1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
  27 
  28 // statics
  29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  30 bool          CMSCollector::_full_gc_requested          = false;
  31 
  32 //////////////////////////////////////////////////////////////////
  33 // In support of CMS/VM thread synchronization
  34 //////////////////////////////////////////////////////////////////
  35 // We split use of the CGC_lock into 2 "levels".
  36 // The low-level locking is of the usual CGC_lock monitor. We introduce
  37 // a higher level "token" (hereafter "CMS token") built on top of the
  38 // low level monitor (hereafter "CGC lock").
  39 // The token-passing protocol gives priority to the VM thread. The
  40 // CMS-lock doesn't provide any fairness guarantees, but clients
  41 // should ensure that it is only held for very short, bounded
  42 // durations.
  43 //
  44 // When either of the CMS thread or the VM thread is involved in
  45 // collection operations during which it does not want the other
  46 // thread to interfere, it obtains the CMS token.
  47 //
  48 // If either thread tries to get the token while the other has
  49 // it, that thread waits. However, if the VM thread and CMS thread
  50 // both want the token, then the VM thread gets priority while the
  51 // CMS thread waits. This ensures, for instance, that the "concurrent"
  52 // phases of the CMS thread's work do not block out the VM thread
  53 // for long periods of time as the CMS thread continues to hog
  54 // the token. (See bug 4616232).
  55 //
  56 // The baton-passing functions are, however, controlled by the
  57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  58 // and here the low-level CMS lock, not the high level token,
  59 // ensures mutual exclusion.
  60 //
  61 // Two important conditions that we have to satisfy:
  62 // 1. if a thread does a low-level wait on the CMS lock, then it
  63 //    relinquishes the CMS token if it were holding that token
  64 //    when it acquired the low-level CMS lock.
  65 // 2. any low-level notifications on the low-level lock
  66 //    should only be sent when a thread has relinquished the token.
  67 //
  68 // In the absence of either property, we'd have potential deadlock.
  69 //
  70 // We protect each of the CMS (concurrent and sequential) phases
  71 // with the CMS _token_, not the CMS _lock_.
  72 //
  73 // The only code protected by CMS lock is the token acquisition code
  74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
  75 // baton-passing code.
  76 //
  77 // Unfortunately, i couldn't come up with a good abstraction to factor and
  78 // hide the naked CGC_lock manipulation in the baton-passing code
  79 // further below. That's something we should try to do. Also, the proof
  80 // of correctness of this 2-level locking scheme is far from obvious,
  81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
  82 // that there may be a theoretical possibility of delay/starvation in the
  83 // low-level lock/wait/notify scheme used for the baton-passing because of
  84 // potential intereference with the priority scheme embodied in the
  85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
  86 // invocation further below and marked with "XXX 20011219YSR".
  87 // Indeed, as we note elsewhere, this may become yet more slippery
  88 // in the presence of multiple CMS and/or multiple VM threads. XXX
  89 
  90 class CMSTokenSync: public StackObj {
  91  private:
  92   bool _is_cms_thread;
  93  public:
  94   CMSTokenSync(bool is_cms_thread):
  95     _is_cms_thread(is_cms_thread) {
  96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
  97            "Incorrect argument to constructor");
  98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
  99   }
 100 
 101   ~CMSTokenSync() {
 102     assert(_is_cms_thread ?
 103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 105           "Incorrect state");
 106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 107   }
 108 };
 109 
 110 // Convenience class that does a CMSTokenSync, and then acquires
 111 // upto three locks.
 112 class CMSTokenSyncWithLocks: public CMSTokenSync {
 113  private:
 114   // Note: locks are acquired in textual declaration order
 115   // and released in the opposite order
 116   MutexLockerEx _locker1, _locker2, _locker3;
 117  public:
 118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 120     CMSTokenSync(is_cms_thread),
 121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 124   { }
 125 };
 126 
 127 
 128 // Wrapper class to temporarily disable icms during a foreground cms collection.
 129 class ICMSDisabler: public StackObj {
 130  public:
 131   // The ctor disables icms and wakes up the thread so it notices the change;
 132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 133   // CMSIncrementalMode.
 134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 136 };
 137 
 138 //////////////////////////////////////////////////////////////////
 139 //  Concurrent Mark-Sweep Generation /////////////////////////////
 140 //////////////////////////////////////////////////////////////////
 141 
 142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 143 
 144 // This struct contains per-thread things necessary to support parallel
 145 // young-gen collection.
 146 class CMSParGCThreadState: public CHeapObj {
 147  public:
 148   CFLS_LAB lab;
 149   PromotionInfo promo;
 150 
 151   // Constructor.
 152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 153     promo.setSpace(cfls);
 154   }
 155 };
 156 
 157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 158      ReservedSpace rs, size_t initial_byte_size, int level,
 159      CardTableRS* ct, bool use_adaptive_freelists,
 160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
 161   CardGeneration(rs, initial_byte_size, level, ct),
 162   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 163   _debug_collection_type(Concurrent_collection_type)
 164 {
 165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 166   HeapWord* end    = (HeapWord*) _virtual_space.high();
 167 
 168   _direct_allocated_words = 0;
 169   NOT_PRODUCT(
 170     _numObjectsPromoted = 0;
 171     _numWordsPromoted = 0;
 172     _numObjectsAllocated = 0;
 173     _numWordsAllocated = 0;
 174   )
 175 
 176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 177                                            use_adaptive_freelists,
 178                                            dictionaryChoice);
 179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 180   if (_cmsSpace == NULL) {
 181     vm_exit_during_initialization(
 182       "CompactibleFreeListSpace allocation failure");
 183   }
 184   _cmsSpace->_gen = this;
 185 
 186   _gc_stats = new CMSGCStats();
 187 
 188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 189   // offsets match. The ability to tell free chunks from objects
 190   // depends on this property.
 191   debug_only(
 192     FreeChunk* junk = NULL;
 193     assert(UseCompressedOops ||
 194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 195            "Offset of FreeChunk::_prev within FreeChunk must match"
 196            "  that of OopDesc::_klass within OopDesc");
 197   )
 198   if (CollectedHeap::use_parallel_gc_threads()) {
 199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 200     _par_gc_thread_states =
 201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
 202     if (_par_gc_thread_states == NULL) {
 203       vm_exit_during_initialization("Could not allocate par gc structs");
 204     }
 205     for (uint i = 0; i < ParallelGCThreads; i++) {
 206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 207       if (_par_gc_thread_states[i] == NULL) {
 208         vm_exit_during_initialization("Could not allocate par gc structs");
 209       }
 210     }
 211   } else {
 212     _par_gc_thread_states = NULL;
 213   }
 214   _incremental_collection_failed = false;
 215   // The "dilatation_factor" is the expansion that can occur on
 216   // account of the fact that the minimum object size in the CMS
 217   // generation may be larger than that in, say, a contiguous young
 218   //  generation.
 219   // Ideally, in the calculation below, we'd compute the dilatation
 220   // factor as: MinChunkSize/(promoting_gen's min object size)
 221   // Since we do not have such a general query interface for the
 222   // promoting generation, we'll instead just use the mimimum
 223   // object size (which today is a header's worth of space);
 224   // note that all arithmetic is in units of HeapWords.
 225   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 226   assert(_dilatation_factor >= 1.0, "from previous assert");
 227 }
 228 
 229 
 230 // The field "_initiating_occupancy" represents the occupancy percentage
 231 // at which we trigger a new collection cycle.  Unless explicitly specified
 232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 233 // is calculated by:
 234 //
 235 //   Let "f" be MinHeapFreeRatio in
 236 //
 237 //    _intiating_occupancy = 100-f +
 238 //                           f * (CMSTrigger[Perm]Ratio/100)
 239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 240 //
 241 // That is, if we assume the heap is at its desired maximum occupancy at the
 242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 243 // space be allocated before initiating a new collection cycle.
 244 //
 245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 247   if (io >= 0) {
 248     _initiating_occupancy = (double)io / 100.0;
 249   } else {
 250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 251                              (double)(tr * MinHeapFreeRatio) / 100.0)
 252                             / 100.0;
 253   }
 254 }
 255 
 256 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 257   assert(collector() != NULL, "no collector");
 258   collector()->ref_processor_init();
 259 }
 260 
 261 void CMSCollector::ref_processor_init() {
 262   if (_ref_processor == NULL) {
 263     // Allocate and initialize a reference processor
 264     _ref_processor = ReferenceProcessor::create_ref_processor(
 265         _span,                               // span
 266         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
 267         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
 268         &_is_alive_closure,
 269         ParallelGCThreads,
 270         ParallelRefProcEnabled);
 271     // Initialize the _ref_processor field of CMSGen
 272     _cmsGen->set_ref_processor(_ref_processor);
 273 
 274     // Allocate a dummy ref processor for perm gen.
 275     ReferenceProcessor* rp2 = new ReferenceProcessor();
 276     if (rp2 == NULL) {
 277       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 278     }
 279     _permGen->set_ref_processor(rp2);
 280   }
 281 }
 282 
 283 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 284   GenCollectedHeap* gch = GenCollectedHeap::heap();
 285   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 286     "Wrong type of heap");
 287   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 288     gch->gen_policy()->size_policy();
 289   assert(sp->is_gc_cms_adaptive_size_policy(),
 290     "Wrong type of size policy");
 291   return sp;
 292 }
 293 
 294 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 295   CMSGCAdaptivePolicyCounters* results =
 296     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 297   assert(
 298     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 299     "Wrong gc policy counter kind");
 300   return results;
 301 }
 302 
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307 
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340   _icms_duty_cycle = CMSIncrementalDutyCycle;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = gch->get_gen(0)->capacity();
 358   if (HandlePromotionFailure) {
 359     expected_promotion = MIN2(
 360         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
 361         expected_promotion);
 362   }
 363   if (cms_free > expected_promotion) {
 364     // Start a cms collection if there isn't enough space to promote
 365     // for the next minor collection.  Use the padded average as
 366     // a safety factor.
 367     cms_free -= expected_promotion;
 368 
 369     // Adjust by the safety factor.
 370     double cms_free_dbl = (double)cms_free;
 371     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 372     // Apply a further correction factor which tries to adjust
 373     // for recent occurance of concurrent mode failures.
 374     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 375     cms_free_dbl = cms_free_dbl * cms_adjustment;
 376 
 377     if (PrintGCDetails && Verbose) {
 378       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 379         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 380         cms_free, expected_promotion);
 381       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 382         cms_free_dbl, cms_consumption_rate() + 1.0);
 383     }
 384     // Add 1 in case the consumption rate goes to zero.
 385     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 386   }
 387   return 0.0;
 388 }
 389 
 390 // Compare the duration of the cms collection to the
 391 // time remaining before the cms generation is empty.
 392 // Note that the time from the start of the cms collection
 393 // to the start of the cms sweep (less than the total
 394 // duration of the cms collection) can be used.  This
 395 // has been tried and some applications experienced
 396 // promotion failures early in execution.  This was
 397 // possibly because the averages were not accurate
 398 // enough at the beginning.
 399 double CMSStats::time_until_cms_start() const {
 400   // We add "gc0_period" to the "work" calculation
 401   // below because this query is done (mostly) at the
 402   // end of a scavenge, so we need to conservatively
 403   // account for that much possible delay
 404   // in the query so as to avoid concurrent mode failures
 405   // due to starting the collection just a wee bit too
 406   // late.
 407   double work = cms_duration() + gc0_period();
 408   double deadline = time_until_cms_gen_full();
 409   // If a concurrent mode failure occurred recently, we want to be
 410   // more conservative and halve our expected time_until_cms_gen_full()
 411   if (work > deadline) {
 412     if (Verbose && PrintGCDetails) {
 413       gclog_or_tty->print(
 414         " CMSCollector: collect because of anticipated promotion "
 415         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 416         gc0_period(), time_until_cms_gen_full());
 417     }
 418     return 0.0;
 419   }
 420   return work - deadline;
 421 }
 422 
 423 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 424 // amount of change to prevent wild oscillation.
 425 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 426                                               unsigned int new_duty_cycle) {
 427   assert(old_duty_cycle <= 100, "bad input value");
 428   assert(new_duty_cycle <= 100, "bad input value");
 429 
 430   // Note:  use subtraction with caution since it may underflow (values are
 431   // unsigned).  Addition is safe since we're in the range 0-100.
 432   unsigned int damped_duty_cycle = new_duty_cycle;
 433   if (new_duty_cycle < old_duty_cycle) {
 434     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 435     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 436       damped_duty_cycle = old_duty_cycle - largest_delta;
 437     }
 438   } else if (new_duty_cycle > old_duty_cycle) {
 439     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 440     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 441       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 442     }
 443   }
 444   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 445 
 446   if (CMSTraceIncrementalPacing) {
 447     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 448                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 449   }
 450   return damped_duty_cycle;
 451 }
 452 
 453 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 454   assert(CMSIncrementalPacing && valid(),
 455          "should be handled in icms_update_duty_cycle()");
 456 
 457   double cms_time_so_far = cms_timer().seconds();
 458   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 459   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 460 
 461   // Avoid division by 0.
 462   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 463   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 464 
 465   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 466   if (new_duty_cycle > _icms_duty_cycle) {
 467     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 468     if (new_duty_cycle > 2) {
 469       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 470                                                 new_duty_cycle);
 471     }
 472   } else if (_allow_duty_cycle_reduction) {
 473     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 474     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 475     // Respect the minimum duty cycle.
 476     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 477     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 478   }
 479 
 480   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 481     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 482   }
 483 
 484   _allow_duty_cycle_reduction = false;
 485   return _icms_duty_cycle;
 486 }
 487 
 488 #ifndef PRODUCT
 489 void CMSStats::print_on(outputStream *st) const {
 490   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 491   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 492                gc0_duration(), gc0_period(), gc0_promoted());
 493   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 494             cms_duration(), cms_duration_per_mb(),
 495             cms_period(), cms_allocated());
 496   st->print(",cms_since_beg=%g,cms_since_end=%g",
 497             cms_time_since_begin(), cms_time_since_end());
 498   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 499             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 500   if (CMSIncrementalMode) {
 501     st->print(",dc=%d", icms_duty_cycle());
 502   }
 503 
 504   if (valid()) {
 505     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 506               promotion_rate(), cms_allocation_rate());
 507     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 508               cms_consumption_rate(), time_until_cms_gen_full());
 509   }
 510   st->print(" ");
 511 }
 512 #endif // #ifndef PRODUCT
 513 
 514 CMSCollector::CollectorState CMSCollector::_collectorState =
 515                              CMSCollector::Idling;
 516 bool CMSCollector::_foregroundGCIsActive = false;
 517 bool CMSCollector::_foregroundGCShouldWait = false;
 518 
 519 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 520                            ConcurrentMarkSweepGeneration* permGen,
 521                            CardTableRS*                   ct,
 522                            ConcurrentMarkSweepPolicy*     cp):
 523   _cmsGen(cmsGen),
 524   _permGen(permGen),
 525   _ct(ct),
 526   _ref_processor(NULL),    // will be set later
 527   _conc_workers(NULL),     // may be set later
 528   _abort_preclean(false),
 529   _start_sampling(false),
 530   _between_prologue_and_epilogue(false),
 531   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 532   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 533   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 534                  -1 /* lock-free */, "No_lock" /* dummy */),
 535   _modUnionClosure(&_modUnionTable),
 536   _modUnionClosurePar(&_modUnionTable),
 537   // Adjust my span to cover old (cms) gen and perm gen
 538   _span(cmsGen->reserved()._union(permGen->reserved())),
 539   // Construct the is_alive_closure with _span & markBitMap
 540   _is_alive_closure(_span, &_markBitMap),
 541   _restart_addr(NULL),
 542   _overflow_list(NULL),
 543   _stats(cmsGen),
 544   _eden_chunk_array(NULL),     // may be set in ctor body
 545   _eden_chunk_capacity(0),     // -- ditto --
 546   _eden_chunk_index(0),        // -- ditto --
 547   _survivor_plab_array(NULL),  // -- ditto --
 548   _survivor_chunk_array(NULL), // -- ditto --
 549   _survivor_chunk_capacity(0), // -- ditto --
 550   _survivor_chunk_index(0),    // -- ditto --
 551   _ser_pmc_preclean_ovflw(0),
 552   _ser_kac_preclean_ovflw(0),
 553   _ser_pmc_remark_ovflw(0),
 554   _par_pmc_remark_ovflw(0),
 555   _ser_kac_ovflw(0),
 556   _par_kac_ovflw(0),
 557 #ifndef PRODUCT
 558   _num_par_pushes(0),
 559 #endif
 560   _collection_count_start(0),
 561   _verifying(false),
 562   _icms_start_limit(NULL),
 563   _icms_stop_limit(NULL),
 564   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 565   _completed_initialization(false),
 566   _collector_policy(cp),
 567   _should_unload_classes(false),
 568   _concurrent_cycles_since_last_unload(0),
 569   _roots_scanning_options(0),
 570   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 571   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 572 {
 573   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 574     ExplicitGCInvokesConcurrent = true;
 575   }
 576   // Now expand the span and allocate the collection support structures
 577   // (MUT, marking bit map etc.) to cover both generations subject to
 578   // collection.
 579 
 580   // First check that _permGen is adjacent to _cmsGen and above it.
 581   assert(   _cmsGen->reserved().word_size()  > 0
 582          && _permGen->reserved().word_size() > 0,
 583          "generations should not be of zero size");
 584   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 585          "_cmsGen and _permGen should not overlap");
 586   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 587          "_cmsGen->end() different from _permGen->start()");
 588 
 589   // For use by dirty card to oop closures.
