1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_vm_version_x86.cpp.incl"
  27 
  28 
  29 int VM_Version::_cpu;
  30 int VM_Version::_model;
  31 int VM_Version::_stepping;
  32 int VM_Version::_cpuFeatures;
  33 const char*           VM_Version::_features_str = "";
  34 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
  35 
  36 static BufferBlob* stub_blob;
  37 static const int stub_size = 400;
  38 
  39 extern "C" {
  40   typedef void (*getPsrInfo_stub_t)(void*);
  41 }
  42 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
  43 
  44 
  45 class VM_Version_StubGenerator: public StubCodeGenerator {
  46  public:
  47 
  48   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  49 
  50   address generate_getPsrInfo() {
  51     // Flags to test CPU type.
  52     const uint32_t EFL_AC           = 0x40000;
  53     const uint32_t EFL_ID           = 0x200000;
  54     // Values for when we don't have a CPUID instruction.
  55     const int      CPU_FAMILY_SHIFT = 8;
  56     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
  57     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
  58 
  59     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  60     Label ext_cpuid1, ext_cpuid5, done;
  61 
  62     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
  63 #   define __ _masm->
  64 
  65     address start = __ pc();
  66 
  67     //
  68     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
  69     //
  70     // LP64: rcx and rdx are first and second argument registers on windows
  71 
  72     __ push(rbp);
  73 #ifdef _LP64
  74     __ mov(rbp, c_rarg0); // cpuid_info address
  75 #else
  76     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  77 #endif
  78     __ push(rbx);
  79     __ push(rsi);
  80     __ pushf();          // preserve rbx, and flags
  81     __ pop(rax);
  82     __ push(rax);
  83     __ mov(rcx, rax);
  84     //
  85     // if we are unable to change the AC flag, we have a 386
  86     //
  87     __ xorl(rax, EFL_AC);
  88     __ push(rax);
  89     __ popf();
  90     __ pushf();
  91     __ pop(rax);
  92     __ cmpptr(rax, rcx);
  93     __ jccb(Assembler::notEqual, detect_486);
  94 
  95     __ movl(rax, CPU_FAMILY_386);
  96     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
  97     __ jmp(done);
  98 
  99     //
 100     // If we are unable to change the ID flag, we have a 486 which does
 101     // not support the "cpuid" instruction.
 102     //
 103     __ bind(detect_486);
 104     __ mov(rax, rcx);
 105     __ xorl(rax, EFL_ID);
 106     __ push(rax);
 107     __ popf();
 108     __ pushf();
 109     __ pop(rax);
 110     __ cmpptr(rcx, rax);
 111     __ jccb(Assembler::notEqual, detect_586);
 112 
 113     __ bind(cpu486);
 114     __ movl(rax, CPU_FAMILY_486);
 115     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 116     __ jmp(done);
 117 
 118     //
 119     // At this point, we have a chip which supports the "cpuid" instruction
 120     //
 121     __ bind(detect_586);
 122     __ xorl(rax, rax);
 123     __ cpuid();
 124     __ orl(rax, rax);
 125     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 126                                         // value of at least 1, we give up and
 127                                         // assume a 486
 128     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 129     __ movl(Address(rsi, 0), rax);
 130     __ movl(Address(rsi, 4), rbx);
 131     __ movl(Address(rsi, 8), rcx);
 132     __ movl(Address(rsi,12), rdx);
 133 
 134     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 135     __ jccb(Assembler::belowEqual, std_cpuid4);
 136 
 137     //
 138     // cpuid(0xB) Processor Topology
 139     //
 140     __ movl(rax, 0xb);
 141     __ xorl(rcx, rcx);   // Threads level
 142     __ cpuid();
 143 
 144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 145     __ movl(Address(rsi, 0), rax);
 146     __ movl(Address(rsi, 4), rbx);
 147     __ movl(Address(rsi, 8), rcx);
 148     __ movl(Address(rsi,12), rdx);
 149 
 150     __ movl(rax, 0xb);
 151     __ movl(rcx, 1);     // Cores level
 152     __ cpuid();
 153     __ push(rax);
 154     __ andl(rax, 0x1f);  // Determine if valid topology level
 155     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 156     __ andl(rax, 0xffff);
 157     __ pop(rax);
 158     __ jccb(Assembler::equal, std_cpuid4);
 159 
 160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 161     __ movl(Address(rsi, 0), rax);
