/* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "runtime/frame.inline.hpp" #include "thread_solaris.inline.hpp" // For Forte Analyzer AsyncGetCallTrace profiling support - thread is // currently interrupted by SIGPROF // // NOTE: On Solaris, register windows are flushed in the signal handler // except for possibly the top frame. // bool JavaThread::pd_get_top_frame_for_signal_handler(frame* fr_addr, void* ucontext, bool isInJava) { assert(Thread::current() == this, "caller must be current thread"); assert(this->is_Java_thread(), "must be JavaThread"); JavaThread* jt = (JavaThread *)this; if (!isInJava) { // make_walkable flushes register windows and grabs last_Java_pc // which can not be done if the ucontext sp matches last_Java_sp // stack walking utilities assume last_Java_pc set if marked flushed jt->frame_anchor()->make_walkable(jt); } // If we have a walkable last_Java_frame, then we should use it // even if isInJava == true. It should be more reliable than // ucontext info. if (jt->has_last_Java_frame() && jt->frame_anchor()->walkable()) { *fr_addr = jt->pd_last_frame(); return true; } ucontext_t* uc = (ucontext_t*) ucontext; // At this point, we don't have a walkable last_Java_frame, so // we try to glean some information out of the ucontext. intptr_t* ret_sp; ExtendedPC addr = os::Solaris::fetch_frame_from_ucontext(this, uc, &ret_sp, NULL /* ret_fp only used on Solaris X86 */); if (addr.pc() == NULL || ret_sp == NULL) { // ucontext wasn't useful return false; } frame ret_frame(ret_sp, frame::unpatchable, addr.pc()); // we were running Java code when SIGPROF came in if (isInJava) { // If the frame we got is safe then it is most certainly valid if (ret_frame.safe_for_sender(jt)) { *fr_addr = ret_frame; return true; } // If it isn't safe then we can try several things to try and get // a good starting point. // // On sparc the frames are almost certainly walkable in the sense // of sp/fp linkages. However because of recycling of windows if // a piece of code does multiple save's where the initial save creates // a real frame with a return pc and the succeeding save's are used to // simply get free registers and have no real pc then the pc linkage on these // "inner" temporary frames will be bogus. // Since there is in general only a nesting level like // this one deep in general we'll try and unwind such an "inner" frame // here ourselves and see if it makes sense frame unwind_frame(ret_frame.fp(), frame::unpatchable, addr.pc()); if (unwind_frame.safe_for_sender(jt)) { *fr_addr = unwind_frame; return true; } // Well that didn't work. Most likely we're toast on this tick // The previous code would try this. I think it is dubious in light // of changes to safe_for_sender and the unwind trick above but // if it gets us a safe frame who wants to argue. // If we have a last_Java_sp, then the SIGPROF signal caught us // right when we were transitioning from _thread_in_Java to a new // JavaThreadState. We use last_Java_sp instead of the sp from // the ucontext since it should be more reliable. if (jt->has_last_Java_frame()) { ret_sp = jt->last_Java_sp(); frame ret_frame2(ret_sp, frame::unpatchable, addr.pc()); if (ret_frame2.safe_for_sender(jt)) { *fr_addr = ret_frame2; return true; } } // This is the best we can do. We will only be able to decode the top frame *fr_addr = ret_frame; return true; } // At this point, we know we weren't running Java code. We might // have a last_Java_sp, but we don't have a walkable frame. // However, we might still be able to construct something useful // if the thread was running native code. if (jt->has_last_Java_frame()) { assert(!jt->frame_anchor()->walkable(), "case covered above"); frame ret_frame(jt->last_Java_sp(), frame::unpatchable, addr.pc()); *fr_addr = ret_frame; return true; } // nothing else to try but what we found initially *fr_addr = ret_frame; return true; } void JavaThread::cache_global_variables() { }