1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 #ifdef COMPILER2
  46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  47 #endif // COMPILER2
  48 
  49 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  57 
  58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  59 
  60 class RegisterSaver {
  61   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
  62   // Capture info about frame layout
  63   enum layout {
  64                 fpu_state_off = 0,
  65                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
  66                 st0_off, st0H_off,
  67                 st1_off, st1H_off,
  68                 st2_off, st2H_off,
  69                 st3_off, st3H_off,
  70                 st4_off, st4H_off,
  71                 st5_off, st5H_off,
  72                 st6_off, st6H_off,
  73                 st7_off, st7H_off,
  74 
  75                 xmm0_off, xmm0H_off,
  76                 xmm1_off, xmm1H_off,
  77                 xmm2_off, xmm2H_off,
  78                 xmm3_off, xmm3H_off,
  79                 xmm4_off, xmm4H_off,
  80                 xmm5_off, xmm5H_off,
  81                 xmm6_off, xmm6H_off,
  82                 xmm7_off, xmm7H_off,
  83                 flags_off,
  84                 rdi_off,
  85                 rsi_off,
  86                 ignore_off,  // extra copy of rbp,
  87                 rsp_off,
  88                 rbx_off,
  89                 rdx_off,
  90                 rcx_off,
  91                 rax_off,
  92                 // The frame sender code expects that rbp will be in the "natural" place and
  93                 // will override any oopMap setting for it. We must therefore force the layout
  94                 // so that it agrees with the frame sender code.
  95                 rbp_off,
  96                 return_off,      // slot for return address
  97                 reg_save_size };
  98 
  99 
 100   public:
 101 
 102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 103                                      int* total_frame_words, bool verify_fpu = true);
 104   static void restore_live_registers(MacroAssembler* masm);
 105 
 106   static int rax_offset() { return rax_off; }
 107   static int rbx_offset() { return rbx_off; }
 108 
 109   // Offsets into the register save area
 110   // Used by deoptimization when it is managing result register
 111   // values on its own
 112 
 113   static int raxOffset(void) { return rax_off; }
 114   static int rdxOffset(void) { return rdx_off; }
 115   static int rbxOffset(void) { return rbx_off; }
 116   static int xmm0Offset(void) { return xmm0_off; }
 117   // This really returns a slot in the fp save area, which one is not important
 118   static int fpResultOffset(void) { return st0_off; }
 119 
 120   // During deoptimization only the result register need to be restored
 121   // all the other values have already been extracted.
 122 
 123   static void restore_result_registers(MacroAssembler* masm);
 124 
 125 };
 126 
 127 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 128                                            int* total_frame_words, bool verify_fpu) {
 129 
 130   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
 131   int frame_words = frame_size_in_bytes / wordSize;
 132   *total_frame_words = frame_words;
 133 
 134   assert(FPUStateSizeInWords == 27, "update stack layout");
 135 
 136   // save registers, fpu state, and flags
 137   // We assume caller has already has return address slot on the stack
 138   // We push epb twice in this sequence because we want the real rbp,
 139   // to be under the return like a normal enter and we want to use pusha
 140   // We push by hand instead of pusing push
 141   __ enter();
 142   __ pusha();
 143   __ pushf();
 144   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
 145   __ push_FPU_state();          // Save FPU state & init
 146 
 147   if (verify_fpu) {
 148     // Some stubs may have non standard FPU control word settings so
 149     // only check and reset the value when it required to be the
 150     // standard value.  The safepoint blob in particular can be used
 151     // in methods which are using the 24 bit control word for
 152     // optimized float math.
 153 
 154 #ifdef ASSERT
 155     // Make sure the control word has the expected value
 156     Label ok;
 157     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 158     __ jccb(Assembler::equal, ok);
 159     __ stop("corrupted control word detected");
 160     __ bind(ok);
 161 #endif
 162 
 163     // Reset the control word to guard against exceptions being unmasked
 164     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 165     // into the on stack copy and then reload that to make sure that the
 166     // current and future values are correct.
 167     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 168   }
 169 
 170   __ frstor(Address(rsp, 0));
 171   if (!verify_fpu) {
 172     // Set the control word so that exceptions are masked for the
 173     // following code.
 174     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 175   }
 176 
 177   // Save the FPU registers in de-opt-able form
 178 
 179   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 180   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 181   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 182   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 183   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 184   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 185   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 186   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 187 
 188   if( UseSSE == 1 ) {           // Save the XMM state
 189     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 190     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 191     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 192     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 193     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 194     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 195     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 196     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 197   } else if( UseSSE >= 2 ) {
 198     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
 199     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
 200     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
 201     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
 202     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
 203     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
 204     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
 205     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
 206   }
 207 
 208   // Set an oopmap for the call site.  This oopmap will map all
 209   // oop-registers and debug-info registers as callee-saved.  This
 210   // will allow deoptimization at this safepoint to find all possible
 211   // debug-info recordings, as well as let GC find all oops.
 212 
 213   OopMapSet *oop_maps = new OopMapSet();
 214   OopMap* map =  new OopMap( frame_words, 0 );
 215 
 216 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 217 
 218   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 222   // rbp, location is known implicitly, no oopMap
 223   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 241   // %%% This is really a waste but we'll keep things as they were for now
 242   if (true) {
 243 #define NEXTREG(x) (x)->as_VMReg()->next()
 244     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 245     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 246     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 247     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 248     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 249     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 250     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 251     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 252     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 253     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 254     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 255     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 256     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 257     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 258     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 259     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 260 #undef NEXTREG
 261 #undef STACK_OFFSET
 262   }
 263 
 264   return map;
 265 
 266 }
 267 
 268 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 269 
 270   // Recover XMM & FPU state
 271   if( UseSSE == 1 ) {
 272     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 273     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 274     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 275     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 276     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 277     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 278     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 279     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 280   } else if( UseSSE >= 2 ) {
 281     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
 282     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
 283     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
 284     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
 285     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
 286     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
 287     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
 288     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
 289   }
 290   __ pop_FPU_state();
 291   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
 292 
 293   __ popf();
 294   __ popa();
 295   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 296   __ pop(rbp);
 297 
 298 }
 299 
 300 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 301 
 302   // Just restore result register. Only used by deoptimization. By
 303   // now any callee save register that needs to be restore to a c2
 304   // caller of the deoptee has been extracted into the vframeArray
 305   // and will be stuffed into the c2i adapter we create for later
 306   // restoration so only result registers need to be restored here.
 307   //
 308 
 309   __ frstor(Address(rsp, 0));      // Restore fpu state
 310 
 311   // Recover XMM & FPU state
 312   if( UseSSE == 1 ) {
 313     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 314   } else if( UseSSE >= 2 ) {
 315     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 316   }
 317   __ movptr(rax, Address(rsp, rax_off*wordSize));
 318   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 319   // Pop all of the register save are off the stack except the return address
 320   __ addptr(rsp, return_off * wordSize);
 321 }
 322 
 323 // The java_calling_convention describes stack locations as ideal slots on
 324 // a frame with no abi restrictions. Since we must observe abi restrictions
 325 // (like the placement of the register window) the slots must be biased by
 326 // the following value.
 327 static int reg2offset_in(VMReg r) {
 328   // Account for saved rbp, and return address
 329   // This should really be in_preserve_stack_slots
 330   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 331 }
 332 
 333 static int reg2offset_out(VMReg r) {
 334   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 335 }
 336 
 337 // ---------------------------------------------------------------------------
 338 // Read the array of BasicTypes from a signature, and compute where the
 339 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 340 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 341 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 342 // as framesizes are fixed.
 343 // VMRegImpl::stack0 refers to the first slot 0(sp).
 344 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 345 // up to RegisterImpl::number_of_registers) are the 32-bit
 346 // integer registers.
 347 
 348 // Pass first two oop/int args in registers ECX and EDX.
 349 // Pass first two float/double args in registers XMM0 and XMM1.
 350 // Doubles have precedence, so if you pass a mix of floats and doubles
 351 // the doubles will grab the registers before the floats will.
 352 
 353 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 354 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 355 // units regardless of build. Of course for i486 there is no 64 bit build
 356 
 357 
 358 // ---------------------------------------------------------------------------
 359 // The compiled Java calling convention.
 360 // Pass first two oop/int args in registers ECX and EDX.
 361 // Pass first two float/double args in registers XMM0 and XMM1.
 362 // Doubles have precedence, so if you pass a mix of floats and doubles
 363 // the doubles will grab the registers before the floats will.
 364 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 365                                            VMRegPair *regs,
 366                                            int total_args_passed,
 367                                            int is_outgoing) {
 368   uint    stack = 0;          // Starting stack position for args on stack
 369 
 370 
 371   // Pass first two oop/int args in registers ECX and EDX.
 372   uint reg_arg0 = 9999;
 373   uint reg_arg1 = 9999;
 374 
 375   // Pass first two float/double args in registers XMM0 and XMM1.
 376   // Doubles have precedence, so if you pass a mix of floats and doubles
 377   // the doubles will grab the registers before the floats will.
 378   // CNC - TURNED OFF FOR non-SSE.
 379   //       On Intel we have to round all doubles (and most floats) at
 380   //       call sites by storing to the stack in any case.
 381   // UseSSE=0 ==> Don't Use ==> 9999+0
 382   // UseSSE=1 ==> Floats only ==> 9999+1
 383   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 384   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 385   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 386   uint freg_arg0 = 9999+fargs;
 387   uint freg_arg1 = 9999+fargs;
 388 
 389   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 390   int i;
 391   for( i = 0; i < total_args_passed; i++) {
 392     if( sig_bt[i] == T_DOUBLE ) {
 393       // first 2 doubles go in registers
 394       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 395       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 396       else // Else double is passed low on the stack to be aligned.
 397         stack += 2;
 398     } else if( sig_bt[i] == T_LONG ) {
 399       stack += 2;
 400     }
 401   }
 402   int dstack = 0;             // Separate counter for placing doubles
 403 
 404   // Now pick where all else goes.
 405   for( i = 0; i < total_args_passed; i++) {
 406     // From the type and the argument number (count) compute the location
 407     switch( sig_bt[i] ) {
 408     case T_SHORT:
 409     case T_CHAR:
 410     case T_BYTE:
 411     case T_BOOLEAN:
 412     case T_INT:
 413     case T_ARRAY:
 414     case T_OBJECT:
 415     case T_ADDRESS:
 416       if( reg_arg0 == 9999 )  {
 417         reg_arg0 = i;
 418         regs[i].set1(rcx->as_VMReg());
 419       } else if( reg_arg1 == 9999 )  {
 420         reg_arg1 = i;
 421         regs[i].set1(rdx->as_VMReg());
 422       } else {
 423         regs[i].set1(VMRegImpl::stack2reg(stack++));
 424       }
 425       break;
 426     case T_FLOAT:
 427       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 428         freg_arg0 = i;
 429         regs[i].set1(xmm0->as_VMReg());
 430       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 431         freg_arg1 = i;
 432         regs[i].set1(xmm1->as_VMReg());
 433       } else {
 434         regs[i].set1(VMRegImpl::stack2reg(stack++));
 435       }
 436       break;
 437     case T_LONG:
 438       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 439       regs[i].set2(VMRegImpl::stack2reg(dstack));
 440       dstack += 2;
 441       break;
 442     case T_DOUBLE:
 443       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 444       if( freg_arg0 == (uint)i ) {
 445         regs[i].set2(xmm0->as_VMReg());
 446       } else if( freg_arg1 == (uint)i ) {
 447         regs[i].set2(xmm1->as_VMReg());
 448       } else {
 449         regs[i].set2(VMRegImpl::stack2reg(dstack));
 450         dstack += 2;
 451       }
 452       break;
 453     case T_VOID: regs[i].set_bad(); break;
 454       break;
 455     default:
 456       ShouldNotReachHere();
 457       break;
 458     }
 459   }
 460 
 461   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 462   return round_to(stack, 2);
 463 }
 464 
 465 // Patch the callers callsite with entry to compiled code if it exists.
