1 /*
   2  * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_binaryTreeDictionary.cpp.incl"
  27 
  28 ////////////////////////////////////////////////////////////////////////////////
  29 // A binary tree based search structure for free blocks.
  30 // This is currently used in the Concurrent Mark&Sweep implementation.
  31 ////////////////////////////////////////////////////////////////////////////////
  32 
  33 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
  34   // Do some assertion checking here.
  35   return (TreeChunk*) fc;
  36 }
  37 
  38 void TreeChunk::verifyTreeChunkList() const {
  39   TreeChunk* nextTC = (TreeChunk*)next();
  40   if (prev() != NULL) { // interior list node shouldn'r have tree fields
  41     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  42               embedded_list()->right()  == NULL, "should be clear");
  43   }
  44   if (nextTC != NULL) {
  45     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  46     guarantee(nextTC->size() == size(), "wrong size");
  47     nextTC->verifyTreeChunkList();
  48   }
  49 }
  50 
  51 
  52 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
  53   // This first free chunk in the list will be the tree list.
  54   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  55   TreeList* tl = tc->embedded_list();
  56   tc->set_list(tl);
  57 #ifdef ASSERT
  58   tl->set_protecting_lock(NULL);
  59 #endif
  60   tl->set_hint(0);
  61   tl->set_size(tc->size());
  62   tl->link_head(tc);
  63   tl->link_tail(tc);
  64   tl->set_count(1);
  65   tl->init_statistics(true /* split_birth */);
  66   tl->setParent(NULL);
  67   tl->setLeft(NULL);
  68   tl->setRight(NULL);
  69   return tl;
  70 }
  71 
  72 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
  73   TreeChunk* tc = (TreeChunk*) addr;
  74   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  75   // The space in the heap will have been mangled initially but
  76   // is not remangled when a free chunk is returned to the free list
  77   // (since it is used to maintain the chunk on the free list).
  78   assert((ZapUnusedHeapArea &&
  79           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
  80           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
  81           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
  82           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
  83     "Space should be clear or mangled");
  84   tc->setSize(size);
  85   tc->linkPrev(NULL);
  86   tc->linkNext(NULL);
  87   TreeList* tl = TreeList::as_TreeList(tc);
  88   return tl;
  89 }
  90 
  91 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
  92 
  93   TreeList* retTL = this;
  94   FreeChunk* list = head();
  95   assert(!list || list != list->next(), "Chunk on list twice");
  96   assert(tc != NULL, "Chunk being removed is NULL");
  97   assert(parent() == NULL || this == parent()->left() ||
  98     this == parent()->right(), "list is inconsistent");
  99   assert(tc->isFree(), "Header is not marked correctly");
 100   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 101   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 102 
 103   FreeChunk* prevFC = tc->prev();
 104   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
 105   assert(list != NULL, "should have at least the target chunk");
 106 
 107   // Is this the first item on the list?
 108   if (tc == list) {
 109     // The "getChunk..." functions for a TreeList will not return the
 110     // first chunk in the list unless it is the last chunk in the list
 111     // because the first chunk is also acting as the tree node.
 112     // When coalescing happens, however, the first chunk in the a tree
 113     // list can be the start of a free range.  Free ranges are removed
 114     // from the free lists so that they are not available to be
 115     // allocated when the sweeper yields (giving up the free list lock)
 116     // to allow mutator activity.  If this chunk is the first in the
 117     // list and is not the last in the list, do the work to copy the
 118     // TreeList from the first chunk to the next chunk and update all
 119     // the TreeList pointers in the chunks in the list.
 120     if (nextTC == NULL) {
 121       assert(prevFC == NULL, "Not last chunk in the list");
 122       set_tail(NULL);
 123       set_head(NULL);
 124     } else {
 125       // copy embedded list.
 126       nextTC->set_embedded_list(tc->embedded_list());
 127       retTL = nextTC->embedded_list();
 128       // Fix the pointer to the list in each chunk in the list.
 129       // This can be slow for a long list.  Consider having
 130       // an option that does not allow the first chunk on the
 131       // list to be coalesced.
 132       for (TreeChunk* curTC = nextTC; curTC != NULL;
 133           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
 134         curTC->set_list(retTL);
 135       }
 136       // Fix the parent to point to the new TreeList.
 137       if (retTL->parent() != NULL) {
 138         if (this == retTL->parent()->left()) {
 139           retTL->parent()->setLeft(retTL);
 140         } else {
 141           assert(this == retTL->parent()->right(), "Parent is incorrect");
 142           retTL->parent()->setRight(retTL);
 143         }
 144       }
 145       // Fix the children's parent pointers to point to the
 146       // new list.
 147       assert(right() == retTL->right(), "Should have been copied");
 148       if (retTL->right() != NULL) {
 149         retTL->right()->setParent(retTL);
 150       }
 151       assert(left() == retTL->left(), "Should have been copied");
 152       if (retTL->left() != NULL) {
 153         retTL->left()->setParent(retTL);
 154       }
 155       retTL->link_head(nextTC);
 156       assert(nextTC->isFree(), "Should be a free chunk");
 157     }
 158   } else {
 159     if (nextTC == NULL) {
 160       // Removing chunk at tail of list
 161       link_tail(prevFC);
 162     }
 163     // Chunk is interior to the list
 164     prevFC->linkAfter(nextTC);
 165   }
 166 
 167   // Below this point the embeded TreeList being used for the
 168   // tree node may have changed. Don't use "this"
 169   // TreeList*.
