1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Simple TaskQueue stats that are collected by default in debug builds.
  26 
  27 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  28 #define TASKQUEUE_STATS 1
  29 #elif !defined(TASKQUEUE_STATS)
  30 #define TASKQUEUE_STATS 0
  31 #endif
  32 
  33 #if TASKQUEUE_STATS
  34 #define TASKQUEUE_STATS_ONLY(code) code
  35 #else
  36 #define TASKQUEUE_STATS_ONLY(code)
  37 #endif // TASKQUEUE_STATS
  38 
  39 #if TASKQUEUE_STATS
  40 class TaskQueueStats {
  41 public:
  42   enum StatId {
  43     push,             // number of taskqueue pushes
  44     pop,              // number of taskqueue pops
  45     pop_slow,         // subset of taskqueue pops that were done slow-path
  46     steal_attempt,    // number of taskqueue steal attempts
  47     steal,            // number of taskqueue steals
  48     overflow,         // number of overflow pushes
  49     overflow_max_len, // max length of overflow stack
  50     last_stat_id
  51   };
  52 
  53 public:
  54   inline TaskQueueStats()       { reset(); }
  55 
  56   inline void record_push()     { ++_stats[push]; }
  57   inline void record_pop()      { ++_stats[pop]; }
  58   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  59   inline void record_steal(bool success);
  60   inline void record_overflow(size_t new_length);
  61 
  62   TaskQueueStats & operator +=(const TaskQueueStats & addend);
  63 
  64   inline size_t get(StatId id) const { return _stats[id]; }
  65   inline const size_t* get() const   { return _stats; }
  66 
  67   inline void reset();
  68 
  69   // Print the specified line of the header (does not include a line separator).
  70   static void print_header(unsigned int line, outputStream* const stream = tty,
  71                            unsigned int width = 10);
  72   // Print the statistics (does not include a line separator).
  73   void print(outputStream* const stream = tty, unsigned int width = 10) const;
  74 
  75   DEBUG_ONLY(void verify() const;)
  76 
  77 private:
  78   size_t                    _stats[last_stat_id];
  79   static const char * const _names[last_stat_id];
  80 };
  81 
  82 void TaskQueueStats::record_steal(bool success) {
  83   ++_stats[steal_attempt];
  84   if (success) ++_stats[steal];
  85 }
  86 
  87 void TaskQueueStats::record_overflow(size_t new_len) {
  88   ++_stats[overflow];
  89   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
  90 }
  91 
  92 void TaskQueueStats::reset() {
  93   memset(_stats, 0, sizeof(_stats));
  94 }
  95 #endif // TASKQUEUE_STATS
  96 
  97 template <unsigned int N>
  98 class TaskQueueSuper: public CHeapObj {
  99 protected:
 100   // Internal type for indexing the queue; also used for the tag.
 101   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 102 
 103   // The first free element after the last one pushed (mod N).
 104   volatile uint _bottom;
 105 
 106   enum { MOD_N_MASK = N - 1 };
 107 
 108   class Age {
 109   public:
 110     Age(size_t data = 0)         { _data = data; }
 111     Age(const Age& age)          { _data = age._data; }
 112     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 113 
 114     Age   get()        const volatile { return _data; }
 115     void  set(Age age) volatile       { _data = age._data; }
 116 
 117     idx_t top()        const volatile { return _fields._top; }
 118     idx_t tag()        const volatile { return _fields._tag; }
 119 
 120     // Increment top; if it wraps, increment tag also.
 121     void increment() {
 122       _fields._top = increment_index(_fields._top);
 123       if (_fields._top == 0) ++_fields._tag;
 124     }
 125 
 126     Age cmpxchg(const Age new_age, const Age old_age) volatile {
 127       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 128                                           (volatile intptr_t *)&_data,
 129                                           (intptr_t)old_age._data);
 130     }
 131 
 132     bool operator ==(const Age& other) const { return _data == other._data; }
 133 
 134   private:
 135     struct fields {
 136       idx_t _top;
 137       idx_t _tag;
 138     };
 139     union {
 140       size_t _data;
 141       fields _fields;
 142     };
 143   };
 144 
 145   volatile Age _age;
 146 
 147   // These both operate mod N.
