1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // This file holds all globally used constants & types, class (forward)
  26 // declarations and a few frequently used utility functions.
  27 
  28 //----------------------------------------------------------------------------------------------------
  29 // Constants
  30 
  31 const int LogBytesPerShort   = 1;
  32 const int LogBytesPerInt     = 2;
  33 #ifdef _LP64
  34 const int LogBytesPerWord    = 3;
  35 #else
  36 const int LogBytesPerWord    = 2;
  37 #endif
  38 const int LogBytesPerLong    = 3;
  39 
  40 const int BytesPerShort      = 1 << LogBytesPerShort;
  41 const int BytesPerInt        = 1 << LogBytesPerInt;
  42 const int BytesPerWord       = 1 << LogBytesPerWord;
  43 const int BytesPerLong       = 1 << LogBytesPerLong;
  44 
  45 const int LogBitsPerByte     = 3;
  46 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  47 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  48 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  49 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  50 
  51 const int BitsPerByte        = 1 << LogBitsPerByte;
  52 const int BitsPerShort       = 1 << LogBitsPerShort;
  53 const int BitsPerInt         = 1 << LogBitsPerInt;
  54 const int BitsPerWord        = 1 << LogBitsPerWord;
  55 const int BitsPerLong        = 1 << LogBitsPerLong;
  56 
  57 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  58 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  59 
  60 const int WordsPerLong       = 2;       // Number of stack entries for longs
  61 
  62 const int oopSize            = sizeof(char*); // Full-width oop
  63 extern int heapOopSize;                       // Oop within a java object
  64 const int wordSize           = sizeof(char*);
  65 const int longSize           = sizeof(jlong);
  66 const int jintSize           = sizeof(jint);
  67 const int size_tSize         = sizeof(size_t);
  68 
  69 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  70 
  71 extern int LogBytesPerHeapOop;                // Oop within a java object
  72 extern int LogBitsPerHeapOop;
  73 extern int BytesPerHeapOop;
  74 extern int BitsPerHeapOop;
  75 
  76 // Oop encoding heap max
  77 extern uint64_t OopEncodingHeapMax;
  78 
  79 const int BitsPerJavaInteger = 32;
  80 const int BitsPerJavaLong    = 64;
  81 const int BitsPerSize_t      = size_tSize * BitsPerByte;
  82 
  83 // Size of a char[] needed to represent a jint as a string in decimal.
  84 const int jintAsStringSize = 12;
  85 
  86 // In fact this should be
  87 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  88 // see os::set_memory_serialize_page()
  89 #ifdef _LP64
  90 const int SerializePageShiftCount = 4;
  91 #else
  92 const int SerializePageShiftCount = 3;
  93 #endif
  94 
  95 // An opaque struct of heap-word width, so that HeapWord* can be a generic
  96 // pointer into the heap.  We require that object sizes be measured in
  97 // units of heap words, so that that
  98 //   HeapWord* hw;
  99 //   hw += oop(hw)->foo();
 100 // works, where foo is a method (like size or scavenge) that returns the
 101 // object size.
 102 class HeapWord {
 103   friend class VMStructs;
 104  private:
 105   char* i;
 106 #ifndef PRODUCT
 107  public:
 108   char* value() { return i; }
 109 #endif
 110 };
 111 
 112 // HeapWordSize must be 2^LogHeapWordSize.
 113 const int HeapWordSize        = sizeof(HeapWord);
 114 #ifdef _LP64
 115 const int LogHeapWordSize     = 3;
 116 #else
 117 const int LogHeapWordSize     = 2;
 118 #endif
 119 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 120 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 121 
 122 // The larger HeapWordSize for 64bit requires larger heaps
 123 // for the same application running in 64bit.  See bug 4967770.
 124 // The minimum alignment to a heap word size is done.  Other
 125 // parts of the memory system may required additional alignment
 126 // and are responsible for those alignments.
 127 #ifdef _LP64
 128 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 129 #else
 130 #define ScaleForWordSize(x) (x)
 131 #endif
 132 
 133 // The minimum number of native machine words necessary to contain "byte_size"
 134 // bytes.