 466 static void patch_callers_callsite(MacroAssembler *masm) {
 467   Label L;
 468   __ verify_oop(rbx);
 469   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 470   __ jcc(Assembler::equal, L);
 471   // Schedule the branch target address early.
 472   // Call into the VM to patch the caller, then jump to compiled callee
 473   // rax, isn't live so capture return address while we easily can
 474   __ movptr(rax, Address(rsp, 0));
 475   __ pusha();
 476   __ pushf();
 477 
 478   if (UseSSE == 1) {
 479     __ subptr(rsp, 2*wordSize);
 480     __ movflt(Address(rsp, 0), xmm0);
 481     __ movflt(Address(rsp, wordSize), xmm1);
 482   }
 483   if (UseSSE >= 2) {
 484     __ subptr(rsp, 4*wordSize);
 485     __ movdbl(Address(rsp, 0), xmm0);
 486     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 487   }
 488 #ifdef COMPILER2
 489   // C2 may leave the stack dirty if not in SSE2+ mode
 490   if (UseSSE >= 2) {
 491     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 492   } else {
 493     __ empty_FPU_stack();
 494   }
 495 #endif /* COMPILER2 */
 496 
 497   // VM needs caller's callsite
 498   __ push(rax);
 499   // VM needs target method
 500   __ push(rbx);
 501   __ verify_oop(rbx);
 502   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 503   __ addptr(rsp, 2*wordSize);
 504 
 505   if (UseSSE == 1) {
 506     __ movflt(xmm0, Address(rsp, 0));
 507     __ movflt(xmm1, Address(rsp, wordSize));
 508     __ addptr(rsp, 2*wordSize);
 509   }
 510   if (UseSSE >= 2) {
 511     __ movdbl(xmm0, Address(rsp, 0));
 512     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 513     __ addptr(rsp, 4*wordSize);
 514   }
 515 
 516   __ popf();
 517   __ popa();
 518   __ bind(L);
 519 }
 520 
 521 
 522 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 523   int next_off = st_off - Interpreter::stackElementSize;
 524   __ movdbl(Address(rsp, next_off), r);
 525 }
 526 
 527 static void gen_c2i_adapter(MacroAssembler *masm,
 528                             int total_args_passed,
 529                             int comp_args_on_stack,
 530                             const BasicType *sig_bt,
 531                             const VMRegPair *regs,
 532                             Label& skip_fixup) {
 533   // Before we get into the guts of the C2I adapter, see if we should be here
 534   // at all.  We've come from compiled code and are attempting to jump to the
 535   // interpreter, which means the caller made a static call to get here
 536   // (vcalls always get a compiled target if there is one).  Check for a
 537   // compiled target.  If there is one, we need to patch the caller's call.
 538   patch_callers_callsite(masm);
 539 
 540   __ bind(skip_fixup);
 541 
 542 #ifdef COMPILER2
 543   // C2 may leave the stack dirty if not in SSE2+ mode
 544   if (UseSSE >= 2) {
 545     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 546   } else {
 547     __ empty_FPU_stack();
 548   }
 549 #endif /* COMPILER2 */
 550 
 551   // Since all args are passed on the stack, total_args_passed * interpreter_
 552   // stack_element_size  is the
 553   // space we need.
 554   int extraspace = total_args_passed * Interpreter::stackElementSize;
 555 
 556   // Get return address
 557   __ pop(rax);
 558 
 559   // set senderSP value
 560   __ movptr(rsi, rsp);
 561 
 562   __ subptr(rsp, extraspace);
 563 
 564   // Now write the args into the outgoing interpreter space
 565   for (int i = 0; i < total_args_passed; i++) {
 566     if (sig_bt[i] == T_VOID) {
 567       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 568       continue;
 569     }
 570 
 571     // st_off points to lowest address on stack.
 572     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 573     int next_off = st_off - Interpreter::stackElementSize;
 574 
 575     // Say 4 args:
 576     // i   st_off
 577     // 0   12 T_LONG
 578     // 1    8 T_VOID
 579     // 2    4 T_OBJECT
 580     // 3    0 T_BOOL
 581     VMReg r_1 = regs[i].first();
 582     VMReg r_2 = regs[i].second();
 583     if (!r_1->is_valid()) {
 584       assert(!r_2->is_valid(), "");
 585       continue;
 586     }
 587 
 588     if (r_1->is_stack()) {
 589       // memory to memory use fpu stack top
 590       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 591 
 592       if (!r_2->is_valid()) {
 593         __ movl(rdi, Address(rsp, ld_off));
 594         __ movptr(Address(rsp, st_off), rdi);
 595       } else {
 596 
 597         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 598         // st_off == MSW, st_off-wordSize == LSW
 599 
 600         __ movptr(rdi, Address(rsp, ld_off));
 601         __ movptr(Address(rsp, next_off), rdi);
 602 #ifndef _LP64
 603         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 604         __ movptr(Address(rsp, st_off), rdi);
 605 #else
 606 #ifdef ASSERT
 607         // Overwrite the unused slot with known junk
 608         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 609         __ movptr(Address(rsp, st_off), rax);
 610 #endif /* ASSERT */
 611 #endif // _LP64
 612       }
 613     } else if (r_1->is_Register()) {
 614       Register r = r_1->as_Register();
 615       if (!r_2->is_valid()) {
 616         __ movl(Address(rsp, st_off), r);
 617       } else {
 618         // long/double in gpr
 619         NOT_LP64(ShouldNotReachHere());
 620         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 621         // T_DOUBLE and T_LONG use two slots in the interpreter
 622         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 623           // long/double in gpr
 624 #ifdef ASSERT
 625           // Overwrite the unused slot with known junk
 626           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 627           __ movptr(Address(rsp, st_off), rax);
 628 #endif /* ASSERT */
 629           __ movptr(Address(rsp, next_off), r);
 630         } else {
 631           __ movptr(Address(rsp, st_off), r);
 632         }
 633       }
 634     } else {
 635       assert(r_1->is_XMMRegister(), "");
 636       if (!r_2->is_valid()) {
 637         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 638       } else {
 639         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 640         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 641       }
 642     }
 643   }
 644 
 645   // Schedule the branch target address early.
 646   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 647   // And repush original return address
 648   __ push(rax);
 649   __ jmp(rcx);
 650 }
 651 
 652 
 653 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 654   int next_val_off = ld_off - Interpreter::stackElementSize;
 655   __ movdbl(r, Address(saved_sp, next_val_off));
 656 }
 657 
 658 static void gen_i2c_adapter(MacroAssembler *masm,
 659                             int total_args_passed,
 660                             int comp_args_on_stack,
 661                             const BasicType *sig_bt,
 662                             const VMRegPair *regs) {
 663   // we're being called from the interpreter but need to find the
 664   // compiled return entry point.  The return address on the stack
 665   // should point at it and we just need to pull the old value out.
 666   // load up the pointer to the compiled return entry point and
 667   // rewrite our return pc. The code is arranged like so:
 668   //
 669   // .word Interpreter::return_sentinel
 670   // .word address_of_compiled_return_point
 671   // return_entry_point: blah_blah_blah
 672   //
 673   // So we can find the appropriate return point by loading up the word
 674   // just prior to the current return address we have on the stack.
 675   //
 676   // We will only enter here from an interpreted frame and never from after
 677   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 678   // race and use a c2i we will remain interpreted for the race loser(s).
 679   // This removes all sorts of headaches on the x86 side and also eliminates
 680   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 681 
 682 
 683   // Note: rsi contains the senderSP on entry. We must preserve it since
 684   // we may do a i2c -> c2i transition if we lose a race where compiled
 685   // code goes non-entrant while we get args ready.
 686 
 687   // Pick up the return address
 688   __ movptr(rax, Address(rsp, 0));
 689 
 690   // If UseSSE >= 2 then no cleanup is needed on the return to the
 691   // interpreter so skip fixing up the return entry point unless
 692   // VerifyFPU is enabled.
 693   if (UseSSE < 2 || VerifyFPU) {
 694     Label skip, chk_int;
 695     // If we were called from the call stub we need to do a little bit different
 696     // cleanup than if the interpreter returned to the call stub.
 697 
 698     ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
 699     __ cmpptr(rax, stub_return_address.addr());
 700     __ jcc(Assembler::notEqual, chk_int);
 701     assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
 702     __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
 703     __ jmp(skip);
 704 
 705     // It must be the interpreter since we never get here via a c2i (unlike Azul)
 706 
 707     __ bind(chk_int);
 708 #ifdef ASSERT
 709     {
 710       Label ok;
 711       __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
 712       __ jcc(Assembler::equal, ok);
 713       __ int3();
 714       __ bind(ok);
 715     }
 716 #endif // ASSERT
 717     __ movptr(rax, Address(rax, -wordSize));
 718     __ bind(skip);
 719   }
 720 
 721   // rax, now contains the compiled return entry point which will do an
 722   // cleanup needed for the return from compiled to interpreted.
 723 
 724   // Must preserve original SP for loading incoming arguments because
 725   // we need to align the outgoing SP for compiled code.
 726   __ movptr(rdi, rsp);
 727 
 728   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 729   // in registers, we will occasionally have no stack args.
 730   int comp_words_on_stack = 0;
 731   if (comp_args_on_stack) {
 732     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 733     // registers are below.  By subtracting stack0, we either get a negative
 734     // number (all values in registers) or the maximum stack slot accessed.
 735     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 736     // Convert 4-byte stack slots to words.
 737     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 738     // Round up to miminum stack alignment, in wordSize
 739     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 740     __ subptr(rsp, comp_words_on_stack * wordSize);
 741   }
 742 
 743   // Align the outgoing SP
 744   __ andptr(rsp, -(StackAlignmentInBytes));
 745 
 746   // push the return address on the stack (note that pushing, rather
 747   // than storing it, yields the correct frame alignment for the callee)
 748   __ push(rax);
 749 
 750   // Put saved SP in another register
 751   const Register saved_sp = rax;
 752   __ movptr(saved_sp, rdi);
 753 
 754 
 755   // Will jump to the compiled code just as if compiled code was doing it.
 756   // Pre-load the register-jump target early, to schedule it better.
 757   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 758 
 759   // Now generate the shuffle code.  Pick up all register args and move the
 760   // rest through the floating point stack top.
 761   for (int i = 0; i < total_args_passed; i++) {
 762     if (sig_bt[i] == T_VOID) {
 763       // Longs and doubles are passed in native word order, but misaligned
 764       // in the 32-bit build.
 765       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 766       continue;
 767     }
 768 
 769     // Pick up 0, 1 or 2 words from SP+offset.
 770 
 771     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 772             "scrambled load targets?");
 773     // Load in argument order going down.
 774     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 775     // Point to interpreter value (vs. tag)
 776     int next_off = ld_off - Interpreter::stackElementSize;
 777     //
 778     //
 779     //
 780     VMReg r_1 = regs[i].first();
 781     VMReg r_2 = regs[i].second();
 782     if (!r_1->is_valid()) {
 783       assert(!r_2->is_valid(), "");
 784       continue;
 785     }
 786     if (r_1->is_stack()) {
 787       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 788       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 789 
 790       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 791       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 792       // we be generated.