 162     __ movl(Address(rsi, 4), rbx);
 163     __ movl(Address(rsi, 8), rcx);
 164     __ movl(Address(rsi,12), rdx);
 165 
 166     __ movl(rax, 0xb);
 167     __ movl(rcx, 2);     // Packages level
 168     __ cpuid();
 169     __ push(rax);
 170     __ andl(rax, 0x1f);  // Determine if valid topology level
 171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 172     __ andl(rax, 0xffff);
 173     __ pop(rax);
 174     __ jccb(Assembler::equal, std_cpuid4);
 175 
 176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 177     __ movl(Address(rsi, 0), rax);
 178     __ movl(Address(rsi, 4), rbx);
 179     __ movl(Address(rsi, 8), rcx);
 180     __ movl(Address(rsi,12), rdx);
 181 
 182     //
 183     // cpuid(0x4) Deterministic cache params
 184     //
 185     __ bind(std_cpuid4);
 186     __ movl(rax, 4);
 187     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 188     __ jccb(Assembler::greater, std_cpuid1);
 189 
 190     __ xorl(rcx, rcx);   // L1 cache
 191     __ cpuid();
 192     __ push(rax);
 193     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 194     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 195     __ pop(rax);
 196     __ jccb(Assembler::equal, std_cpuid1);
 197 
 198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 199     __ movl(Address(rsi, 0), rax);
 200     __ movl(Address(rsi, 4), rbx);
 201     __ movl(Address(rsi, 8), rcx);
 202     __ movl(Address(rsi,12), rdx);
 203 
 204     //
 205     // Standard cpuid(0x1)
 206     //
 207     __ bind(std_cpuid1);
 208     __ movl(rax, 1);
 209     __ cpuid();
 210     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 211     __ movl(Address(rsi, 0), rax);
 212     __ movl(Address(rsi, 4), rbx);
 213     __ movl(Address(rsi, 8), rcx);
 214     __ movl(Address(rsi,12), rdx);
 215 
 216     __ movl(rax, 0x80000000);
 217     __ cpuid();
 218     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 219     __ jcc(Assembler::belowEqual, done);
 220     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 221     __ jccb(Assembler::belowEqual, ext_cpuid1);
 222     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 223     __ jccb(Assembler::belowEqual, ext_cpuid5);
 224     //
 225     // Extended cpuid(0x80000008)
 226     //
 227     __ movl(rax, 0x80000008);
 228     __ cpuid();
 229     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 230     __ movl(Address(rsi, 0), rax);
 231     __ movl(Address(rsi, 4), rbx);
 232     __ movl(Address(rsi, 8), rcx);
 233     __ movl(Address(rsi,12), rdx);
 234 
 235     //
 236     // Extended cpuid(0x80000005)
 237     //
 238     __ bind(ext_cpuid5);
 239     __ movl(rax, 0x80000005);
 240     __ cpuid();
 241     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 242     __ movl(Address(rsi, 0), rax);
 243     __ movl(Address(rsi, 4), rbx);
 244     __ movl(Address(rsi, 8), rcx);
 245     __ movl(Address(rsi,12), rdx);
 246 
 247     //
 248     // Extended cpuid(0x80000001)
 249     //
 250     __ bind(ext_cpuid1);
 251     __ movl(rax, 0x80000001);
 252     __ cpuid();
 253     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 254     __ movl(Address(rsi, 0), rax);
 255     __ movl(Address(rsi, 4), rbx);
 256     __ movl(Address(rsi, 8), rcx);
 257     __ movl(Address(rsi,12), rdx);
 258 
 259     //
 260     // return
 261     //
 262     __ bind(done);
 263     __ popf();
 264     __ pop(rsi);
 265     __ pop(rbx);
 266     __ pop(rbp);
 267     __ ret(0);
 268 
 269 #   undef __
 270 
 271     return start;
 272   };
 273 };
 274 
 275 
 276 void VM_Version::get_processor_features() {
 277 
 278   _cpu = 4; // 486 by default
 279   _model = 0;
 280   _stepping = 0;
 281   _cpuFeatures = 0;
 282   _logical_processors_per_package = 1;
 283 
 284   if (!Use486InstrsOnly) {
 285     // Get raw processor info
 286     getPsrInfo_stub(&_cpuid_info);
 287     assert_is_initialized();
 288     _cpu = extended_cpu_family();
 289     _model = extended_cpu_model();
 290     _stepping = cpu_stepping();
 291 
 292     if (cpu_family() > 4) { // it supports CPUID
 293       _cpuFeatures = feature_flags();
 294       // Logical processors are only available on P4s and above,
 295       // and only if hyperthreading is available.
 296       _logical_processors_per_package = logical_processor_count();
 297     }
 298   }
 299 
 300   _supports_cx8 = supports_cmpxchg8();
 301 
 302 #ifdef _LP64
 303   // OS should support SSE for x64 and hardware should support at least SSE2.