 135 inline size_t heap_word_size(size_t byte_size) {
 136   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 137 }
 138 
 139 
 140 const size_t K                  = 1024;
 141 const size_t M                  = K*K;
 142 const size_t G                  = M*K;
 143 const size_t HWperKB            = K / sizeof(HeapWord);
 144 
 145 const size_t LOG_K              = 10;
 146 const size_t LOG_M              = 2 * LOG_K;
 147 const size_t LOG_G              = 2 * LOG_M;
 148 
 149 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 150 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 151 
 152 // Constants for converting from a base unit to milli-base units.  For
 153 // example from seconds to milliseconds and microseconds
 154 
 155 const int MILLIUNITS    = 1000;         // milli units per base unit
 156 const int MICROUNITS    = 1000000;      // micro units per base unit
 157 const int NANOUNITS     = 1000000000;   // nano units per base unit
 158 
 159 inline const char* proper_unit_for_byte_size(size_t s) {
 160   if (s >= 10*M) {
 161     return "M";
 162   } else if (s >= 10*K) {
 163     return "K";
 164   } else {
 165     return "B";
 166   }
 167 }
 168 
 169 inline size_t byte_size_in_proper_unit(size_t s) {
 170   if (s >= 10*M) {
 171     return s/M;
 172   } else if (s >= 10*K) {
 173     return s/K;
 174   } else {
 175     return s;
 176   }
 177 }
 178 
 179 
 180 //----------------------------------------------------------------------------------------------------
 181 // VM type definitions
 182 
 183 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 184 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 185 
 186 typedef intptr_t  intx;
 187 typedef uintptr_t uintx;
 188 
 189 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 190 const intx  max_intx  = (uintx)min_intx - 1;
 191 const uintx max_uintx = (uintx)-1;
 192 
 193 // Table of values:
 194 //      sizeof intx         4               8
 195 // min_intx             0x80000000      0x8000000000000000
 196 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 197 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 198 
 199 typedef unsigned int uint;   NEEDS_CLEANUP
 200 
 201 
 202 //----------------------------------------------------------------------------------------------------
 203 // Java type definitions
 204 
 205 // All kinds of 'plain' byte addresses
 206 typedef   signed char s_char;
 207 typedef unsigned char u_char;
 208 typedef u_char*       address;
 209 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 210                                     // except for some implementations of a C++
 211                                     // linkage pointer to function. Should never
 212                                     // need one of those to be placed in this
 213                                     // type anyway.
 214 
 215 //  Utility functions to "portably" (?) bit twiddle pointers
 216 //  Where portable means keep ANSI C++ compilers quiet
 217 
 218 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 219 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 220 
 221 //  Utility functions to "portably" make cast to/from function pointers.
 222 
 223 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 224 inline address_word  castable_address(address x)              { return address_word(x) ; }
 225 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 226 
 227 // Pointer subtraction.
 228 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 229 // the range we might need to find differences from one end of the heap
 230 // to the other.
 231 // A typical use might be:
 232 //     if (pointer_delta(end(), top()) >= size) {
 233 //       // enough room for an object of size
 234 //       ...
 235 // and then additions like
 236 //       ... top() + size ...
 237 // are safe because we know that top() is at least size below end().
 238 inline size_t pointer_delta(const void* left,
 239                             const void* right,
 240                             size_t element_size) {
 241   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 242 }
 243 // A version specialized for HeapWord*'s.
 244 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 245   return pointer_delta(left, right, sizeof(HeapWord));
 246 }
 247 
 248 //
 249 // ANSI C++ does not allow casting from one pointer type to a function pointer
 250 // directly without at best a warning. This macro accomplishes it silently
 251 // In every case that is present at this point the value be cast is a pointer
 252 // to a C linkage function. In somecase the type used for the cast reflects
 253 // that linkage and a picky compiler would not complain. In other cases because
 254 // there is no convenient place to place a typedef with extern C linkage (i.e
 255 // a platform dependent header file) it doesn't. At this point no compiler seems
 256 // picky enough to catch these instances (which are few). It is possible that
 257 // using templates could fix these for all cases. This use of templates is likely
 258 // so far from the middle of the road that it is likely to be problematic in
 259 // many C++ compilers.
 260 //
 261 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 262 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 263 
 264 // Unsigned byte types for os and stream.hpp
 265 
 266 // Unsigned one, two, four and eigth byte quantities used for describing
 267 // the .class file format. See JVM book chapter 4.
 268 
 269 typedef jubyte  u1;
 270 typedef jushort u2;
 271 typedef juint   u4;
 272 typedef julong  u8;
 273 
 274 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 275 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 276 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 277 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 278 
 279 //----------------------------------------------------------------------------------------------------
 280 // JVM spec restrictions
 281 
 282 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 283 
 284 
 285 //----------------------------------------------------------------------------------------------------
 286 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 287 //
 288 // Determines whether on-the-fly class replacement and frame popping are enabled.
 289 
 290 #define HOTSWAP
 291 
 292 //----------------------------------------------------------------------------------------------------
 293 // Object alignment, in units of HeapWords.
 294 //
 295 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 296 // reference fields can be naturally aligned.