 148   static uint increment_index(uint ind) {
 149     return (ind + 1) & MOD_N_MASK;
 150   }
 151   static uint decrement_index(uint ind) {
 152     return (ind - 1) & MOD_N_MASK;
 153   }
 154 
 155   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 156   // interpreted as 0.
 157   uint dirty_size(uint bot, uint top) const {
 158     return (bot - top) & MOD_N_MASK;
 159   }
 160 
 161   // Returns the size corresponding to the given "bot" and "top".
 162   uint size(uint bot, uint top) const {
 163     uint sz = dirty_size(bot, top);
 164     // Has the queue "wrapped", so that bottom is less than top?  There's a
 165     // complicated special case here.  A pair of threads could perform pop_local
 166     // and pop_global operations concurrently, starting from a state in which
 167     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 168     // and the pop_global in incrementing _top (in which case the pop_global
 169     // will be awarded the contested queue element.)  The resulting state must
 170     // be interpreted as an empty queue.  (We only need to worry about one such
 171     // event: only the queue owner performs pop_local's, and several concurrent
 172     // threads attempting to perform the pop_global will all perform the same
 173     // CAS, and only one can succeed.)  Any stealing thread that reads after
 174     // either the increment or decrement will see an empty queue, and will not
 175     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 176     // modified by concurrent queues, so the owner thread can reset the state to
 177     // _bottom == top so subsequent pushes will be performed normally.
 178     return (sz == N - 1) ? 0 : sz;
 179   }
 180 
 181 public:
 182   TaskQueueSuper() : _bottom(0), _age() {}
 183 
 184   // Return true if the TaskQueue contains/does not contain any tasks.
 185   bool peek()     const { return _bottom != _age.top(); }
 186   bool is_empty() const { return size() == 0; }
 187 
 188   // Return an estimate of the number of elements in the queue.
 189   // The "careful" version admits the possibility of pop_local/pop_global
 190   // races.
 191   uint size() const {
 192     return size(_bottom, _age.top());
 193   }
 194 
 195   uint dirty_size() const {
 196     return dirty_size(_bottom, _age.top());
 197   }
 198 
 199   void set_empty() {
 200     _bottom = 0;
 201     _age.set(0);
 202   }
 203 
 204   // Maximum number of elements allowed in the queue.  This is two less
 205   // than the actual queue size, for somewhat complicated reasons.
 206   uint max_elems() const { return N - 2; }
 207 
 208   // Total size of queue.
 209   static const uint total_size() { return N; }
 210 
 211   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 212 };
 213 
 214 template<class E, unsigned int N = TASKQUEUE_SIZE>
 215 class GenericTaskQueue: public TaskQueueSuper<N> {
 216 protected:
 217   typedef typename TaskQueueSuper<N>::Age Age;
 218   typedef typename TaskQueueSuper<N>::idx_t idx_t;
 219 
 220   using TaskQueueSuper<N>::_bottom;
 221   using TaskQueueSuper<N>::_age;
 222   using TaskQueueSuper<N>::increment_index;
 223   using TaskQueueSuper<N>::decrement_index;
 224   using TaskQueueSuper<N>::dirty_size;
 225 
 226 public:
 227   using TaskQueueSuper<N>::max_elems;
 228   using TaskQueueSuper<N>::size;
 229   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
 230 
 231 private:
 232   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 233   bool push_slow(E t, uint dirty_n_elems);
 234   bool pop_local_slow(uint localBot, Age oldAge);
 235 
 236 public:
 237   typedef E element_type;
 238 
 239   // Initializes the queue to empty.
 240   GenericTaskQueue();
 241 
 242   void initialize();
 243 
 244   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 245   inline bool push(E t);
 246 
 247   // Attempts to claim a task from the "local" end of the queue (the most
 248   // recently pushed).  If successful, returns true and sets t to the task;
 249   // otherwise, returns false (the queue is empty).
 250   inline bool pop_local(E& t);
 251 
 252   // Like pop_local(), but uses the "global" end of the queue (the least
 253   // recently pushed).
 254   bool pop_global(E& t);
 255 
 256   // Delete any resource associated with the queue.
