1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Classes in support of keeping track of promotions into a non-Contiguous
  26 // space, in this case a CompactibleFreeListSpace.
  27 
  28 // Forward declarations
  29 class CompactibleFreeListSpace;
  30 class BlkClosure;
  31 class BlkClosureCareful;
  32 class UpwardsObjectClosure;
  33 class ObjectClosureCareful;
  34 class Klass;
  35 
  36 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
  37  public:
  38   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
  39     _allocation_size_limit(0) {}
  40   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
  41     size_t allocation_size_limit) {
  42     _ptr = ptr;
  43     _word_size = word_size;
  44     _refillSize = refill_size;
  45     _allocation_size_limit = allocation_size_limit;
  46   }
  47   HeapWord* _ptr;
  48   size_t    _word_size;
  49   size_t    _refillSize;
  50   size_t    _allocation_size_limit;  // largest size that will be allocated
  51 
  52   void print_on(outputStream* st) const;
  53 };
  54 
  55 // Concrete subclass of CompactibleSpace that implements
  56 // a free list space, such as used in the concurrent mark sweep
  57 // generation.
  58 
  59 class CompactibleFreeListSpace: public CompactibleSpace {
  60   friend class VMStructs;
  61   friend class ConcurrentMarkSweepGeneration;
  62   friend class ASConcurrentMarkSweepGeneration;
  63   friend class CMSCollector;
  64   friend class CMSPermGenGen;
  65   // Local alloc buffer for promotion into this space.
  66   friend class CFLS_LAB;
  67 
  68   // "Size" of chunks of work (executed during parallel remark phases
  69   // of CMS collection); this probably belongs in CMSCollector, although
  70   // it's cached here because it's used in
  71   // initialize_sequential_subtasks_for_rescan() which modifies
  72   // par_seq_tasks which also lives in Space. XXX
  73   const size_t _rescan_task_size;
  74   const size_t _marking_task_size;
  75 
  76   // Yet another sequential tasks done structure. This supports
  77   // CMS GC, where we have threads dynamically
  78   // claiming sub-tasks from a larger parallel task.
  79   SequentialSubTasksDone _conc_par_seq_tasks;
  80 
  81   BlockOffsetArrayNonContigSpace _bt;
  82 
  83   CMSCollector* _collector;
  84   ConcurrentMarkSweepGeneration* _gen;
  85 
  86   // Data structures for free blocks (used during allocation/sweeping)
  87 
  88   // Allocation is done linearly from two different blocks depending on
  89   // whether the request is small or large, in an effort to reduce
  90   // fragmentation. We assume that any locking for allocation is done
  91   // by the containing generation. Thus, none of the methods in this
  92   // space are re-entrant.
  93   enum SomeConstants {
  94     SmallForLinearAlloc = 16,        // size < this then use _sLAB
  95     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
  96     IndexSetSize        = SmallForDictionary  // keep this odd-sized
  97   };
  98   static int IndexSetStart;
  99   static int IndexSetStride;
 100 
 101  private:
 102   enum FitStrategyOptions {
 103     FreeBlockStrategyNone = 0,
 104     FreeBlockBestFitFirst
 105   };
 106 
 107   PromotionInfo _promoInfo;
 108 
 109   // helps to impose a global total order on freelistLock ranks;
 110   // assumes that CFLSpace's are allocated in global total order
 111   static int   _lockRank;
 112 
 113   // a lock protecting the free lists and free blocks;
 114   // mutable because of ubiquity of locking even for otherwise const methods
 115   mutable Mutex _freelistLock;
 116   // locking verifier convenience function
 117   void assert_locked() const PRODUCT_RETURN;
 118   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
 119 
 120   // Linear allocation blocks
 121   LinearAllocBlock _smallLinearAllocBlock;
 122 
 123   FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
 124   FreeBlockDictionary* _dictionary;    // ptr to dictionary for large size blocks
 125 
 126   FreeList _indexedFreeList[IndexSetSize];
 127                                        // indexed array for small size blocks
 128   // allocation stategy
 129   bool       _fitStrategy;      // Use best fit strategy.
 130   bool       _adaptive_freelists; // Use adaptive freelists
 131 
 132   // This is an address close to the largest free chunk in the heap.