 793       if (!r_2->is_valid()) {
 794         // __ fld_s(Address(saved_sp, ld_off));
 795         // __ fstp_s(Address(rsp, st_off));
 796         __ movl(rsi, Address(saved_sp, ld_off));
 797         __ movptr(Address(rsp, st_off), rsi);
 798       } else {
 799         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 800         // are accessed as negative so LSW is at LOW address
 801 
 802         // ld_off is MSW so get LSW
 803         // st_off is LSW (i.e. reg.first())
 804         // __ fld_d(Address(saved_sp, next_off));
 805         // __ fstp_d(Address(rsp, st_off));
 806         //
 807         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 808         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 809         // So we must adjust where to pick up the data to match the interpreter.
 810         //
 811         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 812         // are accessed as negative so LSW is at LOW address
 813 
 814         // ld_off is MSW so get LSW
 815         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 816                            next_off : ld_off;
 817         __ movptr(rsi, Address(saved_sp, offset));
 818         __ movptr(Address(rsp, st_off), rsi);
 819 #ifndef _LP64
 820         __ movptr(rsi, Address(saved_sp, ld_off));
 821         __ movptr(Address(rsp, st_off + wordSize), rsi);
 822 #endif // _LP64
 823       }
 824     } else if (r_1->is_Register()) {  // Register argument
 825       Register r = r_1->as_Register();
 826       assert(r != rax, "must be different");
 827       if (r_2->is_valid()) {
 828         //
 829         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 830         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 831         // So we must adjust where to pick up the data to match the interpreter.
 832 
 833         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 834                            next_off : ld_off;
 835 
 836         // this can be a misaligned move
 837         __ movptr(r, Address(saved_sp, offset));
 838 #ifndef _LP64
 839         assert(r_2->as_Register() != rax, "need another temporary register");
 840         // Remember r_1 is low address (and LSB on x86)
 841         // So r_2 gets loaded from high address regardless of the platform
 842         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 843 #endif // _LP64
 844       } else {
 845         __ movl(r, Address(saved_sp, ld_off));
 846       }
 847     } else {
 848       assert(r_1->is_XMMRegister(), "");
 849       if (!r_2->is_valid()) {
 850         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 851       } else {
 852         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 853       }
 854     }
 855   }
 856 
 857   // 6243940 We might end up in handle_wrong_method if
 858   // the callee is deoptimized as we race thru here. If that
 859   // happens we don't want to take a safepoint because the
 860   // caller frame will look interpreted and arguments are now
 861   // "compiled" so it is much better to make this transition
 862   // invisible to the stack walking code. Unfortunately if
 863   // we try and find the callee by normal means a safepoint
 864   // is possible. So we stash the desired callee in the thread
 865   // and the vm will find there should this case occur.
 866 
 867   __ get_thread(rax);
 868   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 869 
 870   // move methodOop to rax, in case we end up in an c2i adapter.
 871   // the c2i adapters expect methodOop in rax, (c2) because c2's
 872   // resolve stubs return the result (the method) in rax,.
 873   // I'd love to fix this.
 874   __ mov(rax, rbx);
 875 
 876   __ jmp(rdi);
 877 }
 878 
 879 // ---------------------------------------------------------------
 880 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 881                                                             int total_args_passed,
 882                                                             int comp_args_on_stack,
 883                                                             const BasicType *sig_bt,
 884                                                             const VMRegPair *regs,
 885                                                             AdapterFingerPrint* fingerprint) {
 886   address i2c_entry = __ pc();
 887 
 888   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 889 
 890   // -------------------------------------------------------------------------
 891   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
 892   // to the interpreter.  The args start out packed in the compiled layout.  They
 893   // need to be unpacked into the interpreter layout.  This will almost always
 894   // require some stack space.  We grow the current (compiled) stack, then repack
 895   // the args.  We  finally end in a jump to the generic interpreter entry point.
 896   // On exit from the interpreter, the interpreter will restore our SP (lest the
 897   // compiled code, which relys solely on SP and not EBP, get sick).
 898 
 899   address c2i_unverified_entry = __ pc();
 900   Label skip_fixup;
 901 
 902   Register holder = rax;
 903   Register receiver = rcx;
 904   Register temp = rbx;
 905 
 906   {
 907 
 908     Label missed;
 909 
 910     __ verify_oop(holder);
 911     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 912     __ verify_oop(temp);
 913 
 914     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 915     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 916     __ jcc(Assembler::notEqual, missed);
 917     // Method might have been compiled since the call site was patched to
 918     // interpreted if that is the case treat it as a miss so we can get
 919     // the call site corrected.
 920     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 921     __ jcc(Assembler::equal, skip_fixup);
 922 
 923     __ bind(missed);
 924     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 925   }
 926 
 927   address c2i_entry = __ pc();
 928 
 929   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 930 
 931   __ flush();
 932   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 933 }
 934 
 935 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 936                                          VMRegPair *regs,
 937                                          int total_args_passed) {
 938 // We return the amount of VMRegImpl stack slots we need to reserve for all
 939 // the arguments NOT counting out_preserve_stack_slots.
 940 
 941   uint    stack = 0;        // All arguments on stack
 942 
 943   for( int i = 0; i < total_args_passed; i++) {
 944     // From the type and the argument number (count) compute the location
 945     switch( sig_bt[i] ) {
 946     case T_BOOLEAN:
 947     case T_CHAR:
 948     case T_FLOAT:
 949     case T_BYTE:
 950     case T_SHORT:
 951     case T_INT:
 952     case T_OBJECT:
 953     case T_ARRAY:
 954     case T_ADDRESS:
 955       regs[i].set1(VMRegImpl::stack2reg(stack++));
 956       break;
 957     case T_LONG:
 958     case T_DOUBLE: // The stack numbering is reversed from Java
 959       // Since C arguments do not get reversed, the ordering for
 960       // doubles on the stack must be opposite the Java convention
 961       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 962       regs[i].set2(VMRegImpl::stack2reg(stack));
 963       stack += 2;
 964       break;
 965     case T_VOID: regs[i].set_bad(); break;
 966     default:
 967       ShouldNotReachHere();
 968       break;
 969     }
 970   }
 971   return stack;
 972 }
 973 
 974 // A simple move of integer like type
 975 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 976   if (src.first()->is_stack()) {
 977     if (dst.first()->is_stack()) {
 978       // stack to stack
 979       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
 980       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
 981       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
 982       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
 983     } else {
 984       // stack to reg
 985       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
 986     }
 987   } else if (dst.first()->is_stack()) {
 988     // reg to stack
 989     // no need to sign extend on 64bit
 990     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 991   } else {
 992     if (dst.first() != src.first()) {
 993       __ mov(dst.first()->as_Register(), src.first()->as_Register());
 994     }
 995   }
 996 }
 997 
 998 // An oop arg. Must pass a handle not the oop itself
 999 static void object_move(MacroAssembler* masm,
1000                         OopMap* map,
1001                         int oop_handle_offset,
1002                         int framesize_in_slots,
1003                         VMRegPair src,
1004                         VMRegPair dst,
1005                         bool is_receiver,
1006                         int* receiver_offset) {
1007 
1008   // Because of the calling conventions we know that src can be a
1009   // register or a stack location. dst can only be a stack location.
1010 
1011   assert(dst.first()->is_stack(), "must be stack");
1012   // must pass a handle. First figure out the location we use as a handle
1013 
1014   if (src.first()->is_stack()) {
1015     // Oop is already on the stack as an argument
1016     Register rHandle = rax;
1017     Label nil;
1018     __ xorptr(rHandle, rHandle);
1019     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1020     __ jcc(Assembler::equal, nil);
1021     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1022     __ bind(nil);
1023     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1024 
1025     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1026     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1027     if (is_receiver) {
1028       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1029     }
1030   } else {
1031     // Oop is in an a register we must store it to the space we reserve
1032     // on the stack for oop_handles
1033     const Register rOop = src.first()->as_Register();
1034     const Register rHandle = rax;
1035     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1036     int offset = oop_slot*VMRegImpl::stack_slot_size;
1037     Label skip;
1038     __ movptr(Address(rsp, offset), rOop);
1039     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1040     __ xorptr(rHandle, rHandle);
1041     __ cmpptr(rOop, (int32_t)NULL_WORD);
1042     __ jcc(Assembler::equal, skip);
1043     __ lea(rHandle, Address(rsp, offset));
1044     __ bind(skip);
1045     // Store the handle parameter
1046     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1047     if (is_receiver) {
1048       *receiver_offset = offset;
1049     }
1050   }
1051 }
1052 
1053 // A float arg may have to do float reg int reg conversion
1054 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1055   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1056 
1057   // Because of the calling convention we know that src is either a stack location
1058   // or an xmm register. dst can only be a stack location.
1059 
1060   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1061 
1062   if (src.first()->is_stack()) {
1063     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1064     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1065   } else {
1066     // reg to stack
1067     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1068   }
1069 }
1070 
1071 // A long move
1072 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1073 
1074   // The only legal possibility for a long_move VMRegPair is:
1075   // 1: two stack slots (possibly unaligned)
1076   // as neither the java  or C calling convention will use registers
1077   // for longs.
1078 
1079   if (src.first()->is_stack() && dst.first()->is_stack()) {
1080     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1081     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1082     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1083     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1084     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1085   } else {
1086     ShouldNotReachHere();
1087   }
1088 }
1089 
1090 // A double move
1091 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1092 
1093   // The only legal possibilities for a double_move VMRegPair are:
1094   // The painful thing here is that like long_move a VMRegPair might be
1095 
1096   // Because of the calling convention we know that src is either
1097   //   1: a single physical register (xmm registers only)
1098   //   2: two stack slots (possibly unaligned)
1099   // dst can only be a pair of stack slots.
1100 
1101   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1102 
1103   if (src.first()->is_stack()) {
1104     // source is all stack
1105     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1106     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1107     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1108     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1109   } else {
1110     // reg to stack
1111     // No worries about stack alignment
1112     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1113   }
1114 }
1115 
1116 
1117 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1118   // We always ignore the frame_slots arg and just use the space just below frame pointer
1119   // which by this time is free to use
1120   switch (ret_type) {
1121   case T_FLOAT:
1122     __ fstp_s(Address(rbp, -wordSize));
1123     break;
1124   case T_DOUBLE:
1125     __ fstp_d(Address(rbp, -2*wordSize));
1126     break;
1127   case T_VOID:  break;
1128   case T_LONG:
1129     __ movptr(Address(rbp, -wordSize), rax);
1130     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1131     break;
1132   default: {
1133     __ movptr(Address(rbp, -wordSize), rax);
1134     }
1135   }
1136 }
1137 
1138 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1139   // We always ignore the frame_slots arg and just use the space just below frame pointer
1140   // which by this time is free to use
1141   switch (ret_type) {
1142   case T_FLOAT:
1143     __ fld_s(Address(rbp, -wordSize));
1144     break;
1145   case T_DOUBLE:
1146     __ fld_d(Address(rbp, -2*wordSize));
1147     break;
1148   case T_LONG:
1149     __ movptr(rax, Address(rbp, -wordSize));
1150     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1151     break;
1152   case T_VOID:  break;
1153   default: {
1154     __ movptr(rax, Address(rbp, -wordSize));
1155     }
1156   }
1157 }
1158 
1159 // ---------------------------------------------------------------------------
1160 // Generate a native wrapper for a given method.  The method takes arguments
1161 // in the Java compiled code convention, marshals them to the native
1162 // convention (handlizes oops, etc), transitions to native, makes the call,
1163 // returns to java state (possibly blocking), unhandlizes any result and
1164 // returns.
