1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime_x86_64.cpp.incl"
  27 
  28 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  29 #ifdef COMPILER2
  30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  31 ExceptionBlob      *OptoRuntime::_exception_blob;
  32 #endif // COMPILER2
  33 
  34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  41 
  42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  43 
  44 #define __ masm->
  45 
  46 class SimpleRuntimeFrame {
  47 
  48   public:
  49 
  50   // Most of the runtime stubs have this simple frame layout.
  51   // This class exists to make the layout shared in one place.
  52   // Offsets are for compiler stack slots, which are jints.
  53   enum layout {
  54     // The frame sender code expects that rbp will be in the "natural" place and
  55     // will override any oopMap setting for it. We must therefore force the layout
  56     // so that it agrees with the frame sender code.
  57     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  58     rbp_off2,
  59     return_off, return_off2,
  60     framesize
  61   };
  62 };
  63 
  64 class RegisterSaver {
  65   // Capture info about frame layout.  Layout offsets are in jint
  66   // units because compiler frame slots are jints.
  67 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  68   enum layout {
  69     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  70     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  71     DEF_XMM_OFFS(0),
  72     DEF_XMM_OFFS(1),
  73     DEF_XMM_OFFS(2),
  74     DEF_XMM_OFFS(3),
  75     DEF_XMM_OFFS(4),
  76     DEF_XMM_OFFS(5),
  77     DEF_XMM_OFFS(6),
  78     DEF_XMM_OFFS(7),
  79     DEF_XMM_OFFS(8),
  80     DEF_XMM_OFFS(9),
  81     DEF_XMM_OFFS(10),
  82     DEF_XMM_OFFS(11),
  83     DEF_XMM_OFFS(12),
  84     DEF_XMM_OFFS(13),
  85     DEF_XMM_OFFS(14),
  86     DEF_XMM_OFFS(15),
  87     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  88     fpu_stateH_end,
  89     r15_off, r15H_off,
  90     r14_off, r14H_off,
  91     r13_off, r13H_off,
  92     r12_off, r12H_off,
  93     r11_off, r11H_off,
  94     r10_off, r10H_off,
  95     r9_off,  r9H_off,
  96     r8_off,  r8H_off,
  97     rdi_off, rdiH_off,
  98     rsi_off, rsiH_off,
  99     ignore_off, ignoreH_off,  // extra copy of rbp
 100     rsp_off, rspH_off,
 101     rbx_off, rbxH_off,
 102     rdx_off, rdxH_off,
 103     rcx_off, rcxH_off,
 104     rax_off, raxH_off,
 105     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 106     align_off, alignH_off,
 107     flags_off, flagsH_off,
 108     // The frame sender code expects that rbp will be in the "natural" place and
 109     // will override any oopMap setting for it. We must therefore force the layout
 110     // so that it agrees with the frame sender code.
 111     rbp_off, rbpH_off,        // copy of rbp we will restore
 112     return_off, returnH_off,  // slot for return address
 113     reg_save_size             // size in compiler stack slots
 114   };
 115 
 116  public:
 117   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 118   static void restore_live_registers(MacroAssembler* masm);
 119 
 120   // Offsets into the register save area
 121   // Used by deoptimization when it is managing result register
 122   // values on its own
 123 
 124   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 125   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 126   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 127   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 128   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 129 
 130   // During deoptimization only the result registers need to be restored,
 131   // all the other values have already been extracted.
 132   static void restore_result_registers(MacroAssembler* masm);
 133 };
 134 
 135 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 136 
 137   // Always make the frame size 16-byte aligned
 138   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 139                                      reg_save_size*BytesPerInt, 16);
 140   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 141   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 142   // The caller will allocate additional_frame_words
 143   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 144   // CodeBlob frame size is in words.
 145   int frame_size_in_words = frame_size_in_bytes / wordSize;
 146   *total_frame_words = frame_size_in_words;
 147 
 148   // Save registers, fpu state, and flags.
 149   // We assume caller has already pushed the return address onto the
 150   // stack, so rsp is 8-byte aligned here.
 151   // We push rpb twice in this sequence because we want the real rbp
 152   // to be under the return like a normal enter.
 153 
 154   __ enter();          // rsp becomes 16-byte aligned here
 155   __ push_CPU_state(); // Push a multiple of 16 bytes
 156   if (frame::arg_reg_save_area_bytes != 0) {
 157     // Allocate argument register save area
 158     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 159   }
 160 
 161   // Set an oopmap for the call site.  This oopmap will map all
 162   // oop-registers and debug-info registers as callee-saved.  This
 163   // will allow deoptimization at this safepoint to find all possible
 164   // debug-info recordings, as well as let GC find all oops.
 165 
 166   OopMapSet *oop_maps = new OopMapSet();
 167   OopMap* map = new OopMap(frame_size_in_slots, 0);
 168   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 169   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 170   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 171   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 172   // rbp location is known implicitly by the frame sender code, needs no oopmap
 173   // and the location where rbp was saved by is ignored
 174   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 175   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 176   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 177   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 178   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 179   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 180   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 181   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 182   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 183   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 184   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 188   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 189   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 190   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 200 
 201   // %%% These should all be a waste but we'll keep things as they were for now
 202   if (true) {
 203     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 204                           rax->as_VMReg()->next());
 205     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 206                           rcx->as_VMReg()->next());
 207     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 208                           rdx->as_VMReg()->next());
 209     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 210                           rbx->as_VMReg()->next());
 211     // rbp location is known implicitly by the frame sender code, needs no oopmap
 212     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 213                           rsi->as_VMReg()->next());
 214     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 215                           rdi->as_VMReg()->next());
 216     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 217                           r8->as_VMReg()->next());
 218     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 219                           r9->as_VMReg()->next());
 220     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 221                           r10->as_VMReg()->next());
 222     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 223                           r11->as_VMReg()->next());
 224     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 225                           r12->as_VMReg()->next());
 226     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 227                           r13->as_VMReg()->next());
 228     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 229                           r14->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 231                           r15->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 233                           xmm0->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 235                           xmm1->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 237                           xmm2->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 239                           xmm3->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 241                           xmm4->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 243                           xmm5->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 245                           xmm6->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 247                           xmm7->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 249                           xmm8->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 251                           xmm9->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 253                           xmm10->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 255                           xmm11->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 257                           xmm12->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 259                           xmm13->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 261                           xmm14->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 263                           xmm15->as_VMReg()->next());
 264   }
 265 
 266   return map;
 267 }
 268 
 269 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 270   if (frame::arg_reg_save_area_bytes != 0) {
 271     // Pop arg register save area
 272     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 273   }
 274   // Recover CPU state
 275   __ pop_CPU_state();
 276   // Get the rbp described implicitly by the calling convention (no oopMap)
 277   __ pop(rbp);
 278 }
 279 
 280 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 281 
 282   // Just restore result register. Only used by deoptimization. By
 283   // now any callee save register that needs to be restored to a c2
 284   // caller of the deoptee has been extracted into the vframeArray
 285   // and will be stuffed into the c2i adapter we create for later
 286   // restoration so only result registers need to be restored here.
 287 
 288   // Restore fp result register
 289   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 290   // Restore integer result register
 291   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 292   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 293 
 294   // Pop all of the register save are off the stack except the return address
 295   __ addptr(rsp, return_offset_in_bytes());
 296 }
 297 
 298 // The java_calling_convention describes stack locations as ideal slots on
 299 // a frame with no abi restrictions. Since we must observe abi restrictions
 300 // (like the placement of the register window) the slots must be biased by
 301 // the following value.
 302 static int reg2offset_in(VMReg r) {
 303   // Account for saved rbp and return address
 304   // This should really be in_preserve_stack_slots
 305   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 306 }
 307 
 308 static int reg2offset_out(VMReg r) {
 309   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 310 }
 311 
 312 // ---------------------------------------------------------------------------
 313 // Read the array of BasicTypes from a signature, and compute where the
 314 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 315 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 316 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 317 // as framesizes are fixed.
 318 // VMRegImpl::stack0 refers to the first slot 0(sp).
 319 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 320 // up to RegisterImpl::number_of_registers) are the 64-bit
 321 // integer registers.
 322 
 323 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 324 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 325 // units regardless of build. Of course for i486 there is no 64 bit build
 326 
 327 // The Java calling convention is a "shifted" version of the C ABI.
 328 // By skipping the first C ABI register we can call non-static jni methods
 329 // with small numbers of arguments without having to shuffle the arguments
 330 // at all. Since we control the java ABI we ought to at least get some
 331 // advantage out of it.
 332 
 333 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 334                                            VMRegPair *regs,
 335                                            int total_args_passed,
 336                                            int is_outgoing) {
 337 
 338   // Create the mapping between argument positions and
 339   // registers.
 340   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 341     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 342   };
 343   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 344     j_farg0, j_farg1, j_farg2, j_farg3,
 345     j_farg4, j_farg5, j_farg6, j_farg7
 346   };
 347 
 348 
 349   uint int_args = 0;
 350   uint fp_args = 0;
 351   uint stk_args = 0; // inc by 2 each time
 352 
 353   for (int i = 0; i < total_args_passed; i++) {
 354     switch (sig_bt[i]) {
 355     case T_BOOLEAN:
 356     case T_CHAR:
 357     case T_BYTE:
 358     case T_SHORT:
 359     case T_INT:
 360       if (int_args < Argument::n_int_register_parameters_j) {
 361         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 362       } else {
 363         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 364         stk_args += 2;
 365       }
 366       break;
 367     case T_VOID:
 368       // halves of T_LONG or T_DOUBLE
 369       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 370       regs[i].set_bad();
 371       break;
 372     case T_LONG:
 373       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 374       // fall through
 375     case T_OBJECT:
 376     case T_ARRAY:
 377     case T_ADDRESS:
 378       if (int_args < Argument::n_int_register_parameters_j) {
 379         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 380       } else {
 381         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 382         stk_args += 2;
 383       }
 384       break;
 385     case T_FLOAT:
 386       if (fp_args < Argument::n_float_register_parameters_j) {
 387         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 388       } else {
 389         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 390         stk_args += 2;
 391       }
 392       break;
 393     case T_DOUBLE:
 394       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 395       if (fp_args < Argument::n_float_register_parameters_j) {
 396         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 397       } else {
 398         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 399         stk_args += 2;
 400       }
 401       break;
 402     default:
 403       ShouldNotReachHere();
 404       break;
 405     }
 406   }
 407 
 408   return round_to(stk_args, 2);
 409 }
 410 
 411 // Patch the callers callsite with entry to compiled code if it exists.
 412 static void patch_callers_callsite(MacroAssembler *masm) {
 413   Label L;
 414   __ verify_oop(rbx);
 415   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 416   __ jcc(Assembler::equal, L);
 417 
 418   // Save the current stack pointer
 419   __ mov(r13, rsp);
 420   // Schedule the branch target address early.
 421   // Call into the VM to patch the caller, then jump to compiled callee
 422   // rax isn't live so capture return address while we easily can
 423   __ movptr(rax, Address(rsp, 0));
 424 
 425   // align stack so push_CPU_state doesn't fault
 426   __ andptr(rsp, -(StackAlignmentInBytes));
 427   __ push_CPU_state();
 428 
 429 
 430   __ verify_oop(rbx);
 431   // VM needs caller's callsite
 432   // VM needs target method
 433   // This needs to be a long call since we will relocate this adapter to
 434   // the codeBuffer and it may not reach
 435 
 436   // Allocate argument register save area
 437   if (frame::arg_reg_save_area_bytes != 0) {
 438     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 439   }
 440   __ mov(c_rarg0, rbx);
 441   __ mov(c_rarg1, rax);
 442   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 443 
 444   // De-allocate argument register save area
 445   if (frame::arg_reg_save_area_bytes != 0) {
 446     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 447   }
 448 
 449   __ pop_CPU_state();
 450   // restore sp
 451   __ mov(rsp, r13);
 452   __ bind(L);
 453 }
 454 
 455 
 456 static void gen_c2i_adapter(MacroAssembler *masm,
 457                             int total_args_passed,
 458                             int comp_args_on_stack,
 459                             const BasicType *sig_bt,
 460                             const VMRegPair *regs,
 461                             Label& skip_fixup) {
 462   // Before we get into the guts of the C2I adapter, see if we should be here
 463   // at all.  We've come from compiled code and are attempting to jump to the
 464   // interpreter, which means the caller made a static call to get here
 465   // (vcalls always get a compiled target if there is one).  Check for a
 466   // compiled target.  If there is one, we need to patch the caller's call.