 590   _cmsGen->cmsSpace()->set_collector(this);
 591   _permGen->cmsSpace()->set_collector(this);
 592 
 593   // Allocate MUT and marking bit map
 594   {
 595     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 596     if (!_markBitMap.allocate(_span)) {
 597       warning("Failed to allocate CMS Bit Map");
 598       return;
 599     }
 600     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 601   }
 602   {
 603     _modUnionTable.allocate(_span);
 604     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 605   }
 606 
 607   if (!_markStack.allocate(MarkStackSize)) {
 608     warning("Failed to allocate CMS Marking Stack");
 609     return;
 610   }
 611   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 612     warning("Failed to allocate CMS Revisit Stack");
 613     return;
 614   }
 615 
 616   // Support for multi-threaded concurrent phases
 617   if (CollectedHeap::use_parallel_gc_threads() && CMSConcurrentMTEnabled) {
 618     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 619       // just for now
 620       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 621     }
 622     if (ConcGCThreads > 1) {
 623       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 624                                  ConcGCThreads, true);
 625       if (_conc_workers == NULL) {
 626         warning("GC/CMS: _conc_workers allocation failure: "
 627               "forcing -CMSConcurrentMTEnabled");
 628         CMSConcurrentMTEnabled = false;
 629       } else {
 630         _conc_workers->initialize_workers();
 631       }
 632     } else {
 633       CMSConcurrentMTEnabled = false;
 634     }
 635   }
 636   if (!CMSConcurrentMTEnabled) {
 637     ConcGCThreads = 0;
 638   } else {
 639     // Turn off CMSCleanOnEnter optimization temporarily for
 640     // the MT case where it's not fixed yet; see 6178663.
 641     CMSCleanOnEnter = false;
 642   }
 643   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 644          "Inconsistency");
 645 
 646   // Parallel task queues; these are shared for the
 647   // concurrent and stop-world phases of CMS, but
 648   // are not shared with parallel scavenge (ParNew).
 649   {
 650     uint i;
 651     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 652 
 653     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 654          || ParallelRefProcEnabled)
 655         && num_queues > 0) {
 656       _task_queues = new OopTaskQueueSet(num_queues);
 657       if (_task_queues == NULL) {
 658         warning("task_queues allocation failure.");
 659         return;
 660       }
 661       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
 662       if (_hash_seed == NULL) {
 663         warning("_hash_seed array allocation failure");
 664         return;
 665       }
 666 
 667       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 668       for (i = 0; i < num_queues; i++) {
 669         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 670         if (q == NULL) {
 671           warning("work_queue allocation failure.");
 672           return;
 673         }
 674         _task_queues->register_queue(i, q);
 675       }
 676       for (i = 0; i < num_queues; i++) {
 677         _task_queues->queue(i)->initialize();
 678         _hash_seed[i] = 17;  // copied from ParNew
 679       }
 680     }
 681   }
 682 
 683   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 684   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 685 
 686   // Clip CMSBootstrapOccupancy between 0 and 100.
 687   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 688                          /(double)100;
 689 
 690   _full_gcs_since_conc_gc = 0;
 691 
 692   // Now tell CMS generations the identity of their collector
 693   ConcurrentMarkSweepGeneration::set_collector(this);
 694 
 695   // Create & start a CMS thread for this CMS collector
 696   _cmsThread = ConcurrentMarkSweepThread::start(this);
 697   assert(cmsThread() != NULL, "CMS Thread should have been created");
 698   assert(cmsThread()->collector() == this,
 699          "CMS Thread should refer to this gen");
 700   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 701 
 702   // Support for parallelizing young gen rescan
 703   GenCollectedHeap* gch = GenCollectedHeap::heap();
 704   _young_gen = gch->prev_gen(_cmsGen);
 705   if (gch->supports_inline_contig_alloc()) {
 706     _top_addr = gch->top_addr();
 707     _end_addr = gch->end_addr();
 708     assert(_young_gen != NULL, "no _young_gen");
 709     _eden_chunk_index = 0;
 710     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 711     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
 712     if (_eden_chunk_array == NULL) {
 713       _eden_chunk_capacity = 0;
 714       warning("GC/CMS: _eden_chunk_array allocation failure");
 715     }
 716   }
 717   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 718 
 719   // Support for parallelizing survivor space rescan
 720   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 721     const size_t max_plab_samples =
 722       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 723 
 724     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
 725     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
 726     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
 727     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 728         || _cursor == NULL) {
 729       warning("Failed to allocate survivor plab/chunk array");
 730       if (_survivor_plab_array  != NULL) {
 731         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 732         _survivor_plab_array = NULL;
 733       }
 734       if (_survivor_chunk_array != NULL) {
 735         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 736         _survivor_chunk_array = NULL;
 737       }
 738       if (_cursor != NULL) {
 739         FREE_C_HEAP_ARRAY(size_t, _cursor);
 740         _cursor = NULL;
 741       }
 742     } else {
 743       _survivor_chunk_capacity = 2*max_plab_samples;
 744       for (uint i = 0; i < ParallelGCThreads; i++) {
 745         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
 746         if (vec == NULL) {
 747           warning("Failed to allocate survivor plab array");
 748           for (int j = i; j > 0; j--) {
 749             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 750           }
 751           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 752           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 753           _survivor_plab_array = NULL;
 754           _survivor_chunk_array = NULL;
 755           _survivor_chunk_capacity = 0;
 756           break;
 757         } else {
 758           ChunkArray* cur =
 759             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 760                                                         max_plab_samples);
 761           assert(cur->end() == 0, "Should be 0");
 762           assert(cur->array() == vec, "Should be vec");
 763           assert(cur->capacity() == max_plab_samples, "Error");
 764         }
 765       }
 766     }
 767   }
 768   assert(   (   _survivor_plab_array  != NULL
 769              && _survivor_chunk_array != NULL)
 770          || (   _survivor_chunk_capacity == 0
 771              && _survivor_chunk_index == 0),
 772          "Error");
 773 
 774   // Choose what strong roots should be scanned depending on verification options
 775   // and perm gen collection mode.
 776   if (!CMSClassUnloadingEnabled) {
 777     // If class unloading is disabled we want to include all classes into the root set.
 778     add_root_scanning_option(SharedHeap::SO_AllClasses);
 779   } else {
 780     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 781   }
 782 
 783   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 784   _gc_counters = new CollectorCounters("CMS", 1);
 785   _completed_initialization = true;
 786   _inter_sweep_timer.start();  // start of time
 787 #ifdef SPARC
 788   // Issue a stern warning, but allow use for experimentation and debugging.
 789   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 790     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 791     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 792             " on sun4v; please understand that you are using at your own risk!");
 793   }
 794 #endif
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
 869     size_t max_promotion_in_bytes,
 870     bool younger_handles_promotion_failure) const {
 871 
 872   // This is the most conservative test.  Full promotion is
 873   // guaranteed if this is used. The multiplicative factor is to
 874   // account for the worst case "dilatation".
 875   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
 876   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
 877     adjusted_max_promo_bytes = (double)max_uintx;
 878   }
 879   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
 880 
 881   if (younger_handles_promotion_failure && !result) {
 882     // Full promotion is not guaranteed because fragmentation
 883     // of the cms generation can prevent the full promotion.
 884     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
 885 
 886     if (!result) {
 887       // With promotion failure handling the test for the ability
 888       // to support the promotion does not have to be guaranteed.
 889       // Use an average of the amount promoted.
 890       result = max_available() >= (size_t)
 891         gc_stats()->avg_promoted()->padded_average();
 892       if (PrintGC && Verbose && result) {
 893         gclog_or_tty->print_cr(
 894           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 895           " max_available: " SIZE_FORMAT
 896           " avg_promoted: " SIZE_FORMAT,
 897           max_available(), (size_t)
 898           gc_stats()->avg_promoted()->padded_average());
 899       }
 900     } else {
 901       if (PrintGC && Verbose) {
 902         gclog_or_tty->print_cr(
 903           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 904           " max_available: " SIZE_FORMAT
 905           " adj_max_promo_bytes: " SIZE_FORMAT,
 906           max_available(), (size_t)adjusted_max_promo_bytes);
 907       }
 908     }
 909   } else {
 910     if (PrintGC && Verbose) {
 911       gclog_or_tty->print_cr(
 912         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 913         " contiguous_available: " SIZE_FORMAT
 914         " adj_max_promo_bytes: " SIZE_FORMAT,
 915         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
 916     }
 917   }
 918   return result;
 919 }
 920 
 921 // At a promotion failure dump information on block layout in heap
 922 // (cms old generation).
 923 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 924   if (CMSDumpAtPromotionFailure) {
 925     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 926   }
 927 }
 928 
 929 CompactibleSpace*
 930 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 931   return _cmsSpace;
 932 }
 933 
 934 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 935   // Clear the promotion information.  These pointers can be adjusted
 936   // along with all the other pointers into the heap but
 937   // compaction is expected to be a rare event with
 938   // a heap using cms so don't do it without seeing the need.
 939   if (CollectedHeap::use_parallel_gc_threads()) {
 940     for (uint i = 0; i < ParallelGCThreads; i++) {
 941       _par_gc_thread_states[i]->promo.reset();
 942     }
 943   }
 944 }
 945 
 946 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 947   blk->do_space(_cmsSpace);
 948 }
 949 
 950 void ConcurrentMarkSweepGeneration::compute_new_size() {
 951   assert_locked_or_safepoint(Heap_lock);
 952 
 953   // If incremental collection failed, we just want to expand
 954   // to the limit.
 955   if (incremental_collection_failed()) {
 956     clear_incremental_collection_failed();
 957     grow_to_reserved();
 958     return;
 959   }
 960 
 961   size_t expand_bytes = 0;
 962   double free_percentage = ((double) free()) / capacity();
 963   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 964   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 965 
 966   // compute expansion delta needed for reaching desired free percentage
 967   if (free_percentage < desired_free_percentage) {
 968     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 969     assert(desired_capacity >= capacity(), "invalid expansion size");
 970     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 971   }
 972   if (expand_bytes > 0) {
 973     if (PrintGCDetails && Verbose) {
 974       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 975       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 976       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 977       gclog_or_tty->print_cr("  Desired free fraction %f",
 978         desired_free_percentage);
 979       gclog_or_tty->print_cr("  Maximum free fraction %f",
 980         maximum_free_percentage);
 981       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 982       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 983         desired_capacity/1000);
 984       int prev_level = level() - 1;
 985       if (prev_level >= 0) {
 986         size_t prev_size = 0;
 987         GenCollectedHeap* gch = GenCollectedHeap::heap();
 988         Generation* prev_gen = gch->_gens[prev_level];
 989         prev_size = prev_gen->capacity();
 990           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 991                                  prev_size/1000);
 992       }
 993       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 994         unsafe_max_alloc_nogc()/1000);
 995       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 996         contiguous_available()/1000);
 997       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 998         expand_bytes);
 999     }
1000     // safe if expansion fails
1001     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
1002     if (PrintGCDetails && Verbose) {
1003       gclog_or_tty->print_cr("  Expanded free fraction %f",
1004         ((double) free()) / capacity());
1005     }
1006   }
1007 }
1008 
1009 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1010   return cmsSpace()->freelistLock();
1011 }
1012 
1013 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1014                                                   bool   tlab) {
1015   CMSSynchronousYieldRequest yr;
1016   MutexLockerEx x(freelistLock(),
1017                   Mutex::_no_safepoint_check_flag);
1018   return have_lock_and_allocate(size, tlab);
1019 }
1020 
1021 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1022                                                   bool   tlab /* ignored */) {
1023   assert_lock_strong(freelistLock());
1024   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1025   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1026   // Allocate the object live (grey) if the background collector has
1027   // started marking. This is necessary because the marker may
1028   // have passed this address and consequently this object will
1029   // not otherwise be greyed and would be incorrectly swept up.
1030   // Note that if this object contains references, the writing
1031   // of those references will dirty the card containing this object
1032   // allowing the object to be blackened (and its references scanned)
1033   // either during a preclean phase or at the final checkpoint.
1034   if (res != NULL) {
1035     // We may block here with an uninitialized object with
1036     // its mark-bit or P-bits not yet set. Such objects need
1037     // to be safely navigable by block_start().
1038     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1039     assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
1040     collector()->direct_allocated(res, adjustedSize);
1041     _direct_allocated_words += adjustedSize;
1042     // allocation counters
1043     NOT_PRODUCT(
1044       _numObjectsAllocated++;
1045       _numWordsAllocated += (int)adjustedSize;
1046     )
1047   }
1048   return res;
1049 }
1050 
1051 // In the case of direct allocation by mutators in a generation that
1052 // is being concurrently collected, the object must be allocated
1053 // live (grey) if the background collector has started marking.
1054 // This is necessary because the marker may
1055 // have passed this address and consequently this object will
1056 // not otherwise be greyed and would be incorrectly swept up.
1057 // Note that if this object contains references, the writing
1058 // of those references will dirty the card containing this object
1059 // allowing the object to be blackened (and its references scanned)
1060 // either during a preclean phase or at the final checkpoint.
1061 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1062   assert(_markBitMap.covers(start, size), "Out of bounds");
1063   if (_collectorState >= Marking) {
1064     MutexLockerEx y(_markBitMap.lock(),
1065                     Mutex::_no_safepoint_check_flag);
1066     // [see comments preceding SweepClosure::do_blk() below for details]
1067     // 1. need to mark the object as live so it isn't collected
1068     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1069     // 3. need to mark the end of the object so marking, precleaning or sweeping
1070     //    can skip over uninitialized or unparsable objects. An allocated
1071     //    object is considered uninitialized for our purposes as long as
1072     //    its klass word is NULL. (Unparsable objects are those which are
1073     //    initialized in the sense just described, but whose sizes can still
1074     //    not be correctly determined. Note that the class of unparsable objects
1075     //    can only occur in the perm gen. All old gen objects are parsable
1076     //    as soon as they are initialized.)
1077     _markBitMap.mark(start);          // object is live
1078     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1079     _markBitMap.mark(start + size - 1);
1080                                       // mark end of object
1081   }
1082   // check that oop looks uninitialized
1083   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1084 }
1085 
1086 void CMSCollector::promoted(bool par, HeapWord* start,
1087                             bool is_obj_array, size_t obj_size) {
1088   assert(_markBitMap.covers(start), "Out of bounds");
1089   // See comment in direct_allocated() about when objects should
1090   // be allocated live.
1091   if (_collectorState >= Marking) {
1092     // we already hold the marking bit map lock, taken in
1093     // the prologue
1094     if (par) {
1095       _markBitMap.par_mark(start);
1096     } else {
1097       _markBitMap.mark(start);
1098     }
1099     // We don't need to mark the object as uninitialized (as
1100     // in direct_allocated above) because this is being done with the
1101     // world stopped and the object will be initialized by the
1102     // time the marking, precleaning or sweeping get to look at it.
1103     // But see the code for copying objects into the CMS generation,
1104     // where we need to ensure that concurrent readers of the
1105     // block offset table are able to safely navigate a block that
1106     // is in flux from being free to being allocated (and in
1107     // transition while being copied into) and subsequently
1108     // becoming a bona-fide object when the copy/promotion is complete.
1109     assert(SafepointSynchronize::is_at_safepoint(),
1110            "expect promotion only at safepoints");
1111 
1112     if (_collectorState < Sweeping) {
1113       // Mark the appropriate cards in the modUnionTable, so that
1114       // this object gets scanned before the sweep. If this is
1115       // not done, CMS generation references in the object might
1116       // not get marked.
1117       // For the case of arrays, which are otherwise precisely
1118       // marked, we need to dirty the entire array, not just its head.
1119       if (is_obj_array) {
1120         // The [par_]mark_range() method expects mr.end() below to
1121         // be aligned to the granularity of a bit's representation
1122         // in the heap. In the case of the MUT below, that's a
1123         // card size.
1124         MemRegion mr(start,
1125                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1126                         CardTableModRefBS::card_size /* bytes */));
1127         if (par) {
1128           _modUnionTable.par_mark_range(mr);
1129         } else {
1130           _modUnionTable.mark_range(mr);
1131         }
1132       } else {  // not an obj array; we can just mark the head
1133         if (par) {
1134           _modUnionTable.par_mark(start);
1135         } else {
1136           _modUnionTable.mark(start);
1137         }
1138       }
1139     }
1140   }
1141 }
1142 
1143 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1144 {
1145   size_t delta = pointer_delta(addr, space->bottom());
1146   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1147 }
1148 
1149 void CMSCollector::icms_update_allocation_limits()
1150 {
1151   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1152   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1153 
1154   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1155   if (CMSTraceIncrementalPacing) {
1156     stats().print();
1157   }
1158 
1159   assert(duty_cycle <= 100, "invalid duty cycle");
1160   if (duty_cycle != 0) {
1161     // The duty_cycle is a percentage between 0 and 100; convert to words and
1162     // then compute the offset from the endpoints of the space.
1163     size_t free_words = eden->free() / HeapWordSize;
1164     double free_words_dbl = (double)free_words;
1165     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1166     size_t offset_words = (free_words - duty_cycle_words) / 2;
1167 
1168     _icms_start_limit = eden->top() + offset_words;
1169     _icms_stop_limit = eden->end() - offset_words;
1170 
1171     // The limits may be adjusted (shifted to the right) by
1172     // CMSIncrementalOffset, to allow the application more mutator time after a
1173     // young gen gc (when all mutators were stopped) and before CMS starts and
1174     // takes away one or more cpus.
1175     if (CMSIncrementalOffset != 0) {
1176       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1177       size_t adjustment = (size_t)adjustment_dbl;
1178       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1179       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1180         _icms_start_limit += adjustment;
1181         _icms_stop_limit = tmp_stop;
1182       }
1183     }
1184   }
1185   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1186     _icms_start_limit = _icms_stop_limit = eden->end();
1187   }
1188 
1189   // Install the new start limit.