 133   // It is currently assumed to be at the end of the heap.  Free
 134   // chunks with addresses greater than nearLargestChunk are coalesced
 135   // in an effort to maintain a large chunk at the end of the heap.
 136   HeapWord*  _nearLargestChunk;
 137 
 138   // Used to keep track of limit of sweep for the space
 139   HeapWord* _sweep_limit;
 140 
 141   // Support for compacting cms
 142   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 143   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
 144 
 145   // Initialization helpers.
 146   void initializeIndexedFreeListArray();
 147 
 148   // Extra stuff to manage promotion parallelism.
 149 
 150   // a lock protecting the dictionary during par promotion allocation.
 151   mutable Mutex _parDictionaryAllocLock;
 152   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
 153 
 154   // Locks protecting the exact lists during par promotion allocation.
 155   Mutex* _indexedFreeListParLocks[IndexSetSize];
 156 
 157   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
 158   // required to be smaller than "IndexSetSize".)  If successful,
 159   // adds them to "fl", which is required to be an empty free list.
 160   // If the count of "fl" is negative, it's absolute value indicates a
 161   // number of free chunks that had been previously "borrowed" from global
 162   // list of size "word_sz", and must now be decremented.
 163   void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
 164 
 165   // Allocation helper functions
 166   // Allocate using a strategy that takes from the indexed free lists
 167   // first.  This allocation strategy assumes a companion sweeping
 168   // strategy that attempts to keep the needed number of chunks in each
 169   // indexed free lists.
 170   HeapWord* allocate_adaptive_freelists(size_t size);
 171   // Allocate from the linear allocation buffers first.  This allocation
 172   // strategy assumes maximal coalescing can maintain chunks large enough
 173   // to be used as linear allocation buffers.
 174   HeapWord* allocate_non_adaptive_freelists(size_t size);
 175 
 176   // Gets a chunk from the linear allocation block (LinAB).  If there
 177   // is not enough space in the LinAB, refills it.
 178   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
 179   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
 180   // Get a chunk from the space remaining in the linear allocation block.  Do
 181   // not attempt to refill if the space is not available, return NULL.  Do the
 182   // repairs on the linear allocation block as appropriate.
 183   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
 184   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
 185 
 186   // Helper function for getChunkFromIndexedFreeList.
 187   // Replenish the indexed free list for this "size".  Do not take from an
 188   // underpopulated size.
 189   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
 190 
 191   // Get a chunk from the indexed free list.  If the indexed free list
 192   // does not have a free chunk, try to replenish the indexed free list
 193   // then get the free chunk from the replenished indexed free list.
 194   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
 195 
 196   // The returned chunk may be larger than requested (or null).
 197   FreeChunk* getChunkFromDictionary(size_t size);
 198   // The returned chunk is the exact size requested (or null).
 199   FreeChunk* getChunkFromDictionaryExact(size_t size);
 200 
 201   // Find a chunk in the indexed free list that is the best
 202   // fit for size "numWords".
 203   FreeChunk* bestFitSmall(size_t numWords);
 204   // For free list "fl" of chunks of size > numWords,
 205   // remove a chunk, split off a chunk of size numWords
 206   // and return it.  The split off remainder is returned to
 207   // the free lists.  The old name for getFromListGreater
 208   // was lookInListGreater.
 209   FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
 210   // Get a chunk in the indexed free list or dictionary,
 211   // by considering a larger chunk and splitting it.
 212   FreeChunk* getChunkFromGreater(size_t numWords);
 213   //  Verify that the given chunk is in the indexed free lists.
 214   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
 215   // Remove the specified chunk from the indexed free lists.
 216   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
 217   // Remove the specified chunk from the dictionary.
 218   void       removeChunkFromDictionary(FreeChunk* fc);
 219   // Split a free chunk into a smaller free chunk of size "new_size".
 220   // Return the smaller free chunk and return the remainder to the
 221   // free lists.
 222   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
 223   // Add a chunk to the free lists.
 224   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
 225   // Add a chunk to the free lists, preferring to suffix it
 226   // to the last free chunk at end of space if possible, and
 227   // updating the block census stats as well as block offset table.
 228   // Take any locks as appropriate if we are multithreaded.
 229   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
 230   // Add a free chunk to the indexed free lists.