 170   // chunk should still be a free chunk (bit set in _prev)
 171   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 172     "Wrong sized chunk in list");
 173   debug_only(
 174     tc->linkPrev(NULL);
 175     tc->linkNext(NULL);
 176     tc->set_list(NULL);
 177     bool prev_found = false;
 178     bool next_found = false;
 179     for (FreeChunk* curFC = retTL->head();
 180          curFC != NULL; curFC = curFC->next()) {
 181       assert(curFC != tc, "Chunk is still in list");
 182       if (curFC == prevFC) {
 183         prev_found = true;
 184       }
 185       if (curFC == nextTC) {
 186         next_found = true;
 187       }
 188     }
 189     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 190     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 191     assert(retTL->parent() == NULL ||
 192            retTL == retTL->parent()->left() ||
 193            retTL == retTL->parent()->right(),
 194            "list is inconsistent");
 195   )
 196   retTL->decrement_count();
 197 
 198   assert(tc->isFree(), "Should still be a free chunk");
 199   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 200     "list invariant");
 201   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 202     "list invariant");
 203   return retTL;
 204 }
 205 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
 206   assert(chunk != NULL, "returning NULL chunk");
 207   assert(chunk->list() == this, "list should be set for chunk");
 208   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 209   // which means that the list can never be empty.
 210   assert(!verifyChunkInFreeLists(chunk), "Double entry");
 211   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 212   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 213 
 214   FreeChunk* fc = tail();
 215   fc->linkAfter(chunk);
 216   link_tail(chunk);
 217 
 218   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 219   increment_count();
 220   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
 221   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 222   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 223 }
 224 
 225 // Add this chunk at the head of the list.  "At the head of the list"
 226 // is defined to be after the chunk pointer to by head().  This is
 227 // because the TreeList is embedded in the first TreeChunk in the
 228 // list.  See the definition of TreeChunk.
 229 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
 230   assert(chunk->list() == this, "list should be set for chunk");
 231   assert(head() != NULL, "The tree list is embedded in the first chunk");
 232   assert(chunk != NULL, "returning NULL chunk");
 233   assert(!verifyChunkInFreeLists(chunk), "Double entry");
 234   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 235   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 236 
 237   FreeChunk* fc = head()->next();
 238   if (fc != NULL) {
 239     chunk->linkAfter(fc);
 240   } else {
 241     assert(tail() == NULL, "List is inconsistent");
 242     link_tail(chunk);
 243   }
 244   head()->linkAfter(chunk);
 245   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
 246   increment_count();
 247   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
 248   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 249   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 250 }
 251 
 252 TreeChunk* TreeList::head_as_TreeChunk() {
 253   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
 254     "Wrong type of chunk?");
 255   return TreeChunk::as_TreeChunk(head());
 256 }
 257 
 258 TreeChunk* TreeList::first_available() {
 259   assert(head() != NULL, "The head of the list cannot be NULL");
 260   FreeChunk* fc = head()->next();
 261   TreeChunk* retTC;
 262   if (fc == NULL) {
 263     retTC = head_as_TreeChunk();
 264   } else {
 265     retTC = TreeChunk::as_TreeChunk(fc);
 266   }
 267   assert(retTC->list() == this, "Wrong type of chunk.");
 268   return retTC;
 269 }
 270 
 271 // Returns the block with the largest heap address amongst
 272 // those in the list for this size; potentially slow and expensive,
 273 // use with caution!
 274 TreeChunk* TreeList::largest_address() {
 275   assert(head() != NULL, "The head of the list cannot be NULL");
 276   FreeChunk* fc = head()->next();
 277   TreeChunk* retTC;
 278   if (fc == NULL) {
 279     retTC = head_as_TreeChunk();
 280   } else {
 281     // walk down the list and return the one with the highest
 282     // heap address among chunks of this size.
 283     FreeChunk* last = fc;
 284     while (fc->next() != NULL) {
 285       if ((HeapWord*)last < (HeapWord*)fc) {
 286         last = fc;
 287       }
 288       fc = fc->next();
 289     }
 290     retTC = TreeChunk::as_TreeChunk(last);
 291   }
 292   assert(retTC->list() == this, "Wrong type of chunk.");
 293   return retTC;
 294 }
 295 
 296 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
 297   _splay(splay)
 298 {
 299   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 300 
 301   reset(mr);
 302   assert(root()->left() == NULL, "reset check failed");
 303   assert(root()->right() == NULL, "reset check failed");
 304   assert(root()->head()->next() == NULL, "reset check failed");
 305   assert(root()->head()->prev() == NULL, "reset check failed");
 306   assert(totalSize() == root()->size(), "reset check failed");
 307   assert(totalFreeBlocks() == 1, "reset check failed");
 308 }
 309 
 310 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
 311   _totalSize = _totalSize + inc;
 312 }
 313 
 314 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
 315   _totalSize = _totalSize - dec;
 316 }
 317 
 318 void BinaryTreeDictionary::reset(MemRegion mr) {
 319   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 320   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
 321   set_totalSize(mr.word_size());
 322   set_totalFreeBlocks(1);
 323 }
 324 
 325 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
 326   MemRegion mr(addr, heap_word_size(byte_size));
 327   reset(mr);
 328 }
 329 
 330 void BinaryTreeDictionary::reset() {
 331   set_root(NULL);
 332   set_totalSize(0);
 333   set_totalFreeBlocks(0);
 334 }
 335 
 336 // Get a free block of size at least size from tree, or NULL.