 297 
 298 extern int MinObjAlignment;
 299 extern int MinObjAlignmentInBytes;
 300 extern int MinObjAlignmentInBytesMask;
 301 
 302 extern int LogMinObjAlignment;
 303 extern int LogMinObjAlignmentInBytes;
 304 
 305 // Machine dependent stuff
 306 
 307 #include "incls/_globalDefinitions_pd.hpp.incl"
 308 
 309 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 310 // Note: this value must be a power of 2
 311 
 312 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 313 
 314 // Signed variants of alignment helpers.  There are two versions of each, a macro
 315 // for use in places like enum definitions that require compile-time constant
 316 // expressions and a function for all other places so as to get type checking.
 317 
 318 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 319 
 320 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 321   return align_size_up_(size, alignment);
 322 }
 323 
 324 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 325 
 326 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 327   return align_size_down_(size, alignment);
 328 }
 329 
 330 // Align objects by rounding up their size, in HeapWord units.
 331 
 332 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 333 
 334 inline intptr_t align_object_size(intptr_t size) {
 335   return align_size_up(size, MinObjAlignment);
 336 }
 337 
 338 inline bool is_object_aligned(intptr_t addr) {
 339   return addr == align_object_size(addr);
 340 }
 341 
 342 // Pad out certain offsets to jlong alignment, in HeapWord units.
 343 
 344 inline intptr_t align_object_offset(intptr_t offset) {
 345   return align_size_up(offset, HeapWordsPerLong);
 346 }
 347 
 348 // The expected size in bytes of a cache line, used to pad data structures.
 349 #define DEFAULT_CACHE_LINE_SIZE 64
 350 
 351 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 352 // expected cache line size (a power of two).  The first addend avoids sharing
 353 // when the start address is not a multiple of alignment; the second maintains
 354 // alignment of starting addresses that happen to be a multiple.
 355 #define PADDING_SIZE(type, alignment)                           \
 356   ((alignment) + align_size_up_(sizeof(type), alignment))
 357 
 358 // Templates to create a subclass padded to avoid cache line sharing.  These are
 359 // effective only when applied to derived-most (leaf) classes.
 360 
 361 // When no args are passed to the base ctor.
 362 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 363 class Padded: public T {
 364 private:
 365   char _pad_buf_[PADDING_SIZE(T, alignment)];
 366 };
 367 
 368 // When either 0 or 1 args may be passed to the base ctor.
 369 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 370 class Padded01: public T {
 371 public:
 372   Padded01(): T() { }
 373   Padded01(Arg1T arg1): T(arg1) { }
 374 private:
 375   char _pad_buf_[PADDING_SIZE(T, alignment)];
 376 };
 377 
 378 //----------------------------------------------------------------------------------------------------
 379 // Utility macros for compilers
 380 // used to silence compiler warnings
 381 
 382 #define Unused_Variable(var) var
 383 
 384 
 385 //----------------------------------------------------------------------------------------------------
 386 // Miscellaneous
 387 
 388 // 6302670 Eliminate Hotspot __fabsf dependency
 389 // All fabs() callers should call this function instead, which will implicitly
 390 // convert the operand to double, avoiding a dependency on __fabsf which
 391 // doesn't exist in early versions of Solaris 8.
 392 inline double fabsd(double value) {
 393   return fabs(value);
 394 }
 395 
 396 inline jint low (jlong value)                    { return jint(value); }
 397 inline jint high(jlong value)                    { return jint(value >> 32); }
 398 
 399 // the fancy casts are a hopefully portable way
 400 // to do unsigned 32 to 64 bit type conversion
 401 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 402                                                    *value |= (jlong)(julong)(juint)low; }
 403 
 404 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 405                                                    *value |= (jlong)high       << 32; }
 406 
 407 inline jlong jlong_from(jint h, jint l) {
 408   jlong result = 0; // initialization to avoid warning
 409   set_high(&result, h);
 410   set_low(&result,  l);
 411   return result;
 412 }
 413 
 414 union jlong_accessor {
 415   jint  words[2];
 416   jlong long_value;
 417 };
 418 
 419 void basic_types_init(); // cannot define here; uses assert
 420 
 421 
 422 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 423 enum BasicType {
 424   T_BOOLEAN  =  4,
 425   T_CHAR     =  5,
 426   T_FLOAT    =  6,
 427   T_DOUBLE   =  7,
 428   T_BYTE     =  8,
 429   T_SHORT    =  9,
 430   T_INT      = 10,