1190   eden->set_soft_end(_icms_start_limit);
1191 
1192   if (CMSTraceIncrementalMode) {
1193     gclog_or_tty->print(" icms alloc limits:  "
1194                            PTR_FORMAT "," PTR_FORMAT
1195                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1196                            _icms_start_limit, _icms_stop_limit,
1197                            percent_of_space(eden, _icms_start_limit),
1198                            percent_of_space(eden, _icms_stop_limit));
1199     if (Verbose) {
1200       gclog_or_tty->print("eden:  ");
1201       eden->print_on(gclog_or_tty);
1202     }
1203   }
1204 }
1205 
1206 // Any changes here should try to maintain the invariant
1207 // that if this method is called with _icms_start_limit
1208 // and _icms_stop_limit both NULL, then it should return NULL
1209 // and not notify the icms thread.
1210 HeapWord*
1211 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1212                                        size_t word_size)
1213 {
1214   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1215   // nop.
1216   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1217     if (top <= _icms_start_limit) {
1218       if (CMSTraceIncrementalMode) {
1219         space->print_on(gclog_or_tty);
1220         gclog_or_tty->stamp();
1221         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1222                                ", new limit=" PTR_FORMAT
1223                                " (" SIZE_FORMAT "%%)",
1224                                top, _icms_stop_limit,
1225                                percent_of_space(space, _icms_stop_limit));
1226       }
1227       ConcurrentMarkSweepThread::start_icms();
1228       assert(top < _icms_stop_limit, "Tautology");
1229       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1230         return _icms_stop_limit;
1231       }
1232 
1233       // The allocation will cross both the _start and _stop limits, so do the
1234       // stop notification also and return end().
1235       if (CMSTraceIncrementalMode) {
1236         space->print_on(gclog_or_tty);
1237         gclog_or_tty->stamp();
1238         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1239                                ", new limit=" PTR_FORMAT
1240                                " (" SIZE_FORMAT "%%)",
1241                                top, space->end(),
1242                                percent_of_space(space, space->end()));
1243       }
1244       ConcurrentMarkSweepThread::stop_icms();
1245       return space->end();
1246     }
1247 
1248     if (top <= _icms_stop_limit) {
1249       if (CMSTraceIncrementalMode) {
1250         space->print_on(gclog_or_tty);
1251         gclog_or_tty->stamp();
1252         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1253                                ", new limit=" PTR_FORMAT
1254                                " (" SIZE_FORMAT "%%)",
1255                                top, space->end(),
1256                                percent_of_space(space, space->end()));
1257       }
1258       ConcurrentMarkSweepThread::stop_icms();
1259       return space->end();
1260     }
1261 
1262     if (CMSTraceIncrementalMode) {
1263       space->print_on(gclog_or_tty);
1264       gclog_or_tty->stamp();
1265       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1266                              ", new limit=" PTR_FORMAT,
1267                              top, NULL);
1268     }
1269   }
1270 
1271   return NULL;
1272 }
1273 
1274 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1275   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1276   // allocate, copy and if necessary update promoinfo --
1277   // delegate to underlying space.
1278   assert_lock_strong(freelistLock());
1279 
1280 #ifndef PRODUCT
1281   if (Universe::heap()->promotion_should_fail()) {
1282     return NULL;
1283   }
1284 #endif  // #ifndef PRODUCT
1285 
1286   oop res = _cmsSpace->promote(obj, obj_size);
1287   if (res == NULL) {
1288     // expand and retry
1289     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1290     expand(s*HeapWordSize, MinHeapDeltaBytes,
1291       CMSExpansionCause::_satisfy_promotion);
1292     // Since there's currently no next generation, we don't try to promote
1293     // into a more senior generation.
1294     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1295                                "is made to pass on a possibly failing "
1296                                "promotion to next generation");
1297     res = _cmsSpace->promote(obj, obj_size);
1298   }
1299   if (res != NULL) {
1300     // See comment in allocate() about when objects should
1301     // be allocated live.
1302     assert(obj->is_oop(), "Will dereference klass pointer below");
1303     collector()->promoted(false,           // Not parallel
1304                           (HeapWord*)res, obj->is_objArray(), obj_size);
1305     // promotion counters
1306     NOT_PRODUCT(
1307       _numObjectsPromoted++;
1308       _numWordsPromoted +=
1309         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1310     )
1311   }
1312   return res;
1313 }
1314 
1315 
1316 HeapWord*
1317 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1318                                              HeapWord* top,
1319                                              size_t word_sz)
1320 {
1321   return collector()->allocation_limit_reached(space, top, word_sz);
1322 }
1323 
1324 // IMPORTANT: Notes on object size recognition in CMS.
1325 // ---------------------------------------------------
1326 // A block of storage in the CMS generation is always in
1327 // one of three states. A free block (FREE), an allocated
1328 // object (OBJECT) whose size() method reports the correct size,
1329 // and an intermediate state (TRANSIENT) in which its size cannot
1330 // be accurately determined.
1331 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1332 // -----------------------------------------------------
1333 // FREE:      klass_word & 1 == 1; mark_word holds block size
1334 //
1335 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1336 //            obj->size() computes correct size
1337 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1338 //
1339 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1340 //
1341 // STATE IDENTIFICATION: (64 bit+COOPS)
1342 // ------------------------------------
1343 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1344 //
1345 // OBJECT:    klass_word installed; klass_word != 0;
1346 //            obj->size() computes correct size
1347 //            [Perm Gen comment above continues to hold]
1348 //
1349 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1350 //
1351 //
1352 // STATE TRANSITION DIAGRAM
1353 //
1354 //        mut / parnew                     mut  /  parnew
1355 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1356 //  ^                                                                   |
1357 //  |------------------------ DEAD <------------------------------------|
1358 //         sweep                            mut
1359 //
1360 // While a block is in TRANSIENT state its size cannot be determined
1361 // so readers will either need to come back later or stall until
1362 // the size can be determined. Note that for the case of direct
1363 // allocation, P-bits, when available, may be used to determine the
1364 // size of an object that may not yet have been initialized.
1365 
1366 // Things to support parallel young-gen collection.
1367 oop
1368 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1369                                            oop old, markOop m,
1370                                            size_t word_sz) {
1371 #ifndef PRODUCT
1372   if (Universe::heap()->promotion_should_fail()) {
1373     return NULL;
1374   }
1375 #endif  // #ifndef PRODUCT
1376 
1377   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1378   PromotionInfo* promoInfo = &ps->promo;
1379   // if we are tracking promotions, then first ensure space for
1380   // promotion (including spooling space for saving header if necessary).
1381   // then allocate and copy, then track promoted info if needed.
1382   // When tracking (see PromotionInfo::track()), the mark word may
1383   // be displaced and in this case restoration of the mark word
1384   // occurs in the (oop_since_save_marks_)iterate phase.
1385   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1386     // Out of space for allocating spooling buffers;
1387     // try expanding and allocating spooling buffers.
1388     if (!expand_and_ensure_spooling_space(promoInfo)) {
1389       return NULL;
1390     }
1391   }
1392   assert(promoInfo->has_spooling_space(), "Control point invariant");
1393   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1394   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1395   if (obj_ptr == NULL) {
1396      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1397      if (obj_ptr == NULL) {
1398        return NULL;
1399      }
1400   }
1401   oop obj = oop(obj_ptr);
1402   OrderAccess::storestore();
1403   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1404   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1405   // IMPORTANT: See note on object initialization for CMS above.
1406   // Otherwise, copy the object.  Here we must be careful to insert the
1407   // klass pointer last, since this marks the block as an allocated object.
1408   // Except with compressed oops it's the mark word.
1409   HeapWord* old_ptr = (HeapWord*)old;
1410   // Restore the mark word copied above.
1411   obj->set_mark(m);
1412   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1413   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1414   OrderAccess::storestore();
1415 
1416   if (UseCompressedOops) {
1417     // Copy gap missed by (aligned) header size calculation below
1418     obj->set_klass_gap(old->klass_gap());
1419   }
1420   if (word_sz > (size_t)oopDesc::header_size()) {
1421     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1422                                  obj_ptr + oopDesc::header_size(),
1423                                  word_sz - oopDesc::header_size());
1424   }
1425 
1426   // Now we can track the promoted object, if necessary.  We take care
1427   // to delay the transition from uninitialized to full object
1428   // (i.e., insertion of klass pointer) until after, so that it
1429   // atomically becomes a promoted object.
1430   if (promoInfo->tracking()) {
1431     promoInfo->track((PromotedObject*)obj, old->klass());
1432   }
1433   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1434   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1435   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1436 
1437   // Finally, install the klass pointer (this should be volatile).
1438   OrderAccess::storestore();
1439   obj->set_klass(old->klass());
1440   // We should now be able to calculate the right size for this object
1441   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1442 
1443   collector()->promoted(true,          // parallel
1444                         obj_ptr, old->is_objArray(), word_sz);
1445 
1446   NOT_PRODUCT(
1447     Atomic::inc_ptr(&_numObjectsPromoted);
1448     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1449   )
1450 
1451   return obj;
1452 }
1453 
1454 void
1455 ConcurrentMarkSweepGeneration::
1456 par_promote_alloc_undo(int thread_num,
1457                        HeapWord* obj, size_t word_sz) {
1458   // CMS does not support promotion undo.
1459   ShouldNotReachHere();
1460 }
1461 
1462 void
1463 ConcurrentMarkSweepGeneration::
1464 par_promote_alloc_done(int thread_num) {
1465   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1466   ps->lab.retire(thread_num);
1467 }
1468 
1469 void
1470 ConcurrentMarkSweepGeneration::
1471 par_oop_since_save_marks_iterate_done(int thread_num) {
1472   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1473   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1474   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1475 }
1476 
1477 // XXXPERM
1478 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1479                                                    size_t size,
1480                                                    bool   tlab)
1481 {
1482   // We allow a STW collection only if a full
1483   // collection was requested.
1484   return full || should_allocate(size, tlab); // FIX ME !!!
1485   // This and promotion failure handling are connected at the
1486   // hip and should be fixed by untying them.
1487 }
1488 
1489 bool CMSCollector::shouldConcurrentCollect() {
1490   if (_full_gc_requested) {
1491     if (Verbose && PrintGCDetails) {
1492       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1493                              " gc request (or gc_locker)");
1494     }
1495     return true;
1496   }
1497 
1498   // For debugging purposes, change the type of collection.
1499   // If the rotation is not on the concurrent collection
1500   // type, don't start a concurrent collection.
1501   NOT_PRODUCT(
1502     if (RotateCMSCollectionTypes &&
1503         (_cmsGen->debug_collection_type() !=
1504           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1505       assert(_cmsGen->debug_collection_type() !=
1506         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1507         "Bad cms collection type");
1508       return false;
1509     }
1510   )
1511 
1512   FreelistLocker x(this);
1513   // ------------------------------------------------------------------
1514   // Print out lots of information which affects the initiation of
1515   // a collection.
1516   if (PrintCMSInitiationStatistics && stats().valid()) {
1517     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1518     gclog_or_tty->stamp();
1519     gclog_or_tty->print_cr("");
1520     stats().print_on(gclog_or_tty);
1521     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1522       stats().time_until_cms_gen_full());
1523     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1524     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1525                            _cmsGen->contiguous_available());
1526     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1527     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1528     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1529     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1530     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1531   }
1532   // ------------------------------------------------------------------
1533 
1534   // If the estimated time to complete a cms collection (cms_duration())
1535   // is less than the estimated time remaining until the cms generation
1536   // is full, start a collection.
1537   if (!UseCMSInitiatingOccupancyOnly) {
1538     if (stats().valid()) {
1539       if (stats().time_until_cms_start() == 0.0) {
1540         return true;
1541       }
1542     } else {
1543       // We want to conservatively collect somewhat early in order
1544       // to try and "bootstrap" our CMS/promotion statistics;
1545       // this branch will not fire after the first successful CMS
1546       // collection because the stats should then be valid.
1547       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1548         if (Verbose && PrintGCDetails) {
1549           gclog_or_tty->print_cr(
1550             " CMSCollector: collect for bootstrapping statistics:"
1551             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1552             _bootstrap_occupancy);
1553         }
1554         return true;
1555       }
1556     }
1557   }
1558 
1559   // Otherwise, we start a collection cycle if either the perm gen or
1560   // old gen want a collection cycle started. Each may use
1561   // an appropriate criterion for making this decision.
1562   // XXX We need to make sure that the gen expansion
1563   // criterion dovetails well with this. XXX NEED TO FIX THIS
1564   if (_cmsGen->should_concurrent_collect()) {
1565     if (Verbose && PrintGCDetails) {
1566       gclog_or_tty->print_cr("CMS old gen initiated");
1567     }
1568     return true;
1569   }
1570 
1571   // We start a collection if we believe an incremental collection may fail;
1572   // this is not likely to be productive in practice because it's probably too
1573   // late anyway.
1574   GenCollectedHeap* gch = GenCollectedHeap::heap();
1575   assert(gch->collector_policy()->is_two_generation_policy(),
1576          "You may want to check the correctness of the following");
1577   if (gch->incremental_collection_will_fail()) {
1578     if (PrintGCDetails && Verbose) {
1579       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1580     }
1581     return true;
1582   }
1583 
1584   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1585     bool res = update_should_unload_classes();
1586     if (res) {
1587       if (Verbose && PrintGCDetails) {
1588         gclog_or_tty->print_cr("CMS perm gen initiated");
1589       }
1590       return true;
1591     }
1592   }
1593   return false;
1594 }
1595 
1596 // Clear _expansion_cause fields of constituent generations
1597 void CMSCollector::clear_expansion_cause() {
1598   _cmsGen->clear_expansion_cause();
1599   _permGen->clear_expansion_cause();
1600 }
1601 
1602 // We should be conservative in starting a collection cycle.  To
1603 // start too eagerly runs the risk of collecting too often in the
1604 // extreme.  To collect too rarely falls back on full collections,
1605 // which works, even if not optimum in terms of concurrent work.
1606 // As a work around for too eagerly collecting, use the flag
1607 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1608 // giving the user an easily understandable way of controlling the
1609 // collections.
1610 // We want to start a new collection cycle if any of the following
1611 // conditions hold:
1612 // . our current occupancy exceeds the configured initiating occupancy
1613 //   for this generation, or
1614 // . we recently needed to expand this space and have not, since that
1615 //   expansion, done a collection of this generation, or
1616 // . the underlying space believes that it may be a good idea to initiate
1617 //   a concurrent collection (this may be based on criteria such as the
1618 //   following: the space uses linear allocation and linear allocation is
1619 //   going to fail, or there is believed to be excessive fragmentation in
1620 //   the generation, etc... or ...
1621 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1622 //   the case of the old generation, not the perm generation; see CR 6543076):
1623 //   we may be approaching a point at which allocation requests may fail because
1624 //   we will be out of sufficient free space given allocation rate estimates.]
1625 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1626 
1627   assert_lock_strong(freelistLock());
1628   if (occupancy() > initiating_occupancy()) {
1629     if (PrintGCDetails && Verbose) {
1630       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1631         short_name(), occupancy(), initiating_occupancy());
1632     }
1633     return true;
1634   }
1635   if (UseCMSInitiatingOccupancyOnly) {
1636     return false;
1637   }
1638   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1639     if (PrintGCDetails && Verbose) {
1640       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1641         short_name());
1642     }
1643     return true;
1644   }
1645   if (_cmsSpace->should_concurrent_collect()) {
1646     if (PrintGCDetails && Verbose) {
1647       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1648         short_name());
1649     }
1650     return true;
1651   }
1652   return false;
1653 }
1654 
1655 void ConcurrentMarkSweepGeneration::collect(bool   full,
1656                                             bool   clear_all_soft_refs,
1657                                             size_t size,
1658                                             bool   tlab)
1659 {
1660   collector()->collect(full, clear_all_soft_refs, size, tlab);
1661 }
1662 
1663 void CMSCollector::collect(bool   full,
1664                            bool   clear_all_soft_refs,
1665                            size_t size,
1666                            bool   tlab)
1667 {
1668   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1669     // For debugging purposes skip the collection if the state
1670     // is not currently idle
1671     if (TraceCMSState) {
1672       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1673         Thread::current(), full, _collectorState);
1674     }
1675     return;
1676   }
1677 
1678   // The following "if" branch is present for defensive reasons.
1679   // In the current uses of this interface, it can be replaced with:
1680   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1681   // But I am not placing that assert here to allow future
1682   // generality in invoking this interface.
1683   if (GC_locker::is_active()) {
1684     // A consistency test for GC_locker
1685     assert(GC_locker::needs_gc(), "Should have been set already");
1686     // Skip this foreground collection, instead
1687     // expanding the heap if necessary.
1688     // Need the free list locks for the call to free() in compute_new_size()
1689     compute_new_size();
1690     return;
1691   }
1692   acquire_control_and_collect(full, clear_all_soft_refs);
1693   _full_gcs_since_conc_gc++;
1694 
1695 }
1696 
1697 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1698   GenCollectedHeap* gch = GenCollectedHeap::heap();
1699   unsigned int gc_count = gch->total_full_collections();
1700   if (gc_count == full_gc_count) {
1701     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1702     _full_gc_requested = true;
1703     CGC_lock->notify();   // nudge CMS thread
1704   }
1705 }
1706 
1707 
1708 // The foreground and background collectors need to coordinate in order
1709 // to make sure that they do not mutually interfere with CMS collections.
1710 // When a background collection is active,
1711 // the foreground collector may need to take over (preempt) and
1712 // synchronously complete an ongoing collection. Depending on the
1713 // frequency of the background collections and the heap usage
1714 // of the application, this preemption can be seldom or frequent.
1715 // There are only certain
1716 // points in the background collection that the "collection-baton"
1717 // can be passed to the foreground collector.
1718 //
1719 // The foreground collector will wait for the baton before
1720 // starting any part of the collection.  The foreground collector
1721 // will only wait at one location.
1722 //
1723 // The background collector will yield the baton before starting a new
1724 // phase of the collection (e.g., before initial marking, marking from roots,
1725 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1726 // of the loop which switches the phases. The background collector does some
1727 // of the phases (initial mark, final re-mark) with the world stopped.