1165 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1166                                                 methodHandle method,
1167                                                 int total_in_args,
1168                                                 int comp_args_on_stack,
1169                                                 BasicType *in_sig_bt,
1170                                                 VMRegPair *in_regs,
1171                                                 BasicType ret_type) {
1172 
1173   // An OopMap for lock (and class if static)
1174   OopMapSet *oop_maps = new OopMapSet();
1175 
1176   // We have received a description of where all the java arg are located
1177   // on entry to the wrapper. We need to convert these args to where
1178   // the jni function will expect them. To figure out where they go
1179   // we convert the java signature to a C signature by inserting
1180   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1181 
1182   int total_c_args = total_in_args + 1;
1183   if (method->is_static()) {
1184     total_c_args++;
1185   }
1186 
1187   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1188   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1189 
1190   int argc = 0;
1191   out_sig_bt[argc++] = T_ADDRESS;
1192   if (method->is_static()) {
1193     out_sig_bt[argc++] = T_OBJECT;
1194   }
1195 
1196   int i;
1197   for (i = 0; i < total_in_args ; i++ ) {
1198     out_sig_bt[argc++] = in_sig_bt[i];
1199   }
1200 
1201 
1202   // Now figure out where the args must be stored and how much stack space
1203   // they require (neglecting out_preserve_stack_slots but space for storing
1204   // the 1st six register arguments). It's weird see int_stk_helper.
1205   //
1206   int out_arg_slots;
1207   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1208 
1209   // Compute framesize for the wrapper.  We need to handlize all oops in
1210   // registers a max of 2 on x86.
1211 
1212   // Calculate the total number of stack slots we will need.
1213 
1214   // First count the abi requirement plus all of the outgoing args
1215   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1216 
1217   // Now the space for the inbound oop handle area
1218 
1219   int oop_handle_offset = stack_slots;
1220   stack_slots += 2*VMRegImpl::slots_per_word;
1221 
1222   // Now any space we need for handlizing a klass if static method
1223 
1224   int klass_slot_offset = 0;
1225   int klass_offset = -1;
1226   int lock_slot_offset = 0;
1227   bool is_static = false;
1228   int oop_temp_slot_offset = 0;
1229 
1230   if (method->is_static()) {
1231     klass_slot_offset = stack_slots;
1232     stack_slots += VMRegImpl::slots_per_word;
1233     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1234     is_static = true;
1235   }
1236 
1237   // Plus a lock if needed
1238 
1239   if (method->is_synchronized()) {
1240     lock_slot_offset = stack_slots;
1241     stack_slots += VMRegImpl::slots_per_word;
1242   }
1243 
1244   // Now a place (+2) to save return values or temp during shuffling
1245   // + 2 for return address (which we own) and saved rbp,
1246   stack_slots += 4;
1247 
1248   // Ok The space we have allocated will look like:
1249   //
1250   //
1251   // FP-> |                     |
1252   //      |---------------------|
1253   //      | 2 slots for moves   |
1254   //      |---------------------|
1255   //      | lock box (if sync)  |
1256   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1257   //      | klass (if static)   |
1258   //      |---------------------| <- klass_slot_offset
1259   //      | oopHandle area      |
1260   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1261   //      | outbound memory     |
1262   //      | based arguments     |
1263   //      |                     |
1264   //      |---------------------|
1265   //      |                     |
1266   // SP-> | out_preserved_slots |
1267   //
1268   //
1269   // ****************************************************************************
1270   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1271   // arguments off of the stack after the jni call. Before the call we can use
1272   // instructions that are SP relative. After the jni call we switch to FP
1273   // relative instructions instead of re-adjusting the stack on windows.
1274   // ****************************************************************************
1275 
1276 
1277   // Now compute actual number of stack words we need rounding to make
1278   // stack properly aligned.
1279   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1280 
1281   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1282 
1283   intptr_t start = (intptr_t)__ pc();
1284 
1285   // First thing make an ic check to see if we should even be here
1286 
1287   // We are free to use all registers as temps without saving them and
1288   // restoring them except rbp,. rbp, is the only callee save register
1289   // as far as the interpreter and the compiler(s) are concerned.
1290 
1291 
1292   const Register ic_reg = rax;
1293   const Register receiver = rcx;
1294   Label hit;
1295   Label exception_pending;
1296 
1297 
1298   __ verify_oop(receiver);
1299   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1300   __ jcc(Assembler::equal, hit);
1301 
1302   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1303 
1304   // verified entry must be aligned for code patching.
1305   // and the first 5 bytes must be in the same cache line
1306   // if we align at 8 then we will be sure 5 bytes are in the same line
1307   __ align(8);
1308 
1309   __ bind(hit);
1310 
1311   int vep_offset = ((intptr_t)__ pc()) - start;
1312 
1313 #ifdef COMPILER1
1314   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1315     // Object.hashCode can pull the hashCode from the header word
1316     // instead of doing a full VM transition once it's been computed.
1317     // Since hashCode is usually polymorphic at call sites we can't do
1318     // this optimization at the call site without a lot of work.
1319     Label slowCase;
1320     Register receiver = rcx;
1321     Register result = rax;
1322     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1323 
1324     // check if locked
1325     __ testptr(result, markOopDesc::unlocked_value);
1326     __ jcc (Assembler::zero, slowCase);
1327 
1328     if (UseBiasedLocking) {
1329       // Check if biased and fall through to runtime if so
1330       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1331       __ jcc (Assembler::notZero, slowCase);
1332     }
1333 
1334     // get hash
1335     __ andptr(result, markOopDesc::hash_mask_in_place);
1336     // test if hashCode exists
1337     __ jcc  (Assembler::zero, slowCase);
1338     __ shrptr(result, markOopDesc::hash_shift);
1339     __ ret(0);
1340     __ bind (slowCase);
1341   }
1342 #endif // COMPILER1
1343 
1344   // The instruction at the verified entry point must be 5 bytes or longer
1345   // because it can be patched on the fly by make_non_entrant. The stack bang
1346   // instruction fits that requirement.
1347 
1348   // Generate stack overflow check
1349 
1350   if (UseStackBanging) {
1351     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1352   } else {
1353     // need a 5 byte instruction to allow MT safe patching to non-entrant
1354     __ fat_nop();
1355   }
1356 
1357   // Generate a new frame for the wrapper.
1358   __ enter();
1359   // -2 because return address is already present and so is saved rbp,
1360   __ subptr(rsp, stack_size - 2*wordSize);
1361 
1362   // Frame is now completed as far a size and linkage.
1363 
1364   int frame_complete = ((intptr_t)__ pc()) - start;
1365 
1366   // Calculate the difference between rsp and rbp,. We need to know it
1367   // after the native call because on windows Java Natives will pop
1368   // the arguments and it is painful to do rsp relative addressing
1369   // in a platform independent way. So after the call we switch to
1370   // rbp, relative addressing.
1371 
1372   int fp_adjustment = stack_size - 2*wordSize;
1373 
1374 #ifdef COMPILER2
1375   // C2 may leave the stack dirty if not in SSE2+ mode
1376   if (UseSSE >= 2) {
1377     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1378   } else {
1379     __ empty_FPU_stack();
1380   }
1381 #endif /* COMPILER2 */
1382 
1383   // Compute the rbp, offset for any slots used after the jni call
1384 
1385   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1386   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1387 
1388   // We use rdi as a thread pointer because it is callee save and
1389   // if we load it once it is usable thru the entire wrapper
1390   const Register thread = rdi;
1391 
1392   // We use rsi as the oop handle for the receiver/klass
1393   // It is callee save so it survives the call to native
1394 
1395   const Register oop_handle_reg = rsi;
1396 
1397   __ get_thread(thread);
1398 
1399 
1400   //
1401   // We immediately shuffle the arguments so that any vm call we have to
1402   // make from here on out (sync slow path, jvmti, etc.) we will have
1403   // captured the oops from our caller and have a valid oopMap for
1404   // them.
1405 
1406   // -----------------
1407   // The Grand Shuffle
1408   //
1409   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1410   // and, if static, the class mirror instead of a receiver.  This pretty much
1411   // guarantees that register layout will not match (and x86 doesn't use reg
1412   // parms though amd does).  Since the native abi doesn't use register args
1413   // and the java conventions does we don't have to worry about collisions.
1414   // All of our moved are reg->stack or stack->stack.
1415   // We ignore the extra arguments during the shuffle and handle them at the
1416   // last moment. The shuffle is described by the two calling convention
1417   // vectors we have in our possession. We simply walk the java vector to
1418   // get the source locations and the c vector to get the destinations.
1419 
1420   int c_arg = method->is_static() ? 2 : 1 ;
1421 
1422   // Record rsp-based slot for receiver on stack for non-static methods
1423   int receiver_offset = -1;
1424 
1425   // This is a trick. We double the stack slots so we can claim
1426   // the oops in the caller's frame. Since we are sure to have
1427   // more args than the caller doubling is enough to make
1428   // sure we can capture all the incoming oop args from the
1429   // caller.
1430   //
1431   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1432 
1433   // Mark location of rbp,
1434   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1435 
1436   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1437   // Are free to temporaries if we have to do  stack to steck moves.
1438   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1439 
1440   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
1441     switch (in_sig_bt[i]) {
1442       case T_ARRAY:
1443       case T_OBJECT:
1444         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1445                     ((i == 0) && (!is_static)),
1446                     &receiver_offset);
1447         break;
1448       case T_VOID:
1449         break;
1450 
1451       case T_FLOAT:
1452         float_move(masm, in_regs[i], out_regs[c_arg]);
1453           break;
1454 
1455       case T_DOUBLE:
1456         assert( i + 1 < total_in_args &&
1457                 in_sig_bt[i + 1] == T_VOID &&
1458                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1459         double_move(masm, in_regs[i], out_regs[c_arg]);
1460         break;
1461 
1462       case T_LONG :
1463         long_move(masm, in_regs[i], out_regs[c_arg]);
1464         break;
1465 
1466       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1467 
1468       default:
1469         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1470     }
1471   }
1472 
1473   // Pre-load a static method's oop into rsi.  Used both by locking code and
1474   // the normal JNI call code.
1475   if (method->is_static()) {
1476 
1477     //  load opp into a register
1478     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1479 
1480     // Now handlize the static class mirror it's known not-null.
1481     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1482     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1483 
1484     // Now get the handle
1485     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1486     // store the klass handle as second argument
1487     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1488   }
1489 
1490   // Change state to native (we save the return address in the thread, since it might not
1491   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1492   // points into the right code segment. It does not have to be the correct return pc.
1493   // We use the same pc/oopMap repeatedly when we call out
1494 
1495   intptr_t the_pc = (intptr_t) __ pc();
1496   oop_maps->add_gc_map(the_pc - start, map);
1497 
1498   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1499 
1500 
1501   // We have all of the arguments setup at this point. We must not touch any register
1502   // argument registers at this point (what if we save/restore them there are no oop?