 467   patch_callers_callsite(masm);
 468 
 469   __ bind(skip_fixup);
 470 
 471   // Since all args are passed on the stack, total_args_passed *
 472   // Interpreter::stackElementSize is the space we need. Plus 1 because
 473   // we also account for the return address location since
 474   // we store it first rather than hold it in rax across all the shuffling
 475 
 476   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 477 
 478   // stack is aligned, keep it that way
 479   extraspace = round_to(extraspace, 2*wordSize);
 480 
 481   // Get return address
 482   __ pop(rax);
 483 
 484   // set senderSP value
 485   __ mov(r13, rsp);
 486 
 487   __ subptr(rsp, extraspace);
 488 
 489   // Store the return address in the expected location
 490   __ movptr(Address(rsp, 0), rax);
 491 
 492   // Now write the args into the outgoing interpreter space
 493   for (int i = 0; i < total_args_passed; i++) {
 494     if (sig_bt[i] == T_VOID) {
 495       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 496       continue;
 497     }
 498 
 499     // offset to start parameters
 500     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 501     int next_off = st_off - Interpreter::stackElementSize;
 502 
 503     // Say 4 args:
 504     // i   st_off
 505     // 0   32 T_LONG
 506     // 1   24 T_VOID
 507     // 2   16 T_OBJECT
 508     // 3    8 T_BOOL
 509     // -    0 return address
 510     //
 511     // However to make thing extra confusing. Because we can fit a long/double in
 512     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 513     // leaves one slot empty and only stores to a single slot. In this case the
 514     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 515 
 516     VMReg r_1 = regs[i].first();
 517     VMReg r_2 = regs[i].second();
 518     if (!r_1->is_valid()) {
 519       assert(!r_2->is_valid(), "");
 520       continue;
 521     }
 522     if (r_1->is_stack()) {
 523       // memory to memory use rax
 524       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 525       if (!r_2->is_valid()) {
 526         // sign extend??
 527         __ movl(rax, Address(rsp, ld_off));
 528         __ movptr(Address(rsp, st_off), rax);
 529 
 530       } else {
 531 
 532         __ movq(rax, Address(rsp, ld_off));
 533 
 534         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 535         // T_DOUBLE and T_LONG use two slots in the interpreter
 536         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 537           // ld_off == LSW, ld_off+wordSize == MSW
 538           // st_off == MSW, next_off == LSW
 539           __ movq(Address(rsp, next_off), rax);
 540 #ifdef ASSERT
 541           // Overwrite the unused slot with known junk
 542           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 543           __ movptr(Address(rsp, st_off), rax);
 544 #endif /* ASSERT */
 545         } else {
 546           __ movq(Address(rsp, st_off), rax);
 547         }
 548       }
 549     } else if (r_1->is_Register()) {
 550       Register r = r_1->as_Register();
 551       if (!r_2->is_valid()) {
 552         // must be only an int (or less ) so move only 32bits to slot
 553         // why not sign extend??
 554         __ movl(Address(rsp, st_off), r);
 555       } else {
 556         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 557         // T_DOUBLE and T_LONG use two slots in the interpreter
 558         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 559           // long/double in gpr
 560 #ifdef ASSERT
 561           // Overwrite the unused slot with known junk
 562           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 563           __ movptr(Address(rsp, st_off), rax);
 564 #endif /* ASSERT */
 565           __ movq(Address(rsp, next_off), r);
 566         } else {
 567           __ movptr(Address(rsp, st_off), r);
 568         }
 569       }
 570     } else {
 571       assert(r_1->is_XMMRegister(), "");
 572       if (!r_2->is_valid()) {
 573         // only a float use just part of the slot
 574         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 575       } else {
 576 #ifdef ASSERT
 577         // Overwrite the unused slot with known junk
 578         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 579         __ movptr(Address(rsp, st_off), rax);
 580 #endif /* ASSERT */
 581         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 582       }
 583     }
 584   }
 585 
 586   // Schedule the branch target address early.
 587   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 588   __ jmp(rcx);
 589 }
 590 
 591 static void gen_i2c_adapter(MacroAssembler *masm,
 592                             int total_args_passed,
 593                             int comp_args_on_stack,
 594                             const BasicType *sig_bt,
 595                             const VMRegPair *regs) {
 596 
 597   //
 598   // We will only enter here from an interpreted frame and never from after
 599   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 600   // race and use a c2i we will remain interpreted for the race loser(s).
 601   // This removes all sorts of headaches on the x86 side and also eliminates
 602   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 603 
 604 
 605   // Note: r13 contains the senderSP on entry. We must preserve it since
 606   // we may do a i2c -> c2i transition if we lose a race where compiled
 607   // code goes non-entrant while we get args ready.
 608   // In addition we use r13 to locate all the interpreter args as
 609   // we must align the stack to 16 bytes on an i2c entry else we
 610   // lose alignment we expect in all compiled code and register
 611   // save code can segv when fxsave instructions find improperly
 612   // aligned stack pointer.
 613 
 614   __ movptr(rax, Address(rsp, 0));
 615 
 616   // Must preserve original SP for loading incoming arguments because
 617   // we need to align the outgoing SP for compiled code.
 618   __ movptr(r11, rsp);
 619 
 620   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 621   // in registers, we will occasionally have no stack args.
 622   int comp_words_on_stack = 0;
 623   if (comp_args_on_stack) {
 624     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 625     // registers are below.  By subtracting stack0, we either get a negative
 626     // number (all values in registers) or the maximum stack slot accessed.
 627 
 628     // Convert 4-byte c2 stack slots to words.
 629     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 630     // Round up to miminum stack alignment, in wordSize
 631     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 632     __ subptr(rsp, comp_words_on_stack * wordSize);
 633   }
 634 
 635 
 636   // Ensure compiled code always sees stack at proper alignment
 637   __ andptr(rsp, -16);
 638 
 639   // push the return address and misalign the stack that youngest frame always sees
 640   // as far as the placement of the call instruction
 641   __ push(rax);
 642 
 643   // Put saved SP in another register
 644   const Register saved_sp = rax;
 645   __ movptr(saved_sp, r11);
 646 
 647   // Will jump to the compiled code just as if compiled code was doing it.
 648   // Pre-load the register-jump target early, to schedule it better.
 649   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 650 
 651   // Now generate the shuffle code.  Pick up all register args and move the
 652   // rest through the floating point stack top.
 653   for (int i = 0; i < total_args_passed; i++) {
 654     if (sig_bt[i] == T_VOID) {
 655       // Longs and doubles are passed in native word order, but misaligned
 656       // in the 32-bit build.
 657       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 658       continue;
 659     }
 660 
 661     // Pick up 0, 1 or 2 words from SP+offset.
 662 
 663     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 664             "scrambled load targets?");
 665     // Load in argument order going down.
 666     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 667     // Point to interpreter value (vs. tag)
 668     int next_off = ld_off - Interpreter::stackElementSize;
 669     //
 670     //
 671     //
 672     VMReg r_1 = regs[i].first();
 673     VMReg r_2 = regs[i].second();
 674     if (!r_1->is_valid()) {
 675       assert(!r_2->is_valid(), "");
 676       continue;
 677     }
 678     if (r_1->is_stack()) {
 679       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 680       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 681 
 682       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 683       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 684       // will be generated.
 685       if (!r_2->is_valid()) {
 686         // sign extend???
 687         __ movl(r13, Address(saved_sp, ld_off));
 688         __ movptr(Address(rsp, st_off), r13);
 689       } else {
 690         //
 691         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 692         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 693         // So we must adjust where to pick up the data to match the interpreter.
 694         //
 695         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 696         // are accessed as negative so LSW is at LOW address
 697 
 698         // ld_off is MSW so get LSW
 699         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 700                            next_off : ld_off;
 701         __ movq(r13, Address(saved_sp, offset));
 702         // st_off is LSW (i.e. reg.first())
 703         __ movq(Address(rsp, st_off), r13);
 704       }
 705     } else if (r_1->is_Register()) {  // Register argument
 706       Register r = r_1->as_Register();
 707       assert(r != rax, "must be different");
 708       if (r_2->is_valid()) {
 709         //
 710         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 711         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 712         // So we must adjust where to pick up the data to match the interpreter.
 713 
 714         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 715                            next_off : ld_off;
 716 
 717         // this can be a misaligned move
 718         __ movq(r, Address(saved_sp, offset));
 719       } else {
 720         // sign extend and use a full word?
 721         __ movl(r, Address(saved_sp, ld_off));
 722       }
 723     } else {
 724       if (!r_2->is_valid()) {
 725         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 726       } else {
 727         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 728       }
 729     }
 730   }
 731 
 732   // 6243940 We might end up in handle_wrong_method if
 733   // the callee is deoptimized as we race thru here. If that
 734   // happens we don't want to take a safepoint because the
 735   // caller frame will look interpreted and arguments are now
 736   // "compiled" so it is much better to make this transition
 737   // invisible to the stack walking code. Unfortunately if
 738   // we try and find the callee by normal means a safepoint
 739   // is possible. So we stash the desired callee in the thread
 740   // and the vm will find there should this case occur.
 741 
 742   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 743 
 744   // put methodOop where a c2i would expect should we end up there
 745   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 746   // rax
 747   __ mov(rax, rbx);
 748   __ jmp(r11);
 749 }
 750 
 751 // ---------------------------------------------------------------
 752 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 753                                                             int total_args_passed,
 754                                                             int comp_args_on_stack,
 755                                                             const BasicType *sig_bt,
 756                                                             const VMRegPair *regs,
 757                                                             AdapterFingerPrint* fingerprint) {
 758   address i2c_entry = __ pc();
 759 
 760   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 761 
 762   // -------------------------------------------------------------------------
 763   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 764   // to the interpreter.  The args start out packed in the compiled layout.  They
 765   // need to be unpacked into the interpreter layout.  This will almost always
 766   // require some stack space.  We grow the current (compiled) stack, then repack
 767   // the args.  We  finally end in a jump to the generic interpreter entry point.
 768   // On exit from the interpreter, the interpreter will restore our SP (lest the
 769   // compiled code, which relys solely on SP and not RBP, get sick).
 770 
 771   address c2i_unverified_entry = __ pc();
 772   Label skip_fixup;
 773   Label ok;
 774 
 775   Register holder = rax;
 776   Register receiver = j_rarg0;
 777   Register temp = rbx;
 778 
 779   {
 780     __ verify_oop(holder);
 781     __ load_klass(temp, receiver);
 782     __ verify_oop(temp);
 783 
 784     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 785     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 786     __ jcc(Assembler::equal, ok);
 787     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 788 
 789     __ bind(ok);
 790     // Method might have been compiled since the call site was patched to
 791     // interpreted if that is the case treat it as a miss so we can get
 792     // the call site corrected.
 793     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 794     __ jcc(Assembler::equal, skip_fixup);
 795     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 796   }
 797 
 798   address c2i_entry = __ pc();
 799 
 800   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 801 
 802   __ flush();
 803   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 804 }
 805 
 806 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 807                                          VMRegPair *regs,
 808                                          int total_args_passed) {
 809 // We return the amount of VMRegImpl stack slots we need to reserve for all
 810 // the arguments NOT counting out_preserve_stack_slots.
 811 
 812 // NOTE: These arrays will have to change when c1 is ported
 813 #ifdef _WIN64
 814     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 815       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 816     };
 817     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 818       c_farg0, c_farg1, c_farg2, c_farg3
 819     };
 820 #else
 821     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 822       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 823     };
 824     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 825       c_farg0, c_farg1, c_farg2, c_farg3,
 826       c_farg4, c_farg5, c_farg6, c_farg7
 827     };
 828 #endif // _WIN64
 829 
 830 
 831     uint int_args = 0;
 832     uint fp_args = 0;
 833     uint stk_args = 0; // inc by 2 each time
 834 
 835     for (int i = 0; i < total_args_passed; i++) {
 836       switch (sig_bt[i]) {
 837       case T_BOOLEAN:
 838       case T_CHAR:
 839       case T_BYTE:
 840       case T_SHORT:
 841       case T_INT:
 842         if (int_args < Argument::n_int_register_parameters_c) {
 843           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 844 #ifdef _WIN64
 845           fp_args++;
 846           // Allocate slots for callee to stuff register args the stack.
 847           stk_args += 2;
 848 #endif
 849         } else {
 850           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 851           stk_args += 2;
 852         }
 853         break;
 854       case T_LONG:
 855         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 856         // fall through
 857       case T_OBJECT:
 858       case T_ARRAY:
 859       case T_ADDRESS:
 860         if (int_args < Argument::n_int_register_parameters_c) {
 861           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 862 #ifdef _WIN64
 863           fp_args++;
 864           stk_args += 2;
 865 #endif
 866         } else {
 867           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 868           stk_args += 2;
 869         }
 870         break;
 871       case T_FLOAT:
 872         if (fp_args < Argument::n_float_register_parameters_c) {
 873           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 874 #ifdef _WIN64
 875           int_args++;
 876           // Allocate slots for callee to stuff register args the stack.
