1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // no precompiled headers
  31 #include "classfile/classLoader.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "jvm_windows.h"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "mutex_windows.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/hpi.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "thread_windows.inline.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 #ifdef TARGET_ARCH_x86
  71 # include "assembler_x86.inline.hpp"
  72 # include "nativeInst_x86.hpp"
  73 #endif
  74 #ifdef COMPILER1
  75 #include "c1/c1_Runtime1.hpp"
  76 #endif
  77 #ifdef COMPILER2
  78 #include "opto/runtime.hpp"
  79 #endif
  80 
  81 #ifdef _DEBUG
  82 #include <crtdbg.h>
  83 #endif
  84 
  85 
  86 #include <windows.h>
  87 #include <sys/types.h>
  88 #include <sys/stat.h>
  89 #include <sys/timeb.h>
  90 #include <objidl.h>
  91 #include <shlobj.h>
  92 
  93 #include <malloc.h>
  94 #include <signal.h>
  95 #include <direct.h>
  96 #include <errno.h>
  97 #include <fcntl.h>
  98 #include <io.h>
  99 #include <process.h>              // For _beginthreadex(), _endthreadex()
 100 #include <imagehlp.h>             // For os::dll_address_to_function_name
 101 
 102 /* for enumerating dll libraries */
 103 #include <tlhelp32.h>
 104 #include <vdmdbg.h>
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 108 
 109 // For DLL loading/load error detection
 110 // Values of PE COFF
 111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 113 
 114 static HANDLE main_process;
 115 static HANDLE main_thread;
 116 static int    main_thread_id;
 117 
 118 static FILETIME process_creation_time;
 119 static FILETIME process_exit_time;
 120 static FILETIME process_user_time;
 121 static FILETIME process_kernel_time;
 122 
 123 #ifdef _WIN64
 124 PVOID  topLevelVectoredExceptionHandler = NULL;
 125 #endif
 126 
 127 #ifdef _M_IA64
 128 #define __CPU__ ia64
 129 #elif _M_AMD64
 130 #define __CPU__ amd64
 131 #else
 132 #define __CPU__ i486
 133 #endif
 134 
 135 // save DLL module handle, used by GetModuleFileName
 136 
 137 HINSTANCE vm_lib_handle;
 138 static int getLastErrorString(char *buf, size_t len);
 139 
 140 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 141   switch (reason) {
 142     case DLL_PROCESS_ATTACH:
 143       vm_lib_handle = hinst;
 144       if(ForceTimeHighResolution)
 145         timeBeginPeriod(1L);
 146       break;
 147     case DLL_PROCESS_DETACH:
 148       if(ForceTimeHighResolution)
 149         timeEndPeriod(1L);
 150 #ifdef _WIN64
 151       if (topLevelVectoredExceptionHandler != NULL) {
 152         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 153         topLevelVectoredExceptionHandler = NULL;
 154       }
 155 #endif
 156       break;
 157     default:
 158       break;
 159   }
 160   return true;
 161 }
 162 
 163 static inline double fileTimeAsDouble(FILETIME* time) {
 164   const double high  = (double) ((unsigned int) ~0);
 165   const double split = 10000000.0;
 166   double result = (time->dwLowDateTime / split) +
 167                    time->dwHighDateTime * (high/split);
 168   return result;
 169 }
 170 
 171 // Implementation of os
 172 
 173 bool os::getenv(const char* name, char* buffer, int len) {
 174  int result = GetEnvironmentVariable(name, buffer, len);
 175  return result > 0 && result < len;
 176 }
 177 
 178 
 179 // No setuid programs under Windows.
 180 bool os::have_special_privileges() {
 181   return false;
 182 }
 183 
 184 
 185 // This method is  a periodic task to check for misbehaving JNI applications
 186 // under CheckJNI, we can add any periodic checks here.
 187 // For Windows at the moment does nothing
 188 void os::run_periodic_checks() {
 189   return;
 190 }
 191 
 192 #ifndef _WIN64
 193 // previous UnhandledExceptionFilter, if there is one
 194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 195 
 196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 197 #endif
 198 void os::init_system_properties_values() {
 199   /* sysclasspath, java_home, dll_dir */
 200   {
 201       char *home_path;
 202       char *dll_path;
 203       char *pslash;
 204       char *bin = "\\bin";
 205       char home_dir[MAX_PATH];
 206 
 207       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 208           os::jvm_path(home_dir, sizeof(home_dir));
 209           // Found the full path to jvm[_g].dll.
 210           // Now cut the path to <java_home>/jre if we can.
 211           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 212           pslash = strrchr(home_dir, '\\');
 213           if (pslash != NULL) {
 214               *pslash = '\0';                 /* get rid of \{client|server} */
 215               pslash = strrchr(home_dir, '\\');
 216               if (pslash != NULL)
 217                   *pslash = '\0';             /* get rid of \bin */
 218           }
 219       }
 220 
 221       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 222       if (home_path == NULL)
 223           return;
 224       strcpy(home_path, home_dir);
 225       Arguments::set_java_home(home_path);
 226 
 227       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 228       if (dll_path == NULL)
 229           return;
 230       strcpy(dll_path, home_dir);
 231       strcat(dll_path, bin);
 232       Arguments::set_dll_dir(dll_path);
 233 
 234       if (!set_boot_path('\\', ';'))
 235           return;
 236   }
 237 
 238   /* library_path */
 239   #define EXT_DIR "\\lib\\ext"
 240   #define BIN_DIR "\\bin"
 241   #define PACKAGE_DIR "\\Sun\\Java"
 242   {
 243     /* Win32 library search order (See the documentation for LoadLibrary):
 244      *
 245      * 1. The directory from which application is loaded.
 246      * 2. The current directory
 247      * 3. The system wide Java Extensions directory (Java only)
 248      * 4. System directory (GetSystemDirectory)
 249      * 5. Windows directory (GetWindowsDirectory)
 250      * 6. The PATH environment variable
 251      */
 252 
 253     char *library_path;
 254     char tmp[MAX_PATH];
 255     char *path_str = ::getenv("PATH");
 256 
 257     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 258         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 259 
 260     library_path[0] = '\0';
 261 
 262     GetModuleFileName(NULL, tmp, sizeof(tmp));
 263     *(strrchr(tmp, '\\')) = '\0';
 264     strcat(library_path, tmp);
 265 
 266     strcat(library_path, ";.");
 267 
 268     GetWindowsDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271     strcat(library_path, PACKAGE_DIR BIN_DIR);
 272 
 273     GetSystemDirectory(tmp, sizeof(tmp));
 274     strcat(library_path, ";");
 275     strcat(library_path, tmp);
 276 
 277     GetWindowsDirectory(tmp, sizeof(tmp));
 278     strcat(library_path, ";");
 279     strcat(library_path, tmp);
 280 
 281     if (path_str) {
 282         strcat(library_path, ";");
 283         strcat(library_path, path_str);
 284     }
 285 
 286     Arguments::set_library_path(library_path);
 287     FREE_C_HEAP_ARRAY(char, library_path);
 288   }
 289 
 290   /* Default extensions directory */
 291   {
 292     char path[MAX_PATH];
 293     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 294     GetWindowsDirectory(path, MAX_PATH);
 295     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 296         path, PACKAGE_DIR, EXT_DIR);
 297     Arguments::set_ext_dirs(buf);
 298   }
 299   #undef EXT_DIR
 300   #undef BIN_DIR
 301   #undef PACKAGE_DIR
 302 
 303   /* Default endorsed standards directory. */
 304   {
 305     #define ENDORSED_DIR "\\lib\\endorsed"
 306     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 307     char * buf = NEW_C_HEAP_ARRAY(char, len);
 308     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 309     Arguments::set_endorsed_dirs(buf);
 310     #undef ENDORSED_DIR
 311   }
 312 
 313 #ifndef _WIN64
 314   // set our UnhandledExceptionFilter and save any previous one
 315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 316 #endif
 317 
 318   // Done
 319   return;
 320 }
 321 
 322 void os::breakpoint() {
 323   DebugBreak();
 324 }
 325 
 326 // Invoked from the BREAKPOINT Macro
 327 extern "C" void breakpoint() {
 328   os::breakpoint();
 329 }
 330 
 331 // Returns an estimate of the current stack pointer. Result must be guaranteed
 332 // to point into the calling threads stack, and be no lower than the current
 333 // stack pointer.
 334 
 335 address os::current_stack_pointer() {
 336   int dummy;
 337   address sp = (address)&dummy;
 338   return sp;
 339 }
 340 
 341 // os::current_stack_base()
 342 //
 343 //   Returns the base of the stack, which is the stack's
 344 //   starting address.  This function must be called
 345 //   while running on the stack of the thread being queried.
 346 
 347 address os::current_stack_base() {
 348   MEMORY_BASIC_INFORMATION minfo;
 349   address stack_bottom;
 350   size_t stack_size;
 351 
 352   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 353   stack_bottom =  (address)minfo.AllocationBase;
 354   stack_size = minfo.RegionSize;
 355 
 356   // Add up the sizes of all the regions with the same
 357   // AllocationBase.
 358   while( 1 )
 359   {
 360     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 361     if ( stack_bottom == (address)minfo.AllocationBase )
 362       stack_size += minfo.RegionSize;
 363     else
 364       break;
 365   }
 366 
 367 #ifdef _M_IA64
 368   // IA64 has memory and register stacks
 369   stack_size = stack_size / 2;
 370 #endif
 371   return stack_bottom + stack_size;
 372 }
 373 
 374 size_t os::current_stack_size() {
 375   size_t sz;
 376   MEMORY_BASIC_INFORMATION minfo;
 377   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 378   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 379   return sz;
 380 }
 381 
 382 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 383   const struct tm* time_struct_ptr = localtime(clock);
 384   if (time_struct_ptr != NULL) {
 385     *res = *time_struct_ptr;
 386     return res;
 387   }
 388   return NULL;
 389 }
 390 
 391 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 392 
 393 // Thread start routine for all new Java threads
 394 static unsigned __stdcall java_start(Thread* thread) {
 395   // Try to randomize the cache line index of hot stack frames.
 396   // This helps when threads of the same stack traces evict each other's
 397   // cache lines. The threads can be either from the same JVM instance, or
 398   // from different JVM instances. The benefit is especially true for
 399   // processors with hyperthreading technology.
 400   static int counter = 0;
 401   int pid = os::current_process_id();
 402   _alloca(((pid ^ counter++) & 7) * 128);
 403 
 404   OSThread* osthr = thread->osthread();
 405   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 406 
 407   if (UseNUMA) {
 408     int lgrp_id = os::numa_get_group_id();
 409     if (lgrp_id != -1) {
 410       thread->set_lgrp_id(lgrp_id);
 411     }
 412   }
 413 
 414 
 415   if (UseVectoredExceptions) {
 416     // If we are using vectored exception we don't need to set a SEH
 417     thread->run();
 418   }
 419   else {
 420     // Install a win32 structured exception handler around every thread created
 421     // by VM, so VM can genrate error dump when an exception occurred in non-
 422     // Java thread (e.g. VM thread).
 423     __try {
 424        thread->run();
 425     } __except(topLevelExceptionFilter(
 426                (_EXCEPTION_POINTERS*)_exception_info())) {
 427         // Nothing to do.
 428     }
 429   }
 430 
 431   // One less thread is executing
 432   // When the VMThread gets here, the main thread may have already exited
 433   // which frees the CodeHeap containing the Atomic::add code
 434   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 435     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 436   }
 437 
 438   return 0;
 439 }
 440 
 441 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 442   // Allocate the OSThread object
 443   OSThread* osthread = new OSThread(NULL, NULL);
 444   if (osthread == NULL) return NULL;
 445 
 446   // Initialize support for Java interrupts
 447   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 448   if (interrupt_event == NULL) {
 449     delete osthread;
 450     return NULL;
 451   }
 452   osthread->set_interrupt_event(interrupt_event);
 453 
 454   // Store info on the Win32 thread into the OSThread
 455   osthread->set_thread_handle(thread_handle);
 456   osthread->set_thread_id(thread_id);
 457 
 458   if (UseNUMA) {
 459     int lgrp_id = os::numa_get_group_id();
 460     if (lgrp_id != -1) {
 461       thread->set_lgrp_id(lgrp_id);
 462     }
 463   }
 464 
 465   // Initial thread state is INITIALIZED, not SUSPENDED
 466   osthread->set_state(INITIALIZED);
 467 
 468   return osthread;
 469 }
 470 
 471 
 472 bool os::create_attached_thread(JavaThread* thread) {
 473 #ifdef ASSERT
 474   thread->verify_not_published();
 475 #endif
 476   HANDLE thread_h;
 477   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 478                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 479     fatal("DuplicateHandle failed\n");
 480   }
 481   OSThread* osthread = create_os_thread(thread, thread_h,
 482                                         (int)current_thread_id());
 483   if (osthread == NULL) {
 484      return false;
 485   }
 486 
 487   // Initial thread state is RUNNABLE
 488   osthread->set_state(RUNNABLE);
 489 
 490   thread->set_osthread(osthread);
 491   return true;
 492 }
 493 
 494 bool os::create_main_thread(JavaThread* thread) {
 495 #ifdef ASSERT
 496   thread->verify_not_published();
 497 #endif
 498   if (_starting_thread == NULL) {
 499     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 500      if (_starting_thread == NULL) {
 501         return false;
 502      }
 503   }
 504 
 505   // The primordial thread is runnable from the start)
 506   _starting_thread->set_state(RUNNABLE);
 507 
 508   thread->set_osthread(_starting_thread);
 509   return true;
 510 }
 511 
 512 // Allocate and initialize a new OSThread
 513 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 514   unsigned thread_id;
 515 
 516   // Allocate the OSThread object
 517   OSThread* osthread = new OSThread(NULL, NULL);
 518   if (osthread == NULL) {
 519     return false;
 520   }
 521 
 522   // Initialize support for Java interrupts
 523   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 524   if (interrupt_event == NULL) {
 525     delete osthread;
 526     return NULL;
 527   }
 528   osthread->set_interrupt_event(interrupt_event);
 529   osthread->set_interrupted(false);
 530 
 531   thread->set_osthread(osthread);
 532 
 533   if (stack_size == 0) {
 534     switch (thr_type) {
 535     case os::java_thread:
 536       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 537       if (JavaThread::stack_size_at_create() > 0)
 538         stack_size = JavaThread::stack_size_at_create();
 539       break;
 540     case os::compiler_thread:
 541       if (CompilerThreadStackSize > 0) {
 542         stack_size = (size_t)(CompilerThreadStackSize * K);
 543         break;
 544       } // else fall through:
 545         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 546     case os::vm_thread:
 547     case os::pgc_thread:
 548     case os::cgc_thread:
 549     case os::watcher_thread:
 550       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 551       break;
 552     }
 553   }
 554 
 555   // Create the Win32 thread
 556   //
 557   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 558   // does not specify stack size. Instead, it specifies the size of
 559   // initially committed space. The stack size is determined by
 560   // PE header in the executable. If the committed "stack_size" is larger
 561   // than default value in the PE header, the stack is rounded up to the
 562   // nearest multiple of 1MB. For example if the launcher has default
 563   // stack size of 320k, specifying any size less than 320k does not
 564   // affect the actual stack size at all, it only affects the initial
 565   // commitment. On the other hand, specifying 'stack_size' larger than
 566   // default value may cause significant increase in memory usage, because
 567   // not only the stack space will be rounded up to MB, but also the
 568   // entire space is committed upfront.
 569   //
 570   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 571   // for CreateThread() that can treat 'stack_size' as stack size. However we
 572   // are not supposed to call CreateThread() directly according to MSDN
 573   // document because JVM uses C runtime library. The good news is that the
 574   // flag appears to work with _beginthredex() as well.
 575 
 576 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 577 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 578 #endif
 579 
 580   HANDLE thread_handle =
 581     (HANDLE)_beginthreadex(NULL,
 582                            (unsigned)stack_size,
 583                            (unsigned (__stdcall *)(void*)) java_start,
 584                            thread,
 585                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 586                            &thread_id);
 587   if (thread_handle == NULL) {
 588     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 589     // without the flag.