 257   ~GenericTaskQueue();
 258 
 259   // apply the closure to all elements in the task queue
 260   void oops_do(OopClosure* f);
 261 
 262 private:
 263   // Element array.
 264   volatile E* _elems;
 265 };
 266 
 267 template<class E, unsigned int N>
 268 GenericTaskQueue<E, N>::GenericTaskQueue() {
 269   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 270 }
 271 
 272 template<class E, unsigned int N>
 273 void GenericTaskQueue<E, N>::initialize() {
 274   _elems = NEW_C_HEAP_ARRAY(E, N);
 275 }
 276 
 277 template<class E, unsigned int N>
 278 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
 279   // tty->print_cr("START OopTaskQueue::oops_do");
 280   uint iters = size();
 281   uint index = _bottom;
 282   for (uint i = 0; i < iters; ++i) {
 283     index = decrement_index(index);
 284     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
 285     //            index, &_elems[index], _elems[index]);
 286     E* t = (E*)&_elems[index];      // cast away volatility
 287     oop* p = (oop*)t;
 288     assert((*t)->is_oop_or_null(), "Not an oop or null");
 289     f->do_oop(p);
 290   }
 291   // tty->print_cr("END OopTaskQueue::oops_do");
 292 }
 293 
 294 template<class E, unsigned int N>
 295 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
 296   if (dirty_n_elems == N - 1) {
 297     // Actually means 0, so do the push.
 298     uint localBot = _bottom;
 299     // g++ complains if the volatile result of the assignment is unused.
 300     const_cast<E&>(_elems[localBot] = t);
 301     OrderAccess::release_store(&_bottom, increment_index(localBot));
 302     TASKQUEUE_STATS_ONLY(stats.record_push());
 303     return true;
 304   }
 305   return false;
 306 }
 307 
 308 // pop_local_slow() is done by the owning thread and is trying to
 309 // get the last task in the queue.  It will compete with pop_global()
 310 // that will be used by other threads.  The tag age is incremented
 311 // whenever the queue goes empty which it will do here if this thread
 312 // gets the last task or in pop_global() if the queue wraps (top == 0
 313 // and pop_global() succeeds, see pop_global()).
 314 template<class E, unsigned int N>
 315 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
 316   // This queue was observed to contain exactly one element; either this
 317   // thread will claim it, or a competing "pop_global".  In either case,
 318   // the queue will be logically empty afterwards.  Create a new Age value
 319   // that represents the empty queue for the given value of "_bottom".  (We
 320   // must also increment "tag" because of the case where "bottom == 1",
 321   // "top == 0".  A pop_global could read the queue element in that case,
 322   // then have the owner thread do a pop followed by another push.  Without
 323   // the incrementing of "tag", the pop_global's CAS could succeed,
 324   // allowing it to believe it has claimed the stale element.)
 325   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 326   // Perhaps a competing pop_global has already incremented "top", in which
 327   // case it wins the element.
 328   if (localBot == oldAge.top()) {
 329     // No competing pop_global has yet incremented "top"; we'll try to
 330     // install new_age, thus claiming the element.
 331     Age tempAge = _age.cmpxchg(newAge, oldAge);
 332     if (tempAge == oldAge) {
 333       // We win.
 334       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 335       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 336       return true;
 337     }
 338   }
 339   // We lose; a completing pop_global gets the element.  But the queue is empty
 340   // and top is greater than bottom.  Fix this representation of the empty queue
 341   // to become the canonical one.
 342   _age.set(newAge);
 343   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 344   return false;
 345 }
 346 
 347 template<class E, unsigned int N>
 348 bool GenericTaskQueue<E, N>::pop_global(E& t) {
 349   Age oldAge = _age.get();
 350   uint localBot = _bottom;
 351   uint n_elems = size(localBot, oldAge.top());
 352   if (n_elems == 0) {
 353     return false;
 354   }
 355 
 356   const_cast<E&>(t = _elems[oldAge.top()]);
 357   Age newAge(oldAge);
 358   newAge.increment();
 359   Age resAge = _age.cmpxchg(newAge, oldAge);
 360 
 361   // Note that using "_bottom" here might fail, since a pop_local might
 362   // have decremented it.
