1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // no precompiled headers
  27 #include "assembler_zero.inline.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "mutex_linux.inline.hpp"
  37 #include "nativeInst_zero.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/extendedPC.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/hpi.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "thread_linux.inline.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/vmError.hpp"
  57 #ifdef COMPILER1
  58 #include "c1/c1_Runtime1.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "opto/runtime.hpp"
  62 #endif
  63 
  64 address os::current_stack_pointer() {
  65   address dummy = (address) &dummy;
  66   return dummy;
  67 }
  68 
  69 frame os::get_sender_for_C_frame(frame* fr) {
  70   ShouldNotCallThis();
  71 }
  72 
  73 frame os::current_frame() {
  74   // The only thing that calls this is the stack printing code in
  75   // VMError::report:
  76   //   - Step 110 (printing stack bounds) uses the sp in the frame
  77   //     to determine the amount of free space on the stack.  We
  78   //     set the sp to a close approximation of the real value in
  79   //     order to allow this step to complete.
  80   //   - Step 120 (printing native stack) tries to walk the stack.
  81   //     The frame we create has a NULL pc, which is ignored as an
  82   //     invalid frame.
  83   frame dummy = frame();
  84   dummy.set_sp((intptr_t *) current_stack_pointer());
  85   return dummy;
  86 }
  87 
  88 char* os::non_memory_address_word() {
  89   // Must never look like an address returned by reserve_memory,
  90   // even in its subfields (as defined by the CPU immediate fields,
  91   // if the CPU splits constants across multiple instructions).
  92 #ifdef SPARC
  93   // On SPARC, 0 != %hi(any real address), because there is no
  94   // allocation in the first 1Kb of the virtual address space.
  95   return (char *) 0;
  96 #else
  97   // This is the value for x86; works pretty well for PPC too.
  98   return (char *) -1;
  99 #endif // SPARC
 100 }
 101 
 102 void os::initialize_thread() {
 103   // Nothing to do.
 104 }
 105 
 106 address os::Linux::ucontext_get_pc(ucontext_t* uc) {
 107   ShouldNotCallThis();
 108 }
 109 
 110 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 111                                         intptr_t** ret_sp,
 112                                         intptr_t** ret_fp) {
 113   ShouldNotCallThis();
 114 }
 115 
 116 frame os::fetch_frame_from_context(void* ucVoid) {
 117   ShouldNotCallThis();
 118 }
 119 
 120 extern "C" int
 121 JVM_handle_linux_signal(int sig,
 122                         siginfo_t* info,
 123                         void* ucVoid,
 124                         int abort_if_unrecognized) {
 125   ucontext_t* uc = (ucontext_t*) ucVoid;
 126 
 127   Thread* t = ThreadLocalStorage::get_thread_slow();
 128 
 129   SignalHandlerMark shm(t);
 130 
 131   // Note: it's not uncommon that JNI code uses signal/sigset to
 132   // install then restore certain signal handler (e.g. to temporarily
 133   // block SIGPIPE, or have a SIGILL handler when detecting CPU
 134   // type). When that happens, JVM_handle_linux_signal() might be
 135   // invoked with junk info/ucVoid. To avoid unnecessary crash when
 136   // libjsig is not preloaded, try handle signals that do not require
 137   // siginfo/ucontext first.
 138 
 139   if (sig == SIGPIPE || sig == SIGXFSZ) {
 140     // allow chained handler to go first
 141     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 142       return true;
 143     } else {
 144       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 145         char buf[64];
 146         warning("Ignoring %s - see bugs 4229104 or 646499219",
 147                 os::exception_name(sig, buf, sizeof(buf)));
 148       }
 149       return true;
 150     }
 151   }
 152 
 153   JavaThread* thread = NULL;
 154   VMThread* vmthread = NULL;
 155   if (os::Linux::signal_handlers_are_installed) {
 156     if (t != NULL ){
 157       if(t->is_Java_thread()) {
 158         thread = (JavaThread*)t;
 159       }
 160       else if(t->is_VM_thread()){
 161         vmthread = (VMThread *)t;
 162       }
 163     }
 164   }
 165 
 166   if (info != NULL && thread != NULL) {
 167     // Handle ALL stack overflow variations here
 168     if (sig == SIGSEGV) {
 169       address addr = (address) info->si_addr;
 170 
 171       // check if fault address is within thread stack
 172       if (addr < thread->stack_base() &&
 173           addr >= thread->stack_base() - thread->stack_size()) {
 174         // stack overflow
 175         if (thread->in_stack_yellow_zone(addr)) {
 176           thread->disable_stack_yellow_zone();
 177           ShouldNotCallThis();
 178         }
 179         else if (thread->in_stack_red_zone(addr)) {
 180           thread->disable_stack_red_zone();
 181           ShouldNotCallThis();
 182         }
 183         else {
 184           // Accessing stack address below sp may cause SEGV if
 185           // current thread has MAP_GROWSDOWN stack. This should
 186           // only happen when current thread was created by user
 187           // code with MAP_GROWSDOWN flag and then attached to VM.
 188           // See notes in os_linux.cpp.