 590     thread_handle =
 591     (HANDLE)_beginthreadex(NULL,
 592                            (unsigned)stack_size,
 593                            (unsigned (__stdcall *)(void*)) java_start,
 594                            thread,
 595                            CREATE_SUSPENDED,
 596                            &thread_id);
 597   }
 598   if (thread_handle == NULL) {
 599     // Need to clean up stuff we've allocated so far
 600     CloseHandle(osthread->interrupt_event());
 601     thread->set_osthread(NULL);
 602     delete osthread;
 603     return NULL;
 604   }
 605 
 606   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 607 
 608   // Store info on the Win32 thread into the OSThread
 609   osthread->set_thread_handle(thread_handle);
 610   osthread->set_thread_id(thread_id);
 611 
 612   // Initial thread state is INITIALIZED, not SUSPENDED
 613   osthread->set_state(INITIALIZED);
 614 
 615   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 616   return true;
 617 }
 618 
 619 
 620 // Free Win32 resources related to the OSThread
 621 void os::free_thread(OSThread* osthread) {
 622   assert(osthread != NULL, "osthread not set");
 623   CloseHandle(osthread->thread_handle());
 624   CloseHandle(osthread->interrupt_event());
 625   delete osthread;
 626 }
 627 
 628 
 629 static int    has_performance_count = 0;
 630 static jlong first_filetime;
 631 static jlong initial_performance_count;
 632 static jlong performance_frequency;
 633 
 634 
 635 jlong as_long(LARGE_INTEGER x) {
 636   jlong result = 0; // initialization to avoid warning
 637   set_high(&result, x.HighPart);
 638   set_low(&result,  x.LowPart);
 639   return result;
 640 }
 641 
 642 
 643 jlong os::elapsed_counter() {
 644   LARGE_INTEGER count;
 645   if (has_performance_count) {
 646     QueryPerformanceCounter(&count);
 647     return as_long(count) - initial_performance_count;
 648   } else {
 649     FILETIME wt;
 650     GetSystemTimeAsFileTime(&wt);
 651     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 652   }
 653 }
 654 
 655 
 656 jlong os::elapsed_frequency() {
 657   if (has_performance_count) {
 658     return performance_frequency;
 659   } else {
 660    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 661    return 10000000;
 662   }
 663 }
 664 
 665 
 666 julong os::available_memory() {
 667   return win32::available_memory();
 668 }
 669 
 670 julong os::win32::available_memory() {
 671   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 672   // value if total memory is larger than 4GB
 673   MEMORYSTATUSEX ms;
 674   ms.dwLength = sizeof(ms);
 675   GlobalMemoryStatusEx(&ms);
 676 
 677   return (julong)ms.ullAvailPhys;
 678 }
 679 
 680 julong os::physical_memory() {
 681   return win32::physical_memory();
 682 }
 683 
 684 julong os::allocatable_physical_memory(julong size) {
 685 #ifdef _LP64
 686   return size;
 687 #else
 688   // Limit to 1400m because of the 2gb address space wall
 689   return MIN2(size, (julong)1400*M);
 690 #endif
 691 }
 692 
 693 // VC6 lacks DWORD_PTR
 694 #if _MSC_VER < 1300
 695 typedef UINT_PTR DWORD_PTR;
 696 #endif
 697 
 698 int os::active_processor_count() {
 699   DWORD_PTR lpProcessAffinityMask = 0;
 700   DWORD_PTR lpSystemAffinityMask = 0;
 701   int proc_count = processor_count();
 702   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 703       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 704     // Nof active processors is number of bits in process affinity mask
 705     int bitcount = 0;
 706     while (lpProcessAffinityMask != 0) {
 707       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 708       bitcount++;
 709     }
 710     return bitcount;
 711   } else {
 712     return proc_count;
 713   }
 714 }
 715 
 716 bool os::distribute_processes(uint length, uint* distribution) {
 717   // Not yet implemented.
 718   return false;
 719 }
 720 
 721 bool os::bind_to_processor(uint processor_id) {
 722   // Not yet implemented.
 723   return false;
 724 }
 725 
 726 static void initialize_performance_counter() {
 727   LARGE_INTEGER count;
 728   if (QueryPerformanceFrequency(&count)) {
 729     has_performance_count = 1;
 730     performance_frequency = as_long(count);
 731     QueryPerformanceCounter(&count);
 732     initial_performance_count = as_long(count);
 733   } else {
 734     has_performance_count = 0;
 735     FILETIME wt;
 736     GetSystemTimeAsFileTime(&wt);
 737     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 738   }
 739 }
 740 
 741 
 742 double os::elapsedTime() {
 743   return (double) elapsed_counter() / (double) elapsed_frequency();
 744 }
 745 
 746 
 747 // Windows format:
 748 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 749 // Java format:
 750 //   Java standards require the number of milliseconds since 1/1/1970
 751 
 752 // Constant offset - calculated using offset()
 753 static jlong  _offset   = 116444736000000000;
 754 // Fake time counter for reproducible results when debugging
 755 static jlong  fake_time = 0;
 756 
 757 #ifdef ASSERT
 758 // Just to be safe, recalculate the offset in debug mode
 759 static jlong _calculated_offset = 0;
 760 static int   _has_calculated_offset = 0;
 761 
 762 jlong offset() {
 763   if (_has_calculated_offset) return _calculated_offset;
 764   SYSTEMTIME java_origin;
 765   java_origin.wYear          = 1970;
 766   java_origin.wMonth         = 1;
 767   java_origin.wDayOfWeek     = 0; // ignored
 768   java_origin.wDay           = 1;
 769   java_origin.wHour          = 0;
 770   java_origin.wMinute        = 0;
 771   java_origin.wSecond        = 0;
 772   java_origin.wMilliseconds  = 0;
 773   FILETIME jot;
 774   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 775     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 776   }
 777   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 778   _has_calculated_offset = 1;
 779   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 780   return _calculated_offset;
 781 }
 782 #else
 783 jlong offset() {
 784   return _offset;
 785 }
 786 #endif
 787 
 788 jlong windows_to_java_time(FILETIME wt) {
 789   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 790   return (a - offset()) / 10000;
 791 }
 792 
 793 FILETIME java_to_windows_time(jlong l) {
 794   jlong a = (l * 10000) + offset();
 795   FILETIME result;
 796   result.dwHighDateTime = high(a);
 797   result.dwLowDateTime  = low(a);
 798   return result;
 799 }
 800 
 801 // For now, we say that Windows does not support vtime.  I have no idea
 802 // whether it can actually be made to (DLD, 9/13/05).
 803 
 804 bool os::supports_vtime() { return false; }
 805 bool os::enable_vtime() { return false; }
 806 bool os::vtime_enabled() { return false; }
 807 double os::elapsedVTime() {
 808   // better than nothing, but not much
 809   return elapsedTime();
 810 }
 811 
 812 jlong os::javaTimeMillis() {
 813   if (UseFakeTimers) {
 814     return fake_time++;
 815   } else {
 816     FILETIME wt;
 817     GetSystemTimeAsFileTime(&wt);
 818     return windows_to_java_time(wt);
 819   }
 820 }
 821 
 822 #define NANOS_PER_SEC         CONST64(1000000000)
 823 #define NANOS_PER_MILLISEC    1000000
 824 jlong os::javaTimeNanos() {
 825   if (!has_performance_count) {
 826     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 827   } else {
 828     LARGE_INTEGER current_count;
 829     QueryPerformanceCounter(&current_count);
 830     double current = as_long(current_count);
 831     double freq = performance_frequency;
 832     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 833     return time;
 834   }
 835 }
 836 
 837 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 838   if (!has_performance_count) {
 839     // javaTimeMillis() doesn't have much percision,
 840     // but it is not going to wrap -- so all 64 bits
 841     info_ptr->max_value = ALL_64_BITS;
 842 
 843     // this is a wall clock timer, so may skip
 844     info_ptr->may_skip_backward = true;
 845     info_ptr->may_skip_forward = true;
 846   } else {
 847     jlong freq = performance_frequency;
 848     if (freq < NANOS_PER_SEC) {
 849       // the performance counter is 64 bits and we will
 850       // be multiplying it -- so no wrap in 64 bits
 851       info_ptr->max_value = ALL_64_BITS;
 852     } else if (freq > NANOS_PER_SEC) {
 853       // use the max value the counter can reach to
 854       // determine the max value which could be returned
 855       julong max_counter = (julong)ALL_64_BITS;
 856       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 857     } else {
 858       // the performance counter is 64 bits and we will
 859       // be using it directly -- so no wrap in 64 bits
 860       info_ptr->max_value = ALL_64_BITS;
 861     }
 862 
 863     // using a counter, so no skipping
 864     info_ptr->may_skip_backward = false;
 865     info_ptr->may_skip_forward = false;
 866   }
 867   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 868 }
 869 
 870 char* os::local_time_string(char *buf, size_t buflen) {
 871   SYSTEMTIME st;
 872   GetLocalTime(&st);
 873   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 874                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 875   return buf;
 876 }
 877 
 878 bool os::getTimesSecs(double* process_real_time,
 879                      double* process_user_time,
 880                      double* process_system_time) {
 881   HANDLE h_process = GetCurrentProcess();
 882   FILETIME create_time, exit_time, kernel_time, user_time;
 883   BOOL result = GetProcessTimes(h_process,
 884                                &create_time,
 885                                &exit_time,
 886                                &kernel_time,
 887                                &user_time);
 888   if (result != 0) {
 889     FILETIME wt;
 890     GetSystemTimeAsFileTime(&wt);
 891     jlong rtc_millis = windows_to_java_time(wt);
 892     jlong user_millis = windows_to_java_time(user_time);
 893     jlong system_millis = windows_to_java_time(kernel_time);
 894     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 895     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 896     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 897     return true;
 898   } else {
 899     return false;
 900   }
 901 }
 902 
 903 void os::shutdown() {
 904 
 905   // allow PerfMemory to attempt cleanup of any persistent resources
 906   perfMemory_exit();
 907 
 908   // flush buffered output, finish log files
 909   ostream_abort();
 910 
 911   // Check for abort hook
 912   abort_hook_t abort_hook = Arguments::abort_hook();
 913   if (abort_hook != NULL) {
 914     abort_hook();
 915   }
 916 }
 917 
 918 void os::abort(bool dump_core)
 919 {
 920   os::shutdown();
 921   // no core dump on Windows
 922   ::exit(1);
 923 }
 924 
 925 // Die immediately, no exit hook, no abort hook, no cleanup.
 926 void os::die() {
 927   _exit(-1);
 928 }
 929 
 930 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 931 //  * dirent_md.c       1.15 00/02/02
 932 //
 933 // The declarations for DIR and struct dirent are in jvm_win32.h.
 934 
 935 /* Caller must have already run dirname through JVM_NativePath, which removes
 936    duplicate slashes and converts all instances of '/' into '\\'. */
 937 
 938 DIR *
 939 os::opendir(const char *dirname)
 940 {
 941     assert(dirname != NULL, "just checking");   // hotspot change
 942     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 943     DWORD fattr;                                // hotspot change
 944     char alt_dirname[4] = { 0, 0, 0, 0 };
 945 
 946     if (dirp == 0) {
 947         errno = ENOMEM;
 948         return 0;
 949     }
 950 
 951     /*
 952      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 953      * as a directory in FindFirstFile().  We detect this case here and
 954      * prepend the current drive name.
 955      */
 956     if (dirname[1] == '\0' && dirname[0] == '\\') {
 957         alt_dirname[0] = _getdrive() + 'A' - 1;
 958         alt_dirname[1] = ':';
 959         alt_dirname[2] = '\\';
 960         alt_dirname[3] = '\0';
 961         dirname = alt_dirname;
 962     }
 963 
 964     dirp->path = (char *)malloc(strlen(dirname) + 5);
 965     if (dirp->path == 0) {
 966         free(dirp);
 967         errno = ENOMEM;
 968         return 0;
 969     }
 970     strcpy(dirp->path, dirname);
 971 
 972     fattr = GetFileAttributes(dirp->path);
 973     if (fattr == 0xffffffff) {
 974         free(dirp->path);
 975         free(dirp);
 976         errno = ENOENT;
 977         return 0;
 978     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 979         free(dirp->path);
 980         free(dirp);
 981         errno = ENOTDIR;
 982         return 0;
 983     }
 984 
 985     /* Append "*.*", or possibly "\\*.*", to path */
 986     if (dirp->path[1] == ':'
 987         && (dirp->path[2] == '\0'
 988             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 989         /* No '\\' needed for cases like "Z:" or "Z:\" */
 990         strcat(dirp->path, "*.*");
 991     } else {
 992         strcat(dirp->path, "\\*.*");
 993     }
 994 
 995     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 996     if (dirp->handle == INVALID_HANDLE_VALUE) {
 997         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 998             free(dirp->path);
 999             free(dirp);
1000             errno = EACCES;
1001             return 0;
1002         }
1003     }
1004     return dirp;
1005 }
1006 
1007 /* parameter dbuf unused on Windows */
1008 
1009 struct dirent *
1010 os::readdir(DIR *dirp, dirent *dbuf)
1011 {
1012     assert(dirp != NULL, "just checking");      // hotspot change
1013     if (dirp->handle == INVALID_HANDLE_VALUE) {
1014         return 0;
1015     }
1016 
1017     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1018 
1019     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1020         if (GetLastError() == ERROR_INVALID_HANDLE) {
1021             errno = EBADF;
1022             return 0;
1023         }
1024         FindClose(dirp->handle);
1025         dirp->handle = INVALID_HANDLE_VALUE;
1026     }
1027 
1028     return &dirp->dirent;
1029 }
1030 
1031 int
1032 os::closedir(DIR *dirp)
1033 {
1034     assert(dirp != NULL, "just checking");      // hotspot change
1035     if (dirp->handle != INVALID_HANDLE_VALUE) {
1036         if (!FindClose(dirp->handle)) {
1037             errno = EBADF;
1038             return -1;
1039         }
1040         dirp->handle = INVALID_HANDLE_VALUE;
1041     }
1042     free(dirp->path);
1043     free(dirp);
1044     return 0;
1045 }
1046 
1047 const char* os::dll_file_extension() { return ".dll"; }
1048 
1049 const char* os::get_temp_directory() {
1050   const char *prop = Arguments::get_property("java.io.tmpdir");
1051   if (prop != 0) return prop;
1052   static char path_buf[MAX_PATH];
1053   if (GetTempPath(MAX_PATH, path_buf)>0)
1054     return path_buf;
1055   else{
1056     path_buf[0]='\0';
1057     return path_buf;
1058   }
1059 }
1060 
1061 static bool file_exists(const char* filename) {
1062   if (filename == NULL || strlen(filename) == 0) {
1063     return false;
1064   }
1065   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1066 }
1067 
1068 void os::dll_build_name(char *buffer, size_t buflen,
1069                         const char* pname, const char* fname) {
1070   // Copied from libhpi
1071   const size_t pnamelen = pname ? strlen(pname) : 0;
1072   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1073 
1074   // Quietly truncates on buffer overflow. Should be an error.