 337 // If a splay step is requested, the removal algorithm (only) incorporates
 338 // a splay step as follows:
 339 // . the search proceeds down the tree looking for a possible
 340 //   match. At the (closest) matching location, an appropriate splay step is applied
 341 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
 342 //   if available, and if it's the last chunk, the node is deleted. A deteleted
 343 //   node is replaced in place by its tree successor.
 344 TreeChunk*
 345 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
 346 {
 347   TreeList *curTL, *prevTL;
 348   TreeChunk* retTC = NULL;
 349   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 350   if (FLSVerifyDictionary) {
 351     verifyTree();
 352   }
 353   // starting at the root, work downwards trying to find match.
 354   // Remember the last node of size too great or too small.
 355   for (prevTL = curTL = root(); curTL != NULL;) {
 356     if (curTL->size() == size) {        // exact match
 357       break;
 358     }
 359     prevTL = curTL;
 360     if (curTL->size() < size) {        // proceed to right sub-tree
 361       curTL = curTL->right();
 362     } else {                           // proceed to left sub-tree
 363       assert(curTL->size() > size, "size inconsistency");
 364       curTL = curTL->left();
 365     }
 366   }
 367   if (curTL == NULL) { // couldn't find exact match
 368     // try and find the next larger size by walking back up the search path
 369     for (curTL = prevTL; curTL != NULL;) {
 370       if (curTL->size() >= size) break;
 371       else curTL = curTL->parent();
 372     }
 373     assert(curTL == NULL || curTL->count() > 0,
 374       "An empty list should not be in the tree");
 375   }
 376   if (curTL != NULL) {
 377     assert(curTL->size() >= size, "size inconsistency");
 378     if (UseCMSAdaptiveFreeLists) {
 379 
 380       // A candidate chunk has been found.  If it is already under
 381       // populated, get a chunk associated with the hint for this
 382       // chunk.
 383       if (curTL->surplus() <= 0) {
 384         /* Use the hint to find a size with a surplus, and reset the hint. */
 385         TreeList* hintTL = curTL;
 386         while (hintTL->hint() != 0) {
 387           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
 388             "hint points in the wrong direction");
 389           hintTL = findList(hintTL->hint());
 390           assert(curTL != hintTL, "Infinite loop");
 391           if (hintTL == NULL ||
 392               hintTL == curTL /* Should not happen but protect against it */ ) {
 393             // No useful hint.  Set the hint to NULL and go on.
 394             curTL->set_hint(0);
 395             break;
 396           }
 397           assert(hintTL->size() > size, "hint is inconsistent");
 398           if (hintTL->surplus() > 0) {
 399             // The hint led to a list that has a surplus.  Use it.
 400             // Set the hint for the candidate to an overpopulated
 401             // size.
 402             curTL->set_hint(hintTL->size());
 403             // Change the candidate.
 404             curTL = hintTL;
 405             break;
 406           }
 407           // The evm code reset the hint of the candidate as
 408           // at an interim point.  Why?  Seems like this leaves
 409           // the hint pointing to a list that didn't work.
 410           // curTL->set_hint(hintTL->size());
 411         }
 412       }
 413     }
 414     // don't waste time splaying if chunk's singleton
 415     if (splay && curTL->head()->next() != NULL) {
 416       semiSplayStep(curTL);
 417     }
 418     retTC = curTL->first_available();
 419     assert((retTC != NULL) && (curTL->count() > 0),
 420       "A list in the binary tree should not be NULL");
 421     assert(retTC->size() >= size,
 422       "A chunk of the wrong size was found");
 423     removeChunkFromTree(retTC);
 424     assert(retTC->isFree(), "Header is not marked correctly");
 425   }
 426 
 427   if (FLSVerifyDictionary) {
 428     verify();
 429   }
 430   return retTC;
 431 }
 432 
 433 TreeList* BinaryTreeDictionary::findList(size_t size) const {
 434   TreeList* curTL;
 435   for (curTL = root(); curTL != NULL;) {
 436     if (curTL->size() == size) {        // exact match
 437       break;
 438     }
 439 
 440     if (curTL->size() < size) {        // proceed to right sub-tree
 441       curTL = curTL->right();
 442     } else {                           // proceed to left sub-tree
 443       assert(curTL->size() > size, "size inconsistency");
 444       curTL = curTL->left();
 445     }
 446   }
 447   return curTL;
 448 }
 449 
 450 
 451 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
 452   size_t size = tc->size();
 453   TreeList* tl = findList(size);
 454   if (tl == NULL) {
 455     return false;
 456   } else {
 457     return tl->verifyChunkInFreeLists(tc);
 458   }
 459 }
 460 
 461 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
 462   TreeList *curTL = root();
 463   if (curTL != NULL) {
 464     while(curTL->right() != NULL) curTL = curTL->right();
 465     return curTL->largest_address();
 466   } else {
 467     return NULL;
 468   }
 469 }
 470 
 471 // Remove the current chunk from the tree.  If it is not the last
 472 // chunk in a list on a tree node, just unlink it.
 473 // If it is the last chunk in the list (the next link is NULL),
 474 // remove the node and repair the tree.