1503 
1504   {
1505     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1506     __ movoop(rax, JNIHandles::make_local(method()));
1507     __ call_VM_leaf(
1508          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1509          thread, rax);
1510   }
1511 
1512   // RedefineClasses() tracing support for obsolete method entry
1513   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1514     __ movoop(rax, JNIHandles::make_local(method()));
1515     __ call_VM_leaf(
1516          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1517          thread, rax);
1518   }
1519 
1520   // These are register definitions we need for locking/unlocking
1521   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1522   const Register obj_reg  = rcx;  // Will contain the oop
1523   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1524 
1525   Label slow_path_lock;
1526   Label lock_done;
1527 
1528   // Lock a synchronized method
1529   if (method->is_synchronized()) {
1530 
1531 
1532     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1533 
1534     // Get the handle (the 2nd argument)
1535     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1536 
1537     // Get address of the box
1538 
1539     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1540 
1541     // Load the oop from the handle
1542     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1543 
1544     if (UseBiasedLocking) {
1545       // Note that oop_handle_reg is trashed during this call
1546       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1547     }
1548 
1549     // Load immediate 1 into swap_reg %rax,
1550     __ movptr(swap_reg, 1);
1551 
1552     // Load (object->mark() | 1) into swap_reg %rax,
1553     __ orptr(swap_reg, Address(obj_reg, 0));
1554 
1555     // Save (object->mark() | 1) into BasicLock's displaced header
1556     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1557 
1558     if (os::is_MP()) {
1559       __ lock();
1560     }
1561 
1562     // src -> dest iff dest == rax, else rax, <- dest
1563     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1564     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1565     __ jcc(Assembler::equal, lock_done);
1566 
1567     // Test if the oopMark is an obvious stack pointer, i.e.,
1568     //  1) (mark & 3) == 0, and
1569     //  2) rsp <= mark < mark + os::pagesize()
1570     // These 3 tests can be done by evaluating the following
1571     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1572     // assuming both stack pointer and pagesize have their
1573     // least significant 2 bits clear.
1574     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1575 
1576     __ subptr(swap_reg, rsp);
1577     __ andptr(swap_reg, 3 - os::vm_page_size());
1578 
1579     // Save the test result, for recursive case, the result is zero
1580     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1581     __ jcc(Assembler::notEqual, slow_path_lock);
1582     // Slow path will re-enter here
1583     __ bind(lock_done);
1584 
1585     if (UseBiasedLocking) {
1586       // Re-fetch oop_handle_reg as we trashed it above
1587       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1588     }
1589   }
1590 
1591 
1592   // Finally just about ready to make the JNI call
1593 
1594 
1595   // get JNIEnv* which is first argument to native
1596 
1597   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1598   __ movptr(Address(rsp, 0), rdx);
1599 
1600   // Now set thread in native
1601   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1602 
1603   __ call(RuntimeAddress(method->native_function()));
1604 
1605   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1606   // arguments off of the stack. We could just re-adjust the stack pointer here
1607   // and continue to do SP relative addressing but we instead switch to FP
1608   // relative addressing.
1609 
1610   // Unpack native results.
1611   switch (ret_type) {
1612   case T_BOOLEAN: __ c2bool(rax);            break;
1613   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1614   case T_BYTE   : __ sign_extend_byte (rax); break;
1615   case T_SHORT  : __ sign_extend_short(rax); break;
1616   case T_INT    : /* nothing to do */        break;
1617   case T_DOUBLE :
1618   case T_FLOAT  :
1619     // Result is in st0 we'll save as needed
1620     break;
1621   case T_ARRAY:                 // Really a handle
1622   case T_OBJECT:                // Really a handle
1623       break; // can't de-handlize until after safepoint check
1624   case T_VOID: break;
1625   case T_LONG: break;
1626   default       : ShouldNotReachHere();
1627   }
1628 
1629   // Switch thread to "native transition" state before reading the synchronization state.
1630   // This additional state is necessary because reading and testing the synchronization
1631   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1632   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1633   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1634   //     Thread A is resumed to finish this native method, but doesn't block here since it
1635   //     didn't see any synchronization is progress, and escapes.
1636   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1637 
1638   if(os::is_MP()) {
1639     if (UseMembar) {
1640       // Force this write out before the read below
1641       __ membar(Assembler::Membar_mask_bits(
1642            Assembler::LoadLoad | Assembler::LoadStore |
1643            Assembler::StoreLoad | Assembler::StoreStore));
1644     } else {
1645       // Write serialization page so VM thread can do a pseudo remote membar.
1646       // We use the current thread pointer to calculate a thread specific
1647       // offset to write to within the page. This minimizes bus traffic
1648       // due to cache line collision.
1649       __ serialize_memory(thread, rcx);
1650     }
1651   }
1652 
1653   if (AlwaysRestoreFPU) {
1654     // Make sure the control word is correct.
1655     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1656   }
1657 
1658   // check for safepoint operation in progress and/or pending suspend requests
1659   { Label Continue;
1660 
1661     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1662              SafepointSynchronize::_not_synchronized);
1663 
1664     Label L;
1665     __ jcc(Assembler::notEqual, L);
1666     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1667     __ jcc(Assembler::equal, Continue);
1668     __ bind(L);
1669 
1670     // Don't use call_VM as it will see a possible pending exception and forward it
1671     // and never return here preventing us from clearing _last_native_pc down below.
1672     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1673     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1674     // by hand.
1675     //
1676     save_native_result(masm, ret_type, stack_slots);
1677     __ push(thread);
1678     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1679                                             JavaThread::check_special_condition_for_native_trans)));
1680     __ increment(rsp, wordSize);
1681     // Restore any method result value
1682     restore_native_result(masm, ret_type, stack_slots);
1683 
1684     __ bind(Continue);
1685   }
1686 
1687   // change thread state
1688   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1689 
1690   Label reguard;
1691   Label reguard_done;
1692   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1693   __ jcc(Assembler::equal, reguard);
1694 
1695   // slow path reguard  re-enters here
1696   __ bind(reguard_done);
1697 
1698   // Handle possible exception (will unlock if necessary)
1699 
1700   // native result if any is live
1701 
1702   // Unlock
1703   Label slow_path_unlock;
1704   Label unlock_done;
1705   if (method->is_synchronized()) {
1706 
1707     Label done;
1708 
1709     // Get locked oop from the handle we passed to jni
1710     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1711 
1712     if (UseBiasedLocking) {
1713       __ biased_locking_exit(obj_reg, rbx, done);
1714     }
1715 
1716     // Simple recursive lock?
1717 
1718     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
1719     __ jcc(Assembler::equal, done);
1720 
1721     // Must save rax, if if it is live now because cmpxchg must use it
1722     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1723       save_native_result(masm, ret_type, stack_slots);
1724     }
1725 
1726     //  get old displaced header
1727     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1728 
1729     // get address of the stack lock
1730     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1731 
1732     // Atomic swap old header if oop still contains the stack lock
1733     if (os::is_MP()) {
1734     __ lock();
1735     }
1736 
1737     // src -> dest iff dest == rax, else rax, <- dest
1738     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1739     __ cmpxchgptr(rbx, Address(obj_reg, 0));
1740     __ jcc(Assembler::notEqual, slow_path_unlock);
1741 
1742     // slow path re-enters here
1743     __ bind(unlock_done);
1744     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1745       restore_native_result(masm, ret_type, stack_slots);
1746     }
1747 
1748     __ bind(done);
1749 
1750   }
1751 
1752   {
1753     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1754     // Tell dtrace about this method exit
1755     save_native_result(masm, ret_type, stack_slots);
1756     __ movoop(rax, JNIHandles::make_local(method()));
1757     __ call_VM_leaf(
1758          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1759          thread, rax);
1760     restore_native_result(masm, ret_type, stack_slots);
1761   }
1762 
1763   // We can finally stop using that last_Java_frame we setup ages ago
1764 
1765   __ reset_last_Java_frame(thread, false, true);
1766 
1767   // Unpack oop result
1768   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1769       Label L;
1770       __ cmpptr(rax, (int32_t)NULL_WORD);
1771       __ jcc(Assembler::equal, L);
1772       __ movptr(rax, Address(rax, 0));
1773       __ bind(L);
1774       __ verify_oop(rax);
1775   }
1776 
1777   // reset handle block
1778   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1779 
1780   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1781 
1782   // Any exception pending?
1783   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1784   __ jcc(Assembler::notEqual, exception_pending);
1785 
1786 
1787   // no exception, we're almost done
1788 
1789   // check that only result value is on FPU stack
1790   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1791 
1792   // Fixup floating pointer results so that result looks like a return from a compiled method
1793   if (ret_type == T_FLOAT) {
1794     if (UseSSE >= 1) {
1795       // Pop st0 and store as float and reload into xmm register
1796       __ fstp_s(Address(rbp, -4));
1797       __ movflt(xmm0, Address(rbp, -4));
1798     }
1799   } else if (ret_type == T_DOUBLE) {
1800     if (UseSSE >= 2) {
1801       // Pop st0 and store as double and reload into xmm register
1802       __ fstp_d(Address(rbp, -8));
1803       __ movdbl(xmm0, Address(rbp, -8));
1804     }
1805   }
1806 
1807   // Return
1808 
1809   __ leave();
1810   __ ret(0);
1811 
1812   // Unexpected paths are out of line and go here
1813 
1814   // Slow path locking & unlocking
1815   if (method->is_synchronized()) {
1816 
1817     // BEGIN Slow path lock
1818 
1819     __ bind(slow_path_lock);
1820 
1821     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1822     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1823     __ push(thread);
1824     __ push(lock_reg);
1825     __ push(obj_reg);
1826     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1827     __ addptr(rsp, 3*wordSize);
1828 
1829 #ifdef ASSERT
1830     { Label L;
1831     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1832     __ jcc(Assembler::equal, L);
1833     __ stop("no pending exception allowed on exit from monitorenter");
1834     __ bind(L);
1835     }
1836 #endif
1837     __ jmp(lock_done);
1838 
1839     // END Slow path lock
1840 
1841     // BEGIN Slow path unlock
1842     __ bind(slow_path_unlock);
1843 
1844     // Slow path unlock
1845 
1846     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1847       save_native_result(masm, ret_type, stack_slots);
1848     }
1849     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1850 
1851     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1852     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1853 
1854 
1855     // should be a peal
1856     // +wordSize because of the push above
1857     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1858     __ push(rax);
1859 
1860     __ push(obj_reg);
1861     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1862     __ addptr(rsp, 2*wordSize);
1863 #ifdef ASSERT
1864     {
1865       Label L;
1866       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1867       __ jcc(Assembler::equal, L);
1868       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1869       __ bind(L);
1870     }
1871 #endif /* ASSERT */
1872 
1873     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1874 
1875     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1876       restore_native_result(masm, ret_type, stack_slots);
1877     }
1878     __ jmp(unlock_done);
1879     // END Slow path unlock
1880 
1881   }
1882 
1883   // SLOW PATH Reguard the stack if needed
1884 
1885   __ bind(reguard);
1886   save_native_result(masm, ret_type, stack_slots);
1887   {
1888     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1889   }
1890   restore_native_result(masm, ret_type, stack_slots);
1891   __ jmp(reguard_done);
1892 
1893 
1894   // BEGIN EXCEPTION PROCESSING
1895 
1896   // Forward  the exception
1897   __ bind(exception_pending);
1898 
1899   // remove possible return value from FPU register stack
1900   __ empty_FPU_stack();
1901 
1902   // pop our frame
1903   __ leave();
1904   // and forward the exception
1905   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1906 
1907   __ flush();
1908 
1909   nmethod *nm = nmethod::new_native_nmethod(method,
1910                                             masm->code(),
1911                                             vep_offset,
1912                                             frame_complete,
1913                                             stack_slots / VMRegImpl::slots_per_word,
1914                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1915                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1916                                             oop_maps);
1917   return nm;
1918 
1919 }
1920 
1921 #ifdef HAVE_DTRACE_H
1922 // ---------------------------------------------------------------------------
1923 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1924 // in the Java compiled code convention, marshals them to the native
1925 // abi and then leaves nops at the position you would expect to call a native
1926 // function. When the probe is enabled the nops are replaced with a trap
1927 // instruction that dtrace inserts and the trace will cause a notification
1928 // to dtrace.
1929 //
1930 // The probes are only able to take primitive types and java/lang/String as
1931 // arguments.  No other java types are allowed. Strings are converted to utf8
1932 // strings so that from dtrace point of view java strings are converted to C
1933 // strings. There is an arbitrary fixed limit on the total space that a method
1934 // can use for converting the strings. (256 chars per string in the signature).