 877           stk_args += 2;
 878 #endif
 879         } else {
 880           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 881           stk_args += 2;
 882         }
 883         break;
 884       case T_DOUBLE:
 885         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 886         if (fp_args < Argument::n_float_register_parameters_c) {
 887           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 888 #ifdef _WIN64
 889           int_args++;
 890           // Allocate slots for callee to stuff register args the stack.
 891           stk_args += 2;
 892 #endif
 893         } else {
 894           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 895           stk_args += 2;
 896         }
 897         break;
 898       case T_VOID: // Halves of longs and doubles
 899         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 900         regs[i].set_bad();
 901         break;
 902       default:
 903         ShouldNotReachHere();
 904         break;
 905       }
 906     }
 907 #ifdef _WIN64
 908   // windows abi requires that we always allocate enough stack space
 909   // for 4 64bit registers to be stored down.
 910   if (stk_args < 8) {
 911     stk_args = 8;
 912   }
 913 #endif // _WIN64
 914 
 915   return stk_args;
 916 }
 917 
 918 // On 64 bit we will store integer like items to the stack as
 919 // 64 bits items (sparc abi) even though java would only store
 920 // 32bits for a parameter. On 32bit it will simply be 32 bits
 921 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 922 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 923   if (src.first()->is_stack()) {
 924     if (dst.first()->is_stack()) {
 925       // stack to stack
 926       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 927       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 928     } else {
 929       // stack to reg
 930       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 931     }
 932   } else if (dst.first()->is_stack()) {
 933     // reg to stack
 934     // Do we really have to sign extend???
 935     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 936     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 937   } else {
 938     // Do we really have to sign extend???
 939     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 940     if (dst.first() != src.first()) {
 941       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 942     }
 943   }
 944 }
 945 
 946 
 947 // An oop arg. Must pass a handle not the oop itself
 948 static void object_move(MacroAssembler* masm,
 949                         OopMap* map,
 950                         int oop_handle_offset,
 951                         int framesize_in_slots,
 952                         VMRegPair src,
 953                         VMRegPair dst,
 954                         bool is_receiver,
 955                         int* receiver_offset) {
 956 
 957   // must pass a handle. First figure out the location we use as a handle
 958 
 959   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 960 
 961   // See if oop is NULL if it is we need no handle
 962 
 963   if (src.first()->is_stack()) {
 964 
 965     // Oop is already on the stack as an argument
 966     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 967     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 968     if (is_receiver) {
 969       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 970     }
 971 
 972     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 973     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 974     // conditionally move a NULL
 975     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 976   } else {
 977 
 978     // Oop is in an a register we must store it to the space we reserve
 979     // on the stack for oop_handles and pass a handle if oop is non-NULL
 980 
 981     const Register rOop = src.first()->as_Register();
 982     int oop_slot;
 983     if (rOop == j_rarg0)
 984       oop_slot = 0;
 985     else if (rOop == j_rarg1)
 986       oop_slot = 1;
 987     else if (rOop == j_rarg2)
 988       oop_slot = 2;
 989     else if (rOop == j_rarg3)
 990       oop_slot = 3;
 991     else if (rOop == j_rarg4)
 992       oop_slot = 4;
 993     else {
 994       assert(rOop == j_rarg5, "wrong register");
 995       oop_slot = 5;
 996     }
 997 
 998     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 999     int offset = oop_slot*VMRegImpl::stack_slot_size;
1000 
1001     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1002     // Store oop in handle area, may be NULL
1003     __ movptr(Address(rsp, offset), rOop);
1004     if (is_receiver) {
1005       *receiver_offset = offset;
1006     }
1007 
1008     __ cmpptr(rOop, (int32_t)NULL_WORD);
1009     __ lea(rHandle, Address(rsp, offset));
1010     // conditionally move a NULL from the handle area where it was just stored
1011     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1012   }
1013 
1014   // If arg is on the stack then place it otherwise it is already in correct reg.
1015   if (dst.first()->is_stack()) {
1016     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1017   }
1018 }
1019 
1020 // A float arg may have to do float reg int reg conversion
1021 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1022   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1023 
1024   // The calling conventions assures us that each VMregpair is either
1025   // all really one physical register or adjacent stack slots.
1026   // This greatly simplifies the cases here compared to sparc.
1027 
1028   if (src.first()->is_stack()) {
1029     if (dst.first()->is_stack()) {
1030       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1031       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1032     } else {
1033       // stack to reg
1034       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1035       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1036     }
1037   } else if (dst.first()->is_stack()) {
1038     // reg to stack
1039     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1040     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1041   } else {
1042     // reg to reg
1043     // In theory these overlap but the ordering is such that this is likely a nop
1044     if ( src.first() != dst.first()) {
1045       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1046     }
1047   }
1048 }
1049 
1050 // A long move
1051 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1052 
1053   // The calling conventions assures us that each VMregpair is either
1054   // all really one physical register or adjacent stack slots.
1055   // This greatly simplifies the cases here compared to sparc.
1056 
1057   if (src.is_single_phys_reg() ) {
1058     if (dst.is_single_phys_reg()) {
1059       if (dst.first() != src.first()) {
1060         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1061       }
1062     } else {
1063       assert(dst.is_single_reg(), "not a stack pair");
1064       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1065     }
1066   } else if (dst.is_single_phys_reg()) {
1067     assert(src.is_single_reg(),  "not a stack pair");
1068     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1069   } else {
1070     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1071     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1072     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1073   }
1074 }
1075 
1076 // A double move
1077 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1078 
1079   // The calling conventions assures us that each VMregpair is either
1080   // all really one physical register or adjacent stack slots.
1081   // This greatly simplifies the cases here compared to sparc.
1082 
1083   if (src.is_single_phys_reg() ) {
1084     if (dst.is_single_phys_reg()) {
1085       // In theory these overlap but the ordering is such that this is likely a nop
1086       if ( src.first() != dst.first()) {
1087         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1088       }
1089     } else {
1090       assert(dst.is_single_reg(), "not a stack pair");
1091       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1092     }
1093   } else if (dst.is_single_phys_reg()) {
1094     assert(src.is_single_reg(),  "not a stack pair");
1095     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1096   } else {
1097     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1098     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1099     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1100   }
1101 }
1102 
1103 
1104 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1105   // We always ignore the frame_slots arg and just use the space just below frame pointer
1106   // which by this time is free to use
1107   switch (ret_type) {
1108   case T_FLOAT:
1109     __ movflt(Address(rbp, -wordSize), xmm0);
1110     break;
1111   case T_DOUBLE:
1112     __ movdbl(Address(rbp, -wordSize), xmm0);
1113     break;
1114   case T_VOID:  break;
1115   default: {
1116     __ movptr(Address(rbp, -wordSize), rax);
1117     }
1118   }
1119 }
1120 
1121 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1122   // We always ignore the frame_slots arg and just use the space just below frame pointer
1123   // which by this time is free to use
1124   switch (ret_type) {
1125   case T_FLOAT:
1126     __ movflt(xmm0, Address(rbp, -wordSize));
1127     break;
1128   case T_DOUBLE:
1129     __ movdbl(xmm0, Address(rbp, -wordSize));
1130     break;
1131   case T_VOID:  break;
1132   default: {
1133     __ movptr(rax, Address(rbp, -wordSize));
1134     }
1135   }
1136 }
1137 
1138 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1139     for ( int i = first_arg ; i < arg_count ; i++ ) {
1140       if (args[i].first()->is_Register()) {
1141         __ push(args[i].first()->as_Register());
1142       } else if (args[i].first()->is_XMMRegister()) {
1143         __ subptr(rsp, 2*wordSize);
1144         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1145       }
1146     }
1147 }
1148 
1149 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1150     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1151       if (args[i].first()->is_Register()) {
1152         __ pop(args[i].first()->as_Register());
1153       } else if (args[i].first()->is_XMMRegister()) {
1154         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1155         __ addptr(rsp, 2*wordSize);
1156       }
1157     }
1158 }
1159 
1160 // ---------------------------------------------------------------------------
1161 // Generate a native wrapper for a given method.  The method takes arguments
1162 // in the Java compiled code convention, marshals them to the native
1163 // convention (handlizes oops, etc), transitions to native, makes the call,
1164 // returns to java state (possibly blocking), unhandlizes any result and
1165 // returns.
1166 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1167                                                 methodHandle method,
1168                                                 int total_in_args,
1169                                                 int comp_args_on_stack,
1170                                                 BasicType *in_sig_bt,
1171                                                 VMRegPair *in_regs,
1172                                                 BasicType ret_type) {
1173   // Native nmethod wrappers never take possesion of the oop arguments.
1174   // So the caller will gc the arguments. The only thing we need an
1175   // oopMap for is if the call is static
1176   //
1177   // An OopMap for lock (and class if static)
1178   OopMapSet *oop_maps = new OopMapSet();
1179   intptr_t start = (intptr_t)__ pc();
1180 
1181   // We have received a description of where all the java arg are located
1182   // on entry to the wrapper. We need to convert these args to where
1183   // the jni function will expect them. To figure out where they go
1184   // we convert the java signature to a C signature by inserting
1185   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1186 
1187   int total_c_args = total_in_args + 1;
1188   if (method->is_static()) {
1189     total_c_args++;
1190   }
1191 
1192   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1193   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1194 
1195   int argc = 0;
1196   out_sig_bt[argc++] = T_ADDRESS;
1197   if (method->is_static()) {
1198     out_sig_bt[argc++] = T_OBJECT;
1199   }
1200 
1201   for (int i = 0; i < total_in_args ; i++ ) {
1202     out_sig_bt[argc++] = in_sig_bt[i];
1203   }
1204 
1205   // Now figure out where the args must be stored and how much stack space
1206   // they require.
1207   //
1208   int out_arg_slots;
1209   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1210 
1211   // Compute framesize for the wrapper.  We need to handlize all oops in
1212   // incoming registers
1213 
1214   // Calculate the total number of stack slots we will need.
1215 
1216   // First count the abi requirement plus all of the outgoing args
1217   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1218 
1219   // Now the space for the inbound oop handle area
1220 
1221   int oop_handle_offset = stack_slots;
1222   stack_slots += 6*VMRegImpl::slots_per_word;
1223 
1224   // Now any space we need for handlizing a klass if static method
1225 
1226   int oop_temp_slot_offset = 0;
1227   int klass_slot_offset = 0;
1228   int klass_offset = -1;
1229   int lock_slot_offset = 0;
1230   bool is_static = false;
1231 
1232   if (method->is_static()) {
1233     klass_slot_offset = stack_slots;
1234     stack_slots += VMRegImpl::slots_per_word;
1235     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1236     is_static = true;
1237   }
1238 
1239   // Plus a lock if needed
1240 
1241   if (method->is_synchronized()) {
1242     lock_slot_offset = stack_slots;
1243     stack_slots += VMRegImpl::slots_per_word;
1244   }
1245 
1246   // Now a place (+2) to save return values or temp during shuffling
1247   // + 4 for return address (which we own) and saved rbp
1248   stack_slots += 6;
1249 
1250   // Ok The space we have allocated will look like:
1251   //
1252   //
1253   // FP-> |                     |
1254   //      |---------------------|
1255   //      | 2 slots for moves   |
1256   //      |---------------------|
1257   //      | lock box (if sync)  |
1258   //      |---------------------| <- lock_slot_offset
1259   //      | klass (if static)   |
1260   //      |---------------------| <- klass_slot_offset
1261   //      | oopHandle area      |
1262   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1263   //      | outbound memory     |
1264   //      | based arguments     |
1265   //      |                     |
1266   //      |---------------------|
1267   //      |                     |
1268   // SP-> | out_preserved_slots |
1269   //
1270   //
1271 
1272 
1273   // Now compute actual number of stack words we need rounding to make
1274   // stack properly aligned.
1275   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1276 
1277   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1278 
1279 
1280   // First thing make an ic check to see if we should even be here
1281 
1282   // We are free to use all registers as temps without saving them and
1283   // restoring them except rbp. rbp is the only callee save register
1284   // as far as the interpreter and the compiler(s) are concerned.
1285 
1286 
1287   const Register ic_reg = rax;
1288   const Register receiver = j_rarg0;
1289 
1290   Label ok;
1291   Label exception_pending;
1292 
1293   assert_different_registers(ic_reg, receiver, rscratch1);
1294   __ verify_oop(receiver);
1295   __ load_klass(rscratch1, receiver);
1296   __ cmpq(ic_reg, rscratch1);
1297   __ jcc(Assembler::equal, ok);
1298 
1299   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1300 
1301   __ bind(ok);
1302 
1303   // Verified entry point must be aligned
1304   __ align(8);
1305 
1306   int vep_offset = ((intptr_t)__ pc()) - start;
1307 
1308   // The instruction at the verified entry point must be 5 bytes or longer
1309   // because it can be patched on the fly by make_non_entrant. The stack bang
1310   // instruction fits that requirement.