 475 TreeChunk*
 476 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
 477   assert(tc != NULL, "Should not call with a NULL chunk");
 478   assert(tc->isFree(), "Header is not marked correctly");
 479 
 480   TreeList *newTL, *parentTL;
 481   TreeChunk* retTC;
 482   TreeList* tl = tc->list();
 483   debug_only(
 484     bool removing_only_chunk = false;
 485     if (tl == _root) {
 486       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 487         if (_root->count() == 1) {
 488           assert(_root->head() == tc, "Should only be this one chunk");
 489           removing_only_chunk = true;
 490         }
 491       }
 492     }
 493   )
 494   assert(tl != NULL, "List should be set");
 495   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 496          tl == tl->parent()->right(), "list is inconsistent");
 497 
 498   bool complicatedSplice = false;
 499 
 500   retTC = tc;
 501   // Removing this chunk can have the side effect of changing the node
 502   // (TreeList*) in the tree.  If the node is the root, update it.
 503   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
 504   assert(tc->isFree(), "Chunk should still be free");
 505   assert(replacementTL->parent() == NULL ||
 506          replacementTL == replacementTL->parent()->left() ||
 507          replacementTL == replacementTL->parent()->right(),
 508          "list is inconsistent");
 509   if (tl == root()) {
 510     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 511     set_root(replacementTL);
 512   }
 513   debug_only(
 514     if (tl != replacementTL) {
 515       assert(replacementTL->head() != NULL,
 516         "If the tree list was replaced, it should not be a NULL list");
 517       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
 518       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
 519       assert(rhl == replacementTL, "Broken head");
 520       assert(rtl == replacementTL, "Broken tail");
 521       assert(replacementTL->size() == tc->size(),  "Broken size");
 522     }
 523   )
 524 
 525   // Does the tree need to be repaired?
 526   if (replacementTL->count() == 0) {
 527     assert(replacementTL->head() == NULL &&
 528            replacementTL->tail() == NULL, "list count is incorrect");
 529     // Find the replacement node for the (soon to be empty) node being removed.
 530     // if we have a single (or no) child, splice child in our stead
 531     if (replacementTL->left() == NULL) {
 532       // left is NULL so pick right.  right may also be NULL.
 533       newTL = replacementTL->right();
 534       debug_only(replacementTL->clearRight();)
 535     } else if (replacementTL->right() == NULL) {
 536       // right is NULL
 537       newTL = replacementTL->left();
 538       debug_only(replacementTL->clearLeft();)
 539     } else {  // we have both children, so, by patriarchal convention,
 540               // my replacement is least node in right sub-tree
 541       complicatedSplice = true;
 542       newTL = removeTreeMinimum(replacementTL->right());
 543       assert(newTL != NULL && newTL->left() == NULL &&
 544              newTL->right() == NULL, "sub-tree minimum exists");
 545     }
 546     // newTL is the replacement for the (soon to be empty) node.
 547     // newTL may be NULL.
 548     // should verify; we just cleanly excised our replacement
 549     if (FLSVerifyDictionary) {
 550       verifyTree();
 551     }
 552     // first make newTL my parent's child
 553     if ((parentTL = replacementTL->parent()) == NULL) {
 554       // newTL should be root
 555       assert(tl == root(), "Incorrectly replacing root");
 556       set_root(newTL);
 557       if (newTL != NULL) {
 558         newTL->clearParent();
 559       }
 560     } else if (parentTL->right() == replacementTL) {
 561       // replacementTL is a right child
 562       parentTL->setRight(newTL);
 563     } else {                                // replacementTL is a left child
 564       assert(parentTL->left() == replacementTL, "should be left child");
 565       parentTL->setLeft(newTL);
 566     }
 567     debug_only(replacementTL->clearParent();)
 568     if (complicatedSplice) {  // we need newTL to get replacementTL's
 569                               // two children
 570       assert(newTL != NULL &&
 571              newTL->left() == NULL && newTL->right() == NULL,
 572             "newTL should not have encumbrances from the past");
 573       // we'd like to assert as below:
 574       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 575       //       "else !complicatedSplice");
 576       // ... however, the above assertion is too strong because we aren't
 577       // guaranteed that replacementTL->right() is still NULL.
 578       // Recall that we removed
 579       // the right sub-tree minimum from replacementTL.
 580       // That may well have been its right
 581       // child! So we'll just assert half of the above:
 582       assert(replacementTL->left() != NULL, "else !complicatedSplice");
 583       newTL->setLeft(replacementTL->left());
 584       newTL->setRight(replacementTL->right());
 585       debug_only(
 586         replacementTL->clearRight();
 587         replacementTL->clearLeft();
 588       )
 589     }
 590     assert(replacementTL->right() == NULL &&
 591            replacementTL->left() == NULL &&
 592            replacementTL->parent() == NULL,
 593         "delete without encumbrances");
 594   }
 595 
 596   assert(totalSize() >= retTC->size(), "Incorrect total size");
 597   dec_totalSize(retTC->size());     // size book-keeping
 598   assert(totalFreeBlocks() > 0, "Incorrect total count");
 599   set_totalFreeBlocks(totalFreeBlocks() - 1);
 600 
 601   assert(retTC != NULL, "null chunk?");
 602   assert(retTC->prev() == NULL && retTC->next() == NULL,
 603          "should return without encumbrances");
 604   if (FLSVerifyDictionary) {
 605     verifyTree();
 606   }
 607   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 608   return TreeChunk::as_TreeChunk(retTC);
 609 }
 610 
 611 // Remove the leftmost node (lm) in the tree and return it.