1075   if (pnamelen + strlen(fname) + 10 > buflen) {
1076     *buffer = '\0';
1077     return;
1078   }
1079 
1080   if (pnamelen == 0) {
1081     jio_snprintf(buffer, buflen, "%s.dll", fname);
1082   } else if (c == ':' || c == '\\') {
1083     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1084   } else if (strchr(pname, *os::path_separator()) != NULL) {
1085     int n;
1086     char** pelements = split_path(pname, &n);
1087     for (int i = 0 ; i < n ; i++) {
1088       char* path = pelements[i];
1089       // Really shouldn't be NULL, but check can't hurt
1090       size_t plen = (path == NULL) ? 0 : strlen(path);
1091       if (plen == 0) {
1092         continue; // skip the empty path values
1093       }
1094       const char lastchar = path[plen - 1];
1095       if (lastchar == ':' || lastchar == '\\') {
1096         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1097       } else {
1098         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1099       }
1100       if (file_exists(buffer)) {
1101         break;
1102       }
1103     }
1104     // release the storage
1105     for (int i = 0 ; i < n ; i++) {
1106       if (pelements[i] != NULL) {
1107         FREE_C_HEAP_ARRAY(char, pelements[i]);
1108       }
1109     }
1110     if (pelements != NULL) {
1111       FREE_C_HEAP_ARRAY(char*, pelements);
1112     }
1113   } else {
1114     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1115   }
1116 }
1117 
1118 // Needs to be in os specific directory because windows requires another
1119 // header file <direct.h>
1120 const char* os::get_current_directory(char *buf, int buflen) {
1121   return _getcwd(buf, buflen);
1122 }
1123 
1124 //-----------------------------------------------------------
1125 // Helper functions for fatal error handler
1126 
1127 // The following library functions are resolved dynamically at runtime:
1128 
1129 // PSAPI functions, for Windows NT, 2000, XP
1130 
1131 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1132 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1133 typedef struct _MODULEINFO {
1134     LPVOID lpBaseOfDll;
1135     DWORD SizeOfImage;
1136     LPVOID EntryPoint;
1137 } MODULEINFO, *LPMODULEINFO;
1138 
1139 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1140 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1141 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1142 
1143 // ToolHelp Functions, for Windows 95, 98 and ME
1144 
1145 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1146 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1147 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1148 
1149 bool _has_psapi;
1150 bool _psapi_init = false;
1151 bool _has_toolhelp;
1152 
1153 static bool _init_psapi() {
1154   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1155   if( psapi == NULL ) return false ;
1156 
1157   _EnumProcessModules = CAST_TO_FN_PTR(
1158       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1159       GetProcAddress(psapi, "EnumProcessModules")) ;
1160   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1161       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1162       GetProcAddress(psapi, "GetModuleFileNameExA"));
1163   _GetModuleInformation = CAST_TO_FN_PTR(
1164       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1165       GetProcAddress(psapi, "GetModuleInformation"));
1166 
1167   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1168   _psapi_init = true;
1169   return _has_psapi;
1170 }
1171 
1172 static bool _init_toolhelp() {
1173   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1174   if (kernel32 == NULL) return false ;
1175 
1176   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1177       HANDLE(WINAPI *)(DWORD,DWORD),
1178       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1179   _Module32First = CAST_TO_FN_PTR(
1180       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1181       GetProcAddress(kernel32, "Module32First" ));
1182   _Module32Next = CAST_TO_FN_PTR(
1183       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1184       GetProcAddress(kernel32, "Module32Next" ));
1185 
1186   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1187   return _has_toolhelp;
1188 }
1189 
1190 #ifdef _WIN64
1191 // Helper routine which returns true if address in
1192 // within the NTDLL address space.
1193 //
1194 static bool _addr_in_ntdll( address addr )
1195 {
1196   HMODULE hmod;
1197   MODULEINFO minfo;
1198 
1199   hmod = GetModuleHandle("NTDLL.DLL");
1200   if ( hmod == NULL ) return false;
1201   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1202                                &minfo, sizeof(MODULEINFO)) )
1203     return false;
1204 
1205   if ( (addr >= minfo.lpBaseOfDll) &&
1206        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1207     return true;
1208   else
1209     return false;
1210 }
1211 #endif
1212 
1213 
1214 // Enumerate all modules for a given process ID
1215 //
1216 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1217 // different API for doing this. We use PSAPI.DLL on NT based
1218 // Windows and ToolHelp on 95/98/Me.
1219 
1220 // Callback function that is called by enumerate_modules() on
1221 // every DLL module.
1222 // Input parameters:
1223 //    int       pid,
1224 //    char*     module_file_name,
1225 //    address   module_base_addr,
1226 //    unsigned  module_size,
1227 //    void*     param
1228 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1229 
1230 // enumerate_modules for Windows NT, using PSAPI
1231 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1232 {
1233   HANDLE   hProcess ;
1234 
1235 # define MAX_NUM_MODULES 128
1236   HMODULE     modules[MAX_NUM_MODULES];
1237   static char filename[ MAX_PATH ];
1238   int         result = 0;
1239 
1240   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1241 
1242   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1243                          FALSE, pid ) ;
1244   if (hProcess == NULL) return 0;
1245 
1246   DWORD size_needed;
1247   if (!_EnumProcessModules(hProcess, modules,
1248                            sizeof(modules), &size_needed)) {
1249       CloseHandle( hProcess );
1250       return 0;
1251   }
1252 
1253   // number of modules that are currently loaded
1254   int num_modules = size_needed / sizeof(HMODULE);
1255 
1256   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1257     // Get Full pathname:
1258     if(!_GetModuleFileNameEx(hProcess, modules[i],
1259                              filename, sizeof(filename))) {
1260         filename[0] = '\0';
1261     }
1262 
1263     MODULEINFO modinfo;
1264     if (!_GetModuleInformation(hProcess, modules[i],
1265                                &modinfo, sizeof(modinfo))) {
1266         modinfo.lpBaseOfDll = NULL;
1267         modinfo.SizeOfImage = 0;
1268     }
1269 
1270     // Invoke callback function
1271     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1272                   modinfo.SizeOfImage, param);
1273     if (result) break;
1274   }
1275 
1276   CloseHandle( hProcess ) ;
1277   return result;
1278 }
1279 
1280 
1281 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1282 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1283 {
1284   HANDLE                hSnapShot ;
1285   static MODULEENTRY32  modentry ;
1286   int                   result = 0;
1287 
1288   if (!_has_toolhelp) return 0;
1289 
1290   // Get a handle to a Toolhelp snapshot of the system
1291   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1292   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1293       return FALSE ;
1294   }
1295 
1296   // iterate through all modules
1297   modentry.dwSize = sizeof(MODULEENTRY32) ;
1298   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1299 
1300   while( not_done ) {
1301     // invoke the callback
1302     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1303                 modentry.modBaseSize, param);
1304     if (result) break;
1305 
1306     modentry.dwSize = sizeof(MODULEENTRY32) ;
1307     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1308   }
1309 
1310   CloseHandle(hSnapShot);
1311   return result;
1312 }
1313 
1314 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1315 {
1316   // Get current process ID if caller doesn't provide it.
1317   if (!pid) pid = os::current_process_id();
1318 
1319   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1320   else                    return _enumerate_modules_windows(pid, func, param);
1321 }
1322 
1323 struct _modinfo {
1324    address addr;
1325    char*   full_path;   // point to a char buffer
1326    int     buflen;      // size of the buffer
1327    address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1331                                   unsigned size, void * param) {
1332    struct _modinfo *pmod = (struct _modinfo *)param;
1333    if (!pmod) return -1;
1334 
1335    if (base_addr     <= pmod->addr &&
1336        base_addr+size > pmod->addr) {
1337      // if a buffer is provided, copy path name to the buffer
1338      if (pmod->full_path) {
1339        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340      }
1341      pmod->base_addr = base_addr;
1342      return 1;
1343    }
1344    return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1350 //       return the full path to the DLL file, sometimes it returns path
1351 //       to the corresponding PDB file (debug info); sometimes it only
1352 //       returns partial path, which makes life painful.
1353 
1354    struct _modinfo mi;
1355    mi.addr      = addr;
1356    mi.full_path = buf;
1357    mi.buflen    = buflen;
1358    int pid = os::current_process_id();
1359    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1360       // buf already contains path name
1361       if (offset) *offset = addr - mi.base_addr;
1362       return true;
1363    } else {
1364       if (buf) buf[0] = '\0';
1365       if (offset) *offset = -1;
1366       return false;
1367    }
1368 }
1369 
1370 bool os::dll_address_to_function_name(address addr, char *buf,
1371                                       int buflen, int *offset) {
1372   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1373   // we need to initialize imagehlp/dbghelp, then load symbol table
1374   // for every module. That's too much work to do after a fatal error.
1375   // For an example on how to implement this function, see 1.4.2.
1376   if (offset)  *offset  = -1;
1377   if (buf) buf[0] = '\0';
1378   return false;
1379 }
1380 
1381 void* os::dll_lookup(void* handle, const char* name) {
1382   return GetProcAddress((HMODULE)handle, name);
1383 }
1384 
1385 // save the start and end address of jvm.dll into param[0] and param[1]
1386 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1387                     unsigned size, void * param) {
1388    if (!param) return -1;
1389 
1390    if (base_addr     <= (address)_locate_jvm_dll &&
1391        base_addr+size > (address)_locate_jvm_dll) {
1392          ((address*)param)[0] = base_addr;
1393          ((address*)param)[1] = base_addr + size;
1394          return 1;
1395    }
1396    return 0;
1397 }
1398 
1399 address vm_lib_location[2];    // start and end address of jvm.dll
1400 
1401 // check if addr is inside jvm.dll
1402 bool os::address_is_in_vm(address addr) {
1403   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1404     int pid = os::current_process_id();
1405     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(int pid, char* fname, address base,
1416                          unsigned size, void* param) {
1417    if (!param) return -1;
1418 
1419    outputStream* st = (outputStream*)param;
1420 
1421    address end_addr = base + size;
1422    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1423    return 0;
1424 }
1425 
1426 // Loads .dll/.so and
1427 // in case of error it checks if .dll/.so was built for the
1428 // same architecture as Hotspot is running on
1429 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1430 {
1431   void * result = LoadLibrary(name);
1432   if (result != NULL)
1433   {
1434     return result;
1435   }
1436 
1437   long errcode = GetLastError();
1438   if (errcode == ERROR_MOD_NOT_FOUND) {
1439     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1440     ebuf[ebuflen-1]='\0';
1441     return NULL;
1442   }
1443 
1444   // Parsing dll below
1445   // If we can read dll-info and find that dll was built
1446   // for an architecture other than Hotspot is running in
1447   // - then print to buffer "DLL was built for a different architecture"
1448   // else call getLastErrorString to obtain system error message
1449 
1450   // Read system error message into ebuf
1451   // It may or may not be overwritten below (in the for loop and just above)
1452   getLastErrorString(ebuf, (size_t) ebuflen);
1453   ebuf[ebuflen-1]='\0';
1454   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1455   if (file_descriptor<0)
1456   {
1457     return NULL;
1458   }
1459 
1460   uint32_t signature_offset;
1461   uint16_t lib_arch=0;
1462   bool failed_to_get_lib_arch=
1463   (
1464     //Go to position 3c in the dll
1465     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1466     ||
1467     // Read loacation of signature
1468     (sizeof(signature_offset)!=
1469       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1470     ||
1471     //Go to COFF File Header in dll
1472     //that is located after"signature" (4 bytes long)
1473     (os::seek_to_file_offset(file_descriptor,
1474       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1475     ||
1476     //Read field that contains code of architecture
1477     // that dll was build for
1478     (sizeof(lib_arch)!=
1479       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1480   );
1481 
1482   ::close(file_descriptor);
1483   if (failed_to_get_lib_arch)
1484   {
1485     // file i/o error - report getLastErrorString(...) msg
1486     return NULL;
1487   }
1488 
1489   typedef struct
1490   {
1491     uint16_t arch_code;
1492     char* arch_name;
1493   } arch_t;
1494 
1495   static const arch_t arch_array[]={
1496     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1497     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1498     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1499   };
1500   #if   (defined _M_IA64)
1501     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1502   #elif (defined _M_AMD64)
1503     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1504   #elif (defined _M_IX86)
1505     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1506   #else
1507     #error Method os::dll_load requires that one of following \
1508            is defined :_M_IA64,_M_AMD64 or _M_IX86
1509   #endif
1510 
1511 
1512   // Obtain a string for printf operation
1513   // lib_arch_str shall contain string what platform this .dll was built for
1514   // running_arch_str shall string contain what platform Hotspot was built for
1515   char *running_arch_str=NULL,*lib_arch_str=NULL;
1516   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1517   {
1518     if (lib_arch==arch_array[i].arch_code)
1519       lib_arch_str=arch_array[i].arch_name;
1520     if (running_arch==arch_array[i].arch_code)
1521       running_arch_str=arch_array[i].arch_name;
1522   }
1523 
1524   assert(running_arch_str,
1525     "Didn't find runing architecture code in arch_array");
1526 
1527   // If the architure is right
1528   // but some other error took place - report getLastErrorString(...) msg
1529   if (lib_arch == running_arch)
1530   {
1531     return NULL;
1532   }
1533 
1534   if (lib_arch_str!=NULL)
1535   {
1536     ::_snprintf(ebuf, ebuflen-1,
1537       "Can't load %s-bit .dll on a %s-bit platform",
1538       lib_arch_str,running_arch_str);
1539   }
1540   else
1541   {
1542     // don't know what architecture this dll was build for
1543     ::_snprintf(ebuf, ebuflen-1,
1544       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1545       lib_arch,running_arch_str);
1546   }
1547 
1548   return NULL;
1549 }
1550 
1551 
1552 void os::print_dll_info(outputStream *st) {
1553    int pid = os::current_process_id();
1554    st->print_cr("Dynamic libraries:");
1555    enumerate_modules(pid, _print_module, (void *)st);
1556 }
1557 
1558 // function pointer to Windows API "GetNativeSystemInfo".
1559 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1560 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1561 
1562 void os::print_os_info(outputStream* st) {
1563   st->print("OS:");
1564 
1565   OSVERSIONINFOEX osvi;
1566   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1567   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1568 
1569   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1570     st->print_cr("N/A");
1571     return;
1572   }
1573 
1574   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1575   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1576     switch (os_vers) {
1577     case 3051: st->print(" Windows NT 3.51"); break;
1578     case 4000: st->print(" Windows NT 4.0"); break;
1579     case 5000: st->print(" Windows 2000"); break;
1580     case 5001: st->print(" Windows XP"); break;
1581     case 5002:
1582     case 6000:
1583     case 6001: {
1584       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1585       // find out whether we are running on 64 bit processor or not.
1586       SYSTEM_INFO si;
1587       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1588       // Check to see if _GetNativeSystemInfo has been initialized.
1589       if (_GetNativeSystemInfo == NULL) {
1590         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1591         _GetNativeSystemInfo =
1592             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1593                            GetProcAddress(hKernel32,
1594                                           "GetNativeSystemInfo"));
1595         if (_GetNativeSystemInfo == NULL)
1596           GetSystemInfo(&si);
1597       } else {
1598         _GetNativeSystemInfo(&si);
1599       }
1600       if (os_vers == 5002) {
1601         if (osvi.wProductType == VER_NT_WORKSTATION &&
1602             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1603           st->print(" Windows XP x64 Edition");
1604         else
1605             st->print(" Windows Server 2003 family");
1606       } else if (os_vers == 6000) {
1607         if (osvi.wProductType == VER_NT_WORKSTATION)
1608             st->print(" Windows Vista");
1609         else
1610             st->print(" Windows Server 2008");
1611         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1612             st->print(" , 64 bit");
1613       } else if (os_vers == 6001) {
1614         if (osvi.wProductType == VER_NT_WORKSTATION) {
1615             st->print(" Windows 7");
1616         } else {
1617             // Unrecognized windows, print out its major and minor versions
1618             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1619         }
1620         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1621             st->print(" , 64 bit");
1622       } else { // future os
1623         // Unrecognized windows, print out its major and minor versions
1624         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1625         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1626             st->print(" , 64 bit");
1627       }
1628       break;
1629     }
1630     default: // future windows, print out its major and minor versions
1631       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1632     }
1633   } else {
1634     switch (os_vers) {
1635     case 4000: st->print(" Windows 95"); break;
1636     case 4010: st->print(" Windows 98"); break;
1637     case 4090: st->print(" Windows Me"); break;
1638     default: // future windows, print out its major and minor versions
1639       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1640     }
1641   }
1642   st->print(" Build %d", osvi.dwBuildNumber);
1643   st->print(" %s", osvi.szCSDVersion);           // service pack
1644   st->cr();
1645 }
1646 
1647 void os::print_memory_info(outputStream* st) {
1648   st->print("Memory:");
1649   st->print(" %dk page", os::vm_page_size()>>10);
1650 
1651   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1652   // value if total memory is larger than 4GB
1653   MEMORYSTATUSEX ms;
1654   ms.dwLength = sizeof(ms);
1655   GlobalMemoryStatusEx(&ms);
1656 
1657   st->print(", physical %uk", os::physical_memory() >> 10);
1658   st->print("(%uk free)", os::available_memory() >> 10);
1659 
1660   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1661   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1662   st->cr();
1663 }
1664 
1665 void os::print_siginfo(outputStream *st, void *siginfo) {
1666   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1667   st->print("siginfo:");
1668   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1669 
1670   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1671       er->NumberParameters >= 2) {
1672       switch (er->ExceptionInformation[0]) {
1673       case 0: st->print(", reading address"); break;
1674       case 1: st->print(", writing address"); break;
1675       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1676                             er->ExceptionInformation[0]);
1677       }
1678       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1679   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1680              er->NumberParameters >= 2 && UseSharedSpaces) {
1681     FileMapInfo* mapinfo = FileMapInfo::current_info();
1682     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1683       st->print("\n\nError accessing class data sharing archive."       \
1684                 " Mapped file inaccessible during execution, "          \
1685                 " possible disk/network problem.");
1686     }
1687   } else {
1688     int num = er->NumberParameters;
1689     if (num > 0) {
1690       st->print(", ExceptionInformation=");
1691       for (int i = 0; i < num; i++) {
1692         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1693       }
1694     }
1695   }
1696   st->cr();
1697 }
1698 
1699 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1700   // do nothing
1701 }
1702 
1703 static char saved_jvm_path[MAX_PATH] = {0};
1704 
1705 // Find the full path to the current module, jvm.dll or jvm_g.dll
1706 void os::jvm_path(char *buf, jint buflen) {
1707   // Error checking.