1311 
1312   // Generate stack overflow check
1313 
1314   if (UseStackBanging) {
1315     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1316   } else {
1317     // need a 5 byte instruction to allow MT safe patching to non-entrant
1318     __ fat_nop();
1319   }
1320 
1321   // Generate a new frame for the wrapper.
1322   __ enter();
1323   // -2 because return address is already present and so is saved rbp
1324   __ subptr(rsp, stack_size - 2*wordSize);
1325 
1326     // Frame is now completed as far as size and linkage.
1327 
1328     int frame_complete = ((intptr_t)__ pc()) - start;
1329 
1330 #ifdef ASSERT
1331     {
1332       Label L;
1333       __ mov(rax, rsp);
1334       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1335       __ cmpptr(rax, rsp);
1336       __ jcc(Assembler::equal, L);
1337       __ stop("improperly aligned stack");
1338       __ bind(L);
1339     }
1340 #endif /* ASSERT */
1341 
1342 
1343   // We use r14 as the oop handle for the receiver/klass
1344   // It is callee save so it survives the call to native
1345 
1346   const Register oop_handle_reg = r14;
1347 
1348 
1349 
1350   //
1351   // We immediately shuffle the arguments so that any vm call we have to
1352   // make from here on out (sync slow path, jvmti, etc.) we will have
1353   // captured the oops from our caller and have a valid oopMap for
1354   // them.
1355 
1356   // -----------------
1357   // The Grand Shuffle
1358 
1359   // The Java calling convention is either equal (linux) or denser (win64) than the
1360   // c calling convention. However the because of the jni_env argument the c calling
1361   // convention always has at least one more (and two for static) arguments than Java.
1362   // Therefore if we move the args from java -> c backwards then we will never have
1363   // a register->register conflict and we don't have to build a dependency graph
1364   // and figure out how to break any cycles.
1365   //
1366 
1367   // Record esp-based slot for receiver on stack for non-static methods
1368   int receiver_offset = -1;
1369 
1370   // This is a trick. We double the stack slots so we can claim
1371   // the oops in the caller's frame. Since we are sure to have
1372   // more args than the caller doubling is enough to make
1373   // sure we can capture all the incoming oop args from the
1374   // caller.
1375   //
1376   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1377 
1378   // Mark location of rbp (someday)
1379   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1380 
1381   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1382   // All inbound args are referenced based on rbp and all outbound args via rsp.
1383 
1384 
1385 #ifdef ASSERT
1386   bool reg_destroyed[RegisterImpl::number_of_registers];
1387   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1388   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1389     reg_destroyed[r] = false;
1390   }
1391   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1392     freg_destroyed[f] = false;
1393   }
1394 
1395 #endif /* ASSERT */
1396 
1397 
1398   int c_arg = total_c_args - 1;
1399   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
1400 #ifdef ASSERT
1401     if (in_regs[i].first()->is_Register()) {
1402       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1403     } else if (in_regs[i].first()->is_XMMRegister()) {
1404       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1405     }
1406     if (out_regs[c_arg].first()->is_Register()) {
1407       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1408     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1409       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1410     }
1411 #endif /* ASSERT */
1412     switch (in_sig_bt[i]) {
1413       case T_ARRAY:
1414       case T_OBJECT:
1415         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1416                     ((i == 0) && (!is_static)),
1417                     &receiver_offset);
1418         break;
1419       case T_VOID:
1420         break;
1421 
1422       case T_FLOAT:
1423         float_move(masm, in_regs[i], out_regs[c_arg]);
1424           break;
1425 
1426       case T_DOUBLE:
1427         assert( i + 1 < total_in_args &&
1428                 in_sig_bt[i + 1] == T_VOID &&
1429                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1430         double_move(masm, in_regs[i], out_regs[c_arg]);
1431         break;
1432 
1433       case T_LONG :
1434         long_move(masm, in_regs[i], out_regs[c_arg]);
1435         break;
1436 
1437       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1438 
1439       default:
1440         move32_64(masm, in_regs[i], out_regs[c_arg]);
1441     }
1442   }
1443 
1444   // point c_arg at the first arg that is already loaded in case we
1445   // need to spill before we call out
1446   c_arg++;
1447 
1448   // Pre-load a static method's oop into r14.  Used both by locking code and
1449   // the normal JNI call code.
1450   if (method->is_static()) {
1451 
1452     //  load oop into a register
1453     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1454 
1455     // Now handlize the static class mirror it's known not-null.
1456     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1457     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1458 
1459     // Now get the handle
1460     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1461     // store the klass handle as second argument
1462     __ movptr(c_rarg1, oop_handle_reg);
1463     // and protect the arg if we must spill
1464     c_arg--;
1465   }
1466 
1467   // Change state to native (we save the return address in the thread, since it might not
1468   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1469   // points into the right code segment. It does not have to be the correct return pc.
1470   // We use the same pc/oopMap repeatedly when we call out
1471 
1472   intptr_t the_pc = (intptr_t) __ pc();
1473   oop_maps->add_gc_map(the_pc - start, map);
1474 
1475   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1476 
1477 
1478   // We have all of the arguments setup at this point. We must not touch any register
1479   // argument registers at this point (what if we save/restore them there are no oop?
1480 
1481   {
1482     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1483     // protect the args we've loaded
1484     save_args(masm, total_c_args, c_arg, out_regs);
1485     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1486     __ call_VM_leaf(
1487       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1488       r15_thread, c_rarg1);
1489     restore_args(masm, total_c_args, c_arg, out_regs);
1490   }
1491 
1492   // RedefineClasses() tracing support for obsolete method entry
1493   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1494     // protect the args we've loaded
1495     save_args(masm, total_c_args, c_arg, out_regs);
1496     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1497     __ call_VM_leaf(
1498       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1499       r15_thread, c_rarg1);
1500     restore_args(masm, total_c_args, c_arg, out_regs);
1501   }
1502 
1503   // Lock a synchronized method
1504 
1505   // Register definitions used by locking and unlocking
1506 
1507   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
1508   const Register obj_reg  = rbx;  // Will contain the oop
1509   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1510   const Register old_hdr  = r13;  // value of old header at unlock time
1511 
1512   Label slow_path_lock;
1513   Label lock_done;
1514 
1515   if (method->is_synchronized()) {
1516 
1517 
1518     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1519 
1520     // Get the handle (the 2nd argument)
1521     __ mov(oop_handle_reg, c_rarg1);
1522 
1523     // Get address of the box
1524 
1525     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1526 
1527     // Load the oop from the handle
1528     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1529 
1530     if (UseBiasedLocking) {
1531       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
1532     }
1533 
1534     // Load immediate 1 into swap_reg %rax
1535     __ movl(swap_reg, 1);
1536 
1537     // Load (object->mark() | 1) into swap_reg %rax
1538     __ orptr(swap_reg, Address(obj_reg, 0));
1539 
1540     // Save (object->mark() | 1) into BasicLock's displaced header
1541     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1542 
1543     if (os::is_MP()) {
1544       __ lock();
1545     }
1546 
1547     // src -> dest iff dest == rax else rax <- dest
1548     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1549     __ jcc(Assembler::equal, lock_done);
1550 
1551     // Hmm should this move to the slow path code area???
1552 
1553     // Test if the oopMark is an obvious stack pointer, i.e.,
1554     //  1) (mark & 3) == 0, and
1555     //  2) rsp <= mark < mark + os::pagesize()
1556     // These 3 tests can be done by evaluating the following
1557     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1558     // assuming both stack pointer and pagesize have their
1559     // least significant 2 bits clear.
1560     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1561 
1562     __ subptr(swap_reg, rsp);
1563     __ andptr(swap_reg, 3 - os::vm_page_size());
1564 
1565     // Save the test result, for recursive case, the result is zero
1566     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1567     __ jcc(Assembler::notEqual, slow_path_lock);
1568 
1569     // Slow path will re-enter here
1570 
1571     __ bind(lock_done);
1572   }
1573 
1574 
1575   // Finally just about ready to make the JNI call
1576 
1577 
1578   // get JNIEnv* which is first argument to native
1579 
1580   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
1581 
1582   // Now set thread in native
1583   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
1584 
1585   __ call(RuntimeAddress(method->native_function()));
1586 
1587     // Either restore the MXCSR register after returning from the JNI Call
1588     // or verify that it wasn't changed.
1589     if (RestoreMXCSROnJNICalls) {
1590       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1591 
1592     }
1593     else if (CheckJNICalls ) {
1594       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1595     }
1596 
1597 
1598   // Unpack native results.
1599   switch (ret_type) {
1600   case T_BOOLEAN: __ c2bool(rax);            break;
1601   case T_CHAR   : __ movzwl(rax, rax);      break;
1602   case T_BYTE   : __ sign_extend_byte (rax); break;
1603   case T_SHORT  : __ sign_extend_short(rax); break;
1604   case T_INT    : /* nothing to do */        break;
1605   case T_DOUBLE :
1606   case T_FLOAT  :
1607     // Result is in xmm0 we'll save as needed
1608     break;
1609   case T_ARRAY:                 // Really a handle
1610   case T_OBJECT:                // Really a handle
1611       break; // can't de-handlize until after safepoint check
1612   case T_VOID: break;
1613   case T_LONG: break;
1614   default       : ShouldNotReachHere();
1615   }
1616 
1617   // Switch thread to "native transition" state before reading the synchronization state.
1618   // This additional state is necessary because reading and testing the synchronization
1619   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1620   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1621   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1622   //     Thread A is resumed to finish this native method, but doesn't block here since it
1623   //     didn't see any synchronization is progress, and escapes.
1624   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1625 
1626   if(os::is_MP()) {
1627     if (UseMembar) {
1628       // Force this write out before the read below
1629       __ membar(Assembler::Membar_mask_bits(
1630            Assembler::LoadLoad | Assembler::LoadStore |
1631            Assembler::StoreLoad | Assembler::StoreStore));
1632     } else {
1633       // Write serialization page so VM thread can do a pseudo remote membar.
1634       // We use the current thread pointer to calculate a thread specific
1635       // offset to write to within the page. This minimizes bus traffic
1636       // due to cache line collision.
1637       __ serialize_memory(r15_thread, rcx);
1638     }
1639   }
1640 
1641 
1642   // check for safepoint operation in progress and/or pending suspend requests
1643   {
1644     Label Continue;
1645 
1646     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1647              SafepointSynchronize::_not_synchronized);
1648 
1649     Label L;
1650     __ jcc(Assembler::notEqual, L);
1651     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1652     __ jcc(Assembler::equal, Continue);
1653     __ bind(L);
1654 
1655     // Don't use call_VM as it will see a possible pending exception and forward it
1656     // and never return here preventing us from clearing _last_native_pc down below.
1657     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1658     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1659     // by hand.
1660     //
1661     save_native_result(masm, ret_type, stack_slots);
1662     __ mov(c_rarg0, r15_thread);
1663     __ mov(r12, rsp); // remember sp
1664     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1665     __ andptr(rsp, -16); // align stack as required by ABI
1666     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1667     __ mov(rsp, r12); // restore sp
1668     __ reinit_heapbase();
1669     // Restore any method result value
1670     restore_native_result(masm, ret_type, stack_slots);
1671     __ bind(Continue);
1672   }
1673 
1674   // change thread state
1675   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1676 
1677   Label reguard;
1678   Label reguard_done;
1679   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1680   __ jcc(Assembler::equal, reguard);
1681   __ bind(reguard_done);
1682 
1683   // native result if any is live
1684 
1685   // Unlock
1686   Label unlock_done;
1687   Label slow_path_unlock;
1688   if (method->is_synchronized()) {
1689 
1690     // Get locked oop from the handle we passed to jni
1691     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1692 
1693     Label done;
1694 
1695     if (UseBiasedLocking) {
1696       __ biased_locking_exit(obj_reg, old_hdr, done);
1697     }
1698 
1699     // Simple recursive lock?