 431   T_LONG     = 11,
 432   T_OBJECT   = 12,
 433   T_ARRAY    = 13,
 434   T_VOID     = 14,
 435   T_ADDRESS  = 15,
 436   T_NARROWOOP= 16,
 437   T_CONFLICT = 17, // for stack value type with conflicting contents
 438   T_ILLEGAL  = 99
 439 };
 440 
 441 inline bool is_java_primitive(BasicType t) {
 442   return T_BOOLEAN <= t && t <= T_LONG;
 443 }
 444 
 445 inline bool is_subword_type(BasicType t) {
 446   // these guys are processed exactly like T_INT in calling sequences:
 447   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 448 }
 449 
 450 inline bool is_signed_subword_type(BasicType t) {
 451   return (t == T_BYTE || t == T_SHORT);
 452 }
 453 
 454 // Convert a char from a classfile signature to a BasicType
 455 inline BasicType char2type(char c) {
 456   switch( c ) {
 457   case 'B': return T_BYTE;
 458   case 'C': return T_CHAR;
 459   case 'D': return T_DOUBLE;
 460   case 'F': return T_FLOAT;
 461   case 'I': return T_INT;
 462   case 'J': return T_LONG;
 463   case 'S': return T_SHORT;
 464   case 'Z': return T_BOOLEAN;
 465   case 'V': return T_VOID;
 466   case 'L': return T_OBJECT;
 467   case '[': return T_ARRAY;
 468   }
 469   return T_ILLEGAL;
 470 }
 471 
 472 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 473 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 474 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 475 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 476 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 477 extern BasicType name2type(const char* name);
 478 
 479 // Auxilary math routines
 480 // least common multiple
 481 extern size_t lcm(size_t a, size_t b);
 482 
 483 
 484 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 485 enum BasicTypeSize {
 486   T_BOOLEAN_size = 1,
 487   T_CHAR_size    = 1,
 488   T_FLOAT_size   = 1,
 489   T_DOUBLE_size  = 2,
 490   T_BYTE_size    = 1,
 491   T_SHORT_size   = 1,
 492   T_INT_size     = 1,
 493   T_LONG_size    = 2,
 494   T_OBJECT_size  = 1,
 495   T_ARRAY_size   = 1,
 496   T_NARROWOOP_size = 1,
 497   T_VOID_size    = 0
 498 };
 499 
 500 
 501 // maps a BasicType to its instance field storage type:
 502 // all sub-word integral types are widened to T_INT
 503 extern BasicType type2field[T_CONFLICT+1];
 504 extern BasicType type2wfield[T_CONFLICT+1];
 505 
 506 
 507 // size in bytes
 508 enum ArrayElementSize {
 509   T_BOOLEAN_aelem_bytes = 1,
 510   T_CHAR_aelem_bytes    = 2,
 511   T_FLOAT_aelem_bytes   = 4,
 512   T_DOUBLE_aelem_bytes  = 8,
 513   T_BYTE_aelem_bytes    = 1,
 514   T_SHORT_aelem_bytes   = 2,
 515   T_INT_aelem_bytes     = 4,
 516   T_LONG_aelem_bytes    = 8,
 517 #ifdef _LP64
 518   T_OBJECT_aelem_bytes  = 8,
 519   T_ARRAY_aelem_bytes   = 8,
 520 #else
 521   T_OBJECT_aelem_bytes  = 4,
 522   T_ARRAY_aelem_bytes   = 4,
 523 #endif
 524   T_NARROWOOP_aelem_bytes = 4,
 525   T_VOID_aelem_bytes    = 0
 526 };
 527 
 528 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 529 #ifdef ASSERT
 530 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 531 #else
 532 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 533 #endif
 534 
 535 
 536 // JavaValue serves as a container for arbitrary Java values.
 537 
 538 class JavaValue {
 539 
 540  public:
 541   typedef union JavaCallValue {
 542     jfloat   f;
 543     jdouble  d;
 544     jint     i;
 545     jlong    l;
 546     jobject  h;
 547   } JavaCallValue;
 548 
 549  private:
 550   BasicType _type;
 551   JavaCallValue _value;
 552 
 553  public:
 554   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 555 
 556   JavaValue(jfloat value) {
 557     _type    = T_FLOAT;
 558     _value.f = value;
 559   }
 560 
 561   JavaValue(jdouble value) {
 562     _type    = T_DOUBLE;
 563     _value.d = value;
 564   }
 565 
 566  jfloat get_jfloat() const { return _value.f; }
 567  jdouble get_jdouble() const { return _value.d; }
 568  jint get_jint() const { return _value.i; }
 569  jlong get_jlong() const { return _value.l; }
 570  jobject get_jobject() const { return _value.h; }
 571  JavaCallValue* get_value_addr() { return &_value; }
 572  BasicType get_type() const { return _type; }
 573 
 574  void set_jfloat(jfloat f) { _value.f = f;}
 575  void set_jdouble(jdouble d) { _value.d = d;}
 576  void set_jint(jint i) { _value.i = i;}
 577  void set_jlong(jlong l) { _value.l = l;}
 578  void set_jobject(jobject h) { _value.h = h;}
 579  void set_type(BasicType t) { _type = t; }
 580 
 581  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 582  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 583  jchar get_jchar() const { return (jchar) (_value.i);}
 584  jshort get_jshort() const { return (jshort) (_value.i);}
 585 
 586 };
 587 
 588 
 589 #define STACK_BIAS      0
 590 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 591 // in order to extend the reach of the stack pointer.