 363   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 364   return resAge == oldAge;
 365 }
 366 
 367 template<class E, unsigned int N>
 368 GenericTaskQueue<E, N>::~GenericTaskQueue() {
 369   FREE_C_HEAP_ARRAY(E, _elems);
 370 }
 371 
 372 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 373 // elements that do not fit in the TaskQueue.
 374 //
 375 // This class hides two methods from super classes:
 376 //
 377 // push() - push onto the task queue or, if that fails, onto the overflow stack
 378 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 379 //
 380 // Note that size() is not hidden--it returns the number of elements in the
 381 // TaskQueue, and does not include the size of the overflow stack.  This
 382 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 383 template<class E, unsigned int N = TASKQUEUE_SIZE>
 384 class OverflowTaskQueue: public GenericTaskQueue<E, N>
 385 {
 386 public:
 387   typedef Stack<E>               overflow_t;
 388   typedef GenericTaskQueue<E, N> taskqueue_t;
 389 
 390   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 391 
 392   // Push task t onto the queue or onto the overflow stack.  Return true.
 393   inline bool push(E t);
 394 
 395   // Attempt to pop from the overflow stack; return true if anything was popped.
 396   inline bool pop_overflow(E& t);
 397 
 398   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 399 
 400   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 401   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 402   inline bool is_empty()        const {
 403     return taskqueue_empty() && overflow_empty();
 404   }
 405 
 406 private:
 407   overflow_t _overflow_stack;
 408 };
 409 
 410 template <class E, unsigned int N>
 411 bool OverflowTaskQueue<E, N>::push(E t)
 412 {
 413   if (!taskqueue_t::push(t)) {
 414     overflow_stack()->push(t);
 415     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 416   }
 417   return true;
 418 }
 419 
 420 template <class E, unsigned int N>
 421 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
 422 {
 423   if (overflow_empty()) return false;
 424   t = overflow_stack()->pop();
 425   return true;
 426 }
 427 
 428 class TaskQueueSetSuper: public CHeapObj {
 429 protected:
 430   static int randomParkAndMiller(int* seed0);
 431 public:
 432   // Returns "true" if some TaskQueue in the set contains a task.
 433   virtual bool peek() = 0;
 434 };
 435 
 436 template<class T>
 437 class GenericTaskQueueSet: public TaskQueueSetSuper {
 438 private:
 439   uint _n;
 440   T** _queues;
 441 
 442 public:
 443   typedef typename T::element_type E;
 444 
 445   GenericTaskQueueSet(int n) : _n(n) {
 446     typedef T* GenericTaskQueuePtr;
 447     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
 448     for (int i = 0; i < n; i++) {
 449       _queues[i] = NULL;
 450     }
 451   }
 452 
 453   bool steal_1_random(uint queue_num, int* seed, E& t);
 454   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 455   bool steal_best_of_all(uint queue_num, int* seed, E& t);
 456 
 457   void register_queue(uint i, T* q);
 458 
 459   T* queue(uint n);
 460 
 461   // The thread with queue number "queue_num" (and whose random number seed is
 462   // at "seed") is trying to steal a task from some other queue.  (It may try
 463   // several queues, according to some configuration parameter.)  If some steal
 464   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 465   // false.
 466   bool steal(uint queue_num, int* seed, E& t);
 467 
 468   bool peek();
 469 };
 470 
 471 template<class T> void
 472 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
 473   assert(i < _n, "index out of range.");
 474   _queues[i] = q;
 475 }
 476 
 477 template<class T> T*
 478 GenericTaskQueueSet<T>::queue(uint i) {
 479   return _queues[i];
 480 }
 481 
 482 template<class T> bool
 483 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
 484   for (uint i = 0; i < 2 * _n; i++) {
 485     if (steal_best_of_2(queue_num, seed, t)) {
 486       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 487       return true;
 488     }
 489   }
 490   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 491   return false;
 492 }
 493 
 494 template<class T> bool
 495 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
 496   if (_n > 2) {
 497     int best_k;
 498     uint best_sz = 0;
 499     for (uint k = 0; k < _n; k++) {
 500       if (k == queue_num) continue;
 501       uint sz = _queues[k]->size();
 502       if (sz > best_sz) {
 503         best_sz = sz;
 504         best_k = k;
 505       }
 506     }
 507     return best_sz > 0 && _queues[best_k]->pop_global(t);
 508   } else if (_n == 2) {
 509     // Just try the other one.