1708   if (buflen < MAX_PATH) {
1709     assert(false, "must use a large-enough buffer");
1710     buf[0] = '\0';
1711     return;
1712   }
1713   // Lazy resolve the path to current module.
1714   if (saved_jvm_path[0] != 0) {
1715     strcpy(buf, saved_jvm_path);
1716     return;
1717   }
1718 
1719   GetModuleFileName(vm_lib_handle, buf, buflen);
1720   strcpy(saved_jvm_path, buf);
1721 }
1722 
1723 
1724 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1725 #ifndef _WIN64
1726   st->print("_");
1727 #endif
1728 }
1729 
1730 
1731 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1732 #ifndef _WIN64
1733   st->print("@%d", args_size  * sizeof(int));
1734 #endif
1735 }
1736 
1737 // sun.misc.Signal
1738 // NOTE that this is a workaround for an apparent kernel bug where if
1739 // a signal handler for SIGBREAK is installed then that signal handler
1740 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1741 // See bug 4416763.
1742 static void (*sigbreakHandler)(int) = NULL;
1743 
1744 static void UserHandler(int sig, void *siginfo, void *context) {
1745   os::signal_notify(sig);
1746   // We need to reinstate the signal handler each time...
1747   os::signal(sig, (void*)UserHandler);
1748 }
1749 
1750 void* os::user_handler() {
1751   return (void*) UserHandler;
1752 }
1753 
1754 void* os::signal(int signal_number, void* handler) {
1755   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1756     void (*oldHandler)(int) = sigbreakHandler;
1757     sigbreakHandler = (void (*)(int)) handler;
1758     return (void*) oldHandler;
1759   } else {
1760     return (void*)::signal(signal_number, (void (*)(int))handler);
1761   }
1762 }
1763 
1764 void os::signal_raise(int signal_number) {
1765   raise(signal_number);
1766 }
1767 
1768 // The Win32 C runtime library maps all console control events other than ^C
1769 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1770 // logoff, and shutdown events.  We therefore install our own console handler
1771 // that raises SIGTERM for the latter cases.
1772 //
1773 static BOOL WINAPI consoleHandler(DWORD event) {
1774   switch(event) {
1775     case CTRL_C_EVENT:
1776       if (is_error_reported()) {
1777         // Ctrl-C is pressed during error reporting, likely because the error
1778         // handler fails to abort. Let VM die immediately.
1779         os::die();
1780       }
1781 
1782       os::signal_raise(SIGINT);
1783       return TRUE;
1784       break;
1785     case CTRL_BREAK_EVENT:
1786       if (sigbreakHandler != NULL) {
1787         (*sigbreakHandler)(SIGBREAK);
1788       }
1789       return TRUE;
1790       break;
1791     case CTRL_CLOSE_EVENT:
1792     case CTRL_LOGOFF_EVENT:
1793     case CTRL_SHUTDOWN_EVENT:
1794       os::signal_raise(SIGTERM);
1795       return TRUE;
1796       break;
1797     default:
1798       break;
1799   }
1800   return FALSE;
1801 }
1802 
1803 /*
1804  * The following code is moved from os.cpp for making this
1805  * code platform specific, which it is by its very nature.
1806  */
1807 
1808 // Return maximum OS signal used + 1 for internal use only
1809 // Used as exit signal for signal_thread
1810 int os::sigexitnum_pd(){
1811   return NSIG;
1812 }
1813 
1814 // a counter for each possible signal value, including signal_thread exit signal
1815 static volatile jint pending_signals[NSIG+1] = { 0 };
1816 static HANDLE sig_sem;
1817 
1818 void os::signal_init_pd() {
1819   // Initialize signal structures
1820   memset((void*)pending_signals, 0, sizeof(pending_signals));
1821 
1822   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1823 
1824   // Programs embedding the VM do not want it to attempt to receive
1825   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1826   // shutdown hooks mechanism introduced in 1.3.  For example, when
1827   // the VM is run as part of a Windows NT service (i.e., a servlet
1828   // engine in a web server), the correct behavior is for any console
1829   // control handler to return FALSE, not TRUE, because the OS's
1830   // "final" handler for such events allows the process to continue if
1831   // it is a service (while terminating it if it is not a service).
1832   // To make this behavior uniform and the mechanism simpler, we
1833   // completely disable the VM's usage of these console events if -Xrs
1834   // (=ReduceSignalUsage) is specified.  This means, for example, that
1835   // the CTRL-BREAK thread dump mechanism is also disabled in this
1836   // case.  See bugs 4323062, 4345157, and related bugs.
1837 
1838   if (!ReduceSignalUsage) {
1839     // Add a CTRL-C handler
1840     SetConsoleCtrlHandler(consoleHandler, TRUE);
1841   }
1842 }
1843 
1844 void os::signal_notify(int signal_number) {
1845   BOOL ret;
1846 
1847   Atomic::inc(&pending_signals[signal_number]);
1848   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1849   assert(ret != 0, "ReleaseSemaphore() failed");
1850 }
1851 
1852 static int check_pending_signals(bool wait_for_signal) {
1853   DWORD ret;
1854   while (true) {
1855     for (int i = 0; i < NSIG + 1; i++) {
1856       jint n = pending_signals[i];
1857       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1858         return i;
1859       }
1860     }
1861     if (!wait_for_signal) {
1862       return -1;
1863     }
1864 
1865     JavaThread *thread = JavaThread::current();
1866 
1867     ThreadBlockInVM tbivm(thread);
1868 
1869     bool threadIsSuspended;
1870     do {
1871       thread->set_suspend_equivalent();
1872       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1873       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1874       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1875 
1876       // were we externally suspended while we were waiting?
1877       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1878       if (threadIsSuspended) {
1879         //
1880         // The semaphore has been incremented, but while we were waiting
1881         // another thread suspended us. We don't want to continue running
1882         // while suspended because that would surprise the thread that
1883         // suspended us.
1884         //
1885         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1886         assert(ret != 0, "ReleaseSemaphore() failed");
1887 
1888         thread->java_suspend_self();
1889       }
1890     } while (threadIsSuspended);
1891   }
1892 }
1893 
1894 int os::signal_lookup() {
1895   return check_pending_signals(false);
1896 }
1897 
1898 int os::signal_wait() {
1899   return check_pending_signals(true);
1900 }
1901 
1902 // Implicit OS exception handling
1903 
1904 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1905   JavaThread* thread = JavaThread::current();
1906   // Save pc in thread
1907 #ifdef _M_IA64
1908   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1909   // Set pc to handler
1910   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1911 #elif _M_AMD64
1912   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1913   // Set pc to handler
1914   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1915 #else
1916   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1917   // Set pc to handler
1918   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1919 #endif
1920 
1921   // Continue the execution
1922   return EXCEPTION_CONTINUE_EXECUTION;
1923 }
1924 
1925 
1926 // Used for PostMortemDump
1927 extern "C" void safepoints();
1928 extern "C" void find(int x);
1929 extern "C" void events();
1930 
1931 // According to Windows API documentation, an illegal instruction sequence should generate
1932 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1933 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1934 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1935 
1936 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1937 
1938 // From "Execution Protection in the Windows Operating System" draft 0.35
1939 // Once a system header becomes available, the "real" define should be
1940 // included or copied here.
1941 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1942 
1943 #define def_excpt(val) #val, val
1944 
1945 struct siglabel {
1946   char *name;
1947   int   number;
1948 };
1949 
1950 struct siglabel exceptlabels[] = {
1951     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1952     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1953     def_excpt(EXCEPTION_BREAKPOINT),
1954     def_excpt(EXCEPTION_SINGLE_STEP),
1955     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1956     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1957     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1958     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1959     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1960     def_excpt(EXCEPTION_FLT_OVERFLOW),
1961     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1962     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1963     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1964     def_excpt(EXCEPTION_INT_OVERFLOW),
1965     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1966     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1967     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1968     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1969     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1970     def_excpt(EXCEPTION_STACK_OVERFLOW),
1971     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1972     def_excpt(EXCEPTION_GUARD_PAGE),
1973     def_excpt(EXCEPTION_INVALID_HANDLE),
1974     NULL, 0
1975 };
1976 
1977 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1978   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1979     if (exceptlabels[i].number == exception_code) {
1980        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1981        return buf;
1982     }
1983   }
1984 
1985   return NULL;
1986 }
1987 
1988 //-----------------------------------------------------------------------------
1989 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1990   // handle exception caused by idiv; should only happen for -MinInt/-1
1991   // (division by zero is handled explicitly)
1992 #ifdef _M_IA64
1993   assert(0, "Fix Handle_IDiv_Exception");
1994 #elif _M_AMD64
1995   PCONTEXT ctx = exceptionInfo->ContextRecord;
1996   address pc = (address)ctx->Rip;
1997   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1998   assert(pc[0] == 0xF7, "not an idiv opcode");
1999   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2000   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2001   // set correct result values and continue after idiv instruction
2002   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2003   ctx->Rax = (DWORD)min_jint;      // result
2004   ctx->Rdx = (DWORD)0;             // remainder
2005   // Continue the execution
2006 #else
2007   PCONTEXT ctx = exceptionInfo->ContextRecord;
2008   address pc = (address)ctx->Eip;
2009   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2010   assert(pc[0] == 0xF7, "not an idiv opcode");
2011   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2012   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2013   // set correct result values and continue after idiv instruction
2014   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2015   ctx->Eax = (DWORD)min_jint;      // result
2016   ctx->Edx = (DWORD)0;             // remainder
2017   // Continue the execution
2018 #endif
2019   return EXCEPTION_CONTINUE_EXECUTION;
2020 }
2021 
2022 #ifndef  _WIN64
2023 //-----------------------------------------------------------------------------
2024 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2025   // handle exception caused by native method modifying control word
2026   PCONTEXT ctx = exceptionInfo->ContextRecord;
2027   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2028 
2029   switch (exception_code) {
2030     case EXCEPTION_FLT_DENORMAL_OPERAND:
2031     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2032     case EXCEPTION_FLT_INEXACT_RESULT:
2033     case EXCEPTION_FLT_INVALID_OPERATION:
2034     case EXCEPTION_FLT_OVERFLOW:
2035     case EXCEPTION_FLT_STACK_CHECK:
2036     case EXCEPTION_FLT_UNDERFLOW:
2037       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2038       if (fp_control_word != ctx->FloatSave.ControlWord) {
2039         // Restore FPCW and mask out FLT exceptions
2040         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2041         // Mask out pending FLT exceptions
2042         ctx->FloatSave.StatusWord &=  0xffffff00;
2043         return EXCEPTION_CONTINUE_EXECUTION;
2044       }
2045   }
2046 
2047   if (prev_uef_handler != NULL) {
2048     // We didn't handle this exception so pass it to the previous
2049     // UnhandledExceptionFilter.
2050     return (prev_uef_handler)(exceptionInfo);
2051   }
2052 
2053   return EXCEPTION_CONTINUE_SEARCH;
2054 }
2055 #else //_WIN64
2056 /*
2057   On Windows, the mxcsr control bits are non-volatile across calls
2058   See also CR 6192333
2059   If EXCEPTION_FLT_* happened after some native method modified
2060   mxcsr - it is not a jvm fault.
2061   However should we decide to restore of mxcsr after a faulty
2062   native method we can uncomment following code
2063       jint MxCsr = INITIAL_MXCSR;
2064         // we can't use StubRoutines::addr_mxcsr_std()
2065         // because in Win64 mxcsr is not saved there
2066       if (MxCsr != ctx->MxCsr) {
2067         ctx->MxCsr = MxCsr;
2068         return EXCEPTION_CONTINUE_EXECUTION;
2069       }
2070 
2071 */
2072 #endif //_WIN64
2073 
2074 
2075 // Fatal error reporting is single threaded so we can make this a
2076 // static and preallocated.  If it's more than MAX_PATH silently ignore
2077 // it.
2078 static char saved_error_file[MAX_PATH] = {0};
2079 
2080 void os::set_error_file(const char *logfile) {
2081   if (strlen(logfile) <= MAX_PATH) {
2082     strncpy(saved_error_file, logfile, MAX_PATH);
2083   }
2084 }
2085 
2086 static inline void report_error(Thread* t, DWORD exception_code,
2087                                 address addr, void* siginfo, void* context) {
2088   VMError err(t, exception_code, addr, siginfo, context);
2089   err.report_and_die();
2090 
2091   // If UseOsErrorReporting, this will return here and save the error file
2092   // somewhere where we can find it in the minidump.
2093 }
2094 
2095 //-----------------------------------------------------------------------------
2096 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2097   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2098   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2099 #ifdef _M_IA64
2100   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2101 #elif _M_AMD64
2102   address pc = (address) exceptionInfo->ContextRecord->Rip;
2103 #else
2104   address pc = (address) exceptionInfo->ContextRecord->Eip;
2105 #endif
2106   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2107 
2108 #ifndef _WIN64
2109   // Execution protection violation - win32 running on AMD64 only
2110   // Handled first to avoid misdiagnosis as a "normal" access violation;
2111   // This is safe to do because we have a new/unique ExceptionInformation
2112   // code for this condition.
2113   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2114     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2115     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2116     address addr = (address) exceptionRecord->ExceptionInformation[1];
2117 
2118     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2119       int page_size = os::vm_page_size();
2120 
2121       // Make sure the pc and the faulting address are sane.
2122       //
2123       // If an instruction spans a page boundary, and the page containing
2124       // the beginning of the instruction is executable but the following
2125       // page is not, the pc and the faulting address might be slightly
2126       // different - we still want to unguard the 2nd page in this case.
2127       //
2128       // 15 bytes seems to be a (very) safe value for max instruction size.
2129       bool pc_is_near_addr =
2130         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2131       bool instr_spans_page_boundary =
2132         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2133                          (intptr_t) page_size) > 0);
2134 
2135       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2136         static volatile address last_addr =
2137           (address) os::non_memory_address_word();
2138 
2139         // In conservative mode, don't unguard unless the address is in the VM
2140         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2141             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2142 
2143           // Set memory to RWX and retry
2144           address page_start =
2145             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2146           bool res = os::protect_memory((char*) page_start, page_size,
2147                                         os::MEM_PROT_RWX);
2148 
2149           if (PrintMiscellaneous && Verbose) {
2150             char buf[256];
2151             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2152                          "at " INTPTR_FORMAT
2153                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2154                          page_start, (res ? "success" : strerror(errno)));
2155             tty->print_raw_cr(buf);
2156           }
2157 
2158           // Set last_addr so if we fault again at the same address, we don't
2159           // end up in an endless loop.
2160           //
2161           // There are two potential complications here.  Two threads trapping
2162           // at the same address at the same time could cause one of the
2163           // threads to think it already unguarded, and abort the VM.  Likely
2164           // very rare.