 592 #if defined(SPARC) && defined(_LP64)
 593 #undef STACK_BIAS
 594 #define STACK_BIAS      0x7ff
 595 #endif
 596 
 597 
 598 // TosState describes the top-of-stack state before and after the execution of
 599 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 600 // registers. The TosState corresponds to the 'machine represention' of this cached
 601 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 602 // as well as a 5th state in case the top-of-stack value is actually on the top
 603 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 604 // state when it comes to machine representation but is used separately for (oop)
 605 // type specific operations (e.g. verification code).
 606 
 607 enum TosState {         // describes the tos cache contents
 608   btos = 0,             // byte, bool tos cached
 609   ctos = 1,             // char tos cached
 610   stos = 2,             // short tos cached
 611   itos = 3,             // int tos cached
 612   ltos = 4,             // long tos cached
 613   ftos = 5,             // float tos cached
 614   dtos = 6,             // double tos cached
 615   atos = 7,             // object cached
 616   vtos = 8,             // tos not cached
 617   number_of_states,
 618   ilgl                  // illegal state: should not occur
 619 };
 620 
 621 
 622 inline TosState as_TosState(BasicType type) {
 623   switch (type) {
 624     case T_BYTE   : return btos;
 625     case T_BOOLEAN: return btos; // FIXME: Add ztos
 626     case T_CHAR   : return ctos;
 627     case T_SHORT  : return stos;
 628     case T_INT    : return itos;
 629     case T_LONG   : return ltos;
 630     case T_FLOAT  : return ftos;
 631     case T_DOUBLE : return dtos;
 632     case T_VOID   : return vtos;
 633     case T_ARRAY  : // fall through
 634     case T_OBJECT : return atos;
 635   }
 636   return ilgl;
 637 }
 638 
 639 inline BasicType as_BasicType(TosState state) {
 640   switch (state) {
 641     //case ztos: return T_BOOLEAN;//FIXME
 642     case btos : return T_BYTE;
 643     case ctos : return T_CHAR;
 644     case stos : return T_SHORT;
 645     case itos : return T_INT;
 646     case ltos : return T_LONG;
 647     case ftos : return T_FLOAT;
 648     case dtos : return T_DOUBLE;
 649     case atos : return T_OBJECT;
 650     case vtos : return T_VOID;
 651   }
 652   return T_ILLEGAL;
 653 }
 654 
 655 
 656 // Helper function to convert BasicType info into TosState
 657 // Note: Cannot define here as it uses global constant at the time being.
 658 TosState as_TosState(BasicType type);
 659 
 660 
 661 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 662 
 663 enum ReferenceType {
 664  REF_NONE,      // Regular class
 665  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 666  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 667  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 668  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 669  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 670 };
 671 
 672 
 673 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 674 // information is needed by the safepoint code.
 675 //
 676 // There are 4 essential states:
 677 //
 678 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 679 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 680 //  _thread_in_vm       : Executing in the vm
 681 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 682 //
 683 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 684 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 685 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 686 //
 687 // Given a state, the xxx_trans state can always be found by adding 1.
 688 //
 689 enum JavaThreadState {
 690   _thread_uninitialized     =  0, // should never happen (missing initialization)
 691   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 692   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 693   _thread_in_native         =  4, // running in native code
 694   _thread_in_native_trans   =  5, // corresponding transition state
 695   _thread_in_vm             =  6, // running in VM
 696   _thread_in_vm_trans       =  7, // corresponding transition state
 697   _thread_in_Java           =  8, // running in Java or in stub code
 698   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 699   _thread_blocked           = 10, // blocked in vm
 700   _thread_blocked_trans     = 11, // corresponding transition state
 701   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 702 };
 703 
 704 
 705 // Handy constants for deciding which compiler mode to use.