 304   if (!VM_Version::supports_sse2()) {
 305     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 306   }
 307   // in 64 bit the use of SSE2 is the minimum
 308   if (UseSSE < 2) UseSSE = 2;
 309 #endif
 310 
 311   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 312   if (!os::supports_sse())
 313     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 314 
 315   if (UseSSE < 4) {
 316     _cpuFeatures &= ~CPU_SSE4_1;
 317     _cpuFeatures &= ~CPU_SSE4_2;
 318   }
 319 
 320   if (UseSSE < 3) {
 321     _cpuFeatures &= ~CPU_SSE3;
 322     _cpuFeatures &= ~CPU_SSSE3;
 323     _cpuFeatures &= ~CPU_SSE4A;
 324   }
 325 
 326   if (UseSSE < 2)
 327     _cpuFeatures &= ~CPU_SSE2;
 328 
 329   if (UseSSE < 1)
 330     _cpuFeatures &= ~CPU_SSE;
 331 
 332   if (logical_processors_per_package() == 1) {
 333     // HT processor could be installed on a system which doesn't support HT.
 334     _cpuFeatures &= ~CPU_HT;
 335   }
 336 
 337   char buf[256];
 338   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 339                cores_per_cpu(), threads_per_core(),
 340                cpu_family(), _model, _stepping,
 341                (supports_cmov() ? ", cmov" : ""),
 342                (supports_cmpxchg8() ? ", cx8" : ""),
 343                (supports_fxsr() ? ", fxsr" : ""),
 344                (supports_mmx()  ? ", mmx"  : ""),
 345                (supports_sse()  ? ", sse"  : ""),
 346                (supports_sse2() ? ", sse2" : ""),
 347                (supports_sse3() ? ", sse3" : ""),
 348                (supports_ssse3()? ", ssse3": ""),
 349                (supports_sse4_1() ? ", sse4.1" : ""),
 350                (supports_sse4_2() ? ", sse4.2" : ""),
 351                (supports_popcnt() ? ", popcnt" : ""),
 352                (supports_mmx_ext() ? ", mmxext" : ""),
 353                (supports_3dnow()   ? ", 3dnow"  : ""),
 354                (supports_3dnow2()  ? ", 3dnowext" : ""),
 355                (supports_lzcnt()   ? ", lzcnt": ""),
 356                (supports_sse4a()   ? ", sse4a": ""),
 357                (supports_ht() ? ", ht": ""));
 358   _features_str = strdup(buf);
 359 
 360   // UseSSE is set to the smaller of what hardware supports and what
 361   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 362   // older Pentiums which do not support it.
 363   if( UseSSE > 4 ) UseSSE=4;
 364   if( UseSSE < 0 ) UseSSE=0;
 365   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
 366     UseSSE = MIN2((intx)3,UseSSE);
 367   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
 368     UseSSE = MIN2((intx)2,UseSSE);
 369   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
 370     UseSSE = MIN2((intx)1,UseSSE);
 371   if( !supports_sse () ) // Drop to 0 if no SSE  support
 372     UseSSE = 0;
 373 
 374   // On new cpus instructions which update whole XMM register should be used
 375   // to prevent partial register stall due to dependencies on high half.
 376   //
 377   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 378   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 379   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 380   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 381 
 382   if( is_amd() ) { // AMD cpus specific settings
 383     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 384       // Use it on new AMD cpus starting from Opteron.
 385       UseAddressNop = true;
 386     }
 387     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 388       // Use it on new AMD cpus starting from Opteron.
 389       UseNewLongLShift = true;
 390     }
 391     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 392       if( supports_sse4a() ) {
 393         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 394       } else {
 395         UseXmmLoadAndClearUpper = false;
 396       }
 397     }
 398     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 399       if( supports_sse4a() ) {
 400         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 401       } else {
 402         UseXmmRegToRegMoveAll = false;
 403       }
 404     }
 405     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 406       if( supports_sse4a() ) {
 407         UseXmmI2F = true;
 408       } else {
 409         UseXmmI2F = false;
 410       }
 411     }
 412     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 413       if( supports_sse4a() ) {
 414         UseXmmI2D = true;
 415       } else {
 416         UseXmmI2D = false;
 417       }
 418     }
 419 
 420     // Use count leading zeros count instruction if available.
 421     if (supports_lzcnt()) {
 422       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
 423         UseCountLeadingZerosInstruction = true;
 424       }
 425     }
 426   }
 427 
 428   if( is_intel() ) { // Intel cpus specific settings
 429     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
 430       UseStoreImmI16 = false; // don't use it on Intel cpus
 431     }
 432     if( cpu_family() == 6 || cpu_family() == 15 ) {
 433       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
 434         // Use it on all Intel cpus starting from PentiumPro
 435         UseAddressNop = true;
 436       }
 437     }
 438     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 439       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
 440     }
 441     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 442       if( supports_sse3() ) {
 443         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
 444       } else {
 445         UseXmmRegToRegMoveAll = false;
 446       }
 447     }
 448     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
 449 #ifdef COMPILER2
 450       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
 451         // For new Intel cpus do the next optimization:
 452         // don't align the beginning of a loop if there are enough instructions
 453         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
 454         // in current fetch line (OptoLoopAlignment) or the padding
 455         // is big (> MaxLoopPad).