 231   void       returnChunkToFreeList(FreeChunk* chunk);
 232   // Add a free chunk to the dictionary.
 233   void       returnChunkToDictionary(FreeChunk* chunk);
 234 
 235   // Functions for maintaining the linear allocation buffers (LinAB).
 236   // Repairing a linear allocation block refers to operations
 237   // performed on the remainder of a LinAB after an allocation
 238   // has been made from it.
 239   void       repairLinearAllocationBlocks();
 240   void       repairLinearAllocBlock(LinearAllocBlock* blk);
 241   void       refillLinearAllocBlock(LinearAllocBlock* blk);
 242   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
 243   void       refillLinearAllocBlocksIfNeeded();
 244 
 245   void       verify_objects_initialized() const;
 246 
 247   // Statistics reporting helper functions
 248   void       reportFreeListStatistics() const;
 249   void       reportIndexedFreeListStatistics() const;
 250   size_t     maxChunkSizeInIndexedFreeLists() const;
 251   size_t     numFreeBlocksInIndexedFreeLists() const;
 252   // Accessor
 253   HeapWord* unallocated_block() const {
 254     if (BlockOffsetArrayUseUnallocatedBlock) {
 255       HeapWord* ub = _bt.unallocated_block();
 256       assert(ub >= bottom() &&
 257              ub <= end(), "space invariant");
 258       return ub;
 259     } else {
 260       return end();
 261     }
 262   }
 263   void freed(HeapWord* start, size_t size) {
 264     _bt.freed(start, size);
 265   }
 266 
 267  protected:
 268   // reset the indexed free list to its initial empty condition.
 269   void resetIndexedFreeListArray();
 270   // reset to an initial state with a single free block described
 271   // by the MemRegion parameter.
 272   void reset(MemRegion mr);
 273   // Return the total number of words in the indexed free lists.
 274   size_t     totalSizeInIndexedFreeLists() const;
 275 
 276  public:
 277   // Constructor...
 278   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
 279                            bool use_adaptive_freelists,
 280                            FreeBlockDictionary::DictionaryChoice);
 281   // accessors
 282   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
 283   FreeBlockDictionary* dictionary() const { return _dictionary; }
 284   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
 285   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
 286 
 287   // Set CMS global values
 288   static void set_cms_values();
 289 
 290   // Return the free chunk at the end of the space.  If no such
 291   // chunk exists, return NULL.
 292   FreeChunk* find_chunk_at_end();
 293 
 294   bool adaptive_freelists() const { return _adaptive_freelists; }
 295 
 296   void set_collector(CMSCollector* collector) { _collector = collector; }
 297 
 298   // Support for parallelization of rescan and marking
 299   const size_t rescan_task_size()  const { return _rescan_task_size;  }
 300   const size_t marking_task_size() const { return _marking_task_size; }
 301   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
 302   void initialize_sequential_subtasks_for_rescan(int n_threads);
 303   void initialize_sequential_subtasks_for_marking(int n_threads,
 304          HeapWord* low = NULL);
 305 
 306   // Space enquiries
 307   size_t used() const;
 308   size_t free() const;
 309   size_t max_alloc_in_words() const;
 310   // XXX: should have a less conservative used_region() than that of
 311   // Space; we could consider keeping track of highest allocated
 312   // address and correcting that at each sweep, as the sweeper
 313   // goes through the entire allocated part of the generation. We
 314   // could also use that information to keep the sweeper from
 315   // sweeping more than is necessary. The allocator and sweeper will
 316   // of course need to synchronize on this, since the sweeper will
 317   // try to bump down the address and the allocator will try to bump it up.
 318   // For now, however, we'll just use the default used_region()
 319   // which overestimates the region by returning the entire
 320   // committed region (this is safe, but inefficient).
 321 
 322   // Returns a subregion of the space containing all the objects in
 323   // the space.
 324   MemRegion used_region() const {
 325     return MemRegion(bottom(),
 326                      BlockOffsetArrayUseUnallocatedBlock ?
 327                      unallocated_block() : end());
 328   }
 329 
 330   // This is needed because the default implementation uses block_start()
 331   // which can;t be used at certain times (for example phase 3 of mark-sweep).