1935 // So any java string larger then this is truncated.
1936 
1937 nmethod *SharedRuntime::generate_dtrace_nmethod(
1938     MacroAssembler *masm, methodHandle method) {
1939 
1940   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1941   // be single threaded in this method.
1942   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1943 
1944   // Fill in the signature array, for the calling-convention call.
1945   int total_args_passed = method->size_of_parameters();
1946 
1947   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1948   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1949 
1950   // The signature we are going to use for the trap that dtrace will see
1951   // java/lang/String is converted. We drop "this" and any other object
1952   // is converted to NULL.  (A one-slot java/lang/Long object reference
1953   // is converted to a two-slot long, which is why we double the allocation).
1954   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1955   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1956 
1957   int i=0;
1958   int total_strings = 0;
1959   int first_arg_to_pass = 0;
1960   int total_c_args = 0;
1961 
1962   if( !method->is_static() ) {  // Pass in receiver first
1963     in_sig_bt[i++] = T_OBJECT;
1964     first_arg_to_pass = 1;
1965   }
1966 
1967   // We need to convert the java args to where a native (non-jni) function
1968   // would expect them. To figure out where they go we convert the java
1969   // signature to a C signature.
1970 
1971   SignatureStream ss(method->signature());
1972   for ( ; !ss.at_return_type(); ss.next()) {
1973     BasicType bt = ss.type();
1974     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1975     out_sig_bt[total_c_args++] = bt;
1976     if( bt == T_OBJECT) {
1977       symbolOop s = ss.as_symbol_or_null();
1978       if (s == vmSymbols::java_lang_String()) {
1979         total_strings++;
1980         out_sig_bt[total_c_args-1] = T_ADDRESS;
1981       } else if (s == vmSymbols::java_lang_Boolean() ||
1982                  s == vmSymbols::java_lang_Character() ||
1983                  s == vmSymbols::java_lang_Byte() ||
1984                  s == vmSymbols::java_lang_Short() ||
1985                  s == vmSymbols::java_lang_Integer() ||
1986                  s == vmSymbols::java_lang_Float()) {
1987         out_sig_bt[total_c_args-1] = T_INT;
1988       } else if (s == vmSymbols::java_lang_Long() ||
1989                  s == vmSymbols::java_lang_Double()) {
1990         out_sig_bt[total_c_args-1] = T_LONG;
1991         out_sig_bt[total_c_args++] = T_VOID;
1992       }
1993     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1994       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1995       out_sig_bt[total_c_args++] = T_VOID;
1996     }
1997   }
1998 
1999   assert(i==total_args_passed, "validly parsed signature");
2000 
2001   // Now get the compiled-Java layout as input arguments
2002   int comp_args_on_stack;
2003   comp_args_on_stack = SharedRuntime::java_calling_convention(
2004       in_sig_bt, in_regs, total_args_passed, false);
2005 
2006   // Now figure out where the args must be stored and how much stack space
2007   // they require (neglecting out_preserve_stack_slots).
2008 
2009   int out_arg_slots;
2010   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2011 
2012   // Calculate the total number of stack slots we will need.
2013 
2014   // First count the abi requirement plus all of the outgoing args
2015   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2016 
2017   // Now space for the string(s) we must convert
2018 
2019   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2020   for (i = 0; i < total_strings ; i++) {
2021     string_locs[i] = stack_slots;
2022     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2023   }
2024 
2025   // + 2 for return address (which we own) and saved rbp,
2026 
2027   stack_slots += 2;
2028 
2029   // Ok The space we have allocated will look like:
2030   //
2031   //
2032   // FP-> |                     |
2033   //      |---------------------|
2034   //      | string[n]           |
2035   //      |---------------------| <- string_locs[n]
2036   //      | string[n-1]         |
2037   //      |---------------------| <- string_locs[n-1]
2038   //      | ...                 |
2039   //      | ...                 |
2040   //      |---------------------| <- string_locs[1]
2041   //      | string[0]           |
2042   //      |---------------------| <- string_locs[0]
2043   //      | outbound memory     |
2044   //      | based arguments     |
2045   //      |                     |
2046   //      |---------------------|
2047   //      |                     |
2048   // SP-> | out_preserved_slots |
2049   //
2050   //
2051 
2052   // Now compute actual number of stack words we need rounding to make
2053   // stack properly aligned.
2054   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2055 
2056   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2057 
2058   intptr_t start = (intptr_t)__ pc();
2059 
2060   // First thing make an ic check to see if we should even be here
2061 
2062   // We are free to use all registers as temps without saving them and
2063   // restoring them except rbp. rbp, is the only callee save register
2064   // as far as the interpreter and the compiler(s) are concerned.
2065 
2066   const Register ic_reg = rax;
2067   const Register receiver = rcx;
2068   Label hit;
2069   Label exception_pending;
2070 
2071 
2072   __ verify_oop(receiver);
2073   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2074   __ jcc(Assembler::equal, hit);
2075 
2076   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2077 
2078   // verified entry must be aligned for code patching.
2079   // and the first 5 bytes must be in the same cache line
2080   // if we align at 8 then we will be sure 5 bytes are in the same line
2081   __ align(8);
2082 
2083   __ bind(hit);
2084 
2085   int vep_offset = ((intptr_t)__ pc()) - start;
2086 
2087 
2088   // The instruction at the verified entry point must be 5 bytes or longer
2089   // because it can be patched on the fly by make_non_entrant. The stack bang
2090   // instruction fits that requirement.
2091 
2092   // Generate stack overflow check
2093 
2094 
2095   if (UseStackBanging) {
2096     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2097       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2098     } else {
2099       __ movl(rax, stack_size);
2100       __ bang_stack_size(rax, rbx);
2101     }
2102   } else {
2103     // need a 5 byte instruction to allow MT safe patching to non-entrant
2104     __ fat_nop();
2105   }
2106 
2107   assert(((int)__ pc() - start - vep_offset) >= 5,
2108          "valid size for make_non_entrant");
2109 
2110   // Generate a new frame for the wrapper.
2111   __ enter();
2112 
2113   // -2 because return address is already present and so is saved rbp,
2114   if (stack_size - 2*wordSize != 0) {
2115     __ subl(rsp, stack_size - 2*wordSize);
2116   }
2117 
2118   // Frame is now completed as far a size and linkage.
2119 
2120   int frame_complete = ((intptr_t)__ pc()) - start;
2121 
2122   // First thing we do store all the args as if we are doing the call.
2123   // Since the C calling convention is stack based that ensures that
2124   // all the Java register args are stored before we need to convert any
2125   // string we might have.
2126 
2127   int sid = 0;
2128   int c_arg, j_arg;
2129   int string_reg = 0;
2130 
2131   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2132        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2133 
2134     VMRegPair src = in_regs[j_arg];
2135     VMRegPair dst = out_regs[c_arg];
2136     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2137            "stack based abi assumed");
2138 
2139     switch (in_sig_bt[j_arg]) {
2140 
2141       case T_ARRAY:
2142       case T_OBJECT:
2143         if (out_sig_bt[c_arg] == T_ADDRESS) {
2144           // Any register based arg for a java string after the first
2145           // will be destroyed by the call to get_utf so we store
2146           // the original value in the location the utf string address
2147           // will eventually be stored.
2148           if (src.first()->is_reg()) {
2149             if (string_reg++ != 0) {
2150               simple_move32(masm, src, dst);
2151             }
2152           }
2153         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2154           // need to unbox a one-word value
2155           Register in_reg = rax;
2156           if ( src.first()->is_reg() ) {
2157             in_reg = src.first()->as_Register();
2158           } else {
2159             simple_move32(masm, src, in_reg->as_VMReg());
2160           }
2161           Label skipUnbox;
2162           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2163           if ( out_sig_bt[c_arg] == T_LONG ) {
2164             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2165           }
2166           __ testl(in_reg, in_reg);
2167           __ jcc(Assembler::zero, skipUnbox);
2168           assert(dst.first()->is_stack() &&
2169                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2170                  "value(s) must go into stack slots");
2171 
2172           BasicType bt = out_sig_bt[c_arg];
2173           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2174           if ( bt == T_LONG ) {
2175             __ movl(rbx, Address(in_reg,
2176                                  box_offset + VMRegImpl::stack_slot_size));
2177             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2178           }
2179           __ movl(in_reg,  Address(in_reg, box_offset));
2180           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2181           __ bind(skipUnbox);
2182         } else {
2183           // Convert the arg to NULL
2184           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2185         }
2186         if (out_sig_bt[c_arg] == T_LONG) {
2187           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2188           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2189         }
2190         break;
2191 
2192       case T_VOID:
2193         break;
2194 
2195       case T_FLOAT:
2196         float_move(masm, src, dst);
2197         break;
2198 
2199       case T_DOUBLE:
2200         assert( j_arg + 1 < total_args_passed &&
2201                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2202         double_move(masm, src, dst);
2203         break;
2204 
2205       case T_LONG :
2206         long_move(masm, src, dst);
2207         break;
2208 
2209       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2210 
2211       default:
2212         simple_move32(masm, src, dst);
2213     }
2214   }
2215 
2216   // Now we must convert any string we have to utf8
2217   //
2218 
2219   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2220        sid < total_strings ; j_arg++, c_arg++ ) {
2221 
2222     if (out_sig_bt[c_arg] == T_ADDRESS) {
2223 
2224       Address utf8_addr = Address(
2225           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2226       __ leal(rax, utf8_addr);
2227 
2228       // The first string we find might still be in the original java arg
2229       // register
2230       VMReg orig_loc = in_regs[j_arg].first();
2231       Register string_oop;
2232 
2233       // This is where the argument will eventually reside
2234       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2235 
2236       if (sid == 1 && orig_loc->is_reg()) {
2237         string_oop = orig_loc->as_Register();
2238         assert(string_oop != rax, "smashed arg");
2239       } else {
2240 
2241         if (orig_loc->is_reg()) {
2242           // Get the copy of the jls object
2243           __ movl(rcx, dest);
2244         } else {
2245           // arg is still in the original location
2246           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2247         }
2248         string_oop = rcx;
2249 
2250       }
2251       Label nullString;
2252       __ movl(dest, NULL_WORD);
2253       __ testl(string_oop, string_oop);
2254       __ jcc(Assembler::zero, nullString);
2255 
2256       // Now we can store the address of the utf string as the argument
2257       __ movl(dest, rax);
2258 
2259       // And do the conversion
2260       __ call_VM_leaf(CAST_FROM_FN_PTR(
2261              address, SharedRuntime::get_utf), string_oop, rax);
2262       __ bind(nullString);
2263     }
2264 
2265     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2266       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2267       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2268     }
2269   }
2270 
2271 
2272   // Ok now we are done. Need to place the nop that dtrace wants in order to
2273   // patch in the trap
2274 
2275   int patch_offset = ((intptr_t)__ pc()) - start;
2276 
2277   __ nop();
2278 
2279 
2280   // Return
2281 
2282   __ leave();
2283   __ ret(0);
2284 
2285   __ flush();
2286 
2287   nmethod *nm = nmethod::new_dtrace_nmethod(
2288       method, masm->code(), vep_offset, patch_offset, frame_complete,
2289       stack_slots / VMRegImpl::slots_per_word);
2290   return nm;
2291 
2292 }
2293 
2294 #endif // HAVE_DTRACE_H
2295 
2296 // this function returns the adjust size (in number of words) to a c2i adapter
2297 // activation for use during deoptimization
2298 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2299   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2300 }
2301 
2302 
2303 uint SharedRuntime::out_preserve_stack_slots() {
2304   return 0;
2305 }
2306 
2307 
2308 //------------------------------generate_deopt_blob----------------------------
2309 void SharedRuntime::generate_deopt_blob() {
2310   // allocate space for the code
2311   ResourceMark rm;
2312   // setup code generation tools
2313   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2314   MacroAssembler* masm = new MacroAssembler(&buffer);
2315   int frame_size_in_words;
2316   OopMap* map = NULL;
2317   // Account for the extra args we place on the stack
2318   // by the time we call fetch_unroll_info
2319   const int additional_words = 2; // deopt kind, thread
2320 
2321   OopMapSet *oop_maps = new OopMapSet();
2322 
2323   // -------------
2324   // This code enters when returning to a de-optimized nmethod.  A return
2325   // address has been pushed on the the stack, and return values are in
2326   // registers.