2165           //
2166           // The other race involves two threads alternately trapping at
2167           // different addresses and failing to unguard the page, resulting in
2168           // an endless loop.  This condition is probably even more unlikely
2169           // than the first.
2170           //
2171           // Although both cases could be avoided by using locks or thread
2172           // local last_addr, these solutions are unnecessary complication:
2173           // this handler is a best-effort safety net, not a complete solution.
2174           // It is disabled by default and should only be used as a workaround
2175           // in case we missed any no-execute-unsafe VM code.
2176 
2177           last_addr = addr;
2178 
2179           return EXCEPTION_CONTINUE_EXECUTION;
2180         }
2181       }
2182 
2183       // Last unguard failed or not unguarding
2184       tty->print_raw_cr("Execution protection violation");
2185       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2186                    exceptionInfo->ContextRecord);
2187       return EXCEPTION_CONTINUE_SEARCH;
2188     }
2189   }
2190 #endif // _WIN64
2191 
2192   // Check to see if we caught the safepoint code in the
2193   // process of write protecting the memory serialization page.
2194   // It write enables the page immediately after protecting it
2195   // so just return.
2196   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2197     JavaThread* thread = (JavaThread*) t;
2198     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2199     address addr = (address) exceptionRecord->ExceptionInformation[1];
2200     if ( os::is_memory_serialize_page(thread, addr) ) {
2201       // Block current thread until the memory serialize page permission restored.
2202       os::block_on_serialize_page_trap();
2203       return EXCEPTION_CONTINUE_EXECUTION;
2204     }
2205   }
2206 
2207 
2208   if (t != NULL && t->is_Java_thread()) {
2209     JavaThread* thread = (JavaThread*) t;
2210     bool in_java = thread->thread_state() == _thread_in_Java;
2211 
2212     // Handle potential stack overflows up front.
2213     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2214       if (os::uses_stack_guard_pages()) {
2215 #ifdef _M_IA64
2216         //
2217         // If it's a legal stack address continue, Windows will map it in.
2218         //
2219         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2220         address addr = (address) exceptionRecord->ExceptionInformation[1];
2221         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2222           return EXCEPTION_CONTINUE_EXECUTION;
2223 
2224         // The register save area is the same size as the memory stack
2225         // and starts at the page just above the start of the memory stack.
2226         // If we get a fault in this area, we've run out of register
2227         // stack.  If we are in java, try throwing a stack overflow exception.
2228         if (addr > thread->stack_base() &&
2229                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2230           char buf[256];
2231           jio_snprintf(buf, sizeof(buf),
2232                        "Register stack overflow, addr:%p, stack_base:%p\n",
2233                        addr, thread->stack_base() );
2234           tty->print_raw_cr(buf);
2235           // If not in java code, return and hope for the best.
2236           return in_java ? Handle_Exception(exceptionInfo,
2237             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2238             :  EXCEPTION_CONTINUE_EXECUTION;
2239         }
2240 #endif
2241         if (thread->stack_yellow_zone_enabled()) {
2242           // Yellow zone violation.  The o/s has unprotected the first yellow
2243           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2244           // update the enabled status, even if the zone contains only one page.
2245           thread->disable_stack_yellow_zone();
2246           // If not in java code, return and hope for the best.
2247           return in_java ? Handle_Exception(exceptionInfo,
2248             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2249             :  EXCEPTION_CONTINUE_EXECUTION;
2250         } else {
2251           // Fatal red zone violation.
2252           thread->disable_stack_red_zone();
2253           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2254           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2255                        exceptionInfo->ContextRecord);
2256           return EXCEPTION_CONTINUE_SEARCH;
2257         }
2258       } else if (in_java) {
2259         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2260         // a one-time-only guard page, which it has released to us.  The next
2261         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2262         return Handle_Exception(exceptionInfo,
2263           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2264       } else {
2265         // Can only return and hope for the best.  Further stack growth will
2266         // result in an ACCESS_VIOLATION.
2267         return EXCEPTION_CONTINUE_EXECUTION;
2268       }
2269     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2270       // Either stack overflow or null pointer exception.
2271       if (in_java) {
2272         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2273         address addr = (address) exceptionRecord->ExceptionInformation[1];
2274         address stack_end = thread->stack_base() - thread->stack_size();
2275         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2276           // Stack overflow.
2277           assert(!os::uses_stack_guard_pages(),
2278             "should be caught by red zone code above.");
2279           return Handle_Exception(exceptionInfo,
2280             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2281         }
2282         //
2283         // Check for safepoint polling and implicit null
2284         // We only expect null pointers in the stubs (vtable)
2285         // the rest are checked explicitly now.
2286         //
2287         CodeBlob* cb = CodeCache::find_blob(pc);
2288         if (cb != NULL) {
2289           if (os::is_poll_address(addr)) {
2290             address stub = SharedRuntime::get_poll_stub(pc);
2291             return Handle_Exception(exceptionInfo, stub);
2292           }
2293         }
2294         {
2295 #ifdef _WIN64
2296           //
2297           // If it's a legal stack address map the entire region in
2298           //
2299           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2300           address addr = (address) exceptionRecord->ExceptionInformation[1];
2301           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2302                   addr = (address)((uintptr_t)addr &
2303                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2304                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2305                                     false );
2306                   return EXCEPTION_CONTINUE_EXECUTION;
2307           }
2308           else
2309 #endif
2310           {
2311             // Null pointer exception.
2312 #ifdef _M_IA64
2313             // We catch register stack overflows in compiled code by doing
2314             // an explicit compare and executing a st8(G0, G0) if the
2315             // BSP enters into our guard area.  We test for the overflow
2316             // condition and fall into the normal null pointer exception
2317             // code if BSP hasn't overflowed.
2318             if ( in_java ) {
2319               if(thread->register_stack_overflow()) {
2320                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2321                                 thread->register_stack_limit(),
2322                                "GR7 doesn't contain register_stack_limit");
2323                 // Disable the yellow zone which sets the state that
2324                 // we've got a stack overflow problem.
2325                 if (thread->stack_yellow_zone_enabled()) {
2326                   thread->disable_stack_yellow_zone();
2327                 }
2328                 // Give us some room to process the exception
2329                 thread->disable_register_stack_guard();
2330                 // Update GR7 with the new limit so we can continue running
2331                 // compiled code.
2332                 exceptionInfo->ContextRecord->IntS3 =
2333                                (ULONGLONG)thread->register_stack_limit();
2334                 return Handle_Exception(exceptionInfo,
2335                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2336               } else {
2337                 //
2338                 // Check for implicit null
2339                 // We only expect null pointers in the stubs (vtable)
2340                 // the rest are checked explicitly now.
2341                 //
2342                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2343                   // an access to the first page of VM--assume it is a null pointer
2344                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2345                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2346                 }
2347               }
2348             } // in_java
2349 
2350             // IA64 doesn't use implicit null checking yet. So we shouldn't
2351             // get here.
2352             tty->print_raw_cr("Access violation, possible null pointer exception");
2353             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2354                          exceptionInfo->ContextRecord);
2355             return EXCEPTION_CONTINUE_SEARCH;
2356 #else /* !IA64 */
2357 
2358             // Windows 98 reports faulting addresses incorrectly
2359             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2360                 !os::win32::is_nt()) {
2361               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2362               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2363             }
2364             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2365                          exceptionInfo->ContextRecord);
2366             return EXCEPTION_CONTINUE_SEARCH;
2367 #endif
2368           }
2369         }
2370       }
2371 
2372 #ifdef _WIN64
2373       // Special care for fast JNI field accessors.
2374       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2375       // in and the heap gets shrunk before the field access.
2376       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2377         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2378         if (addr != (address)-1) {
2379           return Handle_Exception(exceptionInfo, addr);
2380         }
2381       }
2382 #endif
2383 
2384 #ifdef _WIN64
2385       // Windows will sometimes generate an access violation
2386       // when we call malloc.  Since we use VectoredExceptions
2387       // on 64 bit platforms, we see this exception.  We must
2388       // pass this exception on so Windows can recover.
2389       // We check to see if the pc of the fault is in NTDLL.DLL
2390       // if so, we pass control on to Windows for handling.
2391       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2392 #endif
2393 
2394       // Stack overflow or null pointer exception in native code.
2395       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2396                    exceptionInfo->ContextRecord);
2397       return EXCEPTION_CONTINUE_SEARCH;
2398     }
2399 
2400     if (in_java) {
2401       switch (exception_code) {
2402       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2403         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2404 
2405       case EXCEPTION_INT_OVERFLOW:
2406         return Handle_IDiv_Exception(exceptionInfo);
2407 
2408       } // switch
2409     }
2410 #ifndef _WIN64
2411     if ((thread->thread_state() == _thread_in_Java) ||
2412         (thread->thread_state() == _thread_in_native) )
2413     {
2414       LONG result=Handle_FLT_Exception(exceptionInfo);
2415       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2416     }
2417 #endif //_WIN64
2418   }
2419 
2420   if (exception_code != EXCEPTION_BREAKPOINT) {
2421 #ifndef _WIN64
2422     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2423                  exceptionInfo->ContextRecord);
2424 #else
2425     // Itanium Windows uses a VectoredExceptionHandler
2426     // Which means that C++ programatic exception handlers (try/except)
2427     // will get here.  Continue the search for the right except block if
2428     // the exception code is not a fatal code.
2429     switch ( exception_code ) {
2430       case EXCEPTION_ACCESS_VIOLATION:
2431       case EXCEPTION_STACK_OVERFLOW:
2432       case EXCEPTION_ILLEGAL_INSTRUCTION:
2433       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2434       case EXCEPTION_INT_OVERFLOW:
2435       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2436       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2437                        exceptionInfo->ContextRecord);
2438       }
2439         break;
2440       default:
2441         break;
2442     }
2443 #endif
2444   }
2445   return EXCEPTION_CONTINUE_SEARCH;
2446 }
2447 
2448 #ifndef _WIN64
2449 // Special care for fast JNI accessors.
2450 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2451 // the heap gets shrunk before the field access.
2452 // Need to install our own structured exception handler since native code may
2453 // install its own.
2454 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2455   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2456   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2457     address pc = (address) exceptionInfo->ContextRecord->Eip;
2458     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2459     if (addr != (address)-1) {
2460       return Handle_Exception(exceptionInfo, addr);
2461     }
2462   }
2463   return EXCEPTION_CONTINUE_SEARCH;
2464 }
2465 
2466 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2467 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2468   __try { \
2469     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2470   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2471   } \
2472   return 0; \
2473 }
2474 
2475 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2476 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2477 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2478 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2479 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2480 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2481 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2482 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2483 
2484 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2485   switch (type) {
2486     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2487     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2488     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2489     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2490     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2491     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2492     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2493     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2494     default:        ShouldNotReachHere();
2495   }
2496   return (address)-1;
2497 }
2498 #endif
2499 
2500 // Virtual Memory
2501 
2502 int os::vm_page_size() { return os::win32::vm_page_size(); }
2503 int os::vm_allocation_granularity() {
2504   return os::win32::vm_allocation_granularity();
2505 }
2506 
2507 // Windows large page support is available on Windows 2003. In order to use
2508 // large page memory, the administrator must first assign additional privilege
2509 // to the user:
2510 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2511 //   + select Local Policies -> User Rights Assignment
2512 //   + double click "Lock pages in memory", add users and/or groups
2513 //   + reboot
2514 // Note the above steps are needed for administrator as well, as administrators
2515 // by default do not have the privilege to lock pages in memory.
2516 //
2517 // Note about Windows 2003: although the API supports committing large page
2518 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2519 // scenario, I found through experiment it only uses large page if the entire
2520 // memory region is reserved and committed in a single VirtualAlloc() call.
2521 // This makes Windows large page support more or less like Solaris ISM, in
2522 // that the entire heap must be committed upfront. This probably will change
2523 // in the future, if so the code below needs to be revisited.
2524 
2525 #ifndef MEM_LARGE_PAGES
2526 #define MEM_LARGE_PAGES 0x20000000
2527 #endif
2528 
2529 // GetLargePageMinimum is only available on Windows 2003. The other functions
2530 // are available on NT but not on Windows 98/Me. We have to resolve them at
2531 // runtime.
2532 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2533 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2534              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2535 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2536 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2537 
2538 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2539 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2540 static OpenProcessToken_func_type      _OpenProcessToken;
2541 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2542 
2543 static HINSTANCE _kernel32;
2544 static HINSTANCE _advapi32;
2545 static HANDLE    _hProcess;
2546 static HANDLE    _hToken;
2547 
2548 static size_t _large_page_size = 0;
2549 
2550 static bool resolve_functions_for_large_page_init() {
2551   _kernel32 = LoadLibrary("kernel32.dll");
2552   if (_kernel32 == NULL) return false;
2553 
2554   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2555                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2556   if (_GetLargePageMinimum == NULL) return false;
2557 
2558   _advapi32 = LoadLibrary("advapi32.dll");
2559   if (_advapi32 == NULL) return false;
2560 
2561   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2562                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2563   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2564                             GetProcAddress(_advapi32, "OpenProcessToken"));
2565   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2566                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2567   return _AdjustTokenPrivileges != NULL &&
2568          _OpenProcessToken      != NULL &&
2569          _LookupPrivilegeValue  != NULL;
2570 }
2571 
2572 static bool request_lock_memory_privilege() {
2573   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2574                                 os::current_process_id());
2575 
2576   LUID luid;
2577   if (_hProcess != NULL &&
2578       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2579       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2580 
2581     TOKEN_PRIVILEGES tp;
2582     tp.PrivilegeCount = 1;
2583     tp.Privileges[0].Luid = luid;
2584     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2585 
2586     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2587     // privilege. Check GetLastError() too. See MSDN document.
2588     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2589         (GetLastError() == ERROR_SUCCESS)) {
2590       return true;
2591     }
2592   }
2593 
2594   return false;
2595 }
2596 
2597 static void cleanup_after_large_page_init() {
2598   _GetLargePageMinimum = NULL;
2599   _AdjustTokenPrivileges = NULL;
2600   _OpenProcessToken = NULL;
2601   _LookupPrivilegeValue = NULL;
2602   if (_kernel32) FreeLibrary(_kernel32);
2603   _kernel32 = NULL;
2604   if (_advapi32) FreeLibrary(_advapi32);
2605   _advapi32 = NULL;
2606   if (_hProcess) CloseHandle(_hProcess);
2607   _hProcess = NULL;
2608   if (_hToken) CloseHandle(_hToken);
2609   _hToken = NULL;
2610 }
2611 
2612 bool os::large_page_init() {
2613   if (!UseLargePages) return false;
2614 
2615   // print a warning if any large page related flag is specified on command line
2616   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2617                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2618   bool success = false;
2619 
2620 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2621   if (resolve_functions_for_large_page_init()) {
2622     if (request_lock_memory_privilege()) {
2623       size_t s = _GetLargePageMinimum();
2624       if (s) {
2625 #if defined(IA32) || defined(AMD64)
2626         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2627           WARN("JVM cannot use large pages bigger than 4mb.");
2628         } else {
2629 #endif
2630           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2631             _large_page_size = LargePageSizeInBytes;
2632           } else {
2633             _large_page_size = s;
2634           }
2635           success = true;
2636 #if defined(IA32) || defined(AMD64)
2637         }
2638 #endif
2639       } else {
2640         WARN("Large page is not supported by the processor.");
2641       }
2642     } else {
2643       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2644     }
2645   } else {
2646     WARN("Large page is not supported by the operating system.");
2647   }
2648 #undef WARN
2649 
2650   const size_t default_page_size = (size_t) vm_page_size();
2651   if (success && _large_page_size > default_page_size) {
2652     _page_sizes[0] = _large_page_size;
2653     _page_sizes[1] = default_page_size;
2654     _page_sizes[2] = 0;
2655   }
2656 
2657   cleanup_after_large_page_init();
2658   return success;
2659 }
2660 
2661 // On win32, one cannot release just a part of reserved memory, it's an
2662 // all or nothing deal.  When we split a reservation, we must break the
2663 // reservation into two reservations.