 189           if (thread->osthread()->expanding_stack() == 0) {
 190             thread->osthread()->set_expanding_stack();
 191             if (os::Linux::manually_expand_stack(thread, addr)) {
 192               thread->osthread()->clear_expanding_stack();
 193               return true;
 194             }
 195             thread->osthread()->clear_expanding_stack();
 196           }
 197           else {
 198             fatal("recursive segv. expanding stack.");
 199           }
 200         }
 201       }
 202     }
 203 
 204     /*if (thread->thread_state() == _thread_in_Java) {
 205       ShouldNotCallThis();
 206     }
 207     else*/ if (thread->thread_state() == _thread_in_vm &&
 208                sig == SIGBUS && thread->doing_unsafe_access()) {
 209       ShouldNotCallThis();
 210     }
 211 
 212     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
 213     // kicks in and the heap gets shrunk before the field access.
 214     /*if (sig == SIGSEGV || sig == SIGBUS) {
 215       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 216       if (addr != (address)-1) {
 217         stub = addr;
 218       }
 219     }*/
 220 
 221     // Check to see if we caught the safepoint code in the process
 222     // of write protecting the memory serialization page.  It write
 223     // enables the page immediately after protecting it so we can
 224     // just return to retry the write.
 225     if (sig == SIGSEGV &&
 226         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 227       // Block current thread until permission is restored.
 228       os::block_on_serialize_page_trap();
 229       return true;
 230     }
 231   }
 232 
 233   // signal-chaining
 234   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 235      return true;
 236   }
 237 
 238   if (!abort_if_unrecognized) {
 239     // caller wants another chance, so give it to him
 240     return false;
 241   }
 242 
 243 #ifndef PRODUCT
 244   if (sig == SIGSEGV) {
 245     fatal("\n#"
 246           "\n#    /--------------------\\"
 247           "\n#    | segmentation fault |"
 248           "\n#    \\---\\ /--------------/"
 249           "\n#        /"
 250           "\n#    [-]        |\\_/|    "
 251           "\n#    (+)=C      |o o|__  "
 252           "\n#    | |        =-*-=__\\ "
 253           "\n#    OOO        c_c_(___)");
 254   }
 255 #endif // !PRODUCT
 256 
 257   const char *fmt = "caught unhandled signal %d";
 258   char buf[64];
 259 
 260   sprintf(buf, fmt, sig);
 261   fatal(buf);
 262 }
 263 
 264 void os::Linux::init_thread_fpu_state(void) {
 265   // Nothing to do
 266 }
 267 
 268 int os::Linux::get_fpu_control_word() {
 269   ShouldNotCallThis();
 270 }
 271 
 272 void os::Linux::set_fpu_control_word(int fpu) {
 273   ShouldNotCallThis();
 274 }
 275 
 276 bool os::is_allocatable(size_t bytes) {
 277 #ifdef _LP64
 278   return true;
 279 #else
 280   if (bytes < 2 * G) {
 281     return true;
 282   }
 283 
 284   char* addr = reserve_memory(bytes, NULL);
 285 
 286   if (addr != NULL) {
 287     release_memory(addr, bytes);
 288   }
 289 
 290   return addr != NULL;
 291 #endif // _LP64
 292 }
 293 
 294 ///////////////////////////////////////////////////////////////////////////////
 295 // thread stack
 296 
 297 size_t os::Linux::min_stack_allowed = 64 * K;
 298 
 299 bool os::Linux::supports_variable_stack_size() {
 300   return true;
 301 }
 302 
 303 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 304 #ifdef _LP64
 305   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 306 #else
 307   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 308 #endif // _LP64
 309   return s;
 310 }
 311 
 312 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 313   // Only enable glibc guard pages for non-Java threads
 314   // (Java threads have HotSpot guard pages)
 315   return (thr_type == java_thread ? 0 : page_size());
 316 }
 317 
 318 static void current_stack_region(address *bottom, size_t *size) {
 319   pthread_attr_t attr;
 320   int res = pthread_getattr_np(pthread_self(), &attr);
 321   if (res != 0) {
 322     if (res == ENOMEM) {
 323       vm_exit_out_of_memory(0, "pthread_getattr_np");
 324     }
 325     else {
 326       fatal(err_msg("pthread_getattr_np failed with errno = %d", res));
 327     }
 328   }
 329 
 330   address stack_bottom;
 331   size_t stack_bytes;
 332   res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
 333   if (res != 0) {
 334     fatal(err_msg("pthread_attr_getstack failed with errno = %d", res));
 335   }
 336   address stack_top = stack_bottom + stack_bytes;
 337 
 338   // The block of memory returned by pthread_attr_getstack() includes
 339   // guard pages where present.  We need to trim these off.
 340   size_t page_bytes = os::Linux::page_size();
 341   assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
 342 
 343   size_t guard_bytes;
 344   res = pthread_attr_getguardsize(&attr, &guard_bytes);
 345   if (res != 0) {
 346     fatal(err_msg("pthread_attr_getguardsize failed with errno = %d", res));
 347   }
 348   int guard_pages = align_size_up(guard_bytes, page_bytes) / page_bytes;
 349   assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
 350 
 351 #ifdef IA64
 352   // IA64 has two stacks sharing the same area of memory, a normal
 353   // stack growing downwards and a register stack growing upwards.