2327   // If we are doing a normal deopt then we were called from the patched
2328   // nmethod from the point we returned to the nmethod. So the return
2329   // address on the stack is wrong by NativeCall::instruction_size
2330   // We will adjust the value to it looks like we have the original return
2331   // address on the stack (like when we eagerly deoptimized).
2332   // In the case of an exception pending with deoptimized then we enter
2333   // with a return address on the stack that points after the call we patched
2334   // into the exception handler. We have the following register state:
2335   //    rax,: exception
2336   //    rbx,: exception handler
2337   //    rdx: throwing pc
2338   // So in this case we simply jam rdx into the useless return address and
2339   // the stack looks just like we want.
2340   //
2341   // At this point we need to de-opt.  We save the argument return
2342   // registers.  We call the first C routine, fetch_unroll_info().  This
2343   // routine captures the return values and returns a structure which
2344   // describes the current frame size and the sizes of all replacement frames.
2345   // The current frame is compiled code and may contain many inlined
2346   // functions, each with their own JVM state.  We pop the current frame, then
2347   // push all the new frames.  Then we call the C routine unpack_frames() to
2348   // populate these frames.  Finally unpack_frames() returns us the new target
2349   // address.  Notice that callee-save registers are BLOWN here; they have
2350   // already been captured in the vframeArray at the time the return PC was
2351   // patched.
2352   address start = __ pc();
2353   Label cont;
2354 
2355   // Prolog for non exception case!
2356 
2357   // Save everything in sight.
2358 
2359   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2360   // Normal deoptimization
2361   __ push(Deoptimization::Unpack_deopt);
2362   __ jmp(cont);
2363 
2364   int reexecute_offset = __ pc() - start;
2365 
2366   // Reexecute case
2367   // return address is the pc describes what bci to do re-execute at
2368 
2369   // No need to update map as each call to save_live_registers will produce identical oopmap
2370   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2371 
2372   __ push(Deoptimization::Unpack_reexecute);
2373   __ jmp(cont);
2374 
2375   int exception_offset = __ pc() - start;
2376 
2377   // Prolog for exception case
2378 
2379   // all registers are dead at this entry point, except for rax, and
2380   // rdx which contain the exception oop and exception pc
2381   // respectively.  Set them in TLS and fall thru to the
2382   // unpack_with_exception_in_tls entry point.
2383 
2384   __ get_thread(rdi);
2385   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2386   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2387 
2388   int exception_in_tls_offset = __ pc() - start;
2389 
2390   // new implementation because exception oop is now passed in JavaThread
2391 
2392   // Prolog for exception case
2393   // All registers must be preserved because they might be used by LinearScan
2394   // Exceptiop oop and throwing PC are passed in JavaThread
2395   // tos: stack at point of call to method that threw the exception (i.e. only
2396   // args are on the stack, no return address)
2397 
2398   // make room on stack for the return address
2399   // It will be patched later with the throwing pc. The correct value is not
2400   // available now because loading it from memory would destroy registers.
2401   __ push(0);
2402 
2403   // Save everything in sight.
2404 
2405   // No need to update map as each call to save_live_registers will produce identical oopmap
2406   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2407 
2408   // Now it is safe to overwrite any register
2409 
2410   // store the correct deoptimization type
2411   __ push(Deoptimization::Unpack_exception);
2412 
2413   // load throwing pc from JavaThread and patch it as the return address
2414   // of the current frame. Then clear the field in JavaThread
2415   __ get_thread(rdi);
2416   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2417   __ movptr(Address(rbp, wordSize), rdx);
2418   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2419 
2420 #ifdef ASSERT
2421   // verify that there is really an exception oop in JavaThread
2422   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2423   __ verify_oop(rax);
2424 
2425   // verify that there is no pending exception
2426   Label no_pending_exception;
2427   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2428   __ testptr(rax, rax);
2429   __ jcc(Assembler::zero, no_pending_exception);
2430   __ stop("must not have pending exception here");
2431   __ bind(no_pending_exception);
2432 #endif
2433 
2434   __ bind(cont);
2435 
2436   // Compiled code leaves the floating point stack dirty, empty it.
2437   __ empty_FPU_stack();
2438 
2439 
2440   // Call C code.  Need thread and this frame, but NOT official VM entry
2441   // crud.  We cannot block on this call, no GC can happen.
2442   __ get_thread(rcx);
2443   __ push(rcx);
2444   // fetch_unroll_info needs to call last_java_frame()
2445   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2446 
2447   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2448 
2449   // Need to have an oopmap that tells fetch_unroll_info where to
2450   // find any register it might need.
2451 
2452   oop_maps->add_gc_map( __ pc()-start, map);
2453 
2454   // Discard arg to fetch_unroll_info
2455   __ pop(rcx);
2456 
2457   __ get_thread(rcx);
2458   __ reset_last_Java_frame(rcx, false, false);
2459 
2460   // Load UnrollBlock into EDI
2461   __ mov(rdi, rax);
2462 
2463   // Move the unpack kind to a safe place in the UnrollBlock because
2464   // we are very short of registers
2465 
2466   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2467   // retrieve the deopt kind from where we left it.
2468   __ pop(rax);
2469   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2470 
2471    Label noException;
2472   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2473   __ jcc(Assembler::notEqual, noException);
2474   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2475   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2476   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2477   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2478 
2479   __ verify_oop(rax);
2480 
2481   // Overwrite the result registers with the exception results.
2482   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2483   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2484 
2485   __ bind(noException);
2486 
2487   // Stack is back to only having register save data on the stack.
2488   // Now restore the result registers. Everything else is either dead or captured
2489   // in the vframeArray.
2490 
2491   RegisterSaver::restore_result_registers(masm);
2492 
2493   // Non standard control word may be leaked out through a safepoint blob, and we can
2494   // deopt at a poll point with the non standard control word. However, we should make
2495   // sure the control word is correct after restore_result_registers.
2496   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2497 
2498   // All of the register save area has been popped of the stack. Only the
2499   // return address remains.
2500 
2501   // Pop all the frames we must move/replace.
2502   //
2503   // Frame picture (youngest to oldest)
2504   // 1: self-frame (no frame link)
2505   // 2: deopting frame  (no frame link)
2506   // 3: caller of deopting frame (could be compiled/interpreted).
2507   //
2508   // Note: by leaving the return address of self-frame on the stack
2509   // and using the size of frame 2 to adjust the stack
2510   // when we are done the return to frame 3 will still be on the stack.
2511 
2512   // Pop deoptimized frame
2513   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2514 
2515   // sp should be pointing at the return address to the caller (3)
2516 
2517   // Stack bang to make sure there's enough room for these interpreter frames.
2518   if (UseStackBanging) {
2519     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2520     __ bang_stack_size(rbx, rcx);
2521   }
2522 
2523   // Load array of frame pcs into ECX
2524   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2525 
2526   __ pop(rsi); // trash the old pc
2527 
2528   // Load array of frame sizes into ESI
2529   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2530 
2531   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2532 
2533   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2534   __ movl(counter, rbx);
2535 
2536   // Pick up the initial fp we should save
2537   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2538 
2539   // Now adjust the caller's stack to make up for the extra locals
2540   // but record the original sp so that we can save it in the skeletal interpreter
2541   // frame and the stack walking of interpreter_sender will get the unextended sp
2542   // value and not the "real" sp value.
2543 
2544   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2545   __ movptr(sp_temp, rsp);
2546   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2547   __ subptr(rsp, rbx);
2548 
2549   // Push interpreter frames in a loop
2550   Label loop;
2551   __ bind(loop);
2552   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2553 #ifdef CC_INTERP
2554   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2555 #ifdef ASSERT
2556   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2557   __ push(0xDEADDEAD);
2558 #else /* ASSERT */
2559   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2560 #endif /* ASSERT */
2561 #else /* CC_INTERP */
2562   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2563 #endif /* CC_INTERP */
2564   __ pushptr(Address(rcx, 0));          // save return address
2565   __ enter();                           // save old & set new rbp,
2566   __ subptr(rsp, rbx);                  // Prolog!
2567   __ movptr(rbx, sp_temp);              // sender's sp
2568 #ifdef CC_INTERP
2569   __ movptr(Address(rbp,
2570                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2571           rbx); // Make it walkable
2572 #else /* CC_INTERP */
2573   // This value is corrected by layout_activation_impl
2574   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2575   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2576 #endif /* CC_INTERP */
2577   __ movptr(sp_temp, rsp);              // pass to next frame
2578   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2579   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2580   __ decrementl(counter);             // decrement counter
2581   __ jcc(Assembler::notZero, loop);
2582   __ pushptr(Address(rcx, 0));          // save final return address
2583 
2584   // Re-push self-frame
2585   __ enter();                           // save old & set new rbp,
2586 
2587   //  Return address and rbp, are in place
2588   // We'll push additional args later. Just allocate a full sized
2589   // register save area
2590   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2591 
2592   // Restore frame locals after moving the frame
2593   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2594   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2595   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2596   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2597   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2598 
2599   // Set up the args to unpack_frame
2600 
2601   __ pushl(unpack_kind);                     // get the unpack_kind value
2602   __ get_thread(rcx);
2603   __ push(rcx);
2604 
2605   // set last_Java_sp, last_Java_fp
2606   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2607 
2608   // Call C code.  Need thread but NOT official VM entry
2609   // crud.  We cannot block on this call, no GC can happen.  Call should
2610   // restore return values to their stack-slots with the new SP.
2611   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2612   // Set an oopmap for the call site
2613   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2614 
2615   // rax, contains the return result type
2616   __ push(rax);
2617 
2618   __ get_thread(rcx);
2619   __ reset_last_Java_frame(rcx, false, false);
2620 
2621   // Collect return values
2622   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2623   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2624 
2625   // Clear floating point stack before returning to interpreter
2626   __ empty_FPU_stack();
2627 
2628   // Check if we should push the float or double return value.
2629   Label results_done, yes_double_value;
2630   __ cmpl(Address(rsp, 0), T_DOUBLE);
2631   __ jcc (Assembler::zero, yes_double_value);
2632   __ cmpl(Address(rsp, 0), T_FLOAT);
2633   __ jcc (Assembler::notZero, results_done);
2634 
2635   // return float value as expected by interpreter
2636   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2637   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2638   __ jmp(results_done);
2639 
2640   // return double value as expected by interpreter
2641   __ bind(yes_double_value);
2642   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2643   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2644 
2645   __ bind(results_done);
2646 
2647   // Pop self-frame.
2648   __ leave();                              // Epilog!