2664 void os::split_reserved_memory(char *base, size_t size, size_t split,
2665                               bool realloc) {
2666   if (size > 0) {
2667     release_memory(base, size);
2668     if (realloc) {
2669       reserve_memory(split, base);
2670     }
2671     if (size != split) {
2672       reserve_memory(size - split, base + split);
2673     }
2674   }
2675 }
2676 
2677 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2678   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2679          "reserve alignment");
2680   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2681   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2682   assert(res == NULL || addr == NULL || addr == res,
2683          "Unexpected address from reserve.");
2684   return res;
2685 }
2686 
2687 // Reserve memory at an arbitrary address, only if that area is
2688 // available (and not reserved for something else).
2689 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2690   // Windows os::reserve_memory() fails of the requested address range is
2691   // not avilable.
2692   return reserve_memory(bytes, requested_addr);
2693 }
2694 
2695 size_t os::large_page_size() {
2696   return _large_page_size;
2697 }
2698 
2699 bool os::can_commit_large_page_memory() {
2700   // Windows only uses large page memory when the entire region is reserved
2701   // and committed in a single VirtualAlloc() call. This may change in the
2702   // future, but with Windows 2003 it's not possible to commit on demand.
2703   return false;
2704 }
2705 
2706 bool os::can_execute_large_page_memory() {
2707   return true;
2708 }
2709 
2710 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2711 
2712   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2713 
2714   if (UseLargePagesIndividualAllocation) {
2715     if (TracePageSizes && Verbose) {
2716        tty->print_cr("Reserving large pages individually.");
2717     }
2718     char * p_buf;
2719     // first reserve enough address space in advance since we want to be
2720     // able to break a single contiguous virtual address range into multiple
2721     // large page commits but WS2003 does not allow reserving large page space
2722     // so we just use 4K pages for reserve, this gives us a legal contiguous
2723     // address space. then we will deallocate that reservation, and re alloc
2724     // using large pages
2725     const size_t size_of_reserve = bytes + _large_page_size;
2726     if (bytes > size_of_reserve) {
2727       // Overflowed.
2728       warning("Individually allocated large pages failed, "
2729         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2730       return NULL;
2731     }
2732     p_buf = (char *) VirtualAlloc(addr,
2733                                  size_of_reserve,  // size of Reserve
2734                                  MEM_RESERVE,
2735                                  PAGE_READWRITE);
2736     // If reservation failed, return NULL
2737     if (p_buf == NULL) return NULL;
2738 
2739     release_memory(p_buf, bytes + _large_page_size);
2740     // round up to page boundary.  If the size_of_reserve did not
2741     // overflow and the reservation did not fail, this align up
2742     // should not overflow.
2743     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2744 
2745     // now go through and allocate one page at a time until all bytes are
2746     // allocated
2747     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2748     // An overflow of align_size_up() would have been caught above
2749     // in the calculation of size_of_reserve.
2750     char * next_alloc_addr = p_buf;
2751 
2752 #ifdef ASSERT
2753     // Variable for the failure injection
2754     long ran_num = os::random();
2755     size_t fail_after = ran_num % bytes;
2756 #endif
2757 
2758     while (bytes_remaining) {
2759       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2760       // Note allocate and commit
2761       char * p_new;
2762 
2763 #ifdef ASSERT
2764       bool inject_error = LargePagesIndividualAllocationInjectError &&
2765           (bytes_remaining <= fail_after);
2766 #else
2767       const bool inject_error = false;
2768 #endif
2769 
2770       if (inject_error) {
2771         p_new = NULL;
2772       } else {
2773         p_new = (char *) VirtualAlloc(next_alloc_addr,
2774                                     bytes_to_rq,
2775                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2776                                     prot);
2777       }
2778 
2779       if (p_new == NULL) {
2780         // Free any allocated pages
2781         if (next_alloc_addr > p_buf) {
2782           // Some memory was committed so release it.
2783           size_t bytes_to_release = bytes - bytes_remaining;
2784           release_memory(p_buf, bytes_to_release);
2785         }
2786 #ifdef ASSERT
2787         if (UseLargePagesIndividualAllocation &&
2788             LargePagesIndividualAllocationInjectError) {
2789           if (TracePageSizes && Verbose) {
2790              tty->print_cr("Reserving large pages individually failed.");
2791           }
2792         }
2793 #endif
2794         return NULL;
2795       }
2796       bytes_remaining -= bytes_to_rq;
2797       next_alloc_addr += bytes_to_rq;
2798     }
2799 
2800     return p_buf;
2801 
2802   } else {
2803     // normal policy just allocate it all at once
2804     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2805     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2806     return res;
2807   }
2808 }
2809 
2810 bool os::release_memory_special(char* base, size_t bytes) {
2811   return release_memory(base, bytes);
2812 }
2813 
2814 void os::print_statistics() {
2815 }
2816 
2817 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2818   if (bytes == 0) {
2819     // Don't bother the OS with noops.
2820     return true;
2821   }
2822   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2823   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2824   // Don't attempt to print anything if the OS call fails. We're
2825   // probably low on resources, so the print itself may cause crashes.
2826   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2827   if (result != NULL && exec) {
2828     DWORD oldprot;
2829     // Windows doc says to use VirtualProtect to get execute permissions
2830     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2831   } else {
2832     return result;
2833   }
2834 }
2835 
2836 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2837                        bool exec) {
2838   return commit_memory(addr, size, exec);
2839 }
2840 
2841 bool os::uncommit_memory(char* addr, size_t bytes) {
2842   if (bytes == 0) {
2843     // Don't bother the OS with noops.
2844     return true;
2845   }
2846   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2847   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2848   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2849 }
2850 
2851 bool os::release_memory(char* addr, size_t bytes) {
2852   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2853 }
2854 
2855 bool os::create_stack_guard_pages(char* addr, size_t size) {
2856   return os::commit_memory(addr, size);
2857 }
2858 
2859 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2860   return os::uncommit_memory(addr, size);
2861 }
2862 
2863 // Set protections specified
2864 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2865                         bool is_committed) {
2866   unsigned int p = 0;
2867   switch (prot) {
2868   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2869   case MEM_PROT_READ: p = PAGE_READONLY; break;
2870   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2871   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2872   default:
2873     ShouldNotReachHere();
2874   }
2875 
2876   DWORD old_status;
2877 
2878   // Strange enough, but on Win32 one can change protection only for committed
2879   // memory, not a big deal anyway, as bytes less or equal than 64K
2880   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2881     fatal("cannot commit protection page");
2882   }
2883   // One cannot use os::guard_memory() here, as on Win32 guard page
2884   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2885   //
2886   // Pages in the region become guard pages. Any attempt to access a guard page
2887   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2888   // the guard page status. Guard pages thus act as a one-time access alarm.
2889   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2890 }
2891 
2892 bool os::guard_memory(char* addr, size_t bytes) {
2893   DWORD old_status;
2894   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2895 }
2896 
2897 bool os::unguard_memory(char* addr, size_t bytes) {
2898   DWORD old_status;
2899   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2900 }
2901 
2902 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2903 void os::free_memory(char *addr, size_t bytes)         { }
2904 void os::numa_make_global(char *addr, size_t bytes)    { }
2905 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2906 bool os::numa_topology_changed()                       { return false; }
2907 size_t os::numa_get_groups_num()                       { return 1; }
2908 int os::numa_get_group_id()                            { return 0; }
2909 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2910   if (size > 0) {
2911     ids[0] = 0;
2912     return 1;
2913   }
2914   return 0;
2915 }
2916 
2917 bool os::get_page_info(char *start, page_info* info) {
2918   return false;
2919 }
2920 
2921 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2922   return end;
2923 }
2924 
2925 char* os::non_memory_address_word() {
2926   // Must never look like an address returned by reserve_memory,
2927   // even in its subfields (as defined by the CPU immediate fields,
2928   // if the CPU splits constants across multiple instructions).
2929   return (char*)-1;
2930 }
2931 
2932 #define MAX_ERROR_COUNT 100
2933 #define SYS_THREAD_ERROR 0xffffffffUL
2934 
2935 void os::pd_start_thread(Thread* thread) {
2936   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2937   // Returns previous suspend state:
2938   // 0:  Thread was not suspended
2939   // 1:  Thread is running now
2940   // >1: Thread is still suspended.
2941   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2942 }
2943 
2944 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2945   return ::read(fd, buf, nBytes);
2946 }
2947 
2948 class HighResolutionInterval {
2949   // The default timer resolution seems to be 10 milliseconds.
2950   // (Where is this written down?)
2951   // If someone wants to sleep for only a fraction of the default,
2952   // then we set the timer resolution down to 1 millisecond for
2953   // the duration of their interval.
2954   // We carefully set the resolution back, since otherwise we
2955   // seem to incur an overhead (3%?) that we don't need.
2956   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2957   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2958   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2959   // timeBeginPeriod() if the relative error exceeded some threshold.
2960   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2961   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2962   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2963   // resolution timers running.
2964 private:
2965     jlong resolution;
2966 public:
2967   HighResolutionInterval(jlong ms) {
2968     resolution = ms % 10L;
2969     if (resolution != 0) {
2970       MMRESULT result = timeBeginPeriod(1L);
2971     }
2972   }
2973   ~HighResolutionInterval() {
2974     if (resolution != 0) {
2975       MMRESULT result = timeEndPeriod(1L);
2976     }
2977     resolution = 0L;
2978   }
2979 };
2980 
2981 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2982   jlong limit = (jlong) MAXDWORD;
2983 
2984   while(ms > limit) {
2985     int res;
2986     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2987       return res;
2988     ms -= limit;
2989   }
2990 
2991   assert(thread == Thread::current(),  "thread consistency check");
2992   OSThread* osthread = thread->osthread();
2993   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2994   int result;
2995   if (interruptable) {
2996     assert(thread->is_Java_thread(), "must be java thread");
2997     JavaThread *jt = (JavaThread *) thread;
2998     ThreadBlockInVM tbivm(jt);
2999 
3000     jt->set_suspend_equivalent();
3001     // cleared by handle_special_suspend_equivalent_condition() or
3002     // java_suspend_self() via check_and_wait_while_suspended()
3003 
3004     HANDLE events[1];
3005     events[0] = osthread->interrupt_event();
3006     HighResolutionInterval *phri=NULL;
3007     if(!ForceTimeHighResolution)
3008       phri = new HighResolutionInterval( ms );
3009     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3010       result = OS_TIMEOUT;
3011     } else {
3012       ResetEvent(osthread->interrupt_event());
3013       osthread->set_interrupted(false);
3014       result = OS_INTRPT;
3015     }
3016     delete phri; //if it is NULL, harmless
3017 
3018     // were we externally suspended while we were waiting?
3019     jt->check_and_wait_while_suspended();
3020   } else {
3021     assert(!thread->is_Java_thread(), "must not be java thread");
3022     Sleep((long) ms);
3023     result = OS_TIMEOUT;
3024   }
3025   return result;
3026 }
3027 
3028 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3029 void os::infinite_sleep() {
3030   while (true) {    // sleep forever ...
3031     Sleep(100000);  // ... 100 seconds at a time
3032   }
3033 }
3034 
3035 typedef BOOL (WINAPI * STTSignature)(void) ;
3036 
3037 os::YieldResult os::NakedYield() {
3038   // Use either SwitchToThread() or Sleep(0)
3039   // Consider passing back the return value from SwitchToThread().
3040   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
3041   // In that case we revert to Sleep(0).
3042   static volatile STTSignature stt = (STTSignature) 1 ;
3043 
3044   if (stt == ((STTSignature) 1)) {
3045     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
3046     // It's OK if threads race during initialization as the operation above is idempotent.
3047   }
3048   if (stt != NULL) {
3049     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3050   } else {
3051     Sleep (0) ;
3052   }
3053   return os::YIELD_UNKNOWN ;
3054 }
3055 
3056 void os::yield() {  os::NakedYield(); }
3057 
3058 void os::yield_all(int attempts) {
3059   // Yields to all threads, including threads with lower priorities
3060   Sleep(1);
3061 }
3062 
3063 // Win32 only gives you access to seven real priorities at a time,
3064 // so we compress Java's ten down to seven.  It would be better
3065 // if we dynamically adjusted relative priorities.
3066 
3067 int os::java_to_os_priority[MaxPriority + 1] = {
3068   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3069   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3070   THREAD_PRIORITY_LOWEST,                       // 2
3071   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3072   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3073   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3074   THREAD_PRIORITY_NORMAL,                       // 6
3075   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3076   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3077   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3078   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3079 };
3080 
3081 int prio_policy1[MaxPriority + 1] = {
3082   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3083   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3084   THREAD_PRIORITY_LOWEST,                       // 2
3085   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3086   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3087   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3088   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3089   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3090   THREAD_PRIORITY_HIGHEST,                      // 8
3091   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3092   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3093 };
3094 
3095 static int prio_init() {
3096   // If ThreadPriorityPolicy is 1, switch tables
3097   if (ThreadPriorityPolicy == 1) {
3098     int i;
3099     for (i = 0; i < MaxPriority + 1; i++) {
3100       os::java_to_os_priority[i] = prio_policy1[i];
3101     }
3102   }
3103   return 0;
3104 }
3105 
3106 OSReturn os::set_native_priority(Thread* thread, int priority) {
3107   if (!UseThreadPriorities) return OS_OK;
3108   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3109   return ret ? OS_OK : OS_ERR;
3110 }
3111 
3112 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3113   if ( !UseThreadPriorities ) {
3114     *priority_ptr = java_to_os_priority[NormPriority];
3115     return OS_OK;
3116   }
3117   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3118   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3119     assert(false, "GetThreadPriority failed");
3120     return OS_ERR;
3121   }
3122   *priority_ptr = os_prio;
3123   return OS_OK;
3124 }
3125 
3126 
3127 // Hint to the underlying OS that a task switch would not be good.
3128 // Void return because it's a hint and can fail.
3129 void os::hint_no_preempt() {}
3130 
3131 void os::interrupt(Thread* thread) {
3132   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3133          "possibility of dangling Thread pointer");
3134 
3135   OSThread* osthread = thread->osthread();
3136   osthread->set_interrupted(true);
3137   // More than one thread can get here with the same value of osthread,
3138   // resulting in multiple notifications.  We do, however, want the store
3139   // to interrupted() to be visible to other threads before we post
3140   // the interrupt event.