1728 // Because of locking involved in stopping the world,
1729 // the foreground collector should not block waiting for the background
1730 // collector when it is doing a stop-the-world phase.  The background
1731 // collector will yield the baton at an additional point just before
1732 // it enters a stop-the-world phase.  Once the world is stopped, the
1733 // background collector checks the phase of the collection.  If the
1734 // phase has not changed, it proceeds with the collection.  If the
1735 // phase has changed, it skips that phase of the collection.  See
1736 // the comments on the use of the Heap_lock in collect_in_background().
1737 //
1738 // Variable used in baton passing.
1739 //   _foregroundGCIsActive - Set to true by the foreground collector when
1740 //      it wants the baton.  The foreground clears it when it has finished
1741 //      the collection.
1742 //   _foregroundGCShouldWait - Set to true by the background collector
1743 //        when it is running.  The foreground collector waits while
1744 //      _foregroundGCShouldWait is true.
1745 //  CGC_lock - monitor used to protect access to the above variables
1746 //      and to notify the foreground and background collectors.
1747 //  _collectorState - current state of the CMS collection.
1748 //
1749 // The foreground collector
1750 //   acquires the CGC_lock
1751 //   sets _foregroundGCIsActive
1752 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1753 //     various locks acquired in preparation for the collection
1754 //     are released so as not to block the background collector
1755 //     that is in the midst of a collection
1756 //   proceeds with the collection
1757 //   clears _foregroundGCIsActive
1758 //   returns
1759 //
1760 // The background collector in a loop iterating on the phases of the
1761 //      collection
1762 //   acquires the CGC_lock
1763 //   sets _foregroundGCShouldWait
1764 //   if _foregroundGCIsActive is set
1765 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1766 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1767 //     and exits the loop.
1768 //   otherwise
1769 //     proceed with that phase of the collection
1770 //     if the phase is a stop-the-world phase,
1771 //       yield the baton once more just before enqueueing
1772 //       the stop-world CMS operation (executed by the VM thread).
1773 //   returns after all phases of the collection are done
1774 //
1775 
1776 void CMSCollector::acquire_control_and_collect(bool full,
1777         bool clear_all_soft_refs) {
1778   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1779   assert(!Thread::current()->is_ConcurrentGC_thread(),
1780          "shouldn't try to acquire control from self!");
1781 
1782   // Start the protocol for acquiring control of the
1783   // collection from the background collector (aka CMS thread).
1784   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1785          "VM thread should have CMS token");
1786   // Remember the possibly interrupted state of an ongoing
1787   // concurrent collection
1788   CollectorState first_state = _collectorState;
1789 
1790   // Signal to a possibly ongoing concurrent collection that
1791   // we want to do a foreground collection.
1792   _foregroundGCIsActive = true;
1793 
1794   // Disable incremental mode during a foreground collection.
1795   ICMSDisabler icms_disabler;
1796 
1797   // release locks and wait for a notify from the background collector
1798   // releasing the locks in only necessary for phases which
1799   // do yields to improve the granularity of the collection.
1800   assert_lock_strong(bitMapLock());
1801   // We need to lock the Free list lock for the space that we are
1802   // currently collecting.
1803   assert(haveFreelistLocks(), "Must be holding free list locks");
1804   bitMapLock()->unlock();
1805   releaseFreelistLocks();
1806   {
1807     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1808     if (_foregroundGCShouldWait) {
1809       // We are going to be waiting for action for the CMS thread;
1810       // it had better not be gone (for instance at shutdown)!
1811       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1812              "CMS thread must be running");
1813       // Wait here until the background collector gives us the go-ahead
1814       ConcurrentMarkSweepThread::clear_CMS_flag(
1815         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1816       // Get a possibly blocked CMS thread going:
1817       //   Note that we set _foregroundGCIsActive true above,
1818       //   without protection of the CGC_lock.
1819       CGC_lock->notify();
1820       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1821              "Possible deadlock");
1822       while (_foregroundGCShouldWait) {
1823         // wait for notification
1824         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1825         // Possibility of delay/starvation here, since CMS token does
1826         // not know to give priority to VM thread? Actually, i think
1827         // there wouldn't be any delay/starvation, but the proof of
1828         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1829       }
1830       ConcurrentMarkSweepThread::set_CMS_flag(
1831         ConcurrentMarkSweepThread::CMS_vm_has_token);
1832     }
1833   }
1834   // The CMS_token is already held.  Get back the other locks.
1835   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1836          "VM thread should have CMS token");
1837   getFreelistLocks();
1838   bitMapLock()->lock_without_safepoint_check();
1839   if (TraceCMSState) {
1840     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1841       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1842     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1843   }
1844 
1845   // Check if we need to do a compaction, or if not, whether
1846   // we need to start the mark-sweep from scratch.
1847   bool should_compact    = false;
1848   bool should_start_over = false;
1849   decide_foreground_collection_type(clear_all_soft_refs,
1850     &should_compact, &should_start_over);
1851 
1852 NOT_PRODUCT(
1853   if (RotateCMSCollectionTypes) {
1854     if (_cmsGen->debug_collection_type() ==
1855         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1856       should_compact = true;
1857     } else if (_cmsGen->debug_collection_type() ==
1858                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1859       should_compact = false;
1860     }
1861   }
1862 )
1863 
1864   if (PrintGCDetails && first_state > Idling) {
1865     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1866     if (GCCause::is_user_requested_gc(cause) ||
1867         GCCause::is_serviceability_requested_gc(cause)) {
1868       gclog_or_tty->print(" (concurrent mode interrupted)");
1869     } else {
1870       gclog_or_tty->print(" (concurrent mode failure)");
1871     }
1872   }
1873 
1874   if (should_compact) {
1875     // If the collection is being acquired from the background
1876     // collector, there may be references on the discovered
1877     // references lists that have NULL referents (being those
1878     // that were concurrently cleared by a mutator) or
1879     // that are no longer active (having been enqueued concurrently
1880     // by the mutator).
1881     // Scrub the list of those references because Mark-Sweep-Compact
1882     // code assumes referents are not NULL and that all discovered
1883     // Reference objects are active.
1884     ref_processor()->clean_up_discovered_references();
1885 
1886     do_compaction_work(clear_all_soft_refs);
1887 
1888     // Has the GC time limit been exceeded?
1889     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1890     size_t max_eden_size = young_gen->max_capacity() -
1891                            young_gen->to()->capacity() -
1892                            young_gen->from()->capacity();
1893     GenCollectedHeap* gch = GenCollectedHeap::heap();
1894     GCCause::Cause gc_cause = gch->gc_cause();
1895     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1896                                            young_gen->eden()->used(),
1897                                            _cmsGen->max_capacity(),
1898                                            max_eden_size,
1899                                            full,
1900                                            gc_cause,
1901                                            gch->collector_policy());
1902   } else {
1903     do_mark_sweep_work(clear_all_soft_refs, first_state,
1904       should_start_over);
1905   }
1906   // Reset the expansion cause, now that we just completed
1907   // a collection cycle.
1908   clear_expansion_cause();
1909   _foregroundGCIsActive = false;
1910   return;
1911 }
1912 
1913 // Resize the perm generation and the tenured generation
1914 // after obtaining the free list locks for the
1915 // two generations.
1916 void CMSCollector::compute_new_size() {
1917   assert_locked_or_safepoint(Heap_lock);
1918   FreelistLocker z(this);
1919   _permGen->compute_new_size();
1920   _cmsGen->compute_new_size();
1921 }
1922 
1923 // A work method used by foreground collection to determine
1924 // what type of collection (compacting or not, continuing or fresh)
1925 // it should do.
1926 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1927 // and CMSCompactWhenClearAllSoftRefs the default in the future
1928 // and do away with the flags after a suitable period.
1929 void CMSCollector::decide_foreground_collection_type(
1930   bool clear_all_soft_refs, bool* should_compact,
1931   bool* should_start_over) {
1932   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1933   // flag is set, and we have either requested a System.gc() or
1934   // the number of full gc's since the last concurrent cycle
1935   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1936   // or if an incremental collection has failed
1937   GenCollectedHeap* gch = GenCollectedHeap::heap();
1938   assert(gch->collector_policy()->is_two_generation_policy(),
1939          "You may want to check the correctness of the following");
1940   // Inform cms gen if this was due to partial collection failing.
1941   // The CMS gen may use this fact to determine its expansion policy.
1942   if (gch->incremental_collection_will_fail()) {
1943     assert(!_cmsGen->incremental_collection_failed(),
1944            "Should have been noticed, reacted to and cleared");
1945     _cmsGen->set_incremental_collection_failed();
1946   }
1947   *should_compact =
1948     UseCMSCompactAtFullCollection &&
1949     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1950      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1951      gch->incremental_collection_will_fail());
1952   *should_start_over = false;
1953   if (clear_all_soft_refs && !*should_compact) {
1954     // We are about to do a last ditch collection attempt
1955     // so it would normally make sense to do a compaction
1956     // to reclaim as much space as possible.
1957     if (CMSCompactWhenClearAllSoftRefs) {
1958       // Default: The rationale is that in this case either
1959       // we are past the final marking phase, in which case
1960       // we'd have to start over, or so little has been done
1961       // that there's little point in saving that work. Compaction
1962       // appears to be the sensible choice in either case.
1963       *should_compact = true;
1964     } else {
1965       // We have been asked to clear all soft refs, but not to
1966       // compact. Make sure that we aren't past the final checkpoint
1967       // phase, for that is where we process soft refs. If we are already
1968       // past that phase, we'll need to redo the refs discovery phase and
1969       // if necessary clear soft refs that weren't previously
1970       // cleared. We do so by remembering the phase in which
1971       // we came in, and if we are past the refs processing
1972       // phase, we'll choose to just redo the mark-sweep
1973       // collection from scratch.
1974       if (_collectorState > FinalMarking) {
1975         // We are past the refs processing phase;
1976         // start over and do a fresh synchronous CMS cycle
1977         _collectorState = Resetting; // skip to reset to start new cycle
1978         reset(false /* == !asynch */);
1979         *should_start_over = true;
1980       } // else we can continue a possibly ongoing current cycle
1981     }
1982   }
1983 }
1984 
1985 // A work method used by the foreground collector to do
1986 // a mark-sweep-compact.
1987 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1988   GenCollectedHeap* gch = GenCollectedHeap::heap();
1989   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1990   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1991     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1992       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1993   }
1994 
1995   // Sample collection interval time and reset for collection pause.
1996   if (UseAdaptiveSizePolicy) {
1997     size_policy()->msc_collection_begin();
1998   }
1999 
2000   // Temporarily widen the span of the weak reference processing to
2001   // the entire heap.
2002   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2003   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
2004 
2005   // Temporarily, clear the "is_alive_non_header" field of the
2006   // reference processor.
2007   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
2008 
2009   // Temporarily make reference _processing_ single threaded (non-MT).
2010   ReferenceProcessorMTProcMutator z(ref_processor(), false);
2011 
2012   // Temporarily make refs discovery atomic
2013   ReferenceProcessorAtomicMutator w(ref_processor(), true);
2014 
2015   ref_processor()->set_enqueuing_is_done(false);
2016   ref_processor()->enable_discovery();
2017   ref_processor()->setup_policy(clear_all_soft_refs);
2018   // If an asynchronous collection finishes, the _modUnionTable is
2019   // all clear.  If we are assuming the collection from an asynchronous
2020   // collection, clear the _modUnionTable.
2021   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2022     "_modUnionTable should be clear if the baton was not passed");
2023   _modUnionTable.clear_all();
2024 
2025   // We must adjust the allocation statistics being maintained
2026   // in the free list space. We do so by reading and clearing
2027   // the sweep timer and updating the block flux rate estimates below.
2028   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2029   if (_inter_sweep_timer.is_active()) {
2030     _inter_sweep_timer.stop();
2031     // Note that we do not use this sample to update the _inter_sweep_estimate.
2032     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2033                                             _inter_sweep_estimate.padded_average(),
2034                                             _intra_sweep_estimate.padded_average());
2035   }
2036 
2037   {
2038     TraceCMSMemoryManagerStats();
2039   }
2040   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2041     ref_processor(), clear_all_soft_refs);
2042   #ifdef ASSERT
2043     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2044     size_t free_size = cms_space->free();
2045     assert(free_size ==
2046            pointer_delta(cms_space->end(), cms_space->compaction_top())
2047            * HeapWordSize,
2048       "All the free space should be compacted into one chunk at top");
2049     assert(cms_space->dictionary()->totalChunkSize(
2050                                       debug_only(cms_space->freelistLock())) == 0 ||
2051            cms_space->totalSizeInIndexedFreeLists() == 0,
2052       "All the free space should be in a single chunk");
2053     size_t num = cms_space->totalCount();
2054     assert((free_size == 0 && num == 0) ||
2055            (free_size > 0  && (num == 1 || num == 2)),
2056          "There should be at most 2 free chunks after compaction");
2057   #endif // ASSERT
2058   _collectorState = Resetting;
2059   assert(_restart_addr == NULL,
2060          "Should have been NULL'd before baton was passed");
2061   reset(false /* == !asynch */);
2062   _cmsGen->reset_after_compaction();
2063   _concurrent_cycles_since_last_unload = 0;
2064 
2065   if (verifying() && !should_unload_classes()) {
2066     perm_gen_verify_bit_map()->clear_all();
2067   }
2068 
2069   // Clear any data recorded in the PLAB chunk arrays.
2070   if (_survivor_plab_array != NULL) {
2071     reset_survivor_plab_arrays();
2072   }
2073 
2074   // Adjust the per-size allocation stats for the next epoch.
2075   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2076   // Restart the "inter sweep timer" for the next epoch.
2077   _inter_sweep_timer.reset();
2078   _inter_sweep_timer.start();
2079 
2080   // Sample collection pause time and reset for collection interval.
2081   if (UseAdaptiveSizePolicy) {
2082     size_policy()->msc_collection_end(gch->gc_cause());
2083   }
2084 
2085   // For a mark-sweep-compact, compute_new_size() will be called
2086   // in the heap's do_collection() method.
2087 }
2088 
2089 // A work method used by the foreground collector to do
2090 // a mark-sweep, after taking over from a possibly on-going
2091 // concurrent mark-sweep collection.
2092 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2093   CollectorState first_state, bool should_start_over) {
2094   if (PrintGC && Verbose) {
2095     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2096       "collector with count %d",
2097       _full_gcs_since_conc_gc);
2098   }
2099   switch (_collectorState) {
2100     case Idling:
2101       if (first_state == Idling || should_start_over) {
2102         // The background GC was not active, or should
2103         // restarted from scratch;  start the cycle.
2104         _collectorState = InitialMarking;
2105       }
2106       // If first_state was not Idling, then a background GC
2107       // was in progress and has now finished.  No need to do it
2108       // again.  Leave the state as Idling.
2109       break;
2110     case Precleaning:
2111       // In the foreground case don't do the precleaning since
2112       // it is not done concurrently and there is extra work
2113       // required.
2114       _collectorState = FinalMarking;
2115   }
2116   if (PrintGCDetails &&
2117       (_collectorState > Idling ||
2118        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2119     gclog_or_tty->print(" (concurrent mode failure)");
2120   }
2121   collect_in_foreground(clear_all_soft_refs);
2122 
2123   // For a mark-sweep, compute_new_size() will be called
2124   // in the heap's do_collection() method.
2125 }
2126 
2127 
2128 void CMSCollector::getFreelistLocks() const {
2129   // Get locks for all free lists in all generations that this
2130   // collector is responsible for
2131   _cmsGen->freelistLock()->lock_without_safepoint_check();
2132   _permGen->freelistLock()->lock_without_safepoint_check();
2133 }
2134 
2135 void CMSCollector::releaseFreelistLocks() const {
2136   // Release locks for all free lists in all generations that this
2137   // collector is responsible for
2138   _cmsGen->freelistLock()->unlock();
2139   _permGen->freelistLock()->unlock();
2140 }
2141 
2142 bool CMSCollector::haveFreelistLocks() const {
2143   // Check locks for all free lists in all generations that this
2144   // collector is responsible for
2145   assert_lock_strong(_cmsGen->freelistLock());
2146   assert_lock_strong(_permGen->freelistLock());
2147   PRODUCT_ONLY(ShouldNotReachHere());
2148   return true;
2149 }
2150 
2151 // A utility class that is used by the CMS collector to
2152 // temporarily "release" the foreground collector from its
2153 // usual obligation to wait for the background collector to
2154 // complete an ongoing phase before proceeding.
2155 class ReleaseForegroundGC: public StackObj {
2156  private:
2157   CMSCollector* _c;
2158  public:
2159   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2160     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2161     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2162     // allow a potentially blocked foreground collector to proceed
2163     _c->_foregroundGCShouldWait = false;
2164     if (_c->_foregroundGCIsActive) {
2165       CGC_lock->notify();
2166     }
2167     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2168            "Possible deadlock");
2169   }
2170 
2171   ~ReleaseForegroundGC() {
2172     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2173     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2174     _c->_foregroundGCShouldWait = true;
2175   }
2176 };
2177 
2178 // There are separate collect_in_background and collect_in_foreground because of
2179 // the different locking requirements of the background collector and the
2180 // foreground collector.  There was originally an attempt to share
2181 // one "collect" method between the background collector and the foreground
2182 // collector but the if-then-else required made it cleaner to have
2183 // separate methods.
2184 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2185   assert(Thread::current()->is_ConcurrentGC_thread(),
2186     "A CMS asynchronous collection is only allowed on a CMS thread.");
2187 
2188   GenCollectedHeap* gch = GenCollectedHeap::heap();
2189   {
2190     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2191     MutexLockerEx hl(Heap_lock, safepoint_check);
2192     FreelistLocker fll(this);
2193     MutexLockerEx x(CGC_lock, safepoint_check);
2194     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2195       // The foreground collector is active or we're
2196       // not using asynchronous collections.  Skip this
2197       // background collection.