 510     int k = (queue_num + 1) % 2;
 511     return _queues[k]->pop_global(t);
 512   } else {
 513     assert(_n == 1, "can't be zero.");
 514     return false;
 515   }
 516 }
 517 
 518 template<class T> bool
 519 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
 520   if (_n > 2) {
 521     uint k = queue_num;
 522     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
 523     return _queues[2]->pop_global(t);
 524   } else if (_n == 2) {
 525     // Just try the other one.
 526     int k = (queue_num + 1) % 2;
 527     return _queues[k]->pop_global(t);
 528   } else {
 529     assert(_n == 1, "can't be zero.");
 530     return false;
 531   }
 532 }
 533 
 534 template<class T> bool
 535 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 536   if (_n > 2) {
 537     uint k1 = queue_num;
 538     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
 539     uint k2 = queue_num;
 540     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
 541     // Sample both and try the larger.
 542     uint sz1 = _queues[k1]->size();
 543     uint sz2 = _queues[k2]->size();
 544     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 545     else return _queues[k1]->pop_global(t);
 546   } else if (_n == 2) {
 547     // Just try the other one.
 548     uint k = (queue_num + 1) % 2;
 549     return _queues[k]->pop_global(t);
 550   } else {
 551     assert(_n == 1, "can't be zero.");
 552     return false;
 553   }
 554 }
 555 
 556 template<class T>
 557 bool GenericTaskQueueSet<T>::peek() {
 558   // Try all the queues.
 559   for (uint j = 0; j < _n; j++) {
 560     if (_queues[j]->peek())
 561       return true;
 562   }
 563   return false;
 564 }
 565 
 566 // When to terminate from the termination protocol.
 567 class TerminatorTerminator: public CHeapObj {
 568 public:
 569   virtual bool should_exit_termination() = 0;
 570 };
 571 
 572 // A class to aid in the termination of a set of parallel tasks using
 573 // TaskQueueSet's for work stealing.
 574 
 575 #undef TRACESPINNING
 576 
 577 class ParallelTaskTerminator: public StackObj {
 578 private:
 579   int _n_threads;
 580   TaskQueueSetSuper* _queue_set;
 581   int _offered_termination;
 582 
 583 #ifdef TRACESPINNING
 584   static uint _total_yields;
 585   static uint _total_spins;
 586   static uint _total_peeks;
 587 #endif
 588 
 589   bool peek_in_queue_set();
 590 protected:
 591   virtual void yield();
 592   void sleep(uint millis);
 593 
 594 public:
 595 
 596   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 597   // queue sets of work queues of other threads.
 598   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
 599 
 600   // The current thread has no work, and is ready to terminate if everyone
 601   // else is.  If returns "true", all threads are terminated.  If returns
 602   // "false", available work has been observed in one of the task queues,
 603   // so the global task is not complete.
 604   bool offer_termination() {
 605     return offer_termination(NULL);
 606   }
 607 
 608   // As above, but it also terminates if the should_exit_termination()
 609   // method of the terminator parameter returns true. If terminator is
 610   // NULL, then it is ignored.
 611   bool offer_termination(TerminatorTerminator* terminator);
 612 
 613   // Reset the terminator, so that it may be reused again.
 614   // The caller is responsible for ensuring that this is done
 615   // in an MT-safe manner, once the previous round of use of
 616   // the terminator is finished.
 617   void reset_for_reuse();
 618   // Same as above but the number of parallel threads is set to the
 619   // given number.
 620   void reset_for_reuse(int n_threads);
 621 
 622 #ifdef TRACESPINNING
 623   static uint total_yields() { return _total_yields; }
 624   static uint total_spins() { return _total_spins; }
 625   static uint total_peeks() { return _total_peeks; }
 626   static void print_termination_counts();
 627 #endif
 628 };
 629 
 630 template<class E, unsigned int N> inline bool
 631 GenericTaskQueue<E, N>::push(E t) {
 632   uint localBot = _bottom;
 633   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
 634   idx_t top = _age.top();
 635   uint dirty_n_elems = dirty_size(localBot, top);
 636   assert(dirty_n_elems < N, "n_elems out of range.");
 637   if (dirty_n_elems < max_elems()) {
 638     // g++ complains if the volatile result of the assignment is unused.