 612 // If lm has a right child, link it to the left node of
 613 // the parent of lm.
 614 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
 615   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 616   // locate the subtree minimum by walking down left branches
 617   TreeList* curTL = tl;
 618   for (; curTL->left() != NULL; curTL = curTL->left());
 619   // obviously curTL now has at most one child, a right child
 620   if (curTL != root()) {  // Should this test just be removed?
 621     TreeList* parentTL = curTL->parent();
 622     if (parentTL->left() == curTL) { // curTL is a left child
 623       parentTL->setLeft(curTL->right());
 624     } else {
 625       // If the list tl has no left child, then curTL may be
 626       // the right child of parentTL.
 627       assert(parentTL->right() == curTL, "should be a right child");
 628       parentTL->setRight(curTL->right());
 629     }
 630   } else {
 631     // The only use of this method would not pass the root of the
 632     // tree (as indicated by the assertion above that the tree list
 633     // has a parent) but the specification does not explicitly exclude the
 634     // passing of the root so accomodate it.
 635     set_root(NULL);
 636   }
 637   debug_only(
 638     curTL->clearParent();  // Test if this needs to be cleared
 639     curTL->clearRight();    // recall, above, left child is already null
 640   )
 641   // we just excised a (non-root) node, we should still verify all tree invariants
 642   if (FLSVerifyDictionary) {
 643     verifyTree();
 644   }
 645   return curTL;
 646 }
 647 
 648 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
 649 // The simplifications are the following:
 650 // . we splay only when we delete (not when we insert)
 651 // . we apply a single spay step per deletion/access
 652 // By doing such partial splaying, we reduce the amount of restructuring,
 653 // while getting a reasonably efficient search tree (we think).
 654 // [Measurements will be needed to (in)validate this expectation.]
 655 
 656 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
 657   // apply a semi-splay step at the given node:
 658   // . if root, norting needs to be done
 659   // . if child of root, splay once
 660   // . else zig-zig or sig-zag depending on path from grandparent
 661   if (root() == tc) return;
 662   warning("*** Splaying not yet implemented; "
 663           "tree operations may be inefficient ***");
 664 }
 665 
 666 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
 667   TreeList *curTL, *prevTL;
 668   size_t size = fc->size();
 669 
 670   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
 671   if (FLSVerifyDictionary) {
 672     verifyTree();
 673   }
 674   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
 675   // Revisit this later
 676 
 677   fc->clearNext();
 678   fc->linkPrev(NULL);
 679 
 680   // work down from the _root, looking for insertion point
 681   for (prevTL = curTL = root(); curTL != NULL;) {
 682     if (curTL->size() == size)  // exact match
 683       break;
 684     prevTL = curTL;
 685     if (curTL->size() > size) { // follow left branch
 686       curTL = curTL->left();
 687     } else {                    // follow right branch
 688       assert(curTL->size() < size, "size inconsistency");
 689       curTL = curTL->right();
 690     }
 691   }
 692   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
 693   // This chunk is being returned to the binary tree.  Its embedded
 694   // TreeList should be unused at this point.
 695   tc->initialize();
 696   if (curTL != NULL) {          // exact match
 697     tc->set_list(curTL);
 698     curTL->returnChunkAtTail(tc);
 699   } else {                     // need a new node in tree
 700     tc->clearNext();
 701     tc->linkPrev(NULL);
 702     TreeList* newTL = TreeList::as_TreeList(tc);
 703     assert(((TreeChunk*)tc)->list() == newTL,
 704       "List was not initialized correctly");
 705     if (prevTL == NULL) {      // we are the only tree node
 706       assert(root() == NULL, "control point invariant");
 707       set_root(newTL);
 708     } else {                   // insert under prevTL ...