2649 
2650   // Jump to interpreter
2651   __ ret(0);
2652 
2653   // -------------
2654   // make sure all code is generated
2655   masm->flush();
2656 
2657   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2658   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2659 }
2660 
2661 
2662 #ifdef COMPILER2
2663 //------------------------------generate_uncommon_trap_blob--------------------
2664 void SharedRuntime::generate_uncommon_trap_blob() {
2665   // allocate space for the code
2666   ResourceMark rm;
2667   // setup code generation tools
2668   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2669   MacroAssembler* masm = new MacroAssembler(&buffer);
2670 
2671   enum frame_layout {
2672     arg0_off,      // thread                     sp + 0 // Arg location for
2673     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2674     // The frame sender code expects that rbp will be in the "natural" place and
2675     // will override any oopMap setting for it. We must therefore force the layout
2676     // so that it agrees with the frame sender code.
2677     rbp_off,       // callee saved register      sp + 2
2678     return_off,    // slot for return address    sp + 3
2679     framesize
2680   };
2681 
2682   address start = __ pc();
2683   // Push self-frame.
2684   __ subptr(rsp, return_off*wordSize);     // Epilog!
2685 
2686   // rbp, is an implicitly saved callee saved register (i.e. the calling
2687   // convention will save restore it in prolog/epilog) Other than that
2688   // there are no callee save registers no that adapter frames are gone.
2689   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2690 
2691   // Clear the floating point exception stack
2692   __ empty_FPU_stack();
2693 
2694   // set last_Java_sp
2695   __ get_thread(rdx);
2696   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2697 
2698   // Call C code.  Need thread but NOT official VM entry
2699   // crud.  We cannot block on this call, no GC can happen.  Call should
2700   // capture callee-saved registers as well as return values.
2701   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2702   // argument already in ECX
2703   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2704   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2705 
2706   // Set an oopmap for the call site
2707   OopMapSet *oop_maps = new OopMapSet();
2708   OopMap* map =  new OopMap( framesize, 0 );
2709   // No oopMap for rbp, it is known implicitly
2710 
2711   oop_maps->add_gc_map( __ pc()-start, map);
2712 
2713   __ get_thread(rcx);
2714 
2715   __ reset_last_Java_frame(rcx, false, false);
2716 
2717   // Load UnrollBlock into EDI
2718   __ movptr(rdi, rax);
2719 
2720   // Pop all the frames we must move/replace.
2721   //
2722   // Frame picture (youngest to oldest)
2723   // 1: self-frame (no frame link)
2724   // 2: deopting frame  (no frame link)
2725   // 3: caller of deopting frame (could be compiled/interpreted).
2726 
2727   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2728   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2729 
2730   // Pop deoptimized frame
2731   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2732   __ addptr(rsp, rcx);
2733 
2734   // sp should be pointing at the return address to the caller (3)
2735 
2736   // Stack bang to make sure there's enough room for these interpreter frames.
2737   if (UseStackBanging) {
2738     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2739     __ bang_stack_size(rbx, rcx);
2740   }
2741 
2742 
2743   // Load array of frame pcs into ECX
2744   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2745 
2746   __ pop(rsi); // trash the pc
2747 
2748   // Load array of frame sizes into ESI
2749   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2750 
2751   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2752 
2753   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2754   __ movl(counter, rbx);
2755 
2756   // Pick up the initial fp we should save
2757   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2758 
2759   // Now adjust the caller's stack to make up for the extra locals
2760   // but record the original sp so that we can save it in the skeletal interpreter
2761   // frame and the stack walking of interpreter_sender will get the unextended sp
2762   // value and not the "real" sp value.
2763 
2764   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2765   __ movptr(sp_temp, rsp);
2766   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2767   __ subptr(rsp, rbx);
2768 
2769   // Push interpreter frames in a loop
2770   Label loop;
2771   __ bind(loop);
2772   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2773 #ifdef CC_INTERP
2774   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2775 #ifdef ASSERT
2776   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2777   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2778 #else /* ASSERT */
2779   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2780 #endif /* ASSERT */
2781 #else /* CC_INTERP */
2782   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2783 #endif /* CC_INTERP */
2784   __ pushptr(Address(rcx, 0));          // save return address
2785   __ enter();                           // save old & set new rbp,
2786   __ subptr(rsp, rbx);                  // Prolog!
2787   __ movptr(rbx, sp_temp);              // sender's sp
2788 #ifdef CC_INTERP
2789   __ movptr(Address(rbp,
2790                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2791           rbx); // Make it walkable
2792 #else /* CC_INTERP */
2793   // This value is corrected by layout_activation_impl
2794   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2795   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2796 #endif /* CC_INTERP */
2797   __ movptr(sp_temp, rsp);              // pass to next frame
2798   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2799   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2800   __ decrementl(counter);             // decrement counter
2801   __ jcc(Assembler::notZero, loop);
2802   __ pushptr(Address(rcx, 0));            // save final return address
2803 
2804   // Re-push self-frame
2805   __ enter();                           // save old & set new rbp,
2806   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2807 
2808 
2809   // set last_Java_sp, last_Java_fp
2810   __ get_thread(rdi);
2811   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2812 
2813   // Call C code.  Need thread but NOT official VM entry
2814   // crud.  We cannot block on this call, no GC can happen.  Call should
2815   // restore return values to their stack-slots with the new SP.
2816   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2817   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2818   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2819   // Set an oopmap for the call site
2820   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2821 
2822   __ get_thread(rdi);
2823   __ reset_last_Java_frame(rdi, true, false);
2824 
2825   // Pop self-frame.
2826   __ leave();     // Epilog!
2827 
2828   // Jump to interpreter
2829   __ ret(0);
2830 
2831   // -------------
2832   // make sure all code is generated
2833   masm->flush();
2834 
2835    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2836 }
2837 #endif // COMPILER2
2838 
2839 //------------------------------generate_handler_blob------
2840 //
2841 // Generate a special Compile2Runtime blob that saves all registers,
2842 // setup oopmap, and calls safepoint code to stop the compiled code for
2843 // a safepoint.
2844 //
2845 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
2846 
2847   // Account for thread arg in our frame
2848   const int additional_words = 1;
2849   int frame_size_in_words;
2850 
2851   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2852 
2853   ResourceMark rm;
2854   OopMapSet *oop_maps = new OopMapSet();
2855   OopMap* map;
2856 
2857   // allocate space for the code
2858   // setup code generation tools
2859   CodeBuffer   buffer("handler_blob", 1024, 512);
2860   MacroAssembler* masm = new MacroAssembler(&buffer);
2861 
2862   const Register java_thread = rdi; // callee-saved for VC++
2863   address start   = __ pc();
2864   address call_pc = NULL;
2865 
2866   // If cause_return is true we are at a poll_return and there is
2867   // the return address on the stack to the caller on the nmethod
2868   // that is safepoint. We can leave this return on the stack and
2869   // effectively complete the return and safepoint in the caller.
2870   // Otherwise we push space for a return address that the safepoint
2871   // handler will install later to make the stack walking sensible.
2872   if( !cause_return )
2873     __ push(rbx);                // Make room for return address (or push it again)
2874 
2875   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2876 
2877   // The following is basically a call_VM. However, we need the precise
2878   // address of the call in order to generate an oopmap. Hence, we do all the
2879   // work ourselves.
2880 
2881   // Push thread argument and setup last_Java_sp
2882   __ get_thread(java_thread);
2883   __ push(java_thread);
2884   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2885 
2886   // if this was not a poll_return then we need to correct the return address now.
2887   if( !cause_return ) {
2888     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2889     __ movptr(Address(rbp, wordSize), rax);
2890   }
2891 
2892   // do the call
2893   __ call(RuntimeAddress(call_ptr));
2894 
2895   // Set an oopmap for the call site.  This oopmap will map all
2896   // oop-registers and debug-info registers as callee-saved.  This
2897   // will allow deoptimization at this safepoint to find all possible
2898   // debug-info recordings, as well as let GC find all oops.
2899 
2900   oop_maps->add_gc_map( __ pc() - start, map);
2901 
2902   // Discard arg
2903   __ pop(rcx);
2904 
2905   Label noException;
2906 
2907   // Clear last_Java_sp again
2908   __ get_thread(java_thread);
2909   __ reset_last_Java_frame(java_thread, false, false);
2910 
2911   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2912   __ jcc(Assembler::equal, noException);
2913 
2914   // Exception pending
2915 
2916   RegisterSaver::restore_live_registers(masm);
2917 
2918   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2919 
2920   __ bind(noException);
2921 
2922   // Normal exit, register restoring and exit
2923   RegisterSaver::restore_live_registers(masm);
2924 
2925   __ ret(0);
2926 
2927   // make sure all code is generated
2928   masm->flush();
2929 
2930   // Fill-out other meta info
2931   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2932 }
2933 
2934 //
2935 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2936 //
2937 // Generate a stub that calls into vm to find out the proper destination
2938 // of a java call. All the argument registers are live at this point
2939 // but since this is generic code we don't know what they are and the caller
2940 // must do any gc of the args.
2941 //
2942 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
2943   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2944 
2945   // allocate space for the code
2946   ResourceMark rm;
2947 
2948   CodeBuffer buffer(name, 1000, 512);
2949   MacroAssembler* masm                = new MacroAssembler(&buffer);
2950 
2951   int frame_size_words;
2952   enum frame_layout {
2953                 thread_off,
2954                 extra_words };
2955 
2956   OopMapSet *oop_maps = new OopMapSet();
2957   OopMap* map = NULL;
2958 
2959   int start = __ offset();
2960 
2961   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2962 
2963   int frame_complete = __ offset();
2964 
2965   const Register thread = rdi;
2966   __ get_thread(rdi);
2967 
2968   __ push(thread);
2969   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2970 
2971   __ call(RuntimeAddress(destination));
2972 
2973 
2974   // Set an oopmap for the call site.
2975   // We need this not only for callee-saved registers, but also for volatile
2976   // registers that the compiler might be keeping live across a safepoint.
2977 
2978   oop_maps->add_gc_map( __ offset() - start, map);
2979 
2980   // rax, contains the address we are going to jump to assuming no exception got installed
2981 
2982   __ addptr(rsp, wordSize);
2983 
2984   // clear last_Java_sp
2985   __ reset_last_Java_frame(thread, true, false);
2986   // check for pending exceptions
2987   Label pending;
2988   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2989   __ jcc(Assembler::notEqual, pending);
2990 
2991   // get the returned methodOop
2992   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
2993   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2994 
2995   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2996 
2997   RegisterSaver::restore_live_registers(masm);
2998 
2999   // We are back the the original state on entry and ready to go.
3000 
3001   __ jmp(rax);
3002 
3003   // Pending exception after the safepoint
3004 
3005   __ bind(pending);
3006 
3007   RegisterSaver::restore_live_registers(masm);
3008 
3009   // exception pending => remove activation and forward to exception handler
3010 
3011   __ get_thread(thread);
3012   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3013   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3014   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3015 
3016   // -------------
3017   // make sure all code is generated
3018   masm->flush();
3019 
3020   // return the  blob
3021   // frame_size_words or bytes??
3022   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3023 }
3024 
3025 void SharedRuntime::generate_stubs() {
3026 
3027   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3028                                         "wrong_method_stub");
3029 
3030   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3031                                         "ic_miss_stub");
3032 
3033   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3034                                         "resolve_opt_virtual_call");
3035 
3036   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3037                                         "resolve_virtual_call");
3038 
3039   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3040                                         "resolve_static_call");
3041 
3042   _polling_page_safepoint_handler_blob =
3043     generate_handler_blob(CAST_FROM_FN_PTR(address,
3044                    SafepointSynchronize::handle_polling_page_exception), false);
3045 
3046   _polling_page_return_handler_blob =
3047     generate_handler_blob(CAST_FROM_FN_PTR(address,
3048                    SafepointSynchronize::handle_polling_page_exception), true);
3049 
3050   generate_deopt_blob();
3051 #ifdef COMPILER2
3052   generate_uncommon_trap_blob();
3053 #endif // COMPILER2
3054 }