2198       assert(!_foregroundGCShouldWait, "Should be clear");
2199       return;
2200     } else {
2201       assert(_collectorState == Idling, "Should be idling before start.");
2202       _collectorState = InitialMarking;
2203       // Reset the expansion cause, now that we are about to begin
2204       // a new cycle.
2205       clear_expansion_cause();
2206     }
2207     // Decide if we want to enable class unloading as part of the
2208     // ensuing concurrent GC cycle.
2209     update_should_unload_classes();
2210     _full_gc_requested = false;           // acks all outstanding full gc requests
2211     // Signal that we are about to start a collection
2212     gch->increment_total_full_collections();  // ... starting a collection cycle
2213     _collection_count_start = gch->total_full_collections();
2214   }
2215 
2216   // Used for PrintGC
2217   size_t prev_used;
2218   if (PrintGC && Verbose) {
2219     prev_used = _cmsGen->used(); // XXXPERM
2220   }
2221 
2222   // The change of the collection state is normally done at this level;
2223   // the exceptions are phases that are executed while the world is
2224   // stopped.  For those phases the change of state is done while the
2225   // world is stopped.  For baton passing purposes this allows the
2226   // background collector to finish the phase and change state atomically.
2227   // The foreground collector cannot wait on a phase that is done
2228   // while the world is stopped because the foreground collector already
2229   // has the world stopped and would deadlock.
2230   while (_collectorState != Idling) {
2231     if (TraceCMSState) {
2232       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2233         Thread::current(), _collectorState);
2234     }
2235     // The foreground collector
2236     //   holds the Heap_lock throughout its collection.
2237     //   holds the CMS token (but not the lock)
2238     //     except while it is waiting for the background collector to yield.
2239     //
2240     // The foreground collector should be blocked (not for long)
2241     //   if the background collector is about to start a phase
2242     //   executed with world stopped.  If the background
2243     //   collector has already started such a phase, the
2244     //   foreground collector is blocked waiting for the
2245     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2246     //   are executed in the VM thread.
2247     //
2248     // The locking order is
2249     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2250     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2251     //   CMS token  (claimed in
2252     //                stop_world_and_do() -->
2253     //                  safepoint_synchronize() -->
2254     //                    CMSThread::synchronize())
2255 
2256     {
2257       // Check if the FG collector wants us to yield.
2258       CMSTokenSync x(true); // is cms thread
2259       if (waitForForegroundGC()) {
2260         // We yielded to a foreground GC, nothing more to be
2261         // done this round.
2262         assert(_foregroundGCShouldWait == false, "We set it to false in "
2263                "waitForForegroundGC()");
2264         if (TraceCMSState) {
2265           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2266             " exiting collection CMS state %d",
2267             Thread::current(), _collectorState);
2268         }
2269         return;
2270       } else {
2271         // The background collector can run but check to see if the
2272         // foreground collector has done a collection while the
2273         // background collector was waiting to get the CGC_lock
2274         // above.  If yes, break so that _foregroundGCShouldWait
2275         // is cleared before returning.
2276         if (_collectorState == Idling) {
2277           break;
2278         }
2279       }
2280     }
2281 
2282     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2283       "should be waiting");
2284 
2285     switch (_collectorState) {
2286       case InitialMarking:
2287         {
2288           ReleaseForegroundGC x(this);
2289           stats().record_cms_begin();
2290 
2291           VM_CMS_Initial_Mark initial_mark_op(this);
2292           VMThread::execute(&initial_mark_op);
2293         }
2294         // The collector state may be any legal state at this point
2295         // since the background collector may have yielded to the
2296         // foreground collector.
2297         break;
2298       case Marking:
2299         // initial marking in checkpointRootsInitialWork has been completed
2300         if (markFromRoots(true)) { // we were successful
2301           assert(_collectorState == Precleaning, "Collector state should "
2302             "have changed");
2303         } else {
2304           assert(_foregroundGCIsActive, "Internal state inconsistency");
2305         }
2306         break;
2307       case Precleaning:
2308         if (UseAdaptiveSizePolicy) {
2309           size_policy()->concurrent_precleaning_begin();
2310         }
2311         // marking from roots in markFromRoots has been completed
2312         preclean();
2313         if (UseAdaptiveSizePolicy) {
2314           size_policy()->concurrent_precleaning_end();
2315         }
2316         assert(_collectorState == AbortablePreclean ||
2317                _collectorState == FinalMarking,
2318                "Collector state should have changed");
2319         break;
2320       case AbortablePreclean:
2321         if (UseAdaptiveSizePolicy) {
2322         size_policy()->concurrent_phases_resume();
2323         }
2324         abortable_preclean();
2325         if (UseAdaptiveSizePolicy) {
2326           size_policy()->concurrent_precleaning_end();
2327         }
2328         assert(_collectorState == FinalMarking, "Collector state should "
2329           "have changed");
2330         break;
2331       case FinalMarking:
2332         {
2333           ReleaseForegroundGC x(this);
2334 
2335           VM_CMS_Final_Remark final_remark_op(this);
2336           VMThread::execute(&final_remark_op);
2337         }
2338         assert(_foregroundGCShouldWait, "block post-condition");
2339         break;
2340       case Sweeping:
2341         if (UseAdaptiveSizePolicy) {
2342           size_policy()->concurrent_sweeping_begin();
2343         }
2344         // final marking in checkpointRootsFinal has been completed
2345         sweep(true);
2346         assert(_collectorState == Resizing, "Collector state change "
2347           "to Resizing must be done under the free_list_lock");
2348         _full_gcs_since_conc_gc = 0;
2349 
2350         // Stop the timers for adaptive size policy for the concurrent phases
2351         if (UseAdaptiveSizePolicy) {
2352           size_policy()->concurrent_sweeping_end();
2353           size_policy()->concurrent_phases_end(gch->gc_cause(),
2354                                              gch->prev_gen(_cmsGen)->capacity(),
2355                                              _cmsGen->free());
2356         }
2357 
2358       case Resizing: {
2359         // Sweeping has been completed...
2360         // At this point the background collection has completed.
2361         // Don't move the call to compute_new_size() down
2362         // into code that might be executed if the background
2363         // collection was preempted.
2364         {
2365           ReleaseForegroundGC x(this);   // unblock FG collection
2366           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2367           CMSTokenSync        z(true);   // not strictly needed.
2368           if (_collectorState == Resizing) {
2369             compute_new_size();
2370             _collectorState = Resetting;
2371           } else {
2372             assert(_collectorState == Idling, "The state should only change"
2373                    " because the foreground collector has finished the collection");
2374           }
2375         }
2376         break;
2377       }
2378       case Resetting:
2379         // CMS heap resizing has been completed
2380         reset(true);
2381         assert(_collectorState == Idling, "Collector state should "
2382           "have changed");
2383         stats().record_cms_end();
2384         // Don't move the concurrent_phases_end() and compute_new_size()
2385         // calls to here because a preempted background collection
2386         // has it's state set to "Resetting".
2387         break;
2388       case Idling:
2389       default:
2390         ShouldNotReachHere();
2391         break;
2392     }
2393     if (TraceCMSState) {
2394       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2395         Thread::current(), _collectorState);
2396     }
2397     assert(_foregroundGCShouldWait, "block post-condition");
2398   }
2399 
2400   // Should this be in gc_epilogue?
2401   collector_policy()->counters()->update_counters();
2402 
2403   {
2404     // Clear _foregroundGCShouldWait and, in the event that the
2405     // foreground collector is waiting, notify it, before
2406     // returning.
2407     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2408     _foregroundGCShouldWait = false;
2409     if (_foregroundGCIsActive) {
2410       CGC_lock->notify();
2411     }
2412     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2413            "Possible deadlock");
2414   }
2415   if (TraceCMSState) {
2416     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2417       " exiting collection CMS state %d",
2418       Thread::current(), _collectorState);
2419   }
2420   if (PrintGC && Verbose) {
2421     _cmsGen->print_heap_change(prev_used);
2422   }
2423 }
2424 
2425 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2426   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2427          "Foreground collector should be waiting, not executing");
2428   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2429     "may only be done by the VM Thread with the world stopped");
2430   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2431          "VM thread should have CMS token");
2432 
2433   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2434     true, gclog_or_tty);)
2435   if (UseAdaptiveSizePolicy) {
2436     size_policy()->ms_collection_begin();
2437   }
2438   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2439 
2440   HandleMark hm;  // Discard invalid handles created during verification
2441 
2442   if (VerifyBeforeGC &&
2443       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2444     Universe::verify(true);
2445   }
2446 
2447   // Snapshot the soft reference policy to be used in this collection cycle.
2448   ref_processor()->setup_policy(clear_all_soft_refs);
2449 
2450   bool init_mark_was_synchronous = false; // until proven otherwise
2451   while (_collectorState != Idling) {
2452     if (TraceCMSState) {
2453       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2454         Thread::current(), _collectorState);
2455     }
2456     switch (_collectorState) {
2457       case InitialMarking:
2458         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2459         checkpointRootsInitial(false);
2460         assert(_collectorState == Marking, "Collector state should have changed"
2461           " within checkpointRootsInitial()");
2462         break;
2463       case Marking:
2464         // initial marking in checkpointRootsInitialWork has been completed
2465         if (VerifyDuringGC &&
2466             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2467           gclog_or_tty->print("Verify before initial mark: ");
2468           Universe::verify(true);
2469         }
2470         {
2471           bool res = markFromRoots(false);
2472           assert(res && _collectorState == FinalMarking, "Collector state should "
2473             "have changed");
2474           break;
2475         }
2476       case FinalMarking:
2477         if (VerifyDuringGC &&
2478             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2479           gclog_or_tty->print("Verify before re-mark: ");
2480           Universe::verify(true);
2481         }
2482         checkpointRootsFinal(false, clear_all_soft_refs,
2483                              init_mark_was_synchronous);
2484         assert(_collectorState == Sweeping, "Collector state should not "
2485           "have changed within checkpointRootsFinal()");
2486         break;
2487       case Sweeping:
2488         // final marking in checkpointRootsFinal has been completed
2489         if (VerifyDuringGC &&
2490             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2491           gclog_or_tty->print("Verify before sweep: ");
2492           Universe::verify(true);
2493         }
2494         sweep(false);
2495         assert(_collectorState == Resizing, "Incorrect state");
2496         break;
2497       case Resizing: {
2498         // Sweeping has been completed; the actual resize in this case
2499         // is done separately; nothing to be done in this state.
2500         _collectorState = Resetting;
2501         break;
2502       }
2503       case Resetting:
2504         // The heap has been resized.
2505         if (VerifyDuringGC &&
2506             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2507           gclog_or_tty->print("Verify before reset: ");
2508           Universe::verify(true);
2509         }
2510         reset(false);
2511         assert(_collectorState == Idling, "Collector state should "
2512           "have changed");
2513         break;
2514       case Precleaning:
2515       case AbortablePreclean:
2516         // Elide the preclean phase
2517         _collectorState = FinalMarking;
2518         break;
2519       default:
2520         ShouldNotReachHere();
2521     }
2522     if (TraceCMSState) {
2523       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2524         Thread::current(), _collectorState);
2525     }
2526   }
2527 
2528   if (UseAdaptiveSizePolicy) {
2529     GenCollectedHeap* gch = GenCollectedHeap::heap();
2530     size_policy()->ms_collection_end(gch->gc_cause());
2531   }
2532 
2533   if (VerifyAfterGC &&
2534       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2535     Universe::verify(true);
2536   }
2537   if (TraceCMSState) {
2538     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2539       " exiting collection CMS state %d",
2540       Thread::current(), _collectorState);
2541   }
2542 }
2543 
2544 bool CMSCollector::waitForForegroundGC() {
2545   bool res = false;
2546   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2547          "CMS thread should have CMS token");
2548   // Block the foreground collector until the
2549   // background collectors decides whether to
2550   // yield.
2551   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2552   _foregroundGCShouldWait = true;
2553   if (_foregroundGCIsActive) {
2554     // The background collector yields to the
2555     // foreground collector and returns a value
2556     // indicating that it has yielded.  The foreground
2557     // collector can proceed.
2558     res = true;
2559     _foregroundGCShouldWait = false;
2560     ConcurrentMarkSweepThread::clear_CMS_flag(
2561       ConcurrentMarkSweepThread::CMS_cms_has_token);
2562     ConcurrentMarkSweepThread::set_CMS_flag(
2563       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2564     // Get a possibly blocked foreground thread going
2565     CGC_lock->notify();
2566     if (TraceCMSState) {
2567       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2568         Thread::current(), _collectorState);
2569     }
2570     while (_foregroundGCIsActive) {
2571       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2572     }
2573     ConcurrentMarkSweepThread::set_CMS_flag(
2574       ConcurrentMarkSweepThread::CMS_cms_has_token);
2575     ConcurrentMarkSweepThread::clear_CMS_flag(
2576       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2577   }
2578   if (TraceCMSState) {
2579     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2580       Thread::current(), _collectorState);
2581   }
2582   return res;
2583 }
2584 
2585 // Because of the need to lock the free lists and other structures in
2586 // the collector, common to all the generations that the collector is
2587 // collecting, we need the gc_prologues of individual CMS generations
2588 // delegate to their collector. It may have been simpler had the
2589 // current infrastructure allowed one to call a prologue on a
2590 // collector. In the absence of that we have the generation's
2591 // prologue delegate to the collector, which delegates back
2592 // some "local" work to a worker method in the individual generations
2593 // that it's responsible for collecting, while itself doing any
2594 // work common to all generations it's responsible for. A similar
2595 // comment applies to the  gc_epilogue()'s.
2596 // The role of the varaible _between_prologue_and_epilogue is to
2597 // enforce the invocation protocol.
2598 void CMSCollector::gc_prologue(bool full) {
2599   // Call gc_prologue_work() for each CMSGen and PermGen that
2600   // we are responsible for.
2601 
2602   // The following locking discipline assumes that we are only called
2603   // when the world is stopped.
2604   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2605 
2606   // The CMSCollector prologue must call the gc_prologues for the
2607   // "generations" (including PermGen if any) that it's responsible
2608   // for.
2609 
2610   assert(   Thread::current()->is_VM_thread()
2611          || (   CMSScavengeBeforeRemark
2612              && Thread::current()->is_ConcurrentGC_thread()),
2613          "Incorrect thread type for prologue execution");
2614 
2615   if (_between_prologue_and_epilogue) {
2616     // We have already been invoked; this is a gc_prologue delegation
2617     // from yet another CMS generation that we are responsible for, just
2618     // ignore it since all relevant work has already been done.
2619     return;
2620   }
2621 
2622   // set a bit saying prologue has been called; cleared in epilogue
2623   _between_prologue_and_epilogue = true;
2624   // Claim locks for common data structures, then call gc_prologue_work()
2625   // for each CMSGen and PermGen that we are responsible for.
2626 
2627   getFreelistLocks();   // gets free list locks on constituent spaces
2628   bitMapLock()->lock_without_safepoint_check();
2629 
2630   // Should call gc_prologue_work() for all cms gens we are responsible for
2631   bool registerClosure =    _collectorState >= Marking
2632                          && _collectorState < Sweeping;
2633   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2634                                                &_modUnionClosurePar
2635                                                : &_modUnionClosure;
2636   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2637   _permGen->gc_prologue_work(full, registerClosure, muc);
2638 
2639   if (!full) {
2640     stats().record_gc0_begin();
2641   }
2642 }
2643 
2644 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2645   // Delegate to CMScollector which knows how to coordinate between
2646   // this and any other CMS generations that it is responsible for
2647   // collecting.
2648   collector()->gc_prologue(full);
2649 }
2650 
2651 // This is a "private" interface for use by this generation's CMSCollector.
2652 // Not to be called directly by any other entity (for instance,
2653 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2654 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2655   bool registerClosure, ModUnionClosure* modUnionClosure) {
2656   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2657   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2658     "Should be NULL");
2659   if (registerClosure) {
2660     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2661   }
2662   cmsSpace()->gc_prologue();
2663   // Clear stat counters
2664   NOT_PRODUCT(
2665     assert(_numObjectsPromoted == 0, "check");
2666     assert(_numWordsPromoted   == 0, "check");
2667     if (Verbose && PrintGC) {
2668       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2669                           SIZE_FORMAT" bytes concurrently",
2670       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2671     }
2672     _numObjectsAllocated = 0;
2673     _numWordsAllocated   = 0;
2674   )
2675 }
2676 
2677 void CMSCollector::gc_epilogue(bool full) {
2678   // The following locking discipline assumes that we are only called
2679   // when the world is stopped.
2680   assert(SafepointSynchronize::is_at_safepoint(),
2681          "world is stopped assumption");
2682 
2683   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2684   // if linear allocation blocks need to be appropriately marked to allow the
2685   // the blocks to be parsable. We also check here whether we need to nudge the
2686   // CMS collector thread to start a new cycle (if it's not already active).
2687   assert(   Thread::current()->is_VM_thread()
2688          || (   CMSScavengeBeforeRemark
2689              && Thread::current()->is_ConcurrentGC_thread()),
2690          "Incorrect thread type for epilogue execution");
2691 
2692   if (!_between_prologue_and_epilogue) {
2693     // We have already been invoked; this is a gc_epilogue delegation
2694     // from yet another CMS generation that we are responsible for, just
2695     // ignore it since all relevant work has already been done.
2696     return;
2697   }
2698   assert(haveFreelistLocks(), "must have freelist locks");
2699   assert_lock_strong(bitMapLock());
2700 
2701   _cmsGen->gc_epilogue_work(full);
2702   _permGen->gc_epilogue_work(full);
2703 
2704   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2705     // in case sampling was not already enabled, enable it
2706     _start_sampling = true;
2707   }
2708   // reset _eden_chunk_array so sampling starts afresh
2709   _eden_chunk_index = 0;
2710 
2711   size_t cms_used   = _cmsGen->cmsSpace()->used();
2712   size_t perm_used  = _permGen->cmsSpace()->used();
2713 
2714   // update performance counters - this uses a special version of
2715   // update_counters() that allows the utilization to be passed as a
2716   // parameter, avoiding multiple calls to used().