1700 
1701     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
1702     __ jcc(Assembler::equal, done);
1703 
1704     // Must save rax if if it is live now because cmpxchg must use it
1705     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1706       save_native_result(masm, ret_type, stack_slots);
1707     }
1708 
1709 
1710     // get address of the stack lock
1711     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1712     //  get old displaced header
1713     __ movptr(old_hdr, Address(rax, 0));
1714 
1715     // Atomic swap old header if oop still contains the stack lock
1716     if (os::is_MP()) {
1717       __ lock();
1718     }
1719     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
1720     __ jcc(Assembler::notEqual, slow_path_unlock);
1721 
1722     // slow path re-enters here
1723     __ bind(unlock_done);
1724     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1725       restore_native_result(masm, ret_type, stack_slots);
1726     }
1727 
1728     __ bind(done);
1729 
1730   }
1731   {
1732     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1733     save_native_result(masm, ret_type, stack_slots);
1734     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1735     __ call_VM_leaf(
1736          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1737          r15_thread, c_rarg1);
1738     restore_native_result(masm, ret_type, stack_slots);
1739   }
1740 
1741   __ reset_last_Java_frame(false, true);
1742 
1743   // Unpack oop result
1744   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1745       Label L;
1746       __ testptr(rax, rax);
1747       __ jcc(Assembler::zero, L);
1748       __ movptr(rax, Address(rax, 0));
1749       __ bind(L);
1750       __ verify_oop(rax);
1751   }
1752 
1753   // reset handle block
1754   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
1755   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1756 
1757   // pop our frame
1758 
1759   __ leave();
1760 
1761   // Any exception pending?
1762   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1763   __ jcc(Assembler::notEqual, exception_pending);
1764 
1765   // Return
1766 
1767   __ ret(0);
1768 
1769   // Unexpected paths are out of line and go here
1770 
1771   // forward the exception
1772   __ bind(exception_pending);
1773 
1774   // and forward the exception
1775   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1776 
1777 
1778   // Slow path locking & unlocking
1779   if (method->is_synchronized()) {
1780 
1781     // BEGIN Slow path lock
1782     __ bind(slow_path_lock);
1783 
1784     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1785     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1786 
1787     // protect the args we've loaded
1788     save_args(masm, total_c_args, c_arg, out_regs);
1789 
1790     __ mov(c_rarg0, obj_reg);
1791     __ mov(c_rarg1, lock_reg);
1792     __ mov(c_rarg2, r15_thread);
1793 
1794     // Not a leaf but we have last_Java_frame setup as we want
1795     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1796     restore_args(masm, total_c_args, c_arg, out_regs);
1797 
1798 #ifdef ASSERT
1799     { Label L;
1800     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1801     __ jcc(Assembler::equal, L);
1802     __ stop("no pending exception allowed on exit from monitorenter");
1803     __ bind(L);
1804     }
1805 #endif
1806     __ jmp(lock_done);
1807 
1808     // END Slow path lock
1809 
1810     // BEGIN Slow path unlock
1811     __ bind(slow_path_unlock);
1812 
1813     // If we haven't already saved the native result we must save it now as xmm registers
1814     // are still exposed.
1815 
1816     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1817       save_native_result(masm, ret_type, stack_slots);
1818     }
1819 
1820     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1821 
1822     __ mov(c_rarg0, obj_reg);
1823     __ mov(r12, rsp); // remember sp
1824     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1825     __ andptr(rsp, -16); // align stack as required by ABI
1826 
1827     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1828     // NOTE that obj_reg == rbx currently
1829     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
1830     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1831 
1832     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1833     __ mov(rsp, r12); // restore sp
1834     __ reinit_heapbase();
1835 #ifdef ASSERT
1836     {
1837       Label L;
1838       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1839       __ jcc(Assembler::equal, L);
1840       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1841       __ bind(L);
1842     }
1843 #endif /* ASSERT */
1844 
1845     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
1846 
1847     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1848       restore_native_result(masm, ret_type, stack_slots);
1849     }
1850     __ jmp(unlock_done);
1851 
1852     // END Slow path unlock
1853 
1854   } // synchronized
1855 
1856   // SLOW PATH Reguard the stack if needed
1857 
1858   __ bind(reguard);
1859   save_native_result(masm, ret_type, stack_slots);
1860   __ mov(r12, rsp); // remember sp
1861   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1862   __ andptr(rsp, -16); // align stack as required by ABI
1863   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1864   __ mov(rsp, r12); // restore sp
1865   __ reinit_heapbase();
1866   restore_native_result(masm, ret_type, stack_slots);
1867   // and continue
1868   __ jmp(reguard_done);
1869 
1870 
1871 
1872   __ flush();
1873 
1874   nmethod *nm = nmethod::new_native_nmethod(method,
1875                                             masm->code(),
1876                                             vep_offset,
1877                                             frame_complete,
1878                                             stack_slots / VMRegImpl::slots_per_word,
1879                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1880                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1881                                             oop_maps);
1882   return nm;
1883 
1884 }
1885 
1886 #ifdef HAVE_DTRACE_H
1887 // ---------------------------------------------------------------------------
1888 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1889 // in the Java compiled code convention, marshals them to the native
1890 // abi and then leaves nops at the position you would expect to call a native
1891 // function. When the probe is enabled the nops are replaced with a trap
1892 // instruction that dtrace inserts and the trace will cause a notification
1893 // to dtrace.
1894 //
1895 // The probes are only able to take primitive types and java/lang/String as
1896 // arguments.  No other java types are allowed. Strings are converted to utf8
1897 // strings so that from dtrace point of view java strings are converted to C
1898 // strings. There is an arbitrary fixed limit on the total space that a method
1899 // can use for converting the strings. (256 chars per string in the signature).
1900 // So any java string larger then this is truncated.
1901 
1902 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
1903 static bool offsets_initialized = false;
1904 
1905 
1906 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
1907                                                 methodHandle method) {
1908 
1909 
1910   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1911   // be single threaded in this method.
1912   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1913 
1914   if (!offsets_initialized) {
1915     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
1916     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
1917     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
1918     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
1919     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
1920     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
1921 
1922     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
1923     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
1924     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
1925     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
1926     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
1927     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
1928     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
1929     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
1930 
1931     offsets_initialized = true;
1932   }
1933   // Fill in the signature array, for the calling-convention call.
1934   int total_args_passed = method->size_of_parameters();
1935 
1936   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1937   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1938 
1939   // The signature we are going to use for the trap that dtrace will see
1940   // java/lang/String is converted. We drop "this" and any other object
1941   // is converted to NULL.  (A one-slot java/lang/Long object reference
1942   // is converted to a two-slot long, which is why we double the allocation).
1943   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1944   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1945 
1946   int i=0;
1947   int total_strings = 0;
1948   int first_arg_to_pass = 0;
1949   int total_c_args = 0;
1950 
1951   // Skip the receiver as dtrace doesn't want to see it
1952   if( !method->is_static() ) {
1953     in_sig_bt[i++] = T_OBJECT;
1954     first_arg_to_pass = 1;
1955   }
1956 
1957   // We need to convert the java args to where a native (non-jni) function
1958   // would expect them. To figure out where they go we convert the java
1959   // signature to a C signature.
1960 
1961   SignatureStream ss(method->signature());
1962   for ( ; !ss.at_return_type(); ss.next()) {
1963     BasicType bt = ss.type();
1964     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1965     out_sig_bt[total_c_args++] = bt;
1966     if( bt == T_OBJECT) {
1967       symbolOop s = ss.as_symbol_or_null();
1968       if (s == vmSymbols::java_lang_String()) {
1969         total_strings++;
1970         out_sig_bt[total_c_args-1] = T_ADDRESS;
1971       } else if (s == vmSymbols::java_lang_Boolean() ||
1972                  s == vmSymbols::java_lang_Character() ||
1973                  s == vmSymbols::java_lang_Byte() ||
1974                  s == vmSymbols::java_lang_Short() ||
1975                  s == vmSymbols::java_lang_Integer() ||
1976                  s == vmSymbols::java_lang_Float()) {
1977         out_sig_bt[total_c_args-1] = T_INT;
1978       } else if (s == vmSymbols::java_lang_Long() ||
1979                  s == vmSymbols::java_lang_Double()) {
1980         out_sig_bt[total_c_args-1] = T_LONG;
1981         out_sig_bt[total_c_args++] = T_VOID;
1982       }
1983     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1984       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1985       // We convert double to long
1986       out_sig_bt[total_c_args-1] = T_LONG;
1987       out_sig_bt[total_c_args++] = T_VOID;
1988     } else if ( bt == T_FLOAT) {
1989       // We convert float to int
1990       out_sig_bt[total_c_args-1] = T_INT;
1991     }
1992   }
1993 
1994   assert(i==total_args_passed, "validly parsed signature");
1995 
1996   // Now get the compiled-Java layout as input arguments
1997   int comp_args_on_stack;
1998   comp_args_on_stack = SharedRuntime::java_calling_convention(
1999       in_sig_bt, in_regs, total_args_passed, false);
2000 
2001   // Now figure out where the args must be stored and how much stack space
2002   // they require (neglecting out_preserve_stack_slots but space for storing
2003   // the 1st six register arguments). It's weird see int_stk_helper.
2004 
2005   int out_arg_slots;
2006   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2007 
2008   // Calculate the total number of stack slots we will need.
2009 
2010   // First count the abi requirement plus all of the outgoing args
2011   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2012 
2013   // Now space for the string(s) we must convert
2014   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2015   for (i = 0; i < total_strings ; i++) {
2016     string_locs[i] = stack_slots;
2017     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2018   }
2019 
2020   // Plus the temps we might need to juggle register args
2021   // regs take two slots each
2022   stack_slots += (Argument::n_int_register_parameters_c +
2023                   Argument::n_float_register_parameters_c) * 2;
2024 
2025 
2026   // + 4 for return address (which we own) and saved rbp,
2027 
2028   stack_slots += 4;
2029 
2030   // Ok The space we have allocated will look like:
2031   //
2032   //
2033   // FP-> |                     |
2034   //      |---------------------|
2035   //      | string[n]           |
2036   //      |---------------------| <- string_locs[n]
2037   //      | string[n-1]         |
2038   //      |---------------------| <- string_locs[n-1]
2039   //      | ...                 |
2040   //      | ...                 |
2041   //      |---------------------| <- string_locs[1]
2042   //      | string[0]           |
2043   //      |---------------------| <- string_locs[0]
2044   //      | outbound memory     |
2045   //      | based arguments     |
2046   //      |                     |
2047   //      |---------------------|
2048   //      |                     |
2049   // SP-> | out_preserved_slots |
2050   //
2051   //
2052 
2053   // Now compute actual number of stack words we need rounding to make
2054   // stack properly aligned.
2055   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2056 
2057   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2058 
2059   intptr_t start = (intptr_t)__ pc();
2060 
2061   // First thing make an ic check to see if we should even be here
2062 
2063   // We are free to use all registers as temps without saving them and
2064   // restoring them except rbp. rbp, is the only callee save register
2065   // as far as the interpreter and the compiler(s) are concerned.
2066 
2067   const Register ic_reg = rax;
2068   const Register receiver = rcx;
2069   Label hit;
2070   Label exception_pending;
2071 
2072 
2073   __ verify_oop(receiver);
2074   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2075   __ jcc(Assembler::equal, hit);
2076 
2077   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2078 
2079   // verified entry must be aligned for code patching.
2080   // and the first 5 bytes must be in the same cache line
2081   // if we align at 8 then we will be sure 5 bytes are in the same line
2082   __ align(8);
2083 
2084   __ bind(hit);
2085 
2086   int vep_offset = ((intptr_t)__ pc()) - start;
2087 
2088 
2089   // The instruction at the verified entry point must be 5 bytes or longer
2090   // because it can be patched on the fly by make_non_entrant. The stack bang
2091   // instruction fits that requirement.
2092 
2093   // Generate stack overflow check
2094 
2095   if (UseStackBanging) {
2096     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2097       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2098     } else {
2099       __ movl(rax, stack_size);
2100       __ bang_stack_size(rax, rbx);
2101     }
2102   } else {
2103     // need a 5 byte instruction to allow MT safe patching to non-entrant
2104     __ fat_nop();
2105   }
2106 
2107   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2108          "valid size for make_non_entrant");
2109 
2110   // Generate a new frame for the wrapper.
2111   __ enter();
2112 
2113   // -4 because return address is already present and so is saved rbp,
2114   if (stack_size - 2*wordSize != 0) {
2115     __ subq(rsp, stack_size - 2*wordSize);
2116   }
2117 
2118   // Frame is now completed as far a size and linkage.