 639     const_cast<E&>(_elems[localBot] = t);
 640     OrderAccess::release_store(&_bottom, increment_index(localBot));
 641     TASKQUEUE_STATS_ONLY(stats.record_push());
 642     return true;
 643   } else {
 644     return push_slow(t, dirty_n_elems);
 645   }
 646 }
 647 
 648 template<class E, unsigned int N> inline bool
 649 GenericTaskQueue<E, N>::pop_local(E& t) {
 650   uint localBot = _bottom;
 651   // This value cannot be N-1.  That can only occur as a result of
 652   // the assignment to bottom in this method.  If it does, this method
 653   // resets the size to 0 before the next call (which is sequential,
 654   // since this is pop_local.)
 655   uint dirty_n_elems = dirty_size(localBot, _age.top());
 656   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 657   if (dirty_n_elems == 0) return false;
 658   localBot = decrement_index(localBot);
 659   _bottom = localBot;
 660   // This is necessary to prevent any read below from being reordered
 661   // before the store just above.
 662   OrderAccess::fence();
 663   const_cast<E&>(t = _elems[localBot]);
 664   // This is a second read of "age"; the "size()" above is the first.
 665   // If there's still at least one element in the queue, based on the
 666   // "_bottom" and "age" we've read, then there can be no interference with
 667   // a "pop_global" operation, and we're done.
 668   idx_t tp = _age.top();    // XXX
 669   if (size(localBot, tp) > 0) {
 670     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 671     TASKQUEUE_STATS_ONLY(stats.record_pop());
 672     return true;
 673   } else {
 674     // Otherwise, the queue contained exactly one element; we take the slow
 675     // path.
 676     return pop_local_slow(localBot, _age.get());
 677   }
 678 }
 679 
 680 typedef GenericTaskQueue<oop>             OopTaskQueue;
 681 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
 682 
 683 #ifdef _MSC_VER
 684 #pragma warning(push)
 685 // warning C4522: multiple assignment operators specified
 686 #pragma warning(disable:4522)
 687 #endif
 688 
 689 // This is a container class for either an oop* or a narrowOop*.
 690 // Both are pushed onto a task queue and the consumer will test is_narrow()
 691 // to determine which should be processed.
 692 class StarTask {
 693   void*  _holder;        // either union oop* or narrowOop*
 694 
 695   enum { COMPRESSED_OOP_MASK = 1 };
 696 
 697  public:
 698   StarTask(narrowOop* p) {
 699     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 700     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 701   }
 702   StarTask(oop* p)       {
 703     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 704     _holder = (void*)p;
 705   }
 706   StarTask()             { _holder = NULL; }
 707   operator oop*()        { return (oop*)_holder; }
 708   operator narrowOop*()  {
 709     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 710   }
 711 
 712   StarTask& operator=(const StarTask& t) {
 713     _holder = t._holder;
 714     return *this;
 715   }
 716   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 717     _holder = t._holder;
 718     return *this;
 719   }
 720 
 721   bool is_narrow() const {
 722     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 723   }
 724 };
 725 
 726 class ObjArrayTask
 727 {
 728 public:
 729   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 730   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 731     assert(idx <= size_t(max_jint), "too big");
 732   }
 733   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 734 
 735   ObjArrayTask& operator =(const ObjArrayTask& t) {
 736     _obj = t._obj;
 737     _index = t._index;
 738     return *this;
 739   }
 740   volatile ObjArrayTask&
 741   operator =(const volatile ObjArrayTask& t) volatile {
 742     _obj = t._obj;
 743     _index = t._index;
 744     return *this;
 745   }
 746 
 747   inline oop obj()   const { return _obj; }
 748   inline int index() const { return _index; }
 749 
 750   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 751 
 752 private:
 753   oop _obj;
 754   int _index;
 755 };
 756 
 757 #ifdef _MSC_VER
 758 #pragma warning(pop)
 759 #endif
 760 
 761 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
 762 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
 763 
 764 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
 765 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;
 766