2717   //
2718   _cmsGen->update_counters(cms_used);
2719   _permGen->update_counters(perm_used);
2720 
2721   if (CMSIncrementalMode) {
2722     icms_update_allocation_limits();
2723   }
2724 
2725   bitMapLock()->unlock();
2726   releaseFreelistLocks();
2727 
2728   _between_prologue_and_epilogue = false;  // ready for next cycle
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2732   collector()->gc_epilogue(full);
2733 
2734   // Also reset promotion tracking in par gc thread states.
2735   if (CollectedHeap::use_parallel_gc_threads()) {
2736     for (uint i = 0; i < ParallelGCThreads; i++) {
2737       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2738     }
2739   }
2740 }
2741 
2742 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2743   assert(!incremental_collection_failed(), "Should have been cleared");
2744   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2745   cmsSpace()->gc_epilogue();
2746     // Print stat counters
2747   NOT_PRODUCT(
2748     assert(_numObjectsAllocated == 0, "check");
2749     assert(_numWordsAllocated == 0, "check");
2750     if (Verbose && PrintGC) {
2751       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2752                           SIZE_FORMAT" bytes",
2753                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2754     }
2755     _numObjectsPromoted = 0;
2756     _numWordsPromoted   = 0;
2757   )
2758 
2759   if (PrintGC && Verbose) {
2760     // Call down the chain in contiguous_available needs the freelistLock
2761     // so print this out before releasing the freeListLock.
2762     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2763                         contiguous_available());
2764   }
2765 }
2766 
2767 #ifndef PRODUCT
2768 bool CMSCollector::have_cms_token() {
2769   Thread* thr = Thread::current();
2770   if (thr->is_VM_thread()) {
2771     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2772   } else if (thr->is_ConcurrentGC_thread()) {
2773     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2774   } else if (thr->is_GC_task_thread()) {
2775     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2776            ParGCRareEvent_lock->owned_by_self();
2777   }
2778   return false;
2779 }
2780 #endif
2781 
2782 // Check reachability of the given heap address in CMS generation,
2783 // treating all other generations as roots.
2784 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2785   // We could "guarantee" below, rather than assert, but i'll
2786   // leave these as "asserts" so that an adventurous debugger
2787   // could try this in the product build provided some subset of
2788   // the conditions were met, provided they were intersted in the
2789   // results and knew that the computation below wouldn't interfere
2790   // with other concurrent computations mutating the structures
2791   // being read or written.
2792   assert(SafepointSynchronize::is_at_safepoint(),
2793          "Else mutations in object graph will make answer suspect");
2794   assert(have_cms_token(), "Should hold cms token");
2795   assert(haveFreelistLocks(), "must hold free list locks");
2796   assert_lock_strong(bitMapLock());
2797 
2798   // Clear the marking bit map array before starting, but, just
2799   // for kicks, first report if the given address is already marked
2800   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2801                 _markBitMap.isMarked(addr) ? "" : " not");
2802 
2803   if (verify_after_remark()) {
2804     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2805     bool result = verification_mark_bm()->isMarked(addr);
2806     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2807                            result ? "IS" : "is NOT");
2808     return result;
2809   } else {
2810     gclog_or_tty->print_cr("Could not compute result");
2811     return false;
2812   }
2813 }
2814 
2815 ////////////////////////////////////////////////////////
2816 // CMS Verification Support
2817 ////////////////////////////////////////////////////////
2818 // Following the remark phase, the following invariant
2819 // should hold -- each object in the CMS heap which is
2820 // marked in markBitMap() should be marked in the verification_mark_bm().
2821 
2822 class VerifyMarkedClosure: public BitMapClosure {
2823   CMSBitMap* _marks;
2824   bool       _failed;
2825 
2826  public:
2827   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2828 
2829   bool do_bit(size_t offset) {
2830     HeapWord* addr = _marks->offsetToHeapWord(offset);
2831     if (!_marks->isMarked(addr)) {
2832       oop(addr)->print_on(gclog_or_tty);
2833       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2834       _failed = true;
2835     }
2836     return true;
2837   }
2838 
2839   bool failed() { return _failed; }
2840 };
2841 
2842 bool CMSCollector::verify_after_remark() {
2843   gclog_or_tty->print(" [Verifying CMS Marking... ");
2844   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2845   static bool init = false;
2846 
2847   assert(SafepointSynchronize::is_at_safepoint(),
2848          "Else mutations in object graph will make answer suspect");
2849   assert(have_cms_token(),
2850          "Else there may be mutual interference in use of "
2851          " verification data structures");
2852   assert(_collectorState > Marking && _collectorState <= Sweeping,
2853          "Else marking info checked here may be obsolete");
2854   assert(haveFreelistLocks(), "must hold free list locks");
2855   assert_lock_strong(bitMapLock());
2856 
2857 
2858   // Allocate marking bit map if not already allocated
2859   if (!init) { // first time
2860     if (!verification_mark_bm()->allocate(_span)) {
2861       return false;
2862     }
2863     init = true;
2864   }
2865 
2866   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2867 
2868   // Turn off refs discovery -- so we will be tracing through refs.
2869   // This is as intended, because by this time
2870   // GC must already have cleared any refs that need to be cleared,
2871   // and traced those that need to be marked; moreover,
2872   // the marking done here is not going to intefere in any
2873   // way with the marking information used by GC.
2874   NoRefDiscovery no_discovery(ref_processor());
2875 
2876   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2877 
2878   // Clear any marks from a previous round
2879   verification_mark_bm()->clear_all();
2880   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2881   verify_work_stacks_empty();
2882 
2883   GenCollectedHeap* gch = GenCollectedHeap::heap();
2884   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2885   // Update the saved marks which may affect the root scans.
2886   gch->save_marks();
2887 
2888   if (CMSRemarkVerifyVariant == 1) {
2889     // In this first variant of verification, we complete
2890     // all marking, then check if the new marks-verctor is
2891     // a subset of the CMS marks-vector.
2892     verify_after_remark_work_1();
2893   } else if (CMSRemarkVerifyVariant == 2) {
2894     // In this second variant of verification, we flag an error
2895     // (i.e. an object reachable in the new marks-vector not reachable
2896     // in the CMS marks-vector) immediately, also indicating the
2897     // identify of an object (A) that references the unmarked object (B) --
2898     // presumably, a mutation to A failed to be picked up by preclean/remark?
2899     verify_after_remark_work_2();
2900   } else {
2901     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2902             CMSRemarkVerifyVariant);
2903   }
2904   gclog_or_tty->print(" done] ");
2905   return true;
2906 }
2907 
2908 void CMSCollector::verify_after_remark_work_1() {
2909   ResourceMark rm;
2910   HandleMark  hm;
2911   GenCollectedHeap* gch = GenCollectedHeap::heap();
2912 
2913   // Mark from roots one level into CMS
2914   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2915   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2916 
2917   gch->gen_process_strong_roots(_cmsGen->level(),
2918                                 true,   // younger gens are roots
2919                                 true,   // activate StrongRootsScope
2920                                 true,   // collecting perm gen
2921                                 SharedHeap::ScanningOption(roots_scanning_options()),
2922                                 &notOlder,
2923                                 true,   // walk code active on stacks
2924                                 NULL);
2925 
2926   // Now mark from the roots
2927   assert(_revisitStack.isEmpty(), "Should be empty");
2928   MarkFromRootsClosure markFromRootsClosure(this, _span,
2929     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2930     false /* don't yield */, true /* verifying */);
2931   assert(_restart_addr == NULL, "Expected pre-condition");
2932   verification_mark_bm()->iterate(&markFromRootsClosure);
2933   while (_restart_addr != NULL) {
2934     // Deal with stack overflow: by restarting at the indicated
2935     // address.
2936     HeapWord* ra = _restart_addr;
2937     markFromRootsClosure.reset(ra);
2938     _restart_addr = NULL;
2939     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2940   }
2941   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2942   verify_work_stacks_empty();
2943   // Should reset the revisit stack above, since no class tree
2944   // surgery is forthcoming.
2945   _revisitStack.reset(); // throwing away all contents
2946 
2947   // Marking completed -- now verify that each bit marked in
2948   // verification_mark_bm() is also marked in markBitMap(); flag all
2949   // errors by printing corresponding objects.
2950   VerifyMarkedClosure vcl(markBitMap());
2951   verification_mark_bm()->iterate(&vcl);
2952   if (vcl.failed()) {
2953     gclog_or_tty->print("Verification failed");
2954     Universe::heap()->print_on(gclog_or_tty);
2955     fatal("CMS: failed marking verification after remark");
2956   }
2957 }
2958 
2959 void CMSCollector::verify_after_remark_work_2() {
2960   ResourceMark rm;
2961   HandleMark  hm;
2962   GenCollectedHeap* gch = GenCollectedHeap::heap();
2963 
2964   // Mark from roots one level into CMS
2965   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2966                                      markBitMap());
2967   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2968   gch->gen_process_strong_roots(_cmsGen->level(),
2969                                 true,   // younger gens are roots
2970                                 true,   // activate StrongRootsScope
2971                                 true,   // collecting perm gen
2972                                 SharedHeap::ScanningOption(roots_scanning_options()),
2973                                 &notOlder,
2974                                 true,   // walk code active on stacks
2975                                 NULL);
2976 
2977   // Now mark from the roots
2978   assert(_revisitStack.isEmpty(), "Should be empty");
2979   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2980     verification_mark_bm(), markBitMap(), verification_mark_stack());
2981   assert(_restart_addr == NULL, "Expected pre-condition");
2982   verification_mark_bm()->iterate(&markFromRootsClosure);
2983   while (_restart_addr != NULL) {
2984     // Deal with stack overflow: by restarting at the indicated
2985     // address.
2986     HeapWord* ra = _restart_addr;
2987     markFromRootsClosure.reset(ra);
2988     _restart_addr = NULL;
2989     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2990   }
2991   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2992   verify_work_stacks_empty();
2993   // Should reset the revisit stack above, since no class tree
2994   // surgery is forthcoming.
2995   _revisitStack.reset(); // throwing away all contents
2996 
2997   // Marking completed -- now verify that each bit marked in
2998   // verification_mark_bm() is also marked in markBitMap(); flag all
2999   // errors by printing corresponding objects.
3000   VerifyMarkedClosure vcl(markBitMap());
3001   verification_mark_bm()->iterate(&vcl);
3002   assert(!vcl.failed(), "Else verification above should not have succeeded");
3003 }
3004 
3005 void ConcurrentMarkSweepGeneration::save_marks() {
3006   // delegate to CMS space
3007   cmsSpace()->save_marks();
3008   for (uint i = 0; i < ParallelGCThreads; i++) {
3009     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3010   }
3011 }
3012 
3013 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3014   return cmsSpace()->no_allocs_since_save_marks();
3015 }
3016 
3017 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3018                                                                 \
3019 void ConcurrentMarkSweepGeneration::                            \
3020 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3021   cl->set_generation(this);                                     \
3022   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3023   cl->reset_generation();                                       \
3024   save_marks();                                                 \
3025 }
3026 
3027 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3028 
3029 void
3030 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3031 {
3032   // Not currently implemented; need to do the following. -- ysr.
3033   // dld -- I think that is used for some sort of allocation profiler.  So it
3034   // really means the objects allocated by the mutator since the last
3035   // GC.  We could potentially implement this cheaply by recording only
3036   // the direct allocations in a side data structure.
3037   //
3038   // I think we probably ought not to be required to support these
3039   // iterations at any arbitrary point; I think there ought to be some
3040   // call to enable/disable allocation profiling in a generation/space,
3041   // and the iterator ought to return the objects allocated in the
3042   // gen/space since the enable call, or the last iterator call (which
3043   // will probably be at a GC.)  That way, for gens like CM&S that would
3044   // require some extra data structure to support this, we only pay the
3045   // cost when it's in use...
3046   cmsSpace()->object_iterate_since_last_GC(blk);
3047 }
3048 
3049 void
3050 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3051   cl->set_generation(this);
3052   younger_refs_in_space_iterate(_cmsSpace, cl);
3053   cl->reset_generation();
3054 }
3055 
3056 void
3057 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3058   if (freelistLock()->owned_by_self()) {
3059     Generation::oop_iterate(mr, cl);
3060   } else {
3061     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3062     Generation::oop_iterate(mr, cl);
3063   }
3064 }
3065 
3066 void
3067 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3068   if (freelistLock()->owned_by_self()) {
3069     Generation::oop_iterate(cl);
3070   } else {
3071     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3072     Generation::oop_iterate(cl);
3073   }
3074 }
3075 
3076 void
3077 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3078   if (freelistLock()->owned_by_self()) {
3079     Generation::object_iterate(cl);
3080   } else {
3081     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3082     Generation::object_iterate(cl);
3083   }
3084 }
3085 
3086 void
3087 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3088   if (freelistLock()->owned_by_self()) {
3089     Generation::safe_object_iterate(cl);
3090   } else {
3091     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3092     Generation::safe_object_iterate(cl);
3093   }
3094 }
3095 
3096 void
3097 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3098 }
3099 
3100 void
3101 ConcurrentMarkSweepGeneration::post_compact() {
3102 }
3103 
3104 void
3105 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3106   // Fix the linear allocation blocks to look like free blocks.
3107 
3108   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3109   // are not called when the heap is verified during universe initialization and
3110   // at vm shutdown.
3111   if (freelistLock()->owned_by_self()) {
3112     cmsSpace()->prepare_for_verify();
3113   } else {
3114     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3115     cmsSpace()->prepare_for_verify();
3116   }
3117 }
3118 
3119 void
3120 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
3121   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3122   // are not called when the heap is verified during universe initialization and
3123   // at vm shutdown.
3124   if (freelistLock()->owned_by_self()) {
3125     cmsSpace()->verify(false /* ignored */);
3126   } else {
3127     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3128     cmsSpace()->verify(false /* ignored */);
3129   }
3130 }
3131 
3132 void CMSCollector::verify(bool allow_dirty /* ignored */) {
3133   _cmsGen->verify(allow_dirty);
3134   _permGen->verify(allow_dirty);
3135 }
3136 
3137 #ifndef PRODUCT
3138 bool CMSCollector::overflow_list_is_empty() const {
3139   assert(_num_par_pushes >= 0, "Inconsistency");
3140   if (_overflow_list == NULL) {
3141     assert(_num_par_pushes == 0, "Inconsistency");
3142   }
3143   return _overflow_list == NULL;
3144 }
3145 
3146 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3147 // merely consolidate assertion checks that appear to occur together frequently.
3148 void CMSCollector::verify_work_stacks_empty() const {
3149   assert(_markStack.isEmpty(), "Marking stack should be empty");
3150   assert(overflow_list_is_empty(), "Overflow list should be empty");
3151 }
3152 
3153 void CMSCollector::verify_overflow_empty() const {
3154   assert(overflow_list_is_empty(), "Overflow list should be empty");
3155   assert(no_preserved_marks(), "No preserved marks");
3156 }
3157 #endif // PRODUCT
3158 
3159 // Decide if we want to enable class unloading as part of the
3160 // ensuing concurrent GC cycle. We will collect the perm gen and
3161 // unload classes if it's the case that:
3162 // (1) an explicit gc request has been made and the flag
3163 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3164 // (2) (a) class unloading is enabled at the command line, and
3165 //     (b) (i)   perm gen threshold has been crossed, or
3166 //         (ii)  old gen is getting really full, or
3167 //         (iii) the previous N CMS collections did not collect the
3168 //               perm gen
3169 // NOTE: Provided there is no change in the state of the heap between
3170 // calls to this method, it should have idempotent results. Moreover,
3171 // its results should be monotonically increasing (i.e. going from 0 to 1,
3172 // but not 1 to 0) between successive calls between which the heap was
3173 // not collected. For the implementation below, it must thus rely on
3174 // the property that concurrent_cycles_since_last_unload()
3175 // will not decrease unless a collection cycle happened and that
3176 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3177 // themselves also monotonic in that sense. See check_monotonicity()
3178 // below.
3179 bool CMSCollector::update_should_unload_classes() {
3180   _should_unload_classes = false;
3181   // Condition 1 above
3182   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3183     _should_unload_classes = true;
3184   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3185     // Disjuncts 2.b.(i,ii,iii) above
3186     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3187                               CMSClassUnloadingMaxInterval)
3188                            || _permGen->should_concurrent_collect()
3189                            || _cmsGen->is_too_full();
3190   }
3191   return _should_unload_classes;
3192 }
3193 
3194 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3195   bool res = should_concurrent_collect();
3196   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3197   return res;
3198 }
3199 
3200 void CMSCollector::setup_cms_unloading_and_verification_state() {
3201   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3202                              || VerifyBeforeExit;
3203   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
3204                              |   SharedHeap::SO_CodeCache;
3205 
3206   if (should_unload_classes()) {   // Should unload classes this cycle
3207     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3208     set_verifying(should_verify);    // Set verification state for this cycle
3209     return;                            // Nothing else needs to be done at this time
3210   }
3211 
3212   // Not unloading classes this cycle
3213   assert(!should_unload_classes(), "Inconsitency!");
3214   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3215     // We were not verifying, or we _were_ unloading classes in the last cycle,
3216     // AND some verification options are enabled this cycle; in this case,
3217     // we must make sure that the deadness map is allocated if not already so,
3218     // and cleared (if already allocated previously --
3219     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3220     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3221       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3222         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3223                 "permanent generation verification disabled");
3224         return;  // Note that we leave verification disabled, so we'll retry this
3225                  // allocation next cycle. We _could_ remember this failure
3226                  // and skip further attempts and permanently disable verification
3227                  // attempts if that is considered more desirable.
3228       }
3229       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3230               "_perm_gen_ver_bit_map inconsistency?");
3231     } else {
3232       perm_gen_verify_bit_map()->clear_all();
3233     }
3234     // Include symbols, strings and code cache elements to prevent their resurrection.