2119 
2120   int frame_complete = ((intptr_t)__ pc()) - start;
2121 
2122   int c_arg, j_arg;
2123 
2124   // State of input register args
2125 
2126   bool  live[ConcreteRegisterImpl::number_of_registers];
2127 
2128   live[j_rarg0->as_VMReg()->value()] = false;
2129   live[j_rarg1->as_VMReg()->value()] = false;
2130   live[j_rarg2->as_VMReg()->value()] = false;
2131   live[j_rarg3->as_VMReg()->value()] = false;
2132   live[j_rarg4->as_VMReg()->value()] = false;
2133   live[j_rarg5->as_VMReg()->value()] = false;
2134 
2135   live[j_farg0->as_VMReg()->value()] = false;
2136   live[j_farg1->as_VMReg()->value()] = false;
2137   live[j_farg2->as_VMReg()->value()] = false;
2138   live[j_farg3->as_VMReg()->value()] = false;
2139   live[j_farg4->as_VMReg()->value()] = false;
2140   live[j_farg5->as_VMReg()->value()] = false;
2141   live[j_farg6->as_VMReg()->value()] = false;
2142   live[j_farg7->as_VMReg()->value()] = false;
2143 
2144 
2145   bool rax_is_zero = false;
2146 
2147   // All args (except strings) destined for the stack are moved first
2148   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2149        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2150     VMRegPair src = in_regs[j_arg];
2151     VMRegPair dst = out_regs[c_arg];
2152 
2153     // Get the real reg value or a dummy (rsp)
2154 
2155     int src_reg = src.first()->is_reg() ?
2156                   src.first()->value() :
2157                   rsp->as_VMReg()->value();
2158 
2159     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2160                     (in_sig_bt[j_arg] == T_OBJECT &&
2161                      out_sig_bt[c_arg] != T_INT &&
2162                      out_sig_bt[c_arg] != T_ADDRESS &&
2163                      out_sig_bt[c_arg] != T_LONG);
2164 
2165     live[src_reg] = !useless;
2166 
2167     if (dst.first()->is_stack()) {
2168 
2169       // Even though a string arg in a register is still live after this loop
2170       // after the string conversion loop (next) it will be dead so we take
2171       // advantage of that now for simpler code to manage live.
2172 
2173       live[src_reg] = false;
2174       switch (in_sig_bt[j_arg]) {
2175 
2176         case T_ARRAY:
2177         case T_OBJECT:
2178           {
2179             Address stack_dst(rsp, reg2offset_out(dst.first()));
2180 
2181             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2182               // need to unbox a one-word value
2183               Register in_reg = rax;
2184               if ( src.first()->is_reg() ) {
2185                 in_reg = src.first()->as_Register();
2186               } else {
2187                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2188                 rax_is_zero = false;
2189               }
2190               Label skipUnbox;
2191               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2192                         (int32_t)NULL_WORD);
2193               __ testq(in_reg, in_reg);
2194               __ jcc(Assembler::zero, skipUnbox);
2195 
2196               BasicType bt = out_sig_bt[c_arg];
2197               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2198               Address src1(in_reg, box_offset);
2199               if ( bt == T_LONG ) {
2200                 __ movq(in_reg,  src1);
2201                 __ movq(stack_dst, in_reg);
2202                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2203                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2204               } else {
2205                 __ movl(in_reg,  src1);
2206                 __ movl(stack_dst, in_reg);
2207               }
2208 
2209               __ bind(skipUnbox);
2210             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2211               // Convert the arg to NULL
2212               if (!rax_is_zero) {
2213                 __ xorq(rax, rax);
2214                 rax_is_zero = true;
2215               }
2216               __ movq(stack_dst, rax);
2217             }
2218           }
2219           break;
2220 
2221         case T_VOID:
2222           break;
2223 
2224         case T_FLOAT:
2225           // This does the right thing since we know it is destined for the
2226           // stack
2227           float_move(masm, src, dst);
2228           break;
2229 
2230         case T_DOUBLE:
2231           // This does the right thing since we know it is destined for the
2232           // stack
2233           double_move(masm, src, dst);
2234           break;
2235 
2236         case T_LONG :
2237           long_move(masm, src, dst);
2238           break;
2239 
2240         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2241 
2242         default:
2243           move32_64(masm, src, dst);
2244       }
2245     }
2246 
2247   }
2248 
2249   // If we have any strings we must store any register based arg to the stack
2250   // This includes any still live xmm registers too.
2251 
2252   int sid = 0;
2253 
2254   if (total_strings > 0 ) {
2255     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2256          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2257       VMRegPair src = in_regs[j_arg];
2258       VMRegPair dst = out_regs[c_arg];
2259 
2260       if (src.first()->is_reg()) {
2261         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2262 
2263         // string oops were left untouched by the previous loop even if the
2264         // eventual (converted) arg is destined for the stack so park them
2265         // away now (except for first)
2266 
2267         if (out_sig_bt[c_arg] == T_ADDRESS) {
2268           Address utf8_addr = Address(
2269               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2270           if (sid != 1) {
2271             // The first string arg won't be killed until after the utf8
2272             // conversion
2273             __ movq(utf8_addr, src.first()->as_Register());
2274           }
2275         } else if (dst.first()->is_reg()) {
2276           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2277 
2278             // Convert the xmm register to an int and store it in the reserved
2279             // location for the eventual c register arg
2280             XMMRegister f = src.first()->as_XMMRegister();
2281             if (in_sig_bt[j_arg] == T_FLOAT) {
2282               __ movflt(src_tmp, f);
2283             } else {
2284               __ movdbl(src_tmp, f);
2285             }
2286           } else {
2287             // If the arg is an oop type we don't support don't bother to store
2288             // it remember string was handled above.
2289             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2290                             (in_sig_bt[j_arg] == T_OBJECT &&
2291                              out_sig_bt[c_arg] != T_INT &&
2292                              out_sig_bt[c_arg] != T_LONG);
2293 
2294             if (!useless) {
2295               __ movq(src_tmp, src.first()->as_Register());
2296             }
2297           }
2298         }
2299       }
2300       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2301         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2302         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2303       }
2304     }
2305 
2306     // Now that the volatile registers are safe, convert all the strings
2307     sid = 0;
2308 
2309     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2310          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2311       if (out_sig_bt[c_arg] == T_ADDRESS) {
2312         // It's a string
2313         Address utf8_addr = Address(
2314             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2315         // The first string we find might still be in the original java arg
2316         // register
2317 
2318         VMReg src = in_regs[j_arg].first();
2319 
2320         // We will need to eventually save the final argument to the trap
2321         // in the von-volatile location dedicated to src. This is the offset
2322         // from fp we will use.
2323         int src_off = src->is_reg() ?
2324             fp_offset[src->value()] : reg2offset_in(src);
2325 
2326         // This is where the argument will eventually reside
2327         VMRegPair dst = out_regs[c_arg];
2328 
2329         if (src->is_reg()) {
2330           if (sid == 1) {
2331             __ movq(c_rarg0, src->as_Register());
2332           } else {
2333             __ movq(c_rarg0, utf8_addr);
2334           }
2335         } else {
2336           // arg is still in the original location
2337           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2338         }
2339         Label done, convert;
2340 
2341         // see if the oop is NULL
2342         __ testq(c_rarg0, c_rarg0);
2343         __ jcc(Assembler::notEqual, convert);
2344 
2345         if (dst.first()->is_reg()) {
2346           // Save the ptr to utf string in the origina src loc or the tmp
2347           // dedicated to it
2348           __ movq(Address(rbp, src_off), c_rarg0);
2349         } else {
2350           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2351         }
2352         __ jmp(done);
2353 
2354         __ bind(convert);
2355 
2356         __ lea(c_rarg1, utf8_addr);
2357         if (dst.first()->is_reg()) {
2358           __ movq(Address(rbp, src_off), c_rarg1);
2359         } else {
2360           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2361         }
2362         // And do the conversion
2363         __ call(RuntimeAddress(
2364                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2365 
2366         __ bind(done);
2367       }
2368       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2369         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2370         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2371       }
2372     }
2373     // The get_utf call killed all the c_arg registers
2374     live[c_rarg0->as_VMReg()->value()] = false;
2375     live[c_rarg1->as_VMReg()->value()] = false;
2376     live[c_rarg2->as_VMReg()->value()] = false;
2377     live[c_rarg3->as_VMReg()->value()] = false;
2378     live[c_rarg4->as_VMReg()->value()] = false;
2379     live[c_rarg5->as_VMReg()->value()] = false;
2380 
2381     live[c_farg0->as_VMReg()->value()] = false;
2382     live[c_farg1->as_VMReg()->value()] = false;
2383     live[c_farg2->as_VMReg()->value()] = false;
2384     live[c_farg3->as_VMReg()->value()] = false;
2385     live[c_farg4->as_VMReg()->value()] = false;
2386     live[c_farg5->as_VMReg()->value()] = false;
2387     live[c_farg6->as_VMReg()->value()] = false;
2388     live[c_farg7->as_VMReg()->value()] = false;
2389   }
2390 
2391   // Now we can finally move the register args to their desired locations
2392 
2393   rax_is_zero = false;
2394 
2395   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2396        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2397 
2398     VMRegPair src = in_regs[j_arg];
2399     VMRegPair dst = out_regs[c_arg];
2400 
2401     // Only need to look for args destined for the interger registers (since we
2402     // convert float/double args to look like int/long outbound)
2403     if (dst.first()->is_reg()) {
2404       Register r =  dst.first()->as_Register();
2405 
2406       // Check if the java arg is unsupported and thereofre useless
2407       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2408                       (in_sig_bt[j_arg] == T_OBJECT &&
2409                        out_sig_bt[c_arg] != T_INT &&
2410                        out_sig_bt[c_arg] != T_ADDRESS &&
2411                        out_sig_bt[c_arg] != T_LONG);
2412 
2413 
2414       // If we're going to kill an existing arg save it first
2415       if (live[dst.first()->value()]) {
2416         // you can't kill yourself
2417         if (src.first() != dst.first()) {
2418           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2419         }
2420       }
2421       if (src.first()->is_reg()) {
2422         if (live[src.first()->value()] ) {
2423           if (in_sig_bt[j_arg] == T_FLOAT) {
2424             __ movdl(r, src.first()->as_XMMRegister());
2425           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2426             __ movdq(r, src.first()->as_XMMRegister());
2427           } else if (r != src.first()->as_Register()) {
2428             if (!useless) {
2429               __ movq(r, src.first()->as_Register());
2430             }
2431           }
2432         } else {
2433           // If the arg is an oop type we don't support don't bother to store
2434           // it
2435           if (!useless) {
2436             if (in_sig_bt[j_arg] == T_DOUBLE ||
2437                 in_sig_bt[j_arg] == T_LONG  ||
2438                 in_sig_bt[j_arg] == T_OBJECT ) {
2439               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2440             } else {
2441               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2442             }
2443           }
2444         }
2445         live[src.first()->value()] = false;
2446       } else if (!useless) {
2447         // full sized move even for int should be ok
2448         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2449       }
2450 
2451       // At this point r has the original java arg in the final location
2452       // (assuming it wasn't useless). If the java arg was an oop
2453       // we have a bit more to do
2454 
2455       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2456         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2457           // need to unbox a one-word value
2458           Label skip;
2459           __ testq(r, r);
2460           __ jcc(Assembler::equal, skip);
2461           BasicType bt = out_sig_bt[c_arg];
2462           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2463           Address src1(r, box_offset);
2464           if ( bt == T_LONG ) {
2465             __ movq(r, src1);
2466           } else {
2467             __ movl(r, src1);
2468           }
2469           __ bind(skip);
2470 
2471         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2472           // Convert the arg to NULL
2473           __ xorq(r, r);
2474         }
2475       }
2476 
2477       // dst can longer be holding an input value
2478       live[dst.first()->value()] = false;
2479     }
2480     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2481       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2482       ++c_arg; // skip over T_VOID to keep the loop indices in sync
2483     }
2484   }
2485 
2486 
2487   // Ok now we are done. Need to place the nop that dtrace wants in order to
2488   // patch in the trap
2489   int patch_offset = ((intptr_t)__ pc()) - start;
2490 
2491   __ nop();
2492 
2493 
2494   // Return
2495 
2496   __ leave();
2497   __ ret(0);
2498 
2499   __ flush();
2500 
2501   nmethod *nm = nmethod::new_dtrace_nmethod(
2502       method, masm->code(), vep_offset, patch_offset, frame_complete,
2503       stack_slots / VMRegImpl::slots_per_word);
2504   return nm;
2505 
2506 }
2507 
2508 #endif // HAVE_DTRACE_H
2509 
2510 // this function returns the adjust size (in number of words) to a c2i adapter
2511 // activation for use during deoptimization
2512 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2513   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2514 }
2515 
2516 
2517 uint SharedRuntime::out_preserve_stack_slots() {
2518   return 0;
2519 }
2520 
2521 
2522 //------------------------------generate_deopt_blob----------------------------
2523 void SharedRuntime::generate_deopt_blob() {
2524   // Allocate space for the code
2525   ResourceMark rm;
2526   // Setup code generation tools
2527   CodeBuffer buffer("deopt_blob", 2048, 1024);
2528   MacroAssembler* masm = new MacroAssembler(&buffer);
2529   int frame_size_in_words;
2530   OopMap* map = NULL;
2531   OopMapSet *oop_maps = new OopMapSet();
2532 
2533   // -------------
2534   // This code enters when returning to a de-optimized nmethod.  A return
2535   // address has been pushed on the the stack, and return values are in
2536   // registers.
