1);
 856     case 1: return  __kernel_cos(y[0],y[1]);
 857     case 2: return -__kernel_sin(y[0],y[1],1);
 858     default:
 859       return -__kernel_cos(y[0],y[1]);
 860     }
 861   }
 862 JRT_END
 863 
 864 /* cos(x)
 865  * Return cosine function of x.
 866  *
 867  * kernel function:
 868  *      __kernel_sin            ... sine function on [-pi/4,pi/4]
 869  *      __kernel_cos            ... cosine function on [-pi/4,pi/4]
 870  *      __ieee754_rem_pio2      ... argument reduction routine
 871  *
 872  * Method.
 873  *      Let S,C and T denote the sin, cos and tan respectively on
 874  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 875  *      in [-pi/4 , +pi/4], and let n = k mod 4.
 876  *      We have
 877  *
 878  *          n        sin(x)      cos(x)        tan(x)
 879  *     ----------------------------------------------------------
 880  *          0          S           C             T
 881  *          1          C          -S            -1/T
 882  *          2         -S          -C             T
 883  *          3         -C           S            -1/T
 884  *     ----------------------------------------------------------
 885  *
 886  * Special cases:
 887  *      Let trig be any of sin, cos, or tan.
 888  *      trig(+-INF)  is NaN, with signals;
 889  *      trig(NaN)    is that NaN;
 890  *
 891  * Accuracy:
 892  *      TRIG(x) returns trig(x) nearly rounded
 893  */
 894 
 895 JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
 896   double y[2],z=0.0;
 897   int n, ix;
 898 
 899   /* High word of x. */
 900   ix = __HI(x);
 901 
 902   /* |x| ~< pi/4 */
 903   ix &= 0x7fffffff;
 904   if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
 905 
 906   /* cos(Inf or NaN) is NaN */
 907   else if (ix>=0x7ff00000) return x-x;
 908 
 909   /* argument reduction needed */
 910   else {
 911     n = __ieee754_rem_pio2(x,y);
 912     switch(n&3) {
 913     case 0: return  __kernel_cos(y[0],y[1]);
 914     case 1: return -__kernel_sin(y[0],y[1],1);
 915     case 2: return -__kernel_cos(y[0],y[1]);
 916     default:
 917       return  __kernel_sin(y[0],y[1],1);
 918     }
 919   }
 920 JRT_END
 921 
 922 /* tan(x)
 923  * Return tangent function of x.
 924  *
 925  * kernel function:
 926  *      __kernel_tan            ... tangent function on [-pi/4,pi/4]
 927  *      __ieee754_rem_pio2      ... argument reduction routine
 928  *
 929  * Method.
 930  *      Let S,C and T denote the sin, cos and tan respectively on
 931  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 932  *      in [-pi/4 , +pi/4], and let n = k mod 4.
 933  *      We have
 934  *
 935  *          n        sin(x)      cos(x)        tan(x)
 936  *     ----------------------------------------------------------
 937  *          0          S           C             T
 938  *          1          C          -S            -1/T
 939  *          2         -S          -C             T
 940  *          3         -C           S            -1/T
 941  *     ----------------------------------------------------------
 942  *
 943  * Special cases:
 944  *      Let trig be any of sin, cos, or tan.
 945  *      trig(+-INF)  is NaN, with signals;
 946  *      trig(NaN)    is that NaN;
 947  *
 948  * Accuracy:
 949  *      TRIG(x) returns trig(x) nearly rounded
 950  */
 951 
 952 JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
 953   double y[2],z=0.0;
 954   int n, ix;
 955 
 956   /* High word of x. */
 957   ix = __HI(x);
 958 
 959   /* |x| ~< pi/4 */
 960   ix &= 0x7fffffff;
 961   if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
 962 
 963   /* tan(Inf or NaN) is NaN */
 964   else if (ix>=0x7ff00000) return x-x;            /* NaN */
 965 
 966   /* argument reduction needed */
 967   else {
 968     n = __ieee754_rem_pio2(x,y);
 969     return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
 970                                                      -1 -- n odd */
 971   }
 972 JRT_END
 973 
 974 
 975 #ifdef WIN32
 976 # pragma optimize ( "", on )
 977 #endif