3235     add_root_scanning_option(rso);
3236     set_verifying(true);
3237   } else if (verifying() && !should_verify) {
3238     // We were verifying, but some verification flags got disabled.
3239     set_verifying(false);
3240     // Exclude symbols, strings and code cache elements from root scanning to
3241     // reduce IM and RM pauses.
3242     remove_root_scanning_option(rso);
3243   }
3244 }
3245 
3246 
3247 #ifndef PRODUCT
3248 HeapWord* CMSCollector::block_start(const void* p) const {
3249   const HeapWord* addr = (HeapWord*)p;
3250   if (_span.contains(p)) {
3251     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3252       return _cmsGen->cmsSpace()->block_start(p);
3253     } else {
3254       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3255              "Inconsistent _span?");
3256       return _permGen->cmsSpace()->block_start(p);
3257     }
3258   }
3259   return NULL;
3260 }
3261 #endif
3262 
3263 HeapWord*
3264 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3265                                                    bool   tlab,
3266                                                    bool   parallel) {
3267   CMSSynchronousYieldRequest yr;
3268   assert(!tlab, "Can't deal with TLAB allocation");
3269   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3270   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3271     CMSExpansionCause::_satisfy_allocation);
3272   if (GCExpandToAllocateDelayMillis > 0) {
3273     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3274   }
3275   return have_lock_and_allocate(word_size, tlab);
3276 }
3277 
3278 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3279 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3280 // to CardGeneration and share it...
3281 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3282   return CardGeneration::expand(bytes, expand_bytes);
3283 }
3284 
3285 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3286   CMSExpansionCause::Cause cause)
3287 {
3288 
3289   bool success = expand(bytes, expand_bytes);
3290 
3291   // remember why we expanded; this information is used
3292   // by shouldConcurrentCollect() when making decisions on whether to start
3293   // a new CMS cycle.
3294   if (success) {
3295     set_expansion_cause(cause);
3296     if (PrintGCDetails && Verbose) {
3297       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3298         CMSExpansionCause::to_string(cause));
3299     }
3300   }
3301 }
3302 
3303 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3304   HeapWord* res = NULL;
3305   MutexLocker x(ParGCRareEvent_lock);
3306   while (true) {
3307     // Expansion by some other thread might make alloc OK now:
3308     res = ps->lab.alloc(word_sz);
3309     if (res != NULL) return res;
3310     // If there's not enough expansion space available, give up.
3311     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3312       return NULL;
3313     }
3314     // Otherwise, we try expansion.
3315     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3316       CMSExpansionCause::_allocate_par_lab);
3317     // Now go around the loop and try alloc again;
3318     // A competing par_promote might beat us to the expansion space,
3319     // so we may go around the loop again if promotion fails agaion.
3320     if (GCExpandToAllocateDelayMillis > 0) {
3321       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3322     }
3323   }
3324 }
3325 
3326 
3327 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3328   PromotionInfo* promo) {
3329   MutexLocker x(ParGCRareEvent_lock);
3330   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3331   while (true) {
3332     // Expansion by some other thread might make alloc OK now:
3333     if (promo->ensure_spooling_space()) {
3334       assert(promo->has_spooling_space(),
3335              "Post-condition of successful ensure_spooling_space()");
3336       return true;
3337     }
3338     // If there's not enough expansion space available, give up.
3339     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3340       return false;
3341     }
3342     // Otherwise, we try expansion.
3343     expand(refill_size_bytes, MinHeapDeltaBytes,
3344       CMSExpansionCause::_allocate_par_spooling_space);
3345     // Now go around the loop and try alloc again;
3346     // A competing allocation might beat us to the expansion space,
3347     // so we may go around the loop again if allocation fails again.
3348     if (GCExpandToAllocateDelayMillis > 0) {
3349       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3350     }
3351   }
3352 }
3353 
3354 
3355 
3356 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3357   assert_locked_or_safepoint(Heap_lock);
3358   size_t size = ReservedSpace::page_align_size_down(bytes);
3359   if (size > 0) {
3360     shrink_by(size);
3361   }
3362 }
3363 
3364 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3365   assert_locked_or_safepoint(Heap_lock);
3366   bool result = _virtual_space.expand_by(bytes);
3367   if (result) {
3368     HeapWord* old_end = _cmsSpace->end();
3369     size_t new_word_size =
3370       heap_word_size(_virtual_space.committed_size());
3371     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3372     _bts->resize(new_word_size);  // resize the block offset shared array
3373     Universe::heap()->barrier_set()->resize_covered_region(mr);
3374     // Hmmmm... why doesn't CFLS::set_end verify locking?
3375     // This is quite ugly; FIX ME XXX
3376     _cmsSpace->assert_locked(freelistLock());
3377     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3378 
3379     // update the space and generation capacity counters
3380     if (UsePerfData) {
3381       _space_counters->update_capacity();
3382       _gen_counters->update_all();
3383     }
3384 
3385     if (Verbose && PrintGC) {
3386       size_t new_mem_size = _virtual_space.committed_size();
3387       size_t old_mem_size = new_mem_size - bytes;
3388       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3389                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3390     }
3391   }
3392   return result;
3393 }
3394 
3395 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3396   assert_locked_or_safepoint(Heap_lock);
3397   bool success = true;
3398   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3399   if (remaining_bytes > 0) {
3400     success = grow_by(remaining_bytes);
3401     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3402   }
3403   return success;
3404 }
3405 
3406 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3407   assert_locked_or_safepoint(Heap_lock);
3408   assert_lock_strong(freelistLock());
3409   // XXX Fix when compaction is implemented.
3410   warning("Shrinking of CMS not yet implemented");
3411   return;
3412 }
3413 
3414 
3415 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3416 // phases.
3417 class CMSPhaseAccounting: public StackObj {
3418  public:
3419   CMSPhaseAccounting(CMSCollector *collector,
3420                      const char *phase,
3421                      bool print_cr = true);
3422   ~CMSPhaseAccounting();
3423 
3424  private:
3425   CMSCollector *_collector;
3426   const char *_phase;
3427   elapsedTimer _wallclock;
3428   bool _print_cr;
3429 
3430  public:
3431   // Not MT-safe; so do not pass around these StackObj's
3432   // where they may be accessed by other threads.
3433   jlong wallclock_millis() {
3434     assert(_wallclock.is_active(), "Wall clock should not stop");
3435     _wallclock.stop();  // to record time
3436     jlong ret = _wallclock.milliseconds();
3437     _wallclock.start(); // restart
3438     return ret;
3439   }
3440 };
3441 
3442 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3443                                        const char *phase,
3444                                        bool print_cr) :
3445   _collector(collector), _phase(phase), _print_cr(print_cr) {
3446 
3447   if (PrintCMSStatistics != 0) {
3448     _collector->resetYields();
3449   }
3450   if (PrintGCDetails && PrintGCTimeStamps) {
3451     gclog_or_tty->date_stamp(PrintGCDateStamps);
3452     gclog_or_tty->stamp();
3453     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3454       _collector->cmsGen()->short_name(), _phase);
3455   }
3456   _collector->resetTimer();
3457   _wallclock.start();
3458   _collector->startTimer();
3459 }
3460 
3461 CMSPhaseAccounting::~CMSPhaseAccounting() {
3462   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3463   _collector->stopTimer();
3464   _wallclock.stop();
3465   if (PrintGCDetails) {
3466     gclog_or_tty->date_stamp(PrintGCDateStamps);
3467     if (PrintGCTimeStamps) {
3468       gclog_or_tty->stamp();
3469       gclog_or_tty->print(": ");
3470     }
3471     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3472                  _collector->cmsGen()->short_name(),
3473                  _phase, _collector->timerValue(), _wallclock.seconds());
3474     if (_print_cr) {
3475       gclog_or_tty->print_cr("");
3476     }
3477     if (PrintCMSStatistics != 0) {
3478       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3479                     _collector->yields());
3480     }
3481   }
3482 }
3483 
3484 // CMS work
3485 
3486 // Checkpoint the roots into this generation from outside
3487 // this generation. [Note this initial checkpoint need only
3488 // be approximate -- we'll do a catch up phase subsequently.]
3489 void CMSCollector::checkpointRootsInitial(bool asynch) {
3490   assert(_collectorState == InitialMarking, "Wrong collector state");
3491   check_correct_thread_executing();
3492   TraceCMSMemoryManagerStats tms(_collectorState);
3493   ReferenceProcessor* rp = ref_processor();
3494   SpecializationStats::clear();
3495   assert(_restart_addr == NULL, "Control point invariant");
3496   if (asynch) {
3497     // acquire locks for subsequent manipulations
3498     MutexLockerEx x(bitMapLock(),
3499                     Mutex::_no_safepoint_check_flag);
3500     checkpointRootsInitialWork(asynch);
3501     rp->verify_no_references_recorded();
3502     rp->enable_discovery(); // enable ("weak") refs discovery
3503     _collectorState = Marking;
3504   } else {
3505     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3506     // which recognizes if we are a CMS generation, and doesn't try to turn on
3507     // discovery; verify that they aren't meddling.
3508     assert(!rp->discovery_is_atomic(),
3509            "incorrect setting of discovery predicate");
3510     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3511            "ref discovery for this generation kind");
3512     // already have locks
3513     checkpointRootsInitialWork(asynch);
3514     rp->enable_discovery(); // now enable ("weak") refs discovery
3515     _collectorState = Marking;
3516   }
3517   SpecializationStats::print();
3518 }
3519 
3520 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3521   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3522   assert(_collectorState == InitialMarking, "just checking");
3523 
3524   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3525   // precede our marking with a collection of all
3526   // younger generations to keep floating garbage to a minimum.
3527   // XXX: we won't do this for now -- it's an optimization to be done later.
3528 
3529   // already have locks
3530   assert_lock_strong(bitMapLock());
3531   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3532 
3533   // Setup the verification and class unloading state for this
3534   // CMS collection cycle.
3535   setup_cms_unloading_and_verification_state();
3536 
3537   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3538     PrintGCDetails && Verbose, true, gclog_or_tty);)
3539   if (UseAdaptiveSizePolicy) {
3540     size_policy()->checkpoint_roots_initial_begin();
3541   }
3542 
3543   // Reset all the PLAB chunk arrays if necessary.
3544   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3545     reset_survivor_plab_arrays();
3546   }
3547 
3548   ResourceMark rm;
3549   HandleMark  hm;
3550 
3551   FalseClosure falseClosure;
3552   // In the case of a synchronous collection, we will elide the
3553   // remark step, so it's important to catch all the nmethod oops
3554   // in this step.
3555   // The final 'true' flag to gen_process_strong_roots will ensure this.
3556   // If 'async' is true, we can relax the nmethod tracing.
3557   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3558   GenCollectedHeap* gch = GenCollectedHeap::heap();
3559 
3560   verify_work_stacks_empty();
3561   verify_overflow_empty();
3562 
3563   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3564   // Update the saved marks which may affect the root scans.
3565   gch->save_marks();
3566 
3567   // weak reference processing has not started yet.
3568   ref_processor()->set_enqueuing_is_done(false);
3569 
3570   {
3571     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3572     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3573     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3574     gch->gen_process_strong_roots(_cmsGen->level(),
3575                                   true,   // younger gens are roots
3576                                   true,   // activate StrongRootsScope
3577                                   true,   // collecting perm gen
3578                                   SharedHeap::ScanningOption(roots_scanning_options()),
3579                                   &notOlder,
3580                                   true,   // walk all of code cache if (so & SO_CodeCache)
3581                                   NULL);
3582   }
3583 
3584   // Clear mod-union table; it will be dirtied in the prologue of
3585   // CMS generation per each younger generation collection.
3586 
3587   assert(_modUnionTable.isAllClear(),
3588        "Was cleared in most recent final checkpoint phase"
3589        " or no bits are set in the gc_prologue before the start of the next "
3590        "subsequent marking phase.");
3591 
3592   // Temporarily disabled, since pre/post-consumption closures don't
3593   // care about precleaned cards
3594   #if 0
3595   {
3596     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
3597                              (HeapWord*)_virtual_space.high());
3598     _ct->ct_bs()->preclean_dirty_cards(mr);
3599   }
3600   #endif
3601 
3602   // Save the end of the used_region of the constituent generations
3603   // to be used to limit the extent of sweep in each generation.
3604   save_sweep_limits();
3605   if (UseAdaptiveSizePolicy) {
3606     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3607   }
3608   verify_overflow_empty();
3609 }
3610 
3611 bool CMSCollector::markFromRoots(bool asynch) {
3612   // we might be tempted to assert that:
3613   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3614   //        "inconsistent argument?");
3615   // However that wouldn't be right, because it's possible that
3616   // a safepoint is indeed in progress as a younger generation
3617   // stop-the-world GC happens even as we mark in this generation.
3618   assert(_collectorState == Marking, "inconsistent state?");
3619   check_correct_thread_executing();
3620   verify_overflow_empty();
3621 
3622   bool res;
3623   if (asynch) {
3624 
3625     // Start the timers for adaptive size policy for the concurrent phases
3626     // Do it here so that the foreground MS can use the concurrent
3627     // timer since a foreground MS might has the sweep done concurrently
3628     // or STW.
3629     if (UseAdaptiveSizePolicy) {
3630       size_policy()->concurrent_marking_begin();
3631     }
3632 
3633     // Weak ref discovery note: We may be discovering weak
3634     // refs in this generation concurrent (but interleaved) with
3635     // weak ref discovery by a younger generation collector.
3636 
3637     CMSTokenSyncWithLocks ts(true, bitMapLock());
3638     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3639     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3640     res = markFromRootsWork(asynch);
3641     if (res) {
3642       _collectorState = Precleaning;
3643     } else { // We failed and a foreground collection wants to take over
3644       assert(_foregroundGCIsActive, "internal state inconsistency");
3645       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3646       if (PrintGCDetails) {
3647         gclog_or_tty->print_cr("bailing out to foreground collection");
3648       }
3649     }
3650     if (UseAdaptiveSizePolicy) {
3651       size_policy()->concurrent_marking_end();
3652     }
3653   } else {
3654     assert(SafepointSynchronize::is_at_safepoint(),
3655            "inconsistent with asynch == false");
3656     if (UseAdaptiveSizePolicy) {
3657       size_policy()->ms_collection_marking_begin();
3658     }
3659     // already have locks
3660     res = markFromRootsWork(asynch);
3661     _collectorState = FinalMarking;
3662     if (UseAdaptiveSizePolicy) {
3663       GenCollectedHeap* gch = GenCollectedHeap::heap();
3664       size_policy()->ms_collection_marking_end(gch->gc_cause());
3665     }
3666   }
3667   verify_overflow_empty();
3668   return res;
3669 }
3670 
3671 bool CMSCollector::markFromRootsWork(bool asynch) {
3672   // iterate over marked bits in bit map, doing a full scan and mark
3673   // from these roots using the following algorithm:
3674   // . if oop is to the right of the current scan pointer,
3675   //   mark corresponding bit (we'll process it later)
3676   // . else (oop is to left of current scan pointer)
3677   //   push oop on marking stack
3678   // . drain the marking stack
3679 
3680   // Note that when we do a marking step we need to hold the
3681   // bit map lock -- recall that direct allocation (by mutators)
3682   // and promotion (by younger generation collectors) is also
3683   // marking the bit map. [the so-called allocate live policy.]
3684   // Because the implementation of bit map marking is not
3685   // robust wrt simultaneous marking of bits in the same word,
3686   // we need to make sure that there is no such interference
3687   // between concurrent such updates.
3688 
3689   // already have locks
3690   assert_lock_strong(bitMapLock());
3691 
3692   // Clear the revisit stack, just in case there are any
3693   // obsolete contents from a short-circuited previous CMS cycle.
3694   _revisitStack.reset();
3695   verify_work_stacks_empty();
3696   verify_overflow_empty();
3697   assert(_revisitStack.isEmpty(), "tabula rasa");
3698   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3699   bool result = false;
3700   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3701     result = do_marking_mt(asynch);
3702   } else {
3703     result = do_marking_st(asynch);
3704   }
3705   return result;
3706 }
3707 
3708 // Forward decl
3709 class CMSConcMarkingTask;
3710 
3711 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3712   CMSCollector*       _collector;
3713   CMSConcMarkingTask* _task;
3714  public:
3715   virtual void yield();
3716 
3717   // "n_threads" is the number of threads to be terminated.
3718   // "queue_set" is a set of work queues of other threads.
3719   // "collector" is the CMS collector associated with this task terminator.
3720   // "yield" indicates whether we need the gang as a whole to yield.
3721   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3722     ParallelTaskTerminator(n_threads, queue_set),
3723     _collector(collector) { }
3724 
3725   void set_task(CMSConcMarkingTask* task) {
3726     _task = task;
3727   }
3728 };
3729 
3730 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3731   CMSConcMarkingTask* _task;
3732  public:
3733   bool should_exit_termination();
3734   void set_task(CMSConcMarkingTask* task) {
3735     _task = task;
3736   }
3737 };
3738 
3739 // MT Concurrent Marking Task
3740 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3741   CMSCollector* _collector;
3742   int           _n_workers;                  // requested/desired # workers
3743   bool          _asynch;
3744   bool          _result;
3745   CompactibleFreeListSpace*  _cms_space;
3746   CompactibleFreeListSpace* _perm_space;
3747   char          _pad_front[64];   // padding to ...