3141   OrderAccess::release();
3142   SetEvent(osthread->interrupt_event());
3143   // For JSR166:  unpark after setting status
3144   if (thread->is_Java_thread())
3145     ((JavaThread*)thread)->parker()->unpark();
3146 
3147   ParkEvent * ev = thread->_ParkEvent ;
3148   if (ev != NULL) ev->unpark() ;
3149 
3150 }
3151 
3152 
3153 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3154   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3155          "possibility of dangling Thread pointer");
3156 
3157   OSThread* osthread = thread->osthread();
3158   bool interrupted;
3159   interrupted = osthread->interrupted();
3160   if (clear_interrupted == true) {
3161     osthread->set_interrupted(false);
3162     ResetEvent(osthread->interrupt_event());
3163   } // Otherwise leave the interrupted state alone
3164 
3165   return interrupted;
3166 }
3167 
3168 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3169 ExtendedPC os::get_thread_pc(Thread* thread) {
3170   CONTEXT context;
3171   context.ContextFlags = CONTEXT_CONTROL;
3172   HANDLE handle = thread->osthread()->thread_handle();
3173 #ifdef _M_IA64
3174   assert(0, "Fix get_thread_pc");
3175   return ExtendedPC(NULL);
3176 #else
3177   if (GetThreadContext(handle, &context)) {
3178 #ifdef _M_AMD64
3179     return ExtendedPC((address) context.Rip);
3180 #else
3181     return ExtendedPC((address) context.Eip);
3182 #endif
3183   } else {
3184     return ExtendedPC(NULL);
3185   }
3186 #endif
3187 }
3188 
3189 // GetCurrentThreadId() returns DWORD
3190 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3191 
3192 static int _initial_pid = 0;
3193 
3194 int os::current_process_id()
3195 {
3196   return (_initial_pid ? _initial_pid : _getpid());
3197 }
3198 
3199 int    os::win32::_vm_page_size       = 0;
3200 int    os::win32::_vm_allocation_granularity = 0;
3201 int    os::win32::_processor_type     = 0;
3202 // Processor level is not available on non-NT systems, use vm_version instead
3203 int    os::win32::_processor_level    = 0;
3204 julong os::win32::_physical_memory    = 0;
3205 size_t os::win32::_default_stack_size = 0;
3206 
3207          intx os::win32::_os_thread_limit    = 0;
3208 volatile intx os::win32::_os_thread_count    = 0;
3209 
3210 bool   os::win32::_is_nt              = false;
3211 bool   os::win32::_is_windows_2003    = false;
3212 
3213 
3214 void os::win32::initialize_system_info() {
3215   SYSTEM_INFO si;
3216   GetSystemInfo(&si);
3217   _vm_page_size    = si.dwPageSize;
3218   _vm_allocation_granularity = si.dwAllocationGranularity;
3219   _processor_type  = si.dwProcessorType;
3220   _processor_level = si.wProcessorLevel;
3221   set_processor_count(si.dwNumberOfProcessors);
3222 
3223   MEMORYSTATUSEX ms;
3224   ms.dwLength = sizeof(ms);
3225 
3226   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3227   // dwMemoryLoad (% of memory in use)
3228   GlobalMemoryStatusEx(&ms);
3229   _physical_memory = ms.ullTotalPhys;
3230 
3231   OSVERSIONINFO oi;
3232   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3233   GetVersionEx(&oi);
3234   switch(oi.dwPlatformId) {
3235     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3236     case VER_PLATFORM_WIN32_NT:
3237       _is_nt = true;
3238       {
3239         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3240         if (os_vers == 5002) {
3241           _is_windows_2003 = true;
3242         }
3243       }
3244       break;
3245     default: fatal("Unknown platform");
3246   }
3247 
3248   _default_stack_size = os::current_stack_size();
3249   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3250   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3251     "stack size not a multiple of page size");
3252 
3253   initialize_performance_counter();
3254 
3255   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3256   // known to deadlock the system, if the VM issues to thread operations with
3257   // a too high frequency, e.g., such as changing the priorities.
3258   // The 6000 seems to work well - no deadlocks has been notices on the test
3259   // programs that we have seen experience this problem.
3260   if (!os::win32::is_nt()) {
3261     StarvationMonitorInterval = 6000;
3262   }
3263 }
3264 
3265 
3266 void os::win32::setmode_streams() {
3267   _setmode(_fileno(stdin), _O_BINARY);
3268   _setmode(_fileno(stdout), _O_BINARY);
3269   _setmode(_fileno(stderr), _O_BINARY);
3270 }
3271 
3272 
3273 int os::message_box(const char* title, const char* message) {
3274   int result = MessageBox(NULL, message, title,
3275                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3276   return result == IDYES;
3277 }
3278 
3279 int os::allocate_thread_local_storage() {
3280   return TlsAlloc();
3281 }
3282 
3283 
3284 void os::free_thread_local_storage(int index) {
3285   TlsFree(index);
3286 }
3287 
3288 
3289 void os::thread_local_storage_at_put(int index, void* value) {
3290   TlsSetValue(index, value);
3291   assert(thread_local_storage_at(index) == value, "Just checking");
3292 }
3293 
3294 
3295 void* os::thread_local_storage_at(int index) {
3296   return TlsGetValue(index);
3297 }
3298 
3299 
3300 #ifndef PRODUCT
3301 #ifndef _WIN64
3302 // Helpers to check whether NX protection is enabled
3303 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3304   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3305       pex->ExceptionRecord->NumberParameters > 0 &&
3306       pex->ExceptionRecord->ExceptionInformation[0] ==
3307       EXCEPTION_INFO_EXEC_VIOLATION) {
3308     return EXCEPTION_EXECUTE_HANDLER;
3309   }
3310   return EXCEPTION_CONTINUE_SEARCH;
3311 }
3312 
3313 void nx_check_protection() {
3314   // If NX is enabled we'll get an exception calling into code on the stack
3315   char code[] = { (char)0xC3 }; // ret
3316   void *code_ptr = (void *)code;
3317   __try {
3318     __asm call code_ptr
3319   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3320     tty->print_raw_cr("NX protection detected.");
3321   }
3322 }
3323 #endif // _WIN64
3324 #endif // PRODUCT
3325 
3326 // this is called _before_ the global arguments have been parsed
3327 void os::init(void) {
3328   _initial_pid = _getpid();
3329 
3330   init_random(1234567);
3331 
3332   win32::initialize_system_info();
3333   win32::setmode_streams();
3334   init_page_sizes((size_t) win32::vm_page_size());
3335 
3336   // For better scalability on MP systems (must be called after initialize_system_info)
3337 #ifndef PRODUCT
3338   if (is_MP()) {
3339     NoYieldsInMicrolock = true;
3340   }
3341 #endif
3342   // This may be overridden later when argument processing is done.
3343   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3344     os::win32::is_windows_2003());
3345 
3346   // Initialize main_process and main_thread
3347   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3348  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3349                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3350     fatal("DuplicateHandle failed\n");
3351   }
3352   main_thread_id = (int) GetCurrentThreadId();
3353 }
3354 
3355 // To install functions for atexit processing
3356 extern "C" {
3357   static void perfMemory_exit_helper() {
3358     perfMemory_exit();
3359   }
3360 }
3361 
3362 // this is called _after_ the global arguments have been parsed
3363 jint os::init_2(void) {
3364   // Allocate a single page and mark it as readable for safepoint polling
3365   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3366   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3367 
3368   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3369   guarantee( return_page != NULL, "Commit Failed for polling page");
3370 
3371   os::set_polling_page( polling_page );
3372 
3373 #ifndef PRODUCT
3374   if( Verbose && PrintMiscellaneous )
3375     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3376 #endif
3377 
3378   if (!UseMembar) {
3379     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3380     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3381 
3382     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3383     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3384 
3385     os::set_memory_serialize_page( mem_serialize_page );
3386 
3387 #ifndef PRODUCT
3388     if(Verbose && PrintMiscellaneous)
3389       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3390 #endif
3391 }
3392 
3393   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3394 
3395   // Setup Windows Exceptions
3396 
3397   // On Itanium systems, Structured Exception Handling does not
3398   // work since stack frames must be walkable by the OS.  Since
3399   // much of our code is dynamically generated, and we do not have
3400   // proper unwind .xdata sections, the system simply exits
3401   // rather than delivering the exception.  To work around
3402   // this we use VectorExceptions instead.
3403 #ifdef _WIN64
3404   if (UseVectoredExceptions) {
3405     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3406   }
3407 #endif
3408 
3409   // for debugging float code generation bugs
3410   if (ForceFloatExceptions) {
3411 #ifndef  _WIN64
3412     static long fp_control_word = 0;
3413     __asm { fstcw fp_control_word }
3414     // see Intel PPro Manual, Vol. 2, p 7-16
3415     const long precision = 0x20;
3416     const long underflow = 0x10;
3417     const long overflow  = 0x08;
3418     const long zero_div  = 0x04;
3419     const long denorm    = 0x02;
3420     const long invalid   = 0x01;
3421     fp_control_word |= invalid;
3422     __asm { fldcw fp_control_word }
3423 #endif
3424   }
3425 
3426   // Initialize HPI.
3427   jint hpi_result = hpi::initialize();
3428   if (hpi_result != JNI_OK) { return hpi_result; }
3429 
3430   // If stack_commit_size is 0, windows will reserve the default size,
3431   // but only commit a small portion of it.
3432   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3433   size_t default_reserve_size = os::win32::default_stack_size();
3434   size_t actual_reserve_size = stack_commit_size;
3435   if (stack_commit_size < default_reserve_size) {
3436     // If stack_commit_size == 0, we want this too
3437     actual_reserve_size = default_reserve_size;
3438   }
3439 
3440   // Check minimum allowable stack size for thread creation and to initialize
3441   // the java system classes, including StackOverflowError - depends on page
3442   // size.  Add a page for compiler2 recursion in main thread.
3443   // Add in 2*BytesPerWord times page size to account for VM stack during
3444   // class initialization depending on 32 or 64 bit VM.
3445   size_t min_stack_allowed =
3446             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3447             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3448   if (actual_reserve_size < min_stack_allowed) {
3449     tty->print_cr("\nThe stack size specified is too small, "
3450                   "Specify at least %dk",
3451                   min_stack_allowed / K);
3452     return JNI_ERR;
3453   }
3454 
3455   JavaThread::set_stack_size_at_create(stack_commit_size);
3456 
3457   // Calculate theoretical max. size of Threads to guard gainst artifical
3458   // out-of-memory situations, where all available address-space has been
3459   // reserved by thread stacks.
3460   assert(actual_reserve_size != 0, "Must have a stack");
3461 
3462   // Calculate the thread limit when we should start doing Virtual Memory
3463   // banging. Currently when the threads will have used all but 200Mb of space.
3464   //
3465   // TODO: consider performing a similar calculation for commit size instead
3466   // as reserve size, since on a 64-bit platform we'll run into that more
3467   // often than running out of virtual memory space.  We can use the
3468   // lower value of the two calculations as the os_thread_limit.
3469   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3470   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3471 
3472   // at exit methods are called in the reverse order of their registration.
3473   // there is no limit to the number of functions registered. atexit does
3474   // not set errno.
3475 
3476   if (PerfAllowAtExitRegistration) {
3477     // only register atexit functions if PerfAllowAtExitRegistration is set.
3478     // atexit functions can be delayed until process exit time, which
3479     // can be problematic for embedded VM situations. Embedded VMs should
3480     // call DestroyJavaVM() to assure that VM resources are released.
3481 
3482     // note: perfMemory_exit_helper atexit function may be removed in
3483     // the future if the appropriate cleanup code can be added to the
3484     // VM_Exit VMOperation's doit method.
3485     if (atexit(perfMemory_exit_helper) != 0) {
3486       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3487     }
3488   }
3489 
3490   // initialize PSAPI or ToolHelp for fatal error handler
3491   if (win32::is_nt()) _init_psapi();
3492   else _init_toolhelp();
3493 
3494 #ifndef _WIN64
3495   // Print something if NX is enabled (win32 on AMD64)
3496   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3497 #endif
3498 
3499   // initialize thread priority policy
3500   prio_init();
3501 
3502   if (UseNUMA && !ForceNUMA) {
3503     UseNUMA = false; // Currently unsupported.
3504   }
3505 
3506   return JNI_OK;
3507 }
3508 
3509 void os::init_3(void) {
3510   return;
3511 }
3512 
3513 // Mark the polling page as unreadable
3514 void os::make_polling_page_unreadable(void) {
3515   DWORD old_status;
3516   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3517     fatal("Could not disable polling page");
3518 };
3519 
3520 // Mark the polling page as readable
3521 void os::make_polling_page_readable(void) {
3522   DWORD old_status;
3523   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3524     fatal("Could not enable polling page");
3525 };
3526 
3527 
3528 int os::stat(const char *path, struct stat *sbuf) {
3529   char pathbuf[MAX_PATH];
3530   if (strlen(path) > MAX_PATH - 1) {
3531     errno = ENAMETOOLONG;
3532     return -1;
3533   }
3534   hpi::native_path(strcpy(pathbuf, path));
3535   int ret = ::stat(pathbuf, sbuf);
3536   if (sbuf != NULL && UseUTCFileTimestamp) {
3537     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3538     // the system timezone and so can return different values for the
3539     // same file if/when daylight savings time changes.  This adjustment
3540     // makes sure the same timestamp is returned regardless of the TZ.
3541     //
3542     // See:
3543     // http://msdn.microsoft.com/library/
3544     //   default.asp?url=/library/en-us/sysinfo/base/
3545     //   time_zone_information_str.asp
3546     // and
3547     // http://msdn.microsoft.com/library/default.asp?url=
3548     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3549     //
3550     // NOTE: there is a insidious bug here:  If the timezone is changed
3551     // after the call to stat() but before 'GetTimeZoneInformation()', then
3552     // the adjustment we do here will be wrong and we'll return the wrong
3553     // value (which will likely end up creating an invalid class data
3554     // archive).  Absent a better API for this, or some time zone locking
3555     // mechanism, we'll have to live with this risk.
3556     TIME_ZONE_INFORMATION tz;
3557     DWORD tzid = GetTimeZoneInformation(&tz);
3558     int daylightBias =
3559       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3560     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3561   }
3562   return ret;
3563 }
3564 
3565 
3566 #define FT2INT64(ft) \
3567   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3568 
3569 
3570 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3571 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3572 // of a thread.
3573 //
3574 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3575 // the fast estimate available on the platform.
3576 
3577 // current_thread_cpu_time() is not optimized for Windows yet
3578 jlong os::current_thread_cpu_time() {
3579   // return user + sys since the cost is the same
3580   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3581 }
3582 
3583 jlong os::thread_cpu_time(Thread* thread) {
3584   // consistent with what current_thread_cpu_time() returns.
3585   return os::thread_cpu_time(thread, true /* user+sys */);
3586 }
3587 
3588 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3589   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3590 }
3591 
3592 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3593   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3594   // If this function changes, os::is_thread_cpu_time_supported() should too
3595   if (os::win32::is_nt()) {
3596     FILETIME CreationTime;
3597     FILETIME ExitTime;
3598     FILETIME KernelTime;
3599     FILETIME UserTime;
3600 
3601     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3602                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3603       return -1;
3604     else
3605       if (user_sys_cpu_time) {
3606         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3607       } else {
3608         return FT2INT64(UserTime) * 100;
3609       }
3610   } else {
3611     return (jlong) timeGetTime() * 1000000;
3612   }
3613 }
3614 
3615 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3616   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3617   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3618   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3619   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3620 }
3621 
3622 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3623   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3624   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3625   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3626   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3627 }
3628 
3629 bool os::is_thread_cpu_time_supported() {
3630   // see os::thread_cpu_time
3631   if (os::win32::is_nt()) {
3632     FILETIME CreationTime;
3633     FILETIME ExitTime;
3634     FILETIME KernelTime;
3635     FILETIME UserTime;
3636 
3637     if ( GetThreadTimes(GetCurrentThread(),
3638                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3639       return false;
3640     else
3641       return true;
3642   } else {
3643     return false;
3644   }
3645 }
3646 
3647 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3648 // It does have primitives (PDH API) to get CPU usage and run queue length.
3649 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3650 // If we wanted to implement loadavg on Windows, we have a few options:
3651 //
3652 // a) Query CPU usage and run queue length and "fake" an answer by
3653 //    returning the CPU usage if it's under 100%, and the run queue
3654 //    length otherwise.  It turns out that querying is pretty slow
3655 //    on Windows, on the order of 200 microseconds on a fast machine.
3656 //    Note that on the Windows the CPU usage value is the % usage
3657 //    since the last time the API was called (and the first call
3658 //    returns 100%), so we'd have to deal with that as well.
3659 //
3660 // b) Sample the "fake" answer using a sampling thread and store
3661 //    the answer in a global variable.  The call to loadavg would
3662 //    just return the value of the global, avoiding the slow query.
3663 //
3664 // c) Sample a better answer using exponential decay to smooth the
3665 //    value.  This is basically the algorithm used by UNIX kernels.
3666 //
3667 // Note that sampling thread starvation could affect both (b) and (c).
3668 int os::loadavg(double loadavg[], int nelem) {
3669   return -1;
3670 }
3671 
3672 
3673 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3674 bool os::dont_yield() {
3675   return DontYieldALot;
3676 }
3677 
3678 // Is a (classpath) directory empty?
3679 bool os::dir_is_empty(const char* path) {
3680   WIN32_FIND_DATA fd;
3681   HANDLE f = FindFirstFile(path, &fd);
3682   if (f == INVALID_HANDLE_VALUE) {
3683     return true;
3684   }
3685   FindClose(f);
3686   return false;
3687 }
3688 
3689 // create binary file, rewriting existing file if required
3690 int os::create_binary_file(const char* path, bool rewrite_existing) {
3691   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3692   if (!rewrite_existing) {
3693     oflags |= _O_EXCL;
3694   }
3695   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3696 }
3697 
3698 // return current position of file pointer
3699 jlong os::current_file_offset(int fd) {
3700   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3701 }
3702 
3703 // move file pointer to the specified offset
3704 jlong os::seek_to_file_offset(int fd, jlong offset) {
3705   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3706 }
3707 
3708 
3709 // Map a block of memory.