 709       if (prevTL->size() < size) {   // am right child
 710         assert(prevTL->right() == NULL, "control point invariant");
 711         prevTL->setRight(newTL);
 712       } else {                       // am left child
 713         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 714         prevTL->setLeft(newTL);
 715       }
 716     }
 717   }
 718   assert(tc->list() != NULL, "Tree list should be set");
 719 
 720   inc_totalSize(size);
 721   // Method 'totalSizeInTree' walks through the every block in the
 722   // tree, so it can cause significant performance loss if there are
 723   // many blocks in the tree
 724   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
 725   set_totalFreeBlocks(totalFreeBlocks() + 1);
 726   if (FLSVerifyDictionary) {
 727     verifyTree();
 728   }
 729 }
 730 
 731 size_t BinaryTreeDictionary::maxChunkSize() const {
 732   verify_par_locked();
 733   TreeList* tc = root();
 734   if (tc == NULL) return 0;
 735   for (; tc->right() != NULL; tc = tc->right());
 736   return tc->size();
 737 }
 738 
 739 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
 740   size_t res;
 741   res = tl->count();
 742 #ifdef ASSERT
 743   size_t cnt;
 744   FreeChunk* tc = tl->head();
 745   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 746   assert(res == cnt, "The count is not being maintained correctly");
 747 #endif
 748   return res;
 749 }
 750 
 751 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
 752   if (tl == NULL)
 753     return 0;
 754   return (tl->size() * totalListLength(tl)) +
 755          totalSizeInTree(tl->left())    +
 756          totalSizeInTree(tl->right());
 757 }
 758 
 759 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
 760   if (tl == NULL) {
 761     return 0.0;
 762   }
 763   double size = (double)(tl->size());
 764   double curr = size * size * totalListLength(tl);
 765   curr += sum_of_squared_block_sizes(tl->left());
 766   curr += sum_of_squared_block_sizes(tl->right());
 767   return curr;
 768 }
 769 
 770 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
 771   if (tl == NULL)
 772     return 0;
 773   return totalListLength(tl) +
 774          totalFreeBlocksInTree(tl->left()) +
 775          totalFreeBlocksInTree(tl->right());
 776 }
 777 
 778 size_t BinaryTreeDictionary::numFreeBlocks() const {
 779   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
 780          "_totalFreeBlocks inconsistency");
 781   return totalFreeBlocks();
 782 }
 783 
 784 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
 785   if (tl == NULL)
 786     return 0;
 787   return 1 + MAX2(treeHeightHelper(tl->left()),
 788                   treeHeightHelper(tl->right()));
 789 }
 790 
 791 size_t BinaryTreeDictionary::treeHeight() const {
 792   return treeHeightHelper(root());
 793 }
 794 
 795 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
 796   if (tl == NULL) {
 797     return 0;
 798   }
 799   return 1 + totalNodesHelper(tl->left()) +
 800     totalNodesHelper(tl->right());
 801 }
 802 
 803 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
 804   return totalNodesHelper(root());
 805 }
 806 
 807 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
 808   TreeList* nd = findList(size);
 809   if (nd) {
 810     if (split) {
 811       if (birth) {
 812         nd->increment_splitBirths();
 813         nd->increment_surplus();
 814       }  else {
 815         nd->increment_splitDeaths();
 816         nd->decrement_surplus();
 817       }
 818     } else {
 819       if (birth) {
 820         nd->increment_coalBirths();
 821         nd->increment_surplus();
 822       } else {
 823         nd->increment_coalDeaths();
 824         nd->decrement_surplus();
 825       }
 826     }
 827   }
 828   // A list for this size may not be found (nd == 0) if
 829   //   This is a death where the appropriate list is now
 830   //     empty and has been removed from the list.
 831   //   This is a birth associated with a LinAB.  The chunk
 832   //     for the LinAB is not in the dictionary.
 833 }
 834 
 835 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
 836   if (FLSAlwaysCoalesceLarge) return true;
 837 
 838   TreeList* list_of_size = findList(size);
 839   // None of requested size implies overpopulated.
 840   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
 841          list_of_size->count() > list_of_size->coalDesired();
 842 }
 843 
 844 // Closures for walking the binary tree.
 845 //   do_list() walks the free list in a node applying the closure
 846 //     to each free chunk in the list
 847 //   do_tree() walks the nodes in the binary tree applying do_list()
 848 //     to each list at each node.
 849 
 850 class TreeCensusClosure : public StackObj {
 851  protected:
 852   virtual void do_list(FreeList* fl) = 0;
 853  public:
 854   virtual void do_tree(TreeList* tl) = 0;
 855 };
 856 
 857 class AscendTreeCensusClosure : public TreeCensusClosure {
 858  public:
 859   void do_tree(TreeList* tl) {
 860     if (tl != NULL) {
 861       do_tree(tl->left());
 862       do_list(tl);
 863       do_tree(tl->right());
 864     }
 865   }
 866 };
 867 
 868 class DescendTreeCensusClosure : public TreeCensusClosure {
 869  public:
 870   void do_tree(TreeList* tl) {
 871     if (tl != NULL) {
 872       do_tree(tl->right());
 873       do_list(tl);
 874       do_tree(tl->left());
 875     }
 876   }
 877 };
 878 
 879 // For each list in the tree, calculate the desired, desired
 880 // coalesce, count before sweep, and surplus before sweep.
 881 class BeginSweepClosure : public AscendTreeCensusClosure {
 882   double _percentage;
 883   float _inter_sweep_current;
 884   float _inter_sweep_estimate;
 885   float _intra_sweep_estimate;
 886 
 887  public:
 888   BeginSweepClosure(double p, float inter_sweep_current,
 889                               float inter_sweep_estimate,
 890                               float intra_sweep_estimate) :
 891    _percentage(p),
 892    _inter_sweep_current(inter_sweep_current),
 893    _inter_sweep_estimate(inter_sweep_estimate),
 894    _intra_sweep_estimate(intra_sweep_estimate) { }
 895 
 896   void do_list(FreeList* fl) {
 897     double coalSurplusPercent = _percentage;
 898     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
 899     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
 900     fl->set_beforeSweep(fl->count());
 901     fl->set_bfrSurp(fl->surplus());
 902   }
 903 };
 904 
 905 // Used to search the tree until a condition is met.
 906 // Similar to TreeCensusClosure but searches the
 907 // tree and returns promptly when found.
 908 
 909 class TreeSearchClosure : public StackObj {
 910  protected:
 911   virtual bool do_list(FreeList* fl) = 0;
 912  public:
 913   virtual bool do_tree(TreeList* tl) = 0;
 914 };
 915 
 916 #if 0 //  Don't need this yet but here for symmetry.