 706 enum MethodCompilation {
 707   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 708   InvalidOSREntryBci = -2
 709 };
 710 
 711 // Enumeration to distinguish tiers of compilation
 712 enum CompLevel {
 713   CompLevel_any               = -1,
 714   CompLevel_all               = -1,
 715   CompLevel_none              = 0,         // Interpreter
 716   CompLevel_simple            = 1,         // C1
 717   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 718   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 719   CompLevel_full_optimization = 4,         // C2
 720 
 721 #if defined(COMPILER2)
 722   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 723 #elif defined(COMPILER1)
 724   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 725 #else
 726   CompLevel_highest_tier      = CompLevel_none,
 727 #endif
 728 
 729 #if defined(TIERED)
 730   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 731 #elif defined(COMPILER1)
 732   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 733 #elif defined(COMPILER2)
 734   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 735 #else
 736   CompLevel_initial_compile   = CompLevel_none
 737 #endif
 738 };
 739 
 740 inline bool is_c1_compile(int comp_level) {
 741   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 742 }
 743 
 744 inline bool is_c2_compile(int comp_level) {
 745   return comp_level == CompLevel_full_optimization;
 746 }
 747 
 748 inline bool is_highest_tier_compile(int comp_level) {
 749   return comp_level == CompLevel_highest_tier;
 750 }
 751 
 752 //----------------------------------------------------------------------------------------------------
 753 // 'Forward' declarations of frequently used classes
 754 // (in order to reduce interface dependencies & reduce
 755 // number of unnecessary compilations after changes)
 756 
 757 class symbolTable;
 758 class ClassFileStream;
 759 
 760 class Event;
 761 
 762 class Thread;
 763 class  VMThread;
 764 class  JavaThread;
 765 class Threads;
 766 
 767 class VM_Operation;
 768 class VMOperationQueue;
 769 
 770 class CodeBlob;
 771 class  nmethod;
 772 class  OSRAdapter;
 773 class  I2CAdapter;
 774 class  C2IAdapter;
 775 class CompiledIC;
 776 class relocInfo;
 777 class ScopeDesc;
 778 class PcDesc;
 779 
 780 class Recompiler;
 781 class Recompilee;
 782 class RecompilationPolicy;
 783 class RFrame;
 784 class  CompiledRFrame;
 785 class  InterpretedRFrame;
 786 
 787 class frame;
 788 
 789 class vframe;
 790 class   javaVFrame;
 791 class     interpretedVFrame;
 792 class     compiledVFrame;
 793 class     deoptimizedVFrame;
 794 class   externalVFrame;
 795 class     entryVFrame;
 796 
 797 class RegisterMap;
 798 
 799 class Mutex;
 800 class Monitor;
 801 class BasicLock;
 802 class BasicObjectLock;
 803 
 804 class PeriodicTask;
 805 
 806 class JavaCallWrapper;
 807 
 808 class   oopDesc;
 809 
 810 class NativeCall;
 811 
 812 class zone;
 813 
 814 class StubQueue;
 815 
 816 class outputStream;
 817 
 818 class ResourceArea;
 819 
 820 class DebugInformationRecorder;
 821 class ScopeValue;
 822 class CompressedStream;
 823 class   DebugInfoReadStream;
 824 class   DebugInfoWriteStream;
 825 class LocationValue;
 826 class ConstantValue;
 827 class IllegalValue;
 828 
 829 class PrivilegedElement;
 830 class MonitorArray;
 831 
 832 class MonitorInfo;
 833 
 834 class OffsetClosure;
 835 class OopMapCache;
 836 class InterpreterOopMap;
 837 class OopMapCacheEntry;
 838 class OSThread;
 839 
 840 typedef int (*OSThreadStartFunc)(void*);
 841 
 842 class Space;
 843 
 844 class JavaValue;
 845 class methodHandle;
 846 class JavaCallArguments;
 847 
 848 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 849 
 850 extern void basic_fatal(const char* msg);
 851 
 852 
 853 //----------------------------------------------------------------------------------------------------
 854 // Special constants for debugging
 855 
 856 const jint     badInt           = -3;                       // generic "bad int" value
 857 const long     badAddressVal    = -2;                       // generic "bad address" value
 858 const long     badOopVal        = -1;                       // generic "bad oop" value
 859 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 860 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 861 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 862 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 863 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 864 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 865 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 866 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 867 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 868 
 869 
 870 // (These must be implemented as #defines because C++ compilers are
 871 // not obligated to inline non-integral constants!)
 872 #define       badAddress        ((address)::badAddressVal)
 873 #define       badOop            ((oop)::badOopVal)
 874 #define       badHeapWord       (::badHeapWordVal)
 875 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 876 
 877 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 878 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 879 
 880 //----------------------------------------------------------------------------------------------------
 881 // Utility functions for bitfield manipulations
 882 
 883 const intptr_t AllBits    = ~0; // all bits set in a word
 884 const intptr_t NoBits     =  0; // no bits set in a word
 885 const jlong    NoLongBits =  0; // no bits set in a long
 886 const intptr_t OneBit     =  1; // only right_most bit set in a word
 887 
 888 // get a word with the n.th or the right-most or left-most n bits set
 889 // (note: #define used only so that they can be used in enum constant definitions)
 890 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 891 #define right_n_bits(n)   (nth_bit(n) - 1)
 892 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 893 
 894 // bit-operations using a mask m
 895 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 896 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 897 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 898 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 899 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 900 
 901 // bit-operations using the n.th bit
 902 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 903 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 904 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 905 
 906 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 907 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 908   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 909 }
 910 
 911 
 912 //----------------------------------------------------------------------------------------------------
 913 // Utility functions for integers
 914 
 915 // Avoid use of global min/max macros which may cause unwanted double
 916 // evaluation of arguments.