3710 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3711                      char *addr, size_t bytes, bool read_only,
3712                      bool allow_exec) {
3713   HANDLE hFile;
3714   char* base;
3715 
3716   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3717                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3718   if (hFile == NULL) {
3719     if (PrintMiscellaneous && Verbose) {
3720       DWORD err = GetLastError();
3721       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3722     }
3723     return NULL;
3724   }
3725 
3726   if (allow_exec) {
3727     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3728     // unless it comes from a PE image (which the shared archive is not.)
3729     // Even VirtualProtect refuses to give execute access to mapped memory
3730     // that was not previously executable.
3731     //
3732     // Instead, stick the executable region in anonymous memory.  Yuck.
3733     // Penalty is that ~4 pages will not be shareable - in the future
3734     // we might consider DLLizing the shared archive with a proper PE
3735     // header so that mapping executable + sharing is possible.
3736 
3737     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3738                                 PAGE_READWRITE);
3739     if (base == NULL) {
3740       if (PrintMiscellaneous && Verbose) {
3741         DWORD err = GetLastError();
3742         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3743       }
3744       CloseHandle(hFile);
3745       return NULL;
3746     }
3747 
3748     DWORD bytes_read;
3749     OVERLAPPED overlapped;
3750     overlapped.Offset = (DWORD)file_offset;
3751     overlapped.OffsetHigh = 0;
3752     overlapped.hEvent = NULL;
3753     // ReadFile guarantees that if the return value is true, the requested
3754     // number of bytes were read before returning.
3755     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3756     if (!res) {
3757       if (PrintMiscellaneous && Verbose) {
3758         DWORD err = GetLastError();
3759         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3760       }
3761       release_memory(base, bytes);
3762       CloseHandle(hFile);
3763       return NULL;
3764     }
3765   } else {
3766     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3767                                     NULL /*file_name*/);
3768     if (hMap == NULL) {
3769       if (PrintMiscellaneous && Verbose) {
3770         DWORD err = GetLastError();
3771         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3772       }
3773       CloseHandle(hFile);
3774       return NULL;
3775     }
3776 
3777     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3778     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3779                                   (DWORD)bytes, addr);
3780     if (base == NULL) {
3781       if (PrintMiscellaneous && Verbose) {
3782         DWORD err = GetLastError();
3783         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3784       }
3785       CloseHandle(hMap);
3786       CloseHandle(hFile);
3787       return NULL;
3788     }
3789 
3790     if (CloseHandle(hMap) == 0) {
3791       if (PrintMiscellaneous && Verbose) {
3792         DWORD err = GetLastError();
3793         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3794       }
3795       CloseHandle(hFile);
3796       return base;
3797     }
3798   }
3799 
3800   if (allow_exec) {
3801     DWORD old_protect;
3802     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3803     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3804 
3805     if (!res) {
3806       if (PrintMiscellaneous && Verbose) {
3807         DWORD err = GetLastError();
3808         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3809       }
3810       // Don't consider this a hard error, on IA32 even if the
3811       // VirtualProtect fails, we should still be able to execute
3812       CloseHandle(hFile);
3813       return base;
3814     }
3815   }
3816 
3817   if (CloseHandle(hFile) == 0) {
3818     if (PrintMiscellaneous && Verbose) {
3819       DWORD err = GetLastError();
3820       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3821     }
3822     return base;
3823   }
3824 
3825   return base;
3826 }
3827 
3828 
3829 // Remap a block of memory.
3830 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3831                        char *addr, size_t bytes, bool read_only,
3832                        bool allow_exec) {
3833   // This OS does not allow existing memory maps to be remapped so we
3834   // have to unmap the memory before we remap it.
3835   if (!os::unmap_memory(addr, bytes)) {
3836     return NULL;
3837   }
3838 
3839   // There is a very small theoretical window between the unmap_memory()
3840   // call above and the map_memory() call below where a thread in native
3841   // code may be able to access an address that is no longer mapped.
3842 
3843   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3844                         allow_exec);
3845 }
3846 
3847 
3848 // Unmap a block of memory.
3849 // Returns true=success, otherwise false.
3850 
3851 bool os::unmap_memory(char* addr, size_t bytes) {
3852   BOOL result = UnmapViewOfFile(addr);
3853   if (result == 0) {
3854     if (PrintMiscellaneous && Verbose) {
3855       DWORD err = GetLastError();
3856       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3857     }
3858     return false;
3859   }
3860   return true;
3861 }
3862 
3863 void os::pause() {
3864   char filename[MAX_PATH];
3865   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3866     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3867   } else {
3868     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3869   }
3870 
3871   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3872   if (fd != -1) {
3873     struct stat buf;
3874     close(fd);
3875     while (::stat(filename, &buf) == 0) {
3876       Sleep(100);
3877     }
3878   } else {
3879     jio_fprintf(stderr,
3880       "Could not open pause file '%s', continuing immediately.\n", filename);
3881   }
3882 }
3883 
3884 // An Event wraps a win32 "CreateEvent" kernel handle.
3885 //
3886 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3887 //
3888 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3889 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3890 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3891 //     In addition, an unpark() operation might fetch the handle field, but the
3892 //     event could recycle between the fetch and the SetEvent() operation.
3893 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3894 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3895 //     on an stale but recycled handle would be harmless, but in practice this might
3896 //     confuse other non-Sun code, so it's not a viable approach.
3897 //
3898 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3899 //     with the Event.  The event handle is never closed.  This could be construed
3900 //     as handle leakage, but only up to the maximum # of threads that have been extant
3901 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3902 //     permit a process to have hundreds of thousands of open handles.
3903 //
3904 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3905 //     and release unused handles.
3906 //
3907 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3908 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3909 //
3910 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3911 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3912 //
3913 // We use (2).
3914 //
3915 // TODO-FIXME:
3916 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3917 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3918 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3919 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3920 //     into a single win32 CreateEvent() handle.
3921 //
3922 // _Event transitions in park()
3923 //   -1 => -1 : illegal
3924 //    1 =>  0 : pass - return immediately
3925 //    0 => -1 : block
3926 //
3927 // _Event serves as a restricted-range semaphore :
3928 //    -1 : thread is blocked
3929 //     0 : neutral  - thread is running or ready
3930 //     1 : signaled - thread is running or ready
3931 //
3932 // Another possible encoding of _Event would be
3933 // with explicit "PARKED" and "SIGNALED" bits.
3934 
3935 int os::PlatformEvent::park (jlong Millis) {
3936     guarantee (_ParkHandle != NULL , "Invariant") ;
3937     guarantee (Millis > 0          , "Invariant") ;
3938     int v ;
3939 
3940     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3941     // the initial park() operation.
3942 
3943     for (;;) {
3944         v = _Event ;
3945         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3946     }
3947     guarantee ((v == 0) || (v == 1), "invariant") ;
3948     if (v != 0) return OS_OK ;
3949 
3950     // Do this the hard way by blocking ...
3951     // TODO: consider a brief spin here, gated on the success of recent
3952     // spin attempts by this thread.
3953     //
3954     // We decompose long timeouts into series of shorter timed waits.
3955     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3956     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3957     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3958     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3959     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3960     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3961     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3962     // for the already waited time.  This policy does not admit any new outcomes.
3963     // In the future, however, we might want to track the accumulated wait time and
3964     // adjust Millis accordingly if we encounter a spurious wakeup.
3965 
3966     const int MAXTIMEOUT = 0x10000000 ;
3967     DWORD rv = WAIT_TIMEOUT ;
3968     while (_Event < 0 && Millis > 0) {
3969        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3970        if (Millis > MAXTIMEOUT) {
3971           prd = MAXTIMEOUT ;
3972        }
3973        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3974        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3975        if (rv == WAIT_TIMEOUT) {
3976            Millis -= prd ;
3977        }
3978     }
3979     v = _Event ;
3980     _Event = 0 ;
3981     OrderAccess::fence() ;
3982     // If we encounter a nearly simultanous timeout expiry and unpark()
3983     // we return OS_OK indicating we awoke via unpark().
3984     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3985     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3986 }
3987 
3988 void os::PlatformEvent::park () {
3989     guarantee (_ParkHandle != NULL, "Invariant") ;
3990     // Invariant: Only the thread associated with the Event/PlatformEvent
3991     // may call park().
3992     int v ;
3993     for (;;) {
3994         v = _Event ;
3995         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3996     }
3997     guarantee ((v == 0) || (v == 1), "invariant") ;
3998     if (v != 0) return ;
3999 
4000     // Do this the hard way by blocking ...
4001     // TODO: consider a brief spin here, gated on the success of recent
4002     // spin attempts by this thread.
4003     while (_Event < 0) {
4004        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4005        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4006     }
4007 
4008     // Usually we'll find _Event == 0 at this point, but as
4009     // an optional optimization we clear it, just in case can
4010     // multiple unpark() operations drove _Event up to 1.
4011     _Event = 0 ;
4012     OrderAccess::fence() ;
4013     guarantee (_Event >= 0, "invariant") ;
4014 }
4015 
4016 void os::PlatformEvent::unpark() {
4017   guarantee (_ParkHandle != NULL, "Invariant") ;
4018   int v ;
4019   for (;;) {
4020       v = _Event ;      // Increment _Event if it's < 1.
4021       if (v > 0) {
4022          // If it's already signaled just return.
4023          // The LD of _Event could have reordered or be satisfied
4024          // by a read-aside from this processor's write buffer.
4025          // To avoid problems execute a barrier and then
4026          // ratify the value.  A degenerate CAS() would also work.
4027          // Viz., CAS (v+0, &_Event, v) == v).
4028          OrderAccess::fence() ;
4029          if (_Event == v) return ;
4030          continue ;
4031       }
4032       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4033   }
4034   if (v < 0) {
4035      ::SetEvent (_ParkHandle) ;
4036   }
4037 }
4038 
4039 
4040 // JSR166
4041 // -------------------------------------------------------
4042 
4043 /*
4044  * The Windows implementation of Park is very straightforward: Basic
4045  * operations on Win32 Events turn out to have the right semantics to
4046  * use them directly. We opportunistically resuse the event inherited
4047  * from Monitor.
4048  */
4049 
4050 
4051 void Parker::park(bool isAbsolute, jlong time) {
4052   guarantee (_ParkEvent != NULL, "invariant") ;
4053   // First, demultiplex/decode time arguments
4054   if (time < 0) { // don't wait
4055     return;
4056   }
4057   else if (time == 0 && !isAbsolute) {
4058     time = INFINITE;
4059   }
4060   else if  (isAbsolute) {
4061     time -= os::javaTimeMillis(); // convert to relative time
4062     if (time <= 0) // already elapsed
4063       return;
4064   }
4065   else { // relative
4066     time /= 1000000; // Must coarsen from nanos to millis
4067     if (time == 0)   // Wait for the minimal time unit if zero
4068       time = 1;
4069   }
4070 
4071   JavaThread* thread = (JavaThread*)(Thread::current());
4072   assert(thread->is_Java_thread(), "Must be JavaThread");
4073   JavaThread *jt = (JavaThread *)thread;
4074 
4075   // Don't wait if interrupted or already triggered
4076   if (Thread::is_interrupted(thread, false) ||
4077     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4078     ResetEvent(_ParkEvent);
4079     return;
4080   }
4081   else {
4082     ThreadBlockInVM tbivm(jt);
4083     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4084     jt->set_suspend_equivalent();
4085 
4086     WaitForSingleObject(_ParkEvent,  time);
4087     ResetEvent(_ParkEvent);
4088 
4089     // If externally suspended while waiting, re-suspend
4090     if (jt->handle_special_suspend_equivalent_condition()) {
4091       jt->java_suspend_self();
4092     }
4093   }
4094 }
4095 
4096 void Parker::unpark() {
4097   guarantee (_ParkEvent != NULL, "invariant") ;
4098   SetEvent(_ParkEvent);
4099 }
4100 
4101 // Run the specified command in a separate process. Return its exit value,
4102 // or -1 on failure (e.g. can't create a new process).
4103 int os::fork_and_exec(char* cmd) {
4104   STARTUPINFO si;
4105   PROCESS_INFORMATION pi;
4106 
4107   memset(&si, 0, sizeof(si));
4108   si.cb = sizeof(si);
4109   memset(&pi, 0, sizeof(pi));
4110   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4111                             cmd,    // command line
4112                             NULL,   // process security attribute
4113                             NULL,   // thread security attribute
4114                             TRUE,   // inherits system handles
4115                             0,      // no creation flags
4116                             NULL,   // use parent's environment block
4117                             NULL,   // use parent's starting directory
4118                             &si,    // (in) startup information
4119                             &pi);   // (out) process information
4120 
4121   if (rslt) {
4122     // Wait until child process exits.
4123     WaitForSingleObject(pi.hProcess, INFINITE);
4124 
4125     DWORD exit_code;
4126     GetExitCodeProcess(pi.hProcess, &exit_code);
4127 
4128     // Close process and thread handles.
4129     CloseHandle(pi.hProcess);
4130     CloseHandle(pi.hThread);
4131 
4132     return (int)exit_code;
4133   } else {
4134     return -1;
4135   }
4136 }
4137 
4138 //--------------------------------------------------------------------------------------------------
4139 // Non-product code
4140 
4141 static int mallocDebugIntervalCounter = 0;
4142 static int mallocDebugCounter = 0;
4143 bool os::check_heap(bool force) {
4144   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4145   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4146     // Note: HeapValidate executes two hardware breakpoints when it finds something
4147     // wrong; at these points, eax contains the address of the offending block (I think).
4148     // To get to the exlicit error message(s) below, just continue twice.
4149     HANDLE heap = GetProcessHeap();
4150     { HeapLock(heap);
4151       PROCESS_HEAP_ENTRY phe;
4152       phe.lpData = NULL;
4153       while (HeapWalk(heap, &phe) != 0) {
4154         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4155             !HeapValidate(heap, 0, phe.lpData)) {
4156           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4157           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4158           fatal("corrupted C heap");
4159         }
4160       }
4161       int err = GetLastError();
4162       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4163         fatal(err_msg("heap walk aborted with error %d", err));
4164       }
4165       HeapUnlock(heap);
4166     }
4167     mallocDebugIntervalCounter = 0;
4168   }
4169   return true;
4170 }
4171 
4172 
4173 bool os::find(address addr, outputStream* st) {
4174   // Nothing yet
4175   return false;
4176 }
4177 
4178 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4179   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4180 
4181   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4182     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4183     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4184     address addr = (address) exceptionRecord->ExceptionInformation[1];
4185 
4186     if (os::is_memory_serialize_page(thread, addr))
4187       return EXCEPTION_CONTINUE_EXECUTION;
4188   }
4189 
4190   return EXCEPTION_CONTINUE_SEARCH;
4191 }
4192 
4193 static int getLastErrorString(char *buf, size_t len)
4194 {
4195     long errval;
4196 
4197     if ((errval = GetLastError()) != 0)
4198     {
4199       /* DOS error */
4200       size_t n = (size_t)FormatMessage(
4201             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4202             NULL,
4203             errval,
4204             0,
4205             buf,
4206             (DWORD)len,
4207             NULL);
4208       if (n > 3) {
4209         /* Drop final '.', CR, LF */
4210         if (buf[n - 1] == '\n') n--;
4211         if (buf[n - 1] == '\r') n--;
4212         if (buf[n - 1] == '.') n--;
4213         buf[n] = '\0';
4214       }
4215       return (int)n;
4216     }
4217 
4218     if (errno != 0)
4219     {
4220       /* C runtime error that has no corresponding DOS error code */
4221       const char *s = strerror(errno);
4222       size_t n = strlen(s);
4223       if (n >= len) n = len - 1;
4224       strncpy(buf, s, n);
4225       buf[n] = '\0';
4226       return (int)n;
4227     }
4228     return 0;
4229 }
4230 
4231 
4232 // We don't build a headless jre for Windows
4233 bool os::is_headless_jre() { return false; }
4234