1 /*
   2  * Copyright (c) 1998, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 //------------------------------VMReg------------------------------------------
  26 // The VM uses 'unwarped' stack slots; the compiler uses 'warped' stack slots.
  27 // Register numbers below VMRegImpl::stack0 are the same for both.  Register
  28 // numbers above stack0 are either warped (in the compiler) or unwarped
  29 // (in the VM).  Unwarped numbers represent stack indices, offsets from
  30 // the current stack pointer.  Warped numbers are required during compilation
  31 // when we do not yet know how big the frame will be.
  32 
  33 class VMRegImpl;
  34 typedef VMRegImpl* VMReg;
  35 
  36 class VMRegImpl {
  37 // friend class OopMap;
  38 friend class VMStructs;
  39 friend class OptoReg;
  40 // friend class Location;
  41 private:
  42   enum {
  43     BAD = -1
  44   };
  45 
  46 
  47 
  48   static VMReg stack0;
  49   // Names for registers
  50   static const char *regName[];
  51   static const int register_count;
  52 
  53 
  54 public:
  55 
  56   static VMReg  as_VMReg(int val, bool bad_ok = false) { assert(val > BAD || bad_ok, "invalid"); return (VMReg) (intptr_t) val; }
  57 
  58   const char*  name() {
  59     if (is_reg()) {
  60       return regName[value()];
  61     } else if (!is_valid()) {
  62       return "BAD";
  63     } else {
  64       // shouldn't really be called with stack
  65       return "STACKED REG";
  66     }
  67   }
  68   static VMReg Bad() { return (VMReg) (intptr_t) BAD; }
  69   bool is_valid() const { return ((intptr_t) this) != BAD; }
  70   bool is_stack() const { return (intptr_t) this >= (intptr_t) stack0; }
  71   bool is_reg()   const { return is_valid() && !is_stack(); }
  72 
  73   // A concrete register is a value that returns true for is_reg() and is
  74   // also a register you could use in the assembler. On machines with
  75   // 64bit registers only one half of the VMReg (and OptoReg) is considered
  76   // concrete.
  77   bool is_concrete();
  78 
  79   // VMRegs are 4 bytes wide on all platforms
  80   static const int stack_slot_size;
  81   static const int slots_per_word;
  82 
  83 
  84   // This really ought to check that the register is "real" in the sense that
  85   // we don't try and get the VMReg number of a physical register that doesn't
  86   // have an expressible part. That would be pd specific code
  87   VMReg next() {
  88     assert((is_reg() && value() < stack0->value() - 1) || is_stack(), "must be");
  89     return (VMReg)(intptr_t)(value() + 1);
  90   }
  91   VMReg prev() {
  92     assert((is_stack() && value() > stack0->value()) || (is_reg() && value() != 0), "must be");
  93     return (VMReg)(intptr_t)(value() - 1);
  94   }
  95 
  96 
  97   intptr_t value() const         {return (intptr_t) this; }
  98 
  99   void print_on(outputStream* st) const;
 100   void print() const { print_on(tty); }
 101 
 102   // bias a stack slot.
 103   // Typically used to adjust a virtual frame slots by amounts that are offset by
 104   // amounts that are part of the native abi. The VMReg must be a stack slot
 105   // and the result must be also.
 106 
 107   VMReg bias(int offset) {
 108     assert(is_stack(), "must be");
 109     // VMReg res = VMRegImpl::as_VMReg(value() + offset);
 110     VMReg res = stack2reg(reg2stack() + offset);
 111     assert(res->is_stack(), "must be");
 112     return res;
 113   }
 114 
 115   // Convert register numbers to stack slots and vice versa
 116   static VMReg stack2reg( int idx ) {
 117     return (VMReg) (intptr_t) (stack0->value() + idx);
 118   }
 119 
 120   uintptr_t reg2stack() {
 121     assert( is_stack(), "Not a stack-based register" );
 122     return value() - stack0->value();
 123   }
 124 
 125   static void set_regName();
 126 
 127 #include "incls/_vmreg_pd.hpp.incl"
 128 
 129 };
 130 
 131 //---------------------------VMRegPair-------------------------------------------
 132 // Pairs of 32-bit registers for arguments.
 133 // SharedRuntime::java_calling_convention will overwrite the structs with
 134 // the calling convention's registers.  VMRegImpl::Bad is returned for any
 135 // unused 32-bit register.  This happens for the unused high half of Int
 136 // arguments, or for 32-bit pointers or for longs in the 32-bit sparc build
 137 // (which are passed to natives in low 32-bits of e.g. O0/O1 and the high
 138 // 32-bits of O0/O1 are set to VMRegImpl::Bad).  Longs in one register & doubles
 139 // always return a high and a low register, as do 64-bit pointers.
 140 //
 141 class VMRegPair {
 142 private:
 143   VMReg _second;
 144   VMReg _first;
 145 public:
 146   void set_bad (                   ) { _second=VMRegImpl::Bad(); _first=VMRegImpl::Bad(); }
 147   void set1    (         VMReg v  ) { _second=VMRegImpl::Bad(); _first=v; }
 148   void set2    (         VMReg v  ) { _second=v->next();  _first=v; }
 149   void set_pair( VMReg second, VMReg first    ) { _second= second;    _first= first; }
 150   void set_ptr ( VMReg ptr ) {
 151 #ifdef _LP64
 152     _second = ptr->next();
 153 #else
 154     _second = VMRegImpl::Bad();
 155 #endif
 156     _first = ptr;
 157   }
 158   // Return true if single register, even if the pair is really just adjacent stack slots
 159   bool is_single_reg() const {
 160     return (_first->is_valid()) && (_first->value() + 1 == _second->value());
 161   }
 162 
 163   // Return true if single stack based "register" where the slot alignment matches input alignment
 164   bool is_adjacent_on_stack(int alignment) const {
 165     return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
 166   }
 167 
 168   // Return true if single stack based "register" where the slot alignment matches input alignment
 169   bool is_adjacent_aligned_on_stack(int alignment) const {
 170     return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
 171   }
 172 
 173   // Return true if single register but adjacent stack slots do not count
 174   bool is_single_phys_reg() const {
 175     return (_first->is_reg() && (_first->value() + 1 == _second->value()));
 176   }
 177 
 178   VMReg second() const { return _second; }
 179   VMReg first()  const { return _first; }
 180   VMRegPair(VMReg s, VMReg f) {  _second = s; _first = f; }
 181   VMRegPair(VMReg f) { _second = VMRegImpl::Bad(); _first = f; }
 182   VMRegPair() { _second = VMRegImpl::Bad(); _first = VMRegImpl::Bad(); }
 183 };