2537   // If we are doing a normal deopt then we were called from the patched
2538   // nmethod from the point we returned to the nmethod. So the return
2539   // address on the stack is wrong by NativeCall::instruction_size
2540   // We will adjust the value so it looks like we have the original return
2541   // address on the stack (like when we eagerly deoptimized).
2542   // In the case of an exception pending when deoptimizing, we enter
2543   // with a return address on the stack that points after the call we patched
2544   // into the exception handler. We have the following register state from,
2545   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2546   //    rax: exception oop
2547   //    rbx: exception handler
2548   //    rdx: throwing pc
2549   // So in this case we simply jam rdx into the useless return address and
2550   // the stack looks just like we want.
2551   //
2552   // At this point we need to de-opt.  We save the argument return
2553   // registers.  We call the first C routine, fetch_unroll_info().  This
2554   // routine captures the return values and returns a structure which
2555   // describes the current frame size and the sizes of all replacement frames.
2556   // The current frame is compiled code and may contain many inlined
2557   // functions, each with their own JVM state.  We pop the current frame, then
2558   // push all the new frames.  Then we call the C routine unpack_frames() to
2559   // populate these frames.  Finally unpack_frames() returns us the new target
2560   // address.  Notice that callee-save registers are BLOWN here; they have
2561   // already been captured in the vframeArray at the time the return PC was
2562   // patched.
2563   address start = __ pc();
2564   Label cont;
2565 
2566   // Prolog for non exception case!
2567 
2568   // Save everything in sight.
2569   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2570 
2571   // Normal deoptimization.  Save exec mode for unpack_frames.
2572   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2573   __ jmp(cont);
2574 
2575   int reexecute_offset = __ pc() - start;
2576 
2577   // Reexecute case
2578   // return address is the pc describes what bci to do re-execute at
2579 
2580   // No need to update map as each call to save_live_registers will produce identical oopmap
2581   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2582 
2583   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2584   __ jmp(cont);
2585 
2586   int exception_offset = __ pc() - start;
2587 
2588   // Prolog for exception case
2589 
2590   // all registers are dead at this entry point, except for rax, and
2591   // rdx which contain the exception oop and exception pc
2592   // respectively.  Set them in TLS and fall thru to the
2593   // unpack_with_exception_in_tls entry point.
2594 
2595   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2596   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2597 
2598   int exception_in_tls_offset = __ pc() - start;
2599 
2600   // new implementation because exception oop is now passed in JavaThread
2601 
2602   // Prolog for exception case
2603   // All registers must be preserved because they might be used by LinearScan
2604   // Exceptiop oop and throwing PC are passed in JavaThread
2605   // tos: stack at point of call to method that threw the exception (i.e. only
2606   // args are on the stack, no return address)
2607 
2608   // make room on stack for the return address
2609   // It will be patched later with the throwing pc. The correct value is not
2610   // available now because loading it from memory would destroy registers.
2611   __ push(0);
2612 
2613   // Save everything in sight.
2614   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2615 
2616   // Now it is safe to overwrite any register
2617 
2618   // Deopt during an exception.  Save exec mode for unpack_frames.
2619   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2620 
2621   // load throwing pc from JavaThread and patch it as the return address
2622   // of the current frame. Then clear the field in JavaThread
2623 
2624   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2625   __ movptr(Address(rbp, wordSize), rdx);
2626   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2627 
2628 #ifdef ASSERT
2629   // verify that there is really an exception oop in JavaThread
2630   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2631   __ verify_oop(rax);
2632 
2633   // verify that there is no pending exception
2634   Label no_pending_exception;
2635   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2636   __ testptr(rax, rax);
2637   __ jcc(Assembler::zero, no_pending_exception);
2638   __ stop("must not have pending exception here");
2639   __ bind(no_pending_exception);
2640 #endif
2641 
2642   __ bind(cont);
2643 
2644   // Call C code.  Need thread and this frame, but NOT official VM entry
2645   // crud.  We cannot block on this call, no GC can happen.
2646   //
2647   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2648 
2649   // fetch_unroll_info needs to call last_java_frame().
2650 
2651   __ set_last_Java_frame(noreg, noreg, NULL);
2652 #ifdef ASSERT
2653   { Label L;
2654     __ cmpptr(Address(r15_thread,
2655                     JavaThread::last_Java_fp_offset()),
2656             (int32_t)0);
2657     __ jcc(Assembler::equal, L);
2658     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2659     __ bind(L);
2660   }
2661 #endif // ASSERT
2662   __ mov(c_rarg0, r15_thread);
2663   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2664 
2665   // Need to have an oopmap that tells fetch_unroll_info where to
2666   // find any register it might need.
2667   oop_maps->add_gc_map(__ pc() - start, map);
2668 
2669   __ reset_last_Java_frame(false, false);
2670 
2671   // Load UnrollBlock* into rdi
2672   __ mov(rdi, rax);
2673 
2674    Label noException;
2675   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2676   __ jcc(Assembler::notEqual, noException);
2677   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2678   // QQQ this is useless it was NULL above
2679   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2680   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2681   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2682 
2683   __ verify_oop(rax);
2684 
2685   // Overwrite the result registers with the exception results.
2686   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2687   // I think this is useless
2688   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2689 
2690   __ bind(noException);
2691 
2692   // Only register save data is on the stack.
2693   // Now restore the result registers.  Everything else is either dead
2694   // or captured in the vframeArray.
2695   RegisterSaver::restore_result_registers(masm);
2696 
2697   // All of the register save area has been popped of the stack. Only the
2698   // return address remains.
2699 
2700   // Pop all the frames we must move/replace.
2701   //
2702   // Frame picture (youngest to oldest)
2703   // 1: self-frame (no frame link)
2704   // 2: deopting frame  (no frame link)
2705   // 3: caller of deopting frame (could be compiled/interpreted).
2706   //
2707   // Note: by leaving the return address of self-frame on the stack
2708   // and using the size of frame 2 to adjust the stack
2709   // when we are done the return to frame 3 will still be on the stack.
2710 
2711   // Pop deoptimized frame
2712   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2713   __ addptr(rsp, rcx);
2714 
2715   // rsp should be pointing at the return address to the caller (3)
2716 
2717   // Stack bang to make sure there's enough room for these interpreter frames.
2718   if (UseStackBanging) {
2719     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2720     __ bang_stack_size(rbx, rcx);
2721   }
2722 
2723   // Load address of array of frame pcs into rcx
2724   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2725 
2726   // Trash the old pc
2727   __ addptr(rsp, wordSize);
2728 
2729   // Load address of array of frame sizes into rsi
2730   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2731 
2732   // Load counter into rdx
2733   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2734 
2735   // Pick up the initial fp we should save
2736   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2737 
2738   // Now adjust the caller's stack to make up for the extra locals
2739   // but record the original sp so that we can save it in the skeletal interpreter
2740   // frame and the stack walking of interpreter_sender will get the unextended sp
2741   // value and not the "real" sp value.
2742 
2743   const Register sender_sp = r8;
2744 
2745   __ mov(sender_sp, rsp);
2746   __ movl(rbx, Address(rdi,
2747                        Deoptimization::UnrollBlock::
2748                        caller_adjustment_offset_in_bytes()));
2749   __ subptr(rsp, rbx);
2750 
2751   // Push interpreter frames in a loop
2752   Label loop;
2753   __ bind(loop);
2754   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2755 #ifdef CC_INTERP
2756   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2757 #ifdef ASSERT
2758   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2759   __ push(0xDEADDEAD);
2760 #else /* ASSERT */
2761   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2762 #endif /* ASSERT */
2763 #else
2764   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2765 #endif // CC_INTERP
2766   __ pushptr(Address(rcx, 0));          // Save return address
2767   __ enter();                           // Save old & set new ebp
2768   __ subptr(rsp, rbx);                  // Prolog
2769 #ifdef CC_INTERP
2770   __ movptr(Address(rbp,
2771                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2772             sender_sp); // Make it walkable
2773 #else /* CC_INTERP */
2774   // This value is corrected by layout_activation_impl
2775   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2776   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2777 #endif /* CC_INTERP */
2778   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2779   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2780   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2781   __ decrementl(rdx);                   // Decrement counter
2782   __ jcc(Assembler::notZero, loop);
2783   __ pushptr(Address(rcx, 0));          // Save final return address
2784 
2785   // Re-push self-frame
2786   __ enter();                           // Save old & set new ebp
2787 
2788   // Allocate a full sized register save area.
2789   // Return address and rbp are in place, so we allocate two less words.
2790   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2791 
2792   // Restore frame locals after moving the frame
2793   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2794   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2795 
2796   // Call C code.  Need thread but NOT official VM entry
2797   // crud.  We cannot block on this call, no GC can happen.  Call should
2798   // restore return values to their stack-slots with the new SP.
2799   //
2800   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2801 
2802   // Use rbp because the frames look interpreted now
2803   __ set_last_Java_frame(noreg, rbp, NULL);
2804 
2805   __ mov(c_rarg0, r15_thread);
2806   __ movl(c_rarg1, r14); // second arg: exec_mode
2807   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2808 
2809   // Set an oopmap for the call site
2810   oop_maps->add_gc_map(__ pc() - start,
2811                        new OopMap( frame_size_in_words, 0 ));
2812 
2813   __ reset_last_Java_frame(true, false);
2814 
2815   // Collect return values
2816   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2817   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2818   // I think this is useless (throwing pc?)
2819   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2820 
2821   // Pop self-frame.
2822   __ leave();                           // Epilog
2823 
2824   // Jump to interpreter
2825   __ ret(0);
2826 
2827   // Make sure all code is generated
2828   masm->flush();
2829 
2830   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2831   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2832 }
2833 
2834 #ifdef COMPILER2
2835 //------------------------------generate_uncommon_trap_blob--------------------
2836 void SharedRuntime::generate_uncommon_trap_blob() {
2837   // Allocate space for the code
2838   ResourceMark rm;
2839   // Setup code generation tools
2840   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2841   MacroAssembler* masm = new MacroAssembler(&buffer);
2842 
2843   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2844 
2845   address start = __ pc();
2846 
2847   // Push self-frame.  We get here with a return address on the
2848   // stack, so rsp is 8-byte aligned until we allocate our frame.
2849   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
2850 
2851   // No callee saved registers. rbp is assumed implicitly saved
2852   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
2853 
2854   // compiler left unloaded_class_index in j_rarg0 move to where the
2855   // runtime expects it.
2856   __ movl(c_rarg1, j_rarg0);
2857 
2858   __ set_last_Java_frame(noreg, noreg, NULL);
2859 
2860   // Call C code.  Need thread but NOT official VM entry
2861   // crud.  We cannot block on this call, no GC can happen.  Call should
2862   // capture callee-saved registers as well as return values.
2863   // Thread is in rdi already.
2864   //
2865   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2866 
2867   __ mov(c_rarg0, r15_thread);
2868   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2869 
2870   // Set an oopmap for the call site
2871   OopMapSet* oop_maps = new OopMapSet();
2872   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2873 
2874   // location of rbp is known implicitly by the frame sender code
2875 
2876   oop_maps->add_gc_map(__ pc() - start, map);
2877 
2878   __ reset_last_Java_frame(false, false);
2879 
2880   // Load UnrollBlock* into rdi
2881   __ mov(rdi, rax);
2882 
2883   // Pop all the frames we must move/replace.
2884   //
2885   // Frame picture (youngest to oldest)
2886   // 1: self-frame (no frame link)
2887   // 2: deopting frame  (no frame link)
2888   // 3: caller of deopting frame (could be compiled/interpreted).
2889 
2890   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2891   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
2892 
2893   // Pop deoptimized frame (int)
2894   __ movl(rcx, Address(rdi,
2895                        Deoptimization::UnrollBlock::
2896                        size_of_deoptimized_frame_offset_in_bytes()));
2897   __ addptr(rsp, rcx);
2898 
2899   // rsp should be pointing at the return address to the caller (3)
2900 
2901   // Stack bang to make sure there's enough room for these interpreter frames.