 917 class AscendTreeSearchClosure : public TreeSearchClosure {
 918  public:
 919   bool do_tree(TreeList* tl) {
 920     if (tl != NULL) {
 921       if (do_tree(tl->left())) return true;
 922       if (do_list(tl)) return true;
 923       if (do_tree(tl->right())) return true;
 924     }
 925     return false;
 926   }
 927 };
 928 #endif
 929 
 930 class DescendTreeSearchClosure : public TreeSearchClosure {
 931  public:
 932   bool do_tree(TreeList* tl) {
 933     if (tl != NULL) {
 934       if (do_tree(tl->right())) return true;
 935       if (do_list(tl)) return true;
 936       if (do_tree(tl->left())) return true;
 937     }
 938     return false;
 939   }
 940 };
 941 
 942 // Searches the tree for a chunk that ends at the
 943 // specified address.
 944 class EndTreeSearchClosure : public DescendTreeSearchClosure {
 945   HeapWord* _target;
 946   FreeChunk* _found;
 947 
 948  public:
 949   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
 950   bool do_list(FreeList* fl) {
 951     FreeChunk* item = fl->head();
 952     while (item != NULL) {
 953       if (item->end() == _target) {
 954         _found = item;
 955         return true;
 956       }
 957       item = item->next();
 958     }
 959     return false;
 960   }
 961   FreeChunk* found() { return _found; }
 962 };
 963 
 964 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
 965   EndTreeSearchClosure etsc(target);
 966   bool found_target = etsc.do_tree(root());
 967   assert(found_target || etsc.found() == NULL, "Consistency check");
 968   assert(!found_target || etsc.found() != NULL, "Consistency check");
 969   return etsc.found();
 970 }
 971 
 972 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
 973   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
 974   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
 975                                             inter_sweep_estimate,
 976                                             intra_sweep_estimate);
 977   bsc.do_tree(root());
 978 }
 979 
 980 // Closures and methods for calculating total bytes returned to the
 981 // free lists in the tree.
 982 NOT_PRODUCT(
 983   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
 984    public:
 985     void do_list(FreeList* fl) {
 986       fl->set_returnedBytes(0);
 987     }
 988   };
 989 
 990   void BinaryTreeDictionary::initializeDictReturnedBytes() {
 991     InitializeDictReturnedBytesClosure idrb;
 992     idrb.do_tree(root());
 993   }
 994 
 995   class ReturnedBytesClosure : public AscendTreeCensusClosure {
 996     size_t _dictReturnedBytes;
 997    public:
 998     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
 999     void do_list(FreeList* fl) {
1000       _dictReturnedBytes += fl->returnedBytes();
1001     }
1002     size_t dictReturnedBytes() { return _dictReturnedBytes; }
1003   };
1004 
1005   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
1006     ReturnedBytesClosure rbc;
1007     rbc.do_tree(root());
1008 
1009     return rbc.dictReturnedBytes();
1010   }
1011 
1012   // Count the number of entries in the tree.
1013   class treeCountClosure : public DescendTreeCensusClosure {
1014    public:
1015     uint count;
1016     treeCountClosure(uint c) { count = c; }
1017     void do_list(FreeList* fl) {
1018       count++;
1019     }
1020   };
1021 
1022   size_t BinaryTreeDictionary::totalCount() {
1023     treeCountClosure ctc(0);
1024     ctc.do_tree(root());
1025     return ctc.count;
1026   }
1027 )
1028 
1029 // Calculate surpluses for the lists in the tree.
1030 class setTreeSurplusClosure : public AscendTreeCensusClosure {
1031   double percentage;
1032  public:
1033   setTreeSurplusClosure(double v) { percentage = v; }
1034   void do_list(FreeList* fl) {
1035     double splitSurplusPercent = percentage;
1036     fl->set_surplus(fl->count() -
1037                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1038   }
1039 };
1040 
1041 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
1042   setTreeSurplusClosure sts(splitSurplusPercent);
1043   sts.do_tree(root());
1044 }
1045 
1046 // Set hints for the lists in the tree.
1047 class setTreeHintsClosure : public DescendTreeCensusClosure {
1048   size_t hint;
1049  public:
1050   setTreeHintsClosure(size_t v) { hint = v; }
1051   void do_list(FreeList* fl) {
1052     fl->set_hint(hint);
1053     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1054       "Current hint is inconsistent");
1055     if (fl->surplus() > 0) {
1056       hint = fl->size();
1057     }
1058   }
1059 };
1060 
1061 void BinaryTreeDictionary::setTreeHints(void) {
1062   setTreeHintsClosure sth(0);
1063   sth.do_tree(root());
1064 }
1065 
1066 // Save count before previous sweep and splits and coalesces.
1067 class clearTreeCensusClosure : public AscendTreeCensusClosure {
1068   void do_list(FreeList* fl) {
1069     fl->set_prevSweep(fl->count());
1070     fl->set_coalBirths(0);
1071     fl->set_coalDeaths(0);
1072     fl->set_splitBirths(0);
1073     fl->set_splitDeaths(0);
1074   }
1075 };
1076 
1077 void BinaryTreeDictionary::clearTreeCensus(void) {
1078   clearTreeCensusClosure ctc;
1079   ctc.do_tree(root());
1080 }
1081 
1082 // Do reporting and post sweep clean up.
1083 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
1084   // Does walking the tree 3 times hurt?