 332   // A better fix is to change the assertions in phase 3 of mark-sweep to
 333   // use is_in_reserved(), but that is deferred since the is_in() assertions
 334   // are buried through several layers of callers and are used elsewhere
 335   // as well.
 336   bool is_in(const void* p) const {
 337     return used_region().contains(p);
 338   }
 339 
 340   virtual bool is_free_block(const HeapWord* p) const;
 341 
 342   // Resizing support
 343   void set_end(HeapWord* value);  // override
 344 
 345   // mutual exclusion support
 346   Mutex* freelistLock() const { return &_freelistLock; }
 347 
 348   // Iteration support
 349   void oop_iterate(MemRegion mr, OopClosure* cl);
 350   void oop_iterate(OopClosure* cl);
 351 
 352   void object_iterate(ObjectClosure* blk);
 353   // Apply the closure to each object in the space whose references
 354   // point to objects in the heap.  The usage of CompactibleFreeListSpace
 355   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 356   // objects in the space with references to objects that are no longer
 357   // valid.  For example, an object may reference another object
 358   // that has already been sweep up (collected).  This method uses
 359   // obj_is_alive() to determine whether it is safe to iterate of
 360   // an object.
 361   void safe_object_iterate(ObjectClosure* blk);
 362   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 363 
 364   // Requires that "mr" be entirely within the space.
 365   // Apply "cl->do_object" to all objects that intersect with "mr".
 366   // If the iteration encounters an unparseable portion of the region,
 367   // terminate the iteration and return the address of the start of the
 368   // subregion that isn't done.  Return of "NULL" indicates that the
 369   // interation completed.
 370   virtual HeapWord*
 371        object_iterate_careful_m(MemRegion mr,
 372                                 ObjectClosureCareful* cl);
 373   virtual HeapWord*
 374        object_iterate_careful(ObjectClosureCareful* cl);
 375 
 376   // Override: provides a DCTO_CL specific to this kind of space.
 377   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
 378                                      CardTableModRefBS::PrecisionStyle precision,
 379                                      HeapWord* boundary);
 380 
 381   void blk_iterate(BlkClosure* cl);
 382   void blk_iterate_careful(BlkClosureCareful* cl);
 383   HeapWord* block_start_const(const void* p) const;
 384   HeapWord* block_start_careful(const void* p) const;
 385   size_t block_size(const HeapWord* p) const;
 386   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
 387   bool block_is_obj(const HeapWord* p) const;
 388   bool obj_is_alive(const HeapWord* p) const;
 389   size_t block_size_nopar(const HeapWord* p) const;
 390   bool block_is_obj_nopar(const HeapWord* p) const;
 391 
 392   // iteration support for promotion
 393   void save_marks();
 394   bool no_allocs_since_save_marks();
 395   void object_iterate_since_last_GC(ObjectClosure* cl);
 396 
 397   // iteration support for sweeping
 398   void save_sweep_limit() {
 399     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
 400                    unallocated_block() : end();
 401   }
 402   NOT_PRODUCT(
 403     void clear_sweep_limit() { _sweep_limit = NULL; }
 404   )
 405   HeapWord* sweep_limit() { return _sweep_limit; }
 406 
 407   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 408   // promoted into this generation since the most recent save_marks() call.
 409   // Fields in objects allocated by applications of the closure
 410   // *are* included in the iteration. Thus, when the iteration completes
 411   // there should be no further such objects remaining.
 412   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 413     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 414   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
 415   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
 416 
 417   // Allocation support
 418   HeapWord* allocate(size_t size);
 419   HeapWord* par_allocate(size_t size);
 420 
 421   oop       promote(oop obj, size_t obj_size);
 422   void      gc_prologue();
 423   void      gc_epilogue();
 424 
 425   // This call is used by a containing CMS generation / collector
 426   // to inform the CFLS space that a sweep has been completed
 427   // and that the space can do any related house-keeping functions.
 428   void      sweep_completed();
 429 
 430   // For an object in this space, the mark-word's two
 431   // LSB's having the value [11] indicates that it has been
 432   // promoted since the most recent call to save_marks() on
 433   // this generation and has not subsequently been iterated
 434   // over (using oop_since_save_marks_iterate() above).
 435   // This property holds only for single-threaded collections,
 436   // and is typically used for Cheney scans; for MT scavenges,
 437   // the property holds for all objects promoted during that
 438   // scavenge for the duration of the scavenge and is used
 439   // by card-scanning to avoid scanning objects (being) promoted
 440   // during that scavenge.