2902   if (UseStackBanging) {
2903     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2904     __ bang_stack_size(rbx, rcx);
2905   }
2906 
2907   // Load address of array of frame pcs into rcx (address*)
2908   __ movptr(rcx,
2909             Address(rdi,
2910                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2911 
2912   // Trash the return pc
2913   __ addptr(rsp, wordSize);
2914 
2915   // Load address of array of frame sizes into rsi (intptr_t*)
2916   __ movptr(rsi, Address(rdi,
2917                          Deoptimization::UnrollBlock::
2918                          frame_sizes_offset_in_bytes()));
2919 
2920   // Counter
2921   __ movl(rdx, Address(rdi,
2922                        Deoptimization::UnrollBlock::
2923                        number_of_frames_offset_in_bytes())); // (int)
2924 
2925   // Pick up the initial fp we should save
2926   __ movptr(rbp,
2927             Address(rdi,
2928                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2929 
2930   // Now adjust the caller's stack to make up for the extra locals but
2931   // record the original sp so that we can save it in the skeletal
2932   // interpreter frame and the stack walking of interpreter_sender
2933   // will get the unextended sp value and not the "real" sp value.
2934 
2935   const Register sender_sp = r8;
2936 
2937   __ mov(sender_sp, rsp);
2938   __ movl(rbx, Address(rdi,
2939                        Deoptimization::UnrollBlock::
2940                        caller_adjustment_offset_in_bytes())); // (int)
2941   __ subptr(rsp, rbx);
2942 
2943   // Push interpreter frames in a loop
2944   Label loop;
2945   __ bind(loop);
2946   __ movptr(rbx, Address(rsi, 0)); // Load frame size
2947   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
2948   __ pushptr(Address(rcx, 0));     // Save return address
2949   __ enter();                      // Save old & set new rbp
2950   __ subptr(rsp, rbx);             // Prolog
2951 #ifdef CC_INTERP
2952   __ movptr(Address(rbp,
2953                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2954             sender_sp); // Make it walkable
2955 #else // CC_INTERP
2956   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
2957             sender_sp);            // Make it walkable
2958   // This value is corrected by layout_activation_impl
2959   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2960 #endif // CC_INTERP
2961   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
2962   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
2963   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
2964   __ decrementl(rdx);              // Decrement counter
2965   __ jcc(Assembler::notZero, loop);
2966   __ pushptr(Address(rcx, 0));     // Save final return address
2967 
2968   // Re-push self-frame
2969   __ enter();                 // Save old & set new rbp
2970   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
2971                               // Prolog
2972 
2973   // Use rbp because the frames look interpreted now
2974   __ set_last_Java_frame(noreg, rbp, NULL);
2975 
2976   // Call C code.  Need thread but NOT official VM entry
2977   // crud.  We cannot block on this call, no GC can happen.  Call should
2978   // restore return values to their stack-slots with the new SP.
2979   // Thread is in rdi already.
2980   //
2981   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2982 
2983   __ mov(c_rarg0, r15_thread);
2984   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
2985   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2986 
2987   // Set an oopmap for the call site
2988   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2989 
2990   __ reset_last_Java_frame(true, false);
2991 
2992   // Pop self-frame.
2993   __ leave();                 // Epilog
2994 
2995   // Jump to interpreter
2996   __ ret(0);
2997 
2998   // Make sure all code is generated
2999   masm->flush();
3000 
3001   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3002                                                  SimpleRuntimeFrame::framesize >> 1);
3003 }
3004 #endif // COMPILER2
3005 
3006 
3007 //------------------------------generate_handler_blob------
3008 //
3009 // Generate a special Compile2Runtime blob that saves all registers,
3010 // and setup oopmap.
3011 //
3012 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3013   assert(StubRoutines::forward_exception_entry() != NULL,
3014          "must be generated before");
3015 
3016   ResourceMark rm;
3017   OopMapSet *oop_maps = new OopMapSet();
3018   OopMap* map;
3019 
3020   // Allocate space for the code.  Setup code generation tools.
3021   CodeBuffer buffer("handler_blob", 2048, 1024);
3022   MacroAssembler* masm = new MacroAssembler(&buffer);
3023 
3024   address start   = __ pc();
3025   address call_pc = NULL;
3026   int frame_size_in_words;
3027 
3028   // Make room for return address (or push it again)
3029   if (!cause_return) {
3030     __ push(rbx);
3031   }
3032 
3033   // Save registers, fpu state, and flags
3034   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3035 
3036   // The following is basically a call_VM.  However, we need the precise
3037   // address of the call in order to generate an oopmap. Hence, we do all the
3038   // work outselves.
3039 
3040   __ set_last_Java_frame(noreg, noreg, NULL);
3041 
3042   // The return address must always be correct so that frame constructor never
3043   // sees an invalid pc.
3044 
3045   if (!cause_return) {
3046     // overwrite the dummy value we pushed on entry
3047     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3048     __ movptr(Address(rbp, wordSize), c_rarg0);
3049   }
3050 
3051   // Do the call
3052   __ mov(c_rarg0, r15_thread);
3053   __ call(RuntimeAddress(call_ptr));
3054 
3055   // Set an oopmap for the call site.  This oopmap will map all
3056   // oop-registers and debug-info registers as callee-saved.  This
3057   // will allow deoptimization at this safepoint to find all possible
3058   // debug-info recordings, as well as let GC find all oops.
3059 
3060   oop_maps->add_gc_map( __ pc() - start, map);
3061 
3062   Label noException;
3063 
3064   __ reset_last_Java_frame(false, false);
3065 
3066   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3067   __ jcc(Assembler::equal, noException);
3068 
3069   // Exception pending
3070 
3071   RegisterSaver::restore_live_registers(masm);
3072 
3073   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3074 
3075   // No exception case
3076   __ bind(noException);
3077 
3078   // Normal exit, restore registers and exit.
3079   RegisterSaver::restore_live_registers(masm);
3080 
3081   __ ret(0);
3082 
3083   // Make sure all code is generated
3084   masm->flush();
3085 
3086   // Fill-out other meta info
3087   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3088 }
3089 
3090 //
3091 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3092 //
3093 // Generate a stub that calls into vm to find out the proper destination
3094 // of a java call. All the argument registers are live at this point
3095 // but since this is generic code we don't know what they are and the caller
3096 // must do any gc of the args.
3097 //
3098 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3099   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3100 
3101   // allocate space for the code
3102   ResourceMark rm;
3103 
3104   CodeBuffer buffer(name, 1000, 512);
3105   MacroAssembler* masm                = new MacroAssembler(&buffer);
3106 
3107   int frame_size_in_words;
3108 
3109   OopMapSet *oop_maps = new OopMapSet();
3110   OopMap* map = NULL;
3111 
3112   int start = __ offset();
3113 
3114   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3115 
3116   int frame_complete = __ offset();
3117 
3118   __ set_last_Java_frame(noreg, noreg, NULL);
3119 
3120   __ mov(c_rarg0, r15_thread);
3121 
3122   __ call(RuntimeAddress(destination));
3123 
3124 
3125   // Set an oopmap for the call site.
3126   // We need this not only for callee-saved registers, but also for volatile
3127   // registers that the compiler might be keeping live across a safepoint.
3128 
3129   oop_maps->add_gc_map( __ offset() - start, map);
3130 
3131   // rax contains the address we are going to jump to assuming no exception got installed
3132 
3133   // clear last_Java_sp
3134   __ reset_last_Java_frame(false, false);
3135   // check for pending exceptions
3136   Label pending;
3137   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3138   __ jcc(Assembler::notEqual, pending);
3139 
3140   // get the returned methodOop
3141   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3142   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3143 
3144   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3145 
3146   RegisterSaver::restore_live_registers(masm);
3147 
3148   // We are back the the original state on entry and ready to go.
3149 
3150   __ jmp(rax);
3151 
3152   // Pending exception after the safepoint
3153 
3154   __ bind(pending);
3155 
3156   RegisterSaver::restore_live_registers(masm);
3157 
3158   // exception pending => remove activation and forward to exception handler
3159 
3160   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3161 
3162   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3163   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3164 
3165   // -------------
3166   // make sure all code is generated
3167   masm->flush();
3168 
3169   // return the  blob
3170   // frame_size_words or bytes??
3171   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3172 }
3173 
3174 
3175 void SharedRuntime::generate_stubs() {
3176 
3177   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3178                                         "wrong_method_stub");
3179   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3180                                         "ic_miss_stub");
3181   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3182                                         "resolve_opt_virtual_call");
3183 
3184   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3185                                         "resolve_virtual_call");
3186 
3187   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3188                                         "resolve_static_call");
3189   _polling_page_safepoint_handler_blob =
3190     generate_handler_blob(CAST_FROM_FN_PTR(address,
3191                    SafepointSynchronize::handle_polling_page_exception), false);
3192 
3193   _polling_page_return_handler_blob =
3194     generate_handler_blob(CAST_FROM_FN_PTR(address,
3195                    SafepointSynchronize::handle_polling_page_exception), true);
3196 
3197   generate_deopt_blob();
3198 
3199 #ifdef COMPILER2
3200   generate_uncommon_trap_blob();
3201 #endif // COMPILER2
3202 }
3203 
3204 
3205 #ifdef COMPILER2
3206 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3207 //
3208 //------------------------------generate_exception_blob---------------------------
3209 // creates exception blob at the end
3210 // Using exception blob, this code is jumped from a compiled method.
3211 // (see emit_exception_handler in x86_64.ad file)
3212 //
3213 // Given an exception pc at a call we call into the runtime for the
3214 // handler in this method. This handler might merely restore state
3215 // (i.e. callee save registers) unwind the frame and jump to the
3216 // exception handler for the nmethod if there is no Java level handler
3217 // for the nmethod.
3218 //
3219 // This code is entered with a jmp.
3220 //
3221 // Arguments:
3222 //   rax: exception oop
3223 //   rdx: exception pc
3224 //
3225 // Results:
3226 //   rax: exception oop
3227 //   rdx: exception pc in caller or ???
3228 //   destination: exception handler of caller
3229 //
3230 // Note: the exception pc MUST be at a call (precise debug information)
3231 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3232 //
3233 
3234 void OptoRuntime::generate_exception_blob() {
3235   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3236   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3237   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3238 
3239   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3240 
3241   // Allocate space for the code
3242   ResourceMark rm;
3243   // Setup code generation tools
3244   CodeBuffer buffer("exception_blob", 2048, 1024);
3245   MacroAssembler* masm = new MacroAssembler(&buffer);
3246 
3247 
3248   address start = __ pc();
3249 
3250   // Exception pc is 'return address' for stack walker
3251   __ push(rdx);
3252   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3253 
3254   // Save callee-saved registers.  See x86_64.ad.
3255 
3256   // rbp is an implicitly saved callee saved register (i.e. the calling
3257   // convention will save restore it in prolog/epilog) Other than that
3258   // there are no callee save registers now that adapter frames are gone.
3259 
3260   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3261 
3262   // Store exception in Thread object. We cannot pass any arguments to the
3263   // handle_exception call, since we do not want to make any assumption
3264   // about the size of the frame where the exception happened in.
3265   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3266   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3267   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3268 
3269   // This call does all the hard work.  It checks if an exception handler
3270   // exists in the method.
3271   // If so, it returns the handler address.
3272   // If not, it prepares for stack-unwinding, restoring the callee-save
3273   // registers of the frame being removed.
3274   //
3275   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3276 
3277   __ set_last_Java_frame(noreg, noreg, NULL);
3278   __ mov(c_rarg0, r15_thread);
3279   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3280 
3281   // Set an oopmap for the call site.  This oopmap will only be used if we
3282   // are unwinding the stack.  Hence, all locations will be dead.
3283   // Callee-saved registers will be the same as the frame above (i.e.,
3284   // handle_exception_stub), since they were restored when we got the
3285   // exception.
3286 
3287   OopMapSet* oop_maps = new OopMapSet();
3288 
3289   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3290 
3291   __ reset_last_Java_frame(false, false);
3292 
3293   // Restore callee-saved registers
3294 
3295   // rbp is an implicitly saved callee saved register (i.e. the calling
3296   // convention will save restore it in prolog/epilog) Other than that
3297   // there are no callee save registers no that adapter frames are gone.
3298 
3299   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3300 
3301   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3302   __ pop(rdx);                  // No need for exception pc anymore
3303 
3304   // rax: exception handler
3305 
3306   // Restore SP from BP if the exception PC is a MethodHandle call site.
3307   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3308   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3309 
3310   // We have a handler in rax (could be deopt blob).
3311   __ mov(r8, rax);
3312 
3313   // Get the exception oop
3314   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3315   // Get the exception pc in case we are deoptimized
3316   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3317 #ifdef ASSERT
3318   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3319   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3320 #endif
3321   // Clear the exception oop so GC no longer processes it as a root.
3322   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3323 
3324   // rax: exception oop
3325   // r8:  exception handler
3326   // rdx: exception pc
3327   // Jump to handler
3328 
3329   __ jmp(r8);
3330 
3331   // Make sure all code is generated
3332   masm->flush();
3333 
3334   // Set exception blob
3335   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3336 }
3337 #endif // COMPILER2