1085   setTreeSurplus(splitSurplusPercent);
1086   setTreeHints();
1087   if (PrintGC && Verbose) {
1088     reportStatistics();
1089   }
1090   clearTreeCensus();
1091 }
1092 
1093 // Print summary statistics
1094 void BinaryTreeDictionary::reportStatistics() const {
1095   verify_par_locked();
1096   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1097          "------------------------------------\n");
1098   size_t totalSize = totalChunkSize(debug_only(NULL));
1099   size_t    freeBlocks = numFreeBlocks();
1100   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
1101   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
1102   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
1103   if (freeBlocks > 0) {
1104     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
1105   }
1106   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
1107 }
1108 
1109 // Print census information - counts, births, deaths, etc.
1110 // for each list in the tree.  Also print some summary
1111 // information.
1112 class PrintTreeCensusClosure : public AscendTreeCensusClosure {
1113   int _print_line;
1114   size_t _totalFree;
1115   FreeList _total;
1116 
1117  public:
1118   PrintTreeCensusClosure() {
1119     _print_line = 0;
1120     _totalFree = 0;
1121   }
1122   FreeList* total() { return &_total; }
1123   size_t totalFree() { return _totalFree; }
1124   void do_list(FreeList* fl) {
1125     if (++_print_line >= 40) {
1126       FreeList::print_labels_on(gclog_or_tty, "size");
1127       _print_line = 0;
1128     }
1129     fl->print_on(gclog_or_tty);
1130     _totalFree +=            fl->count()            * fl->size()        ;
1131     total()->set_count(      total()->count()       + fl->count()      );
1132     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
1133     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
1134     total()->set_desired(    total()->desired()     + fl->desired()    );
1135     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
1136     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
1137     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
1138     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
1139     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
1140     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
1141   }
1142 };
1143 
1144 void BinaryTreeDictionary::printDictCensus(void) const {
1145 
1146   gclog_or_tty->print("\nBinaryTree\n");
1147   FreeList::print_labels_on(gclog_or_tty, "size");
1148   PrintTreeCensusClosure ptc;
1149   ptc.do_tree(root());
1150 
1151   FreeList* total = ptc.total();
1152   FreeList::print_labels_on(gclog_or_tty, " ");
1153   total->print_on(gclog_or_tty, "TOTAL\t");
1154   gclog_or_tty->print(
1155               "totalFree(words): " SIZE_FORMAT_W(16)
1156               " growth: %8.5f  deficit: %8.5f\n",
1157               ptc.totalFree(),
1158               (double)(total->splitBirths() + total->coalBirths()
1159                      - total->splitDeaths() - total->coalDeaths())
1160               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
1161              (double)(total->desired() - total->count())
1162              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1163 }
1164 
1165 class PrintFreeListsClosure : public AscendTreeCensusClosure {
1166   outputStream* _st;
1167   int _print_line;
1168 
1169  public:
1170   PrintFreeListsClosure(outputStream* st) {
1171     _st = st;
1172     _print_line = 0;
1173   }
1174   void do_list(FreeList* fl) {
1175     if (++_print_line >= 40) {
1176       FreeList::print_labels_on(_st, "size");
1177       _print_line = 0;
1178     }
1179     fl->print_on(gclog_or_tty);
1180     size_t sz = fl->size();
1181     for (FreeChunk* fc = fl->head(); fc != NULL;
1182          fc = fc->next()) {
1183       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1184                     fc, (HeapWord*)fc + sz,
1185                     fc->cantCoalesce() ? "\t CC" : "");
1186     }
1187   }
1188 };
1189 
1190 void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
1191 
1192   FreeList::print_labels_on(st, "size");
1193   PrintFreeListsClosure pflc(st);
1194   pflc.do_tree(root());
1195 }
1196 
1197 // Verify the following tree invariants:
1198 // . _root has no parent
1199 // . parent and child point to each other
1200 // . each node's key correctly related to that of its child(ren)
1201 void BinaryTreeDictionary::verifyTree() const {
1202   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
1203     totalSize() != 0, "_totalSize should't be 0?");
1204   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1205   verifyTreeHelper(root());
1206 }
1207 
1208 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
1209   size_t ct = 0;
1210   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1211     ct++;
1212     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
1213       "Chunk should be free");
1214   }
1215   return ct;
1216 }
1217 
1218 // Note: this helper is recursive rather than iterative, so use with
1219 // caution on very deep trees; and watch out for stack overflow errors;
1220 // In general, to be used only for debugging.
1221 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
1222   if (tl == NULL)
1223     return;
1224   guarantee(tl->size() != 0, "A list must has a size");
1225   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1226          "parent<-/->left");
1227   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1228          "parent<-/->right");;
1229   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1230          "parent !> left");
1231   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1232          "parent !< left");
1233   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
1234   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1235     "list inconsistency");
1236   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1237     "list count is inconsistent");
1238   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1239     "list is incorrectly constructed");
1240   size_t count = verifyPrevFreePtrs(tl);
1241   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1242   if (tl->head() != NULL) {
1243     tl->head_as_TreeChunk()->verifyTreeChunkList();
1244   }
1245   verifyTreeHelper(tl->left());
1246   verifyTreeHelper(tl->right());
1247 }
1248 
1249 void BinaryTreeDictionary::verify() const {
1250   verifyTree();
1251   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
1252 }