 354   // Guard pages, if present, are in the centre.  This code splits
 355   // the stack in two even without guard pages, though in theory
 356   // there's nothing to stop us allocating more to the normal stack
 357   // or more to the register stack if one or the other were found
 358   // to grow faster.
 359   int total_pages = align_size_down(stack_bytes, page_bytes) / page_bytes;
 360   stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
 361 #endif // IA64
 362 
 363   stack_bottom += guard_bytes;
 364 
 365   pthread_attr_destroy(&attr);
 366 
 367   // The initial thread has a growable stack, and the size reported
 368   // by pthread_attr_getstack is the maximum size it could possibly
 369   // be given what currently mapped.  This can be huge, so we cap it.
 370   if (os::Linux::is_initial_thread()) {
 371     stack_bytes = stack_top - stack_bottom;
 372 
 373     if (stack_bytes > JavaThread::stack_size_at_create())
 374       stack_bytes = JavaThread::stack_size_at_create();
 375 
 376     stack_bottom = stack_top - stack_bytes;
 377   }
 378 
 379   assert(os::current_stack_pointer() >= stack_bottom, "should do");
 380   assert(os::current_stack_pointer() < stack_top, "should do");
 381 
 382   *bottom = stack_bottom;
 383   *size = stack_top - stack_bottom;
 384 }
 385 
 386 address os::current_stack_base() {
 387   address bottom;
 388   size_t size;
 389   current_stack_region(&bottom, &size);
 390   return bottom + size;
 391 }
 392 
 393 size_t os::current_stack_size() {
 394   // stack size includes normal stack and HotSpot guard pages
 395   address bottom;
 396   size_t size;
 397   current_stack_region(&bottom, &size);
 398   return size;
 399 }
 400 
 401 /////////////////////////////////////////////////////////////////////////////
 402 // helper functions for fatal error handler
 403 
 404 void os::print_context(outputStream* st, void* context) {
 405   ShouldNotCallThis();
 406 }
 407 
 408 /////////////////////////////////////////////////////////////////////////////
 409 // Stubs for things that would be in linux_zero.s if it existed.
 410 // You probably want to disassemble these monkeys to check they're ok.
 411 
 412 extern "C" {
 413   int SpinPause() {
 414   }
 415 
 416   int SafeFetch32(int *adr, int errValue) {
 417     int value = errValue;
 418     value = *adr;
 419     return value;
 420   }
 421   intptr_t SafeFetchN(intptr_t *adr, intptr_t errValue) {
 422     intptr_t value = errValue;
 423     value = *adr;
 424     return value;
 425   }
 426 
 427   void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
 428     if (from > to) {
 429       jshort *end = from + count;
 430       while (from < end)
 431         *(to++) = *(from++);
 432     }
 433     else if (from < to) {
 434       jshort *end = from;
 435       from += count - 1;
 436       to   += count - 1;
 437       while (from >= end)
 438         *(to--) = *(from--);
 439     }
 440   }
 441   void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
 442     if (from > to) {
 443       jint *end = from + count;
 444       while (from < end)
 445         *(to++) = *(from++);
 446     }
 447     else if (from < to) {
 448       jint *end = from;
 449       from += count - 1;
 450       to   += count - 1;
 451       while (from >= end)
 452         *(to--) = *(from--);
 453     }
 454   }
 455   void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
 456     if (from > to) {
 457       jlong *end = from + count;
 458       while (from < end)
 459         os::atomic_copy64(from++, to++);
 460     }
 461     else if (from < to) {
 462       jlong *end = from;
 463       from += count - 1;
 464       to   += count - 1;
 465       while (from >= end)
 466         os::atomic_copy64(from--, to--);
 467     }
 468   }
 469 
 470   void _Copy_arrayof_conjoint_bytes(HeapWord* from,
 471                                     HeapWord* to,
 472                                     size_t    count) {
 473     memmove(to, from, count);
 474   }
 475   void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
 476                                       HeapWord* to,
 477                                       size_t    count) {
 478     memmove(to, from, count * 2);
 479   }
 480   void _Copy_arrayof_conjoint_jints(HeapWord* from,
 481                                     HeapWord* to,
 482                                     size_t    count) {
 483     memmove(to, from, count * 4);
 484   }
 485   void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
 486                                      HeapWord* to,
 487                                      size_t    count) {
 488     memmove(to, from, count * 8);
 489   }
 490 };
 491 
 492 /////////////////////////////////////////////////////////////////////////////
 493 // Implementations of atomic operations not supported by processors.
 494 //  -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
 495 
 496 #ifndef _LP64
 497 extern "C" {
 498   long long unsigned int __sync_val_compare_and_swap_8(
 499     volatile void *ptr,
 500     long long unsigned int oldval,
 501     long long unsigned int newval) {
 502     ShouldNotCallThis();
 503   }
 504 };
 505 #endif // !_LP64