 917 #ifdef max
 918 #undef max
 919 #endif
 920 
 921 #ifdef min
 922 #undef min
 923 #endif
 924 
 925 #define max(a,b) Do_not_use_max_use_MAX2_instead
 926 #define min(a,b) Do_not_use_min_use_MIN2_instead
 927 
 928 // It is necessary to use templates here. Having normal overloaded
 929 // functions does not work because it is necessary to provide both 32-
 930 // and 64-bit overloaded functions, which does not work, and having
 931 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 932 // will be even more error-prone than macros.
 933 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 934 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 935 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 936 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 937 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 938 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 939 
 940 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 941 
 942 // true if x is a power of 2, false otherwise
 943 inline bool is_power_of_2(intptr_t x) {
 944   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 945 }
 946 
 947 // long version of is_power_of_2
 948 inline bool is_power_of_2_long(jlong x) {
 949   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 950 }
 951 
 952 //* largest i such that 2^i <= x
 953 //  A negative value of 'x' will return '31'
 954 inline int log2_intptr(intptr_t x) {
 955   int i = -1;
 956   uintptr_t p =  1;
 957   while (p != 0 && p <= (uintptr_t)x) {
 958     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 959     i++; p *= 2;
 960   }
 961   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 962   // (if p = 0 then overflow occurred and i = 31)
 963   return i;
 964 }
 965 
 966 //* largest i such that 2^i <= x
 967 //  A negative value of 'x' will return '63'
 968 inline int log2_long(jlong x) {
 969   int i = -1;
 970   julong p =  1;
 971   while (p != 0 && p <= (julong)x) {
 972     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 973     i++; p *= 2;
 974   }
 975   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 976   // (if p = 0 then overflow occurred and i = 63)
 977   return i;
 978 }
 979 
 980 //* the argument must be exactly a power of 2
 981 inline int exact_log2(intptr_t x) {
 982   #ifdef ASSERT
 983     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
 984   #endif
 985   return log2_intptr(x);
 986 }
 987 
 988 //* the argument must be exactly a power of 2
 989 inline int exact_log2_long(jlong x) {
 990   #ifdef ASSERT
 991     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
 992   #endif
 993   return log2_long(x);
 994 }
 995 
 996 
 997 // returns integer round-up to the nearest multiple of s (s must be a power of two)
 998 inline intptr_t round_to(intptr_t x, uintx s) {
 999   #ifdef ASSERT
1000     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1001   #endif
1002   const uintx m = s - 1;
1003   return mask_bits(x + m, ~m);
1004 }
1005 
1006 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1007 inline intptr_t round_down(intptr_t x, uintx s) {
1008   #ifdef ASSERT
1009     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1010   #endif
1011   const uintx m = s - 1;
1012   return mask_bits(x, ~m);
1013 }
1014 
1015 
1016 inline bool is_odd (intx x) { return x & 1;      }
1017 inline bool is_even(intx x) { return !is_odd(x); }
1018 
1019 // "to" should be greater than "from."
1020 inline intx byte_size(void* from, void* to) {
1021   return (address)to - (address)from;
1022 }
1023 
1024 //----------------------------------------------------------------------------------------------------
1025 // Avoid non-portable casts with these routines (DEPRECATED)
1026 
1027 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1028 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1029 
1030 // Given sequence of four bytes, build into a 32-bit word
1031 // following the conventions used in class files.
1032 // On the 386, this could be realized with a simple address cast.