 441   bool obj_allocated_since_save_marks(const oop obj) const {
 442     assert(is_in_reserved(obj), "Wrong space?");
 443     return ((PromotedObject*)obj)->hasPromotedMark();
 444   }
 445 
 446   // A worst-case estimate of the space required (in HeapWords) to expand the
 447   // heap when promoting an obj of size obj_size.
 448   size_t expansionSpaceRequired(size_t obj_size) const;
 449 
 450   FreeChunk* allocateScratch(size_t size);
 451 
 452   // returns true if either the small or large linear allocation buffer is empty.
 453   bool       linearAllocationWouldFail() const;
 454 
 455   // Adjust the chunk for the minimum size.  This version is called in
 456   // most cases in CompactibleFreeListSpace methods.
 457   inline static size_t adjustObjectSize(size_t size) {
 458     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
 459   }
 460   // This is a virtual version of adjustObjectSize() that is called
 461   // only occasionally when the compaction space changes and the type
 462   // of the new compaction space is is only known to be CompactibleSpace.
 463   size_t adjust_object_size_v(size_t size) const {
 464     return adjustObjectSize(size);
 465   }
 466   // Minimum size of a free block.
 467   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
 468   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
 469   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
 470               bool coalesced);
 471 
 472   // Support for decisions regarding concurrent collection policy
 473   bool should_concurrent_collect() const;
 474 
 475   // Support for compaction
 476   void prepare_for_compaction(CompactPoint* cp);
 477   void adjust_pointers();
 478   void compact();
 479   // reset the space to reflect the fact that a compaction of the
 480   // space has been done.
 481   virtual void reset_after_compaction();
 482 
 483   // Debugging support
 484   void print()                            const;
 485   void print_on(outputStream* st)         const;
 486   void prepare_for_verify();
 487   void verify(bool allow_dirty)           const;
 488   void verifyFreeLists()                  const PRODUCT_RETURN;
 489   void verifyIndexedFreeLists()           const;
 490   void verifyIndexedFreeList(size_t size) const;
 491   // verify that the given chunk is in the free lists.
 492   bool verifyChunkInFreeLists(FreeChunk* fc) const;
 493   // Do some basic checks on the the free lists.
 494   void checkFreeListConsistency()         const PRODUCT_RETURN;
 495 
 496   // Printing support
 497   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
 498   void print_indexed_free_lists(outputStream* st) const;
 499   void print_dictionary_free_lists(outputStream* st) const;
 500   void print_promo_info_blocks(outputStream* st) const;
 501 
 502   NOT_PRODUCT (
 503     void initializeIndexedFreeListArrayReturnedBytes();
 504     size_t sumIndexedFreeListArrayReturnedBytes();
 505     // Return the total number of chunks in the indexed free lists.
 506     size_t totalCountInIndexedFreeLists() const;
 507     // Return the total numberof chunks in the space.
 508     size_t totalCount();
 509   )
 510 
 511   // The census consists of counts of the quantities such as
 512   // the current count of the free chunks, number of chunks
 513   // created as a result of the split of a larger chunk or
 514   // coalescing of smaller chucks, etc.  The counts in the
 515   // census is used to make decisions on splitting and
 516   // coalescing of chunks during the sweep of garbage.
 517 
 518   // Print the statistics for the free lists.
 519   void printFLCensus(size_t sweep_count) const;
 520 
 521   // Statistics functions
 522   // Initialize census for lists before the sweep.
 523   void beginSweepFLCensus(float inter_sweep_current,
 524                           float inter_sweep_estimate,
 525                           float intra_sweep_estimate);
 526   // Set the surplus for each of the free lists.
 527   void setFLSurplus();
 528   // Set the hint for each of the free lists.
 529   void setFLHints();
 530   // Clear the census for each of the free lists.
 531   void clearFLCensus();
 532   // Perform functions for the census after the end of the sweep.
 533   void endSweepFLCensus(size_t sweep_count);
 534   // Return true if the count of free chunks is greater
 535   // than the desired number of free chunks.