 456         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
 457         // generated NOP instructions. 11 is the largest size of one
 458         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
 459         MaxLoopPad = 11;
 460       }
 461 #endif // COMPILER2
 462       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 463         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
 464       }
 465       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
 466         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 467           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 468         }
 469       }
 470       if( supports_sse4_2() && UseSSE >= 4 ) {
 471         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 472           UseSSE42Intrinsics = true;
 473         }
 474       }
 475     }
 476   }
 477 
 478   // Use population count instruction if available.
 479   if (supports_popcnt()) {
 480     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
 481       UsePopCountInstruction = true;
 482     }
 483   }
 484 
 485 #ifdef COMPILER2
 486   if (UseFPUForSpilling) {
 487     if (UseSSE < 2) {
 488       // Only supported with SSE2+
 489       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 490     }
 491   }
 492 #endif
 493 
 494   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
 495   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
 496 
 497   // set valid Prefetch instruction
 498   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
 499   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
 500   if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
 501   if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;
 502 
 503   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
 504   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
 505   if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
 506   if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;
 507 
 508   // Allocation prefetch settings
 509   intx cache_line_size = L1_data_cache_line_size();
 510   if( cache_line_size > AllocatePrefetchStepSize )
 511     AllocatePrefetchStepSize = cache_line_size;
 512   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
 513     AllocatePrefetchLines = 3; // Optimistic value
 514   assert(AllocatePrefetchLines > 0, "invalid value");
 515   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
 516     AllocatePrefetchLines = 1; // Conservative value
 517 
 518   AllocatePrefetchDistance = allocate_prefetch_distance();
 519   AllocatePrefetchStyle    = allocate_prefetch_style();
 520 
 521   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
 522     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
 523 #ifdef _LP64
 524       AllocatePrefetchDistance = 384;
 525 #else
 526       AllocatePrefetchDistance = 320;
 527 #endif
 528     }
 529     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
 530       AllocatePrefetchDistance = 192;
 531       AllocatePrefetchLines = 4;
 532 #ifdef COMPILER2
 533       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
 534         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
 535       }
 536 #endif
 537     }
 538   }
 539   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
 540 
 541 #ifdef _LP64
 542   // Prefetch settings
 543   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
 544   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
 545   PrefetchFieldsAhead         = prefetch_fields_ahead();
 546 #endif
 547 
 548 #ifndef PRODUCT
 549   if (PrintMiscellaneous && Verbose) {
 550     tty->print_cr("Logical CPUs per core: %u",
 551                   logical_processors_per_package());
 552     tty->print_cr("UseSSE=%d",UseSSE);
 553     tty->print("Allocation: ");
 554     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
 555       tty->print_cr("no prefetching");
 556     } else {
 557       if (UseSSE == 0 && supports_3dnow()) {
 558         tty->print("PREFETCHW");
 559       } else if (UseSSE >= 1) {
 560         if (AllocatePrefetchInstr == 0) {
 561           tty->print("PREFETCHNTA");
 562         } else if (AllocatePrefetchInstr == 1) {
 563           tty->print("PREFETCHT0");
 564         } else if (AllocatePrefetchInstr == 2) {
 565           tty->print("PREFETCHT2");
 566         } else if (AllocatePrefetchInstr == 3) {
 567           tty->print("PREFETCHW");
 568         }
 569       }
 570       if (AllocatePrefetchLines > 1) {
 571         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
 572       } else {
 573         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
 574       }
 575     }
 576 
 577     if (PrefetchCopyIntervalInBytes > 0) {
 578       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
 579     }
 580     if (PrefetchScanIntervalInBytes > 0) {
 581       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
 582     }
 583     if (PrefetchFieldsAhead > 0) {
 584       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
 585     }
 586   }
 587 #endif // !PRODUCT
 588 }
 589 
 590 void VM_Version::initialize() {
 591   ResourceMark rm;
 592   // Making this stub must be FIRST use of assembler
 593 
 594   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
 595   if (stub_blob == NULL) {
 596     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
 597   }
 598   CodeBuffer c(stub_blob);
 599   VM_Version_StubGenerator g(&c);
 600   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
 601                                    g.generate_getPsrInfo());
 602 
 603   get_processor_features();
 604 }