1033 //
1034 
1035 // This routine takes eight bytes:
1036 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1037   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1038        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1039        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1040        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1041        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1042        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1043        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1044        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1045 }
1046 
1047 // This routine takes four bytes:
1048 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1049   return  (( u4(c1) << 24 )  &  0xff000000)
1050        |  (( u4(c2) << 16 )  &  0x00ff0000)
1051        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1052        |  (( u4(c4) <<  0 )  &  0x000000ff);
1053 }
1054 
1055 // And this one works if the four bytes are contiguous in memory:
1056 inline u4 build_u4_from( u1* p ) {
1057   return  build_u4_from( p[0], p[1], p[2], p[3] );
1058 }
1059 
1060 // Ditto for two-byte ints:
1061 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1062   return  u2((( u2(c1) <<  8 )  &  0xff00)
1063           |  (( u2(c2) <<  0 )  &  0x00ff));
1064 }
1065 
1066 // And this one works if the two bytes are contiguous in memory:
1067 inline u2 build_u2_from( u1* p ) {
1068   return  build_u2_from( p[0], p[1] );
1069 }
1070 
1071 // Ditto for floats:
1072 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1073   u4 u = build_u4_from( c1, c2, c3, c4 );
1074   return  *(jfloat*)&u;
1075 }
1076 
1077 inline jfloat build_float_from( u1* p ) {
1078   u4 u = build_u4_from( p );
1079   return  *(jfloat*)&u;
1080 }
1081 
1082 
1083 // now (64-bit) longs
1084 
1085 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1086   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1087        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1088        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1089        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1090        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1091        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1092        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1093        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1094 }
1095 
1096 inline jlong build_long_from( u1* p ) {
1097   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1098 }
1099 
1100 
1101 // Doubles, too!
1102 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1103   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1104   return  *(jdouble*)&u;
1105 }
1106 
1107 inline jdouble build_double_from( u1* p ) {
1108   jlong u = build_long_from( p );
1109   return  *(jdouble*)&u;
1110 }
1111 
1112 
1113 // Portable routines to go the other way:
1114 
1115 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1116   c1 = u1(x >> 8);
1117   c2 = u1(x);
1118 }
1119 
1120 inline void explode_short_to( u2 x, u1* p ) {
1121   explode_short_to( x, p[0], p[1]);
1122 }
1123 
1124 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1125   c1 = u1(x >> 24);
1126   c2 = u1(x >> 16);
1127   c3 = u1(x >>  8);
1128   c4 = u1(x);
1129 }
1130 
1131 inline void explode_int_to( u4 x, u1* p ) {
1132   explode_int_to( x, p[0], p[1], p[2], p[3]);
1133 }
1134 
1135 
1136 // Pack and extract shorts to/from ints:
1137 
1138 inline int extract_low_short_from_int(jint x) {
1139   return x & 0xffff;
1140 }
1141 
1142 inline int extract_high_short_from_int(jint x) {
1143   return (x >> 16) & 0xffff;
1144 }
1145 
1146 inline int build_int_from_shorts( jushort low, jushort high ) {
1147   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1148 }
1149 
1150 // Printf-style formatters for fixed- and variable-width types as pointers and
1151 // integers.
1152 //
1153 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1154 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1155 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1156 // (in ILP32).
1157 
1158 // Format 32-bit quantities.
1159 #define INT32_FORMAT  "%d"
1160 #define UINT32_FORMAT "%u"
1161 #define INT32_FORMAT_W(width)   "%" #width "d"
1162 #define UINT32_FORMAT_W(width)  "%" #width "u"
1163 
1164 #define PTR32_FORMAT  "0x%08x"
1165 
1166 // Format 64-bit quantities.
1167 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
1168 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1169 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
1170 
1171 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
1172 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1173 
1174 // Format macros that allow the field width to be specified.  The width must be
1175 // a string literal (e.g., "8") or a macro that evaluates to one.
1176 #ifdef _LP64
1177 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
1178 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
1179 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
1180 #else
1181 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
1182 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
1183 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
1184 #endif // _LP64
1185 
1186 // Format pointers and size_t (or size_t-like integer types) which change size
1187 // between 32- and 64-bit. The pointer format theoretically should be "%p",
1188 // however, it has different output on different platforms. On Windows, the data
1189 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
1190 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
1191 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
1192 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
1193 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
1194 // using "%x".
1195 #ifdef  _LP64
1196 #define PTR_FORMAT    PTR64_FORMAT
1197 #define UINTX_FORMAT  UINT64_FORMAT
1198 #define INTX_FORMAT   INT64_FORMAT
1199 #define SIZE_FORMAT   UINT64_FORMAT
1200 #define SSIZE_FORMAT  INT64_FORMAT
1201 #else   // !_LP64
1202 #define PTR_FORMAT    PTR32_FORMAT
1203 #define UINTX_FORMAT  UINT32_FORMAT
1204 #define INTX_FORMAT   INT32_FORMAT
1205 #define SIZE_FORMAT   UINT32_FORMAT
1206 #define SSIZE_FORMAT  INT32_FORMAT
1207 #endif  // _LP64
1208 
1209 #define INTPTR_FORMAT PTR_FORMAT
1210 
1211 // Enable zap-a-lot if in debug version.
1212 
1213 # ifdef ASSERT
1214 # ifdef COMPILER2
1215 #   define ENABLE_ZAP_DEAD_LOCALS
1216 #endif /* COMPILER2 */
1217 # endif /* ASSERT */
1218 
1219 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))