 536   bool coalOverPopulated(size_t size);
 537 
 538 // Record (for each size):
 539 //
 540 //   split-births = #chunks added due to splits in (prev-sweep-end,
 541 //      this-sweep-start)
 542 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
 543 //      this-sweep-start)
 544 //   num-curr     = #chunks at start of this sweep
 545 //   num-prev     = #chunks at end of previous sweep
 546 //
 547 // The above are quantities that are measured. Now define:
 548 //
 549 //   num-desired := num-prev + split-births - split-deaths - num-curr
 550 //
 551 // Roughly, num-prev + split-births is the supply,
 552 // split-deaths is demand due to other sizes
 553 // and num-curr is what we have left.
 554 //
 555 // Thus, num-desired is roughly speaking the "legitimate demand"
 556 // for blocks of this size and what we are striving to reach at the
 557 // end of the current sweep.
 558 //
 559 // For a given list, let num-len be its current population.
 560 // Define, for a free list of a given size:
 561 //
 562 //   coal-overpopulated := num-len >= num-desired * coal-surplus
 563 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
 564 // coalescing -- we do not coalesce unless we think that the current
 565 // supply has exceeded the estimated demand by more than 5%).
 566 //
 567 // For the set of sizes in the binary tree, which is neither dense nor
 568 // closed, it may be the case that for a particular size we have never
 569 // had, or do not now have, or did not have at the previous sweep,
 570 // chunks of that size. We need to extend the definition of
 571 // coal-overpopulated to such sizes as well:
 572 //
 573 //   For a chunk in/not in the binary tree, extend coal-overpopulated
 574 //   defined above to include all sizes as follows:
 575 //
 576 //   . a size that is non-existent is coal-overpopulated
 577 //   . a size that has a num-desired <= 0 as defined above is
 578 //     coal-overpopulated.
 579 //
 580 // Also define, for a chunk heap-offset C and mountain heap-offset M:
 581 //
 582 //   close-to-mountain := C >= 0.99 * M
 583 //
 584 // Now, the coalescing strategy is:
 585 //
 586 //    Coalesce left-hand chunk with right-hand chunk if and
 587 //    only if:
 588 //
 589 //      EITHER
 590 //        . left-hand chunk is of a size that is coal-overpopulated
 591 //      OR
 592 //        . right-hand chunk is close-to-mountain
 593   void smallCoalBirth(size_t size);
 594   void smallCoalDeath(size_t size);
 595   void coalBirth(size_t size);
 596   void coalDeath(size_t size);
 597   void smallSplitBirth(size_t size);
 598   void smallSplitDeath(size_t size);
 599   void splitBirth(size_t size);
 600   void splitDeath(size_t size);
 601   void split(size_t from, size_t to1);
 602 
 603   double flsFrag() const;
 604 };
 605 
 606 // A parallel-GC-thread-local allocation buffer for allocation into a
 607 // CompactibleFreeListSpace.
 608 class CFLS_LAB : public CHeapObj {
 609   // The space that this buffer allocates into.
 610   CompactibleFreeListSpace* _cfls;
 611 
 612   // Our local free lists.
 613   FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
 614 
 615   // Initialized from a command-line arg.
 616 
 617   // Allocation statistics in support of dynamic adjustment of
 618   // #blocks to claim per get_from_global_pool() call below.
 619   static AdaptiveWeightedAverage
 620                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
 621   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
 622   static int    _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
 623   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
 624 
 625   // Internal work method
 626   void get_from_global_pool(size_t word_sz, FreeList* fl);
 627 
 628 public:
 629   CFLS_LAB(CompactibleFreeListSpace* cfls);
 630 
 631   // Allocate and return a block of the given size, or else return NULL.
 632   HeapWord* alloc(size_t word_sz);
 633 
 634   // Return any unused portions of the buffer to the global pool.
 635   void retire(int tid);
 636 
 637   // Dynamic OldPLABSize sizing
 638   static void compute_desired_plab_size();
 639   // When the settings are modified from default static initialization
 640   static void modify_initialization(size_t n, unsigned wt);
 641 };
 642 
 643 size_t PromotionInfo::refillSize() const {
 644   const size_t CMSSpoolBlockSize = 256;
 645   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
 646                                    * CMSSpoolBlockSize);
 647   return CompactibleFreeListSpace::adjustObjectSize(sz);
 648 }