3748   HeapWord*     _global_finger;   // ... avoid sharing cache line
3749   char          _pad_back[64];
3750   HeapWord*     _restart_addr;
3751 
3752   //  Exposed here for yielding support
3753   Mutex* const _bit_map_lock;
3754 
3755   // The per thread work queues, available here for stealing
3756   OopTaskQueueSet*  _task_queues;
3757 
3758   // Termination (and yielding) support
3759   CMSConcMarkingTerminator _term;
3760   CMSConcMarkingTerminatorTerminator _term_term;
3761 
3762  public:
3763   CMSConcMarkingTask(CMSCollector* collector,
3764                  CompactibleFreeListSpace* cms_space,
3765                  CompactibleFreeListSpace* perm_space,
3766                  bool asynch,
3767                  YieldingFlexibleWorkGang* workers,
3768                  OopTaskQueueSet* task_queues):
3769     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3770     _collector(collector),
3771     _cms_space(cms_space),
3772     _perm_space(perm_space),
3773     _asynch(asynch), _n_workers(0), _result(true),
3774     _task_queues(task_queues),
3775     _term(_n_workers, task_queues, _collector),
3776     _bit_map_lock(collector->bitMapLock())
3777   {
3778     _requested_size = _n_workers;
3779     _term.set_task(this);
3780     _term_term.set_task(this);
3781     assert(_cms_space->bottom() < _perm_space->bottom(),
3782            "Finger incorrectly initialized below");
3783     _restart_addr = _global_finger = _cms_space->bottom();
3784   }
3785 
3786 
3787   OopTaskQueueSet* task_queues()  { return _task_queues; }
3788 
3789   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3790 
3791   HeapWord** global_finger_addr() { return &_global_finger; }
3792 
3793   CMSConcMarkingTerminator* terminator() { return &_term; }
3794 
3795   virtual void set_for_termination(int active_workers) {
3796     terminator()->reset_for_reuse(active_workers);
3797   }
3798 
3799   void work(int i);
3800   bool should_yield() {
3801     return    ConcurrentMarkSweepThread::should_yield()
3802            && !_collector->foregroundGCIsActive()
3803            && _asynch;
3804   }
3805 
3806   virtual void coordinator_yield();  // stuff done by coordinator
3807   bool result() { return _result; }
3808 
3809   void reset(HeapWord* ra) {
3810     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3811     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3812     assert(ra             <  _perm_space->end(), "ra too large");
3813     _restart_addr = _global_finger = ra;
3814     _term.reset_for_reuse();
3815   }
3816 
3817   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3818                                            OopTaskQueue* work_q);
3819 
3820  private:
3821   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3822   void do_work_steal(int i);
3823   void bump_global_finger(HeapWord* f);
3824 };
3825 
3826 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3827   assert(_task != NULL, "Error");
3828   return _task->yielding();
3829   // Note that we do not need the disjunct || _task->should_yield() above
3830   // because we want terminating threads to yield only if the task
3831   // is already in the midst of yielding, which happens only after at least one
3832   // thread has yielded.
3833 }
3834 
3835 void CMSConcMarkingTerminator::yield() {
3836   if (_task->should_yield()) {
3837     _task->yield();
3838   } else {
3839     ParallelTaskTerminator::yield();
3840   }
3841 }
3842 
3843 ////////////////////////////////////////////////////////////////
3844 // Concurrent Marking Algorithm Sketch
3845 ////////////////////////////////////////////////////////////////
3846 // Until all tasks exhausted (both spaces):
3847 // -- claim next available chunk
3848 // -- bump global finger via CAS
3849 // -- find first object that starts in this chunk
3850 //    and start scanning bitmap from that position
3851 // -- scan marked objects for oops
3852 // -- CAS-mark target, and if successful:
3853 //    . if target oop is above global finger (volatile read)
3854 //      nothing to do
3855 //    . if target oop is in chunk and above local finger
3856 //        then nothing to do
3857 //    . else push on work-queue
3858 // -- Deal with possible overflow issues:
3859 //    . local work-queue overflow causes stuff to be pushed on
3860 //      global (common) overflow queue
3861 //    . always first empty local work queue
3862 //    . then get a batch of oops from global work queue if any
3863 //    . then do work stealing
3864 // -- When all tasks claimed (both spaces)
3865 //    and local work queue empty,
3866 //    then in a loop do:
3867 //    . check global overflow stack; steal a batch of oops and trace
3868 //    . try to steal from other threads oif GOS is empty
3869 //    . if neither is available, offer termination
3870 // -- Terminate and return result
3871 //
3872 void CMSConcMarkingTask::work(int i) {
3873   elapsedTimer _timer;
3874   ResourceMark rm;
3875   HandleMark hm;
3876 
3877   DEBUG_ONLY(_collector->verify_overflow_empty();)
3878 
3879   // Before we begin work, our work queue should be empty
3880   assert(work_queue(i)->size() == 0, "Expected to be empty");
3881   // Scan the bitmap covering _cms_space, tracing through grey objects.
3882   _timer.start();
3883   do_scan_and_mark(i, _cms_space);
3884   _timer.stop();
3885   if (PrintCMSStatistics != 0) {
3886     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3887       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3888   }
3889 
3890   // ... do the same for the _perm_space
3891   _timer.reset();
3892   _timer.start();
3893   do_scan_and_mark(i, _perm_space);
3894   _timer.stop();
3895   if (PrintCMSStatistics != 0) {
3896     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3897       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3898   }
3899 
3900   // ... do work stealing
3901   _timer.reset();
3902   _timer.start();
3903   do_work_steal(i);
3904   _timer.stop();
3905   if (PrintCMSStatistics != 0) {
3906     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3907       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3908   }
3909   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3910   assert(work_queue(i)->size() == 0, "Should have been emptied");
3911   // Note that under the current task protocol, the
3912   // following assertion is true even of the spaces
3913   // expanded since the completion of the concurrent
3914   // marking. XXX This will likely change under a strict
3915   // ABORT semantics.
3916   assert(_global_finger >  _cms_space->end() &&
3917          _global_finger >= _perm_space->end(),
3918          "All tasks have been completed");
3919   DEBUG_ONLY(_collector->verify_overflow_empty();)
3920 }
3921 
3922 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3923   HeapWord* read = _global_finger;
3924   HeapWord* cur  = read;
3925   while (f > read) {
3926     cur = read;
3927     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3928     if (cur == read) {
3929       // our cas succeeded
3930       assert(_global_finger >= f, "protocol consistency");
3931       break;
3932     }
3933   }
3934 }
3935 
3936 // This is really inefficient, and should be redone by
3937 // using (not yet available) block-read and -write interfaces to the
3938 // stack and the work_queue. XXX FIX ME !!!
3939 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3940                                                       OopTaskQueue* work_q) {
3941   // Fast lock-free check
3942   if (ovflw_stk->length() == 0) {
3943     return false;
3944   }
3945   assert(work_q->size() == 0, "Shouldn't steal");
3946   MutexLockerEx ml(ovflw_stk->par_lock(),
3947                    Mutex::_no_safepoint_check_flag);
3948   // Grab up to 1/4 the size of the work queue
3949   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3950                     (size_t)ParGCDesiredObjsFromOverflowList);
3951   num = MIN2(num, ovflw_stk->length());
3952   for (int i = (int) num; i > 0; i--) {
3953     oop cur = ovflw_stk->pop();
3954     assert(cur != NULL, "Counted wrong?");
3955     work_q->push(cur);
3956   }
3957   return num > 0;
3958 }
3959 
3960 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3961   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3962   int n_tasks = pst->n_tasks();
3963   // We allow that there may be no tasks to do here because
3964   // we are restarting after a stack overflow.
3965   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3966   int nth_task = 0;
3967 
3968   HeapWord* aligned_start = sp->bottom();
3969   if (sp->used_region().contains(_restart_addr)) {
3970     // Align down to a card boundary for the start of 0th task
3971     // for this space.
3972     aligned_start =
3973       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3974                                  CardTableModRefBS::card_size);
3975   }
3976 
3977   size_t chunk_size = sp->marking_task_size();
3978   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3979     // Having claimed the nth task in this space,
3980     // compute the chunk that it corresponds to:
3981     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3982                                aligned_start + (nth_task+1)*chunk_size);
3983     // Try and bump the global finger via a CAS;
3984     // note that we need to do the global finger bump
3985     // _before_ taking the intersection below, because
3986     // the task corresponding to that region will be
3987     // deemed done even if the used_region() expands
3988     // because of allocation -- as it almost certainly will
3989     // during start-up while the threads yield in the
3990     // closure below.
3991     HeapWord* finger = span.end();
3992     bump_global_finger(finger);   // atomically
3993     // There are null tasks here corresponding to chunks
3994     // beyond the "top" address of the space.
3995     span = span.intersection(sp->used_region());
3996     if (!span.is_empty()) {  // Non-null task
3997       HeapWord* prev_obj;
3998       assert(!span.contains(_restart_addr) || nth_task == 0,
3999              "Inconsistency");
4000       if (nth_task == 0) {
4001         // For the 0th task, we'll not need to compute a block_start.
4002         if (span.contains(_restart_addr)) {
4003           // In the case of a restart because of stack overflow,
4004           // we might additionally skip a chunk prefix.
4005           prev_obj = _restart_addr;
4006         } else {
4007           prev_obj = span.start();
4008         }
4009       } else {
4010         // We want to skip the first object because
4011         // the protocol is to scan any object in its entirety
4012         // that _starts_ in this span; a fortiori, any
4013         // object starting in an earlier span is scanned
4014         // as part of an earlier claimed task.
4015         // Below we use the "careful" version of block_start
4016         // so we do not try to navigate uninitialized objects.
4017         prev_obj = sp->block_start_careful(span.start());
4018         // Below we use a variant of block_size that uses the
4019         // Printezis bits to avoid waiting for allocated
4020         // objects to become initialized/parsable.
4021         while (prev_obj < span.start()) {
4022           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4023           if (sz > 0) {
4024             prev_obj += sz;
4025           } else {
4026             // In this case we may end up doing a bit of redundant
4027             // scanning, but that appears unavoidable, short of
4028             // locking the free list locks; see bug 6324141.
4029             break;
4030           }
4031         }
4032       }
4033       if (prev_obj < span.end()) {
4034         MemRegion my_span = MemRegion(prev_obj, span.end());
4035         // Do the marking work within a non-empty span --
4036         // the last argument to the constructor indicates whether the
4037         // iteration should be incremental with periodic yields.
4038         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4039                                     &_collector->_markBitMap,
4040                                     work_queue(i),
4041                                     &_collector->_markStack,
4042                                     &_collector->_revisitStack,
4043                                     _asynch);
4044         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4045       } // else nothing to do for this task
4046     }   // else nothing to do for this task
4047   }
4048   // We'd be tempted to assert here that since there are no
4049   // more tasks left to claim in this space, the global_finger
4050   // must exceed space->top() and a fortiori space->end(). However,
4051   // that would not quite be correct because the bumping of
4052   // global_finger occurs strictly after the claiming of a task,
4053   // so by the time we reach here the global finger may not yet
4054   // have been bumped up by the thread that claimed the last
4055   // task.
4056   pst->all_tasks_completed();
4057 }
4058 
4059 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4060  private:
4061   CMSConcMarkingTask* _task;
4062   MemRegion     _span;
4063   CMSBitMap*    _bit_map;
4064   CMSMarkStack* _overflow_stack;
4065   OopTaskQueue* _work_queue;
4066  protected:
4067   DO_OOP_WORK_DEFN
4068  public:
4069   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4070                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4071                          CMSMarkStack* revisit_stack):
4072     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
4073     _task(task),
4074     _span(collector->_span),
4075     _work_queue(work_queue),
4076     _bit_map(bit_map),
4077     _overflow_stack(overflow_stack)
4078   { }
4079   virtual void do_oop(oop* p);
4080   virtual void do_oop(narrowOop* p);
4081   void trim_queue(size_t max);
4082   void handle_stack_overflow(HeapWord* lost);
4083   void do_yield_check() {
4084     if (_task->should_yield()) {
4085       _task->yield();
4086     }
4087   }
4088 };
4089 
4090 // Grey object scanning during work stealing phase --
4091 // the salient assumption here is that any references
4092 // that are in these stolen objects being scanned must
4093 // already have been initialized (else they would not have
4094 // been published), so we do not need to check for
4095 // uninitialized objects before pushing here.
4096 void Par_ConcMarkingClosure::do_oop(oop obj) {
4097   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4098   HeapWord* addr = (HeapWord*)obj;
4099   // Check if oop points into the CMS generation
4100   // and is not marked
4101   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4102     // a white object ...
4103     // If we manage to "claim" the object, by being the
4104     // first thread to mark it, then we push it on our
4105     // marking stack
4106     if (_bit_map->par_mark(addr)) {     // ... now grey
4107       // push on work queue (grey set)
4108       bool simulate_overflow = false;
4109       NOT_PRODUCT(
4110         if (CMSMarkStackOverflowALot &&
4111             _collector->simulate_overflow()) {
4112           // simulate a stack overflow
4113           simulate_overflow = true;
4114         }
4115       )
4116       if (simulate_overflow ||
4117           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4118         // stack overflow
4119         if (PrintCMSStatistics != 0) {
4120           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4121                                  SIZE_FORMAT, _overflow_stack->capacity());
4122         }
4123         // We cannot assert that the overflow stack is full because
4124         // it may have been emptied since.
4125         assert(simulate_overflow ||
4126                _work_queue->size() == _work_queue->max_elems(),
4127               "Else push should have succeeded");
4128         handle_stack_overflow(addr);
4129       }
4130     } // Else, some other thread got there first
4131     do_yield_check();
4132   }
4133 }
4134 
4135 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4136 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4137 
4138 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4139   while (_work_queue->size() > max) {
4140     oop new_oop;
4141     if (_work_queue->pop_local(new_oop)) {
4142       assert(new_oop->is_oop(), "Should be an oop");
4143       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4144       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4145       assert(new_oop->is_parsable(), "Should be parsable");
4146       new_oop->oop_iterate(this);  // do_oop() above
4147       do_yield_check();
4148     }
4149   }
4150 }
4151 
4152 // Upon stack overflow, we discard (part of) the stack,
4153 // remembering the least address amongst those discarded
4154 // in CMSCollector's _restart_address.
4155 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4156   // We need to do this under a mutex to prevent other
4157   // workers from interfering with the work done below.
4158   MutexLockerEx ml(_overflow_stack->par_lock(),
4159                    Mutex::_no_safepoint_check_flag);
4160   // Remember the least grey address discarded
4161   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4162   _collector->lower_restart_addr(ra);
4163   _overflow_stack->reset();  // discard stack contents
4164   _overflow_stack->expand(); // expand the stack if possible
4165 }
4166 
4167 
4168 void CMSConcMarkingTask::do_work_steal(int i) {
4169   OopTaskQueue* work_q = work_queue(i);
4170   oop obj_to_scan;
4171   CMSBitMap* bm = &(_collector->_markBitMap);
4172   CMSMarkStack* ovflw = &(_collector->_markStack);
4173   CMSMarkStack* revisit = &(_collector->_revisitStack);
4174   int* seed = _collector->hash_seed(i);
4175   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4176   while (true) {
4177     cl.trim_queue(0);
4178     assert(work_q->size() == 0, "Should have been emptied above");
4179     if (get_work_from_overflow_stack(ovflw, work_q)) {
4180       // Can't assert below because the work obtained from the
4181       // overflow stack may already have been stolen from us.
4182       // assert(work_q->size() > 0, "Work from overflow stack");
4183       continue;
4184     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4185       assert(obj_to_scan->is_oop(), "Should be an oop");
4186       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4187       obj_to_scan->oop_iterate(&cl);
4188     } else if (terminator()->offer_termination(&_term_term)) {
4189       assert(work_q->size() == 0, "Impossible!");
4190       break;
4191     } else if (yielding() || should_yield()) {
4192       yield();
4193     }
4194   }
4195 }
4196 
4197 // This is run by the CMS (coordinator) thread.
4198 void CMSConcMarkingTask::coordinator_yield() {
4199   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4200          "CMS thread should hold CMS token");
4201   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4202   // First give up the locks, then yield, then re-lock
4203   // We should probably use a constructor/destructor idiom to
4204   // do this unlock/lock or modify the MutexUnlocker class to
4205   // serve our purpose. XXX
4206   assert_lock_strong(_bit_map_lock);
4207   _bit_map_lock->unlock();
4208   ConcurrentMarkSweepThread::desynchronize(true);
4209   ConcurrentMarkSweepThread::acknowledge_yield_request();
4210   _collector->stopTimer();
4211   if (PrintCMSStatistics != 0) {
4212     _collector->incrementYields();
4213   }
4214   _collector->icms_wait();
4215 
4216   // It is possible for whichever thread initiated the yield request
4217   // not to get a chance to wake up and take the bitmap lock between
4218   // this thread releasing it and reacquiring it. So, while the
4219   // should_yield() flag is on, let's sleep for a bit to give the
4220   // other thread a chance to wake up. The limit imposed on the number
4221   // of iterations is defensive, to avoid any unforseen circumstances
4222   // putting us into an infinite loop. Since it's always been this
4223   // (coordinator_yield()) method that was observed to cause the
4224   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4225   // which is by default non-zero. For the other seven methods that
4226   // also perform the yield operation, as are using a different
4227   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4228   // can enable the sleeping for those methods too, if necessary.
4229   // See 6442774.
4230   //
4231   // We really need to reconsider the synchronization between the GC
4232   // thread and the yield-requesting threads in the future and we
4233   // should really use wait/notify, which is the recommended
4234   // way of doing this type of interaction. Additionally, we should
4235   // consolidate the eight methods that do the yield operation and they
4236   // are almost identical into one for better maintenability and
4237   // readability. See 6445193.
4238   //
4239   // Tony 2006.06.29
4240   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4241                    ConcurrentMarkSweepThread::should_yield() &&
4242                    !CMSCollector::foregroundGCIsActive(); ++i) {
4243     os::sleep(Thread::current(), 1, false);
4244     ConcurrentMarkSweepThread::acknowledge_yield_request();
4245   }
4246 
4247   ConcurrentMarkSweepThread::synchronize(true);
4248   _bit_map_lock->lock_without_safepoint_check();
4249   _collector->startTimer();
4250 }
4251 
4252 bool CMSCollector::do_marking_mt(bool asynch) {
4253   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4254   // In the future this would be determined ergonomically, based
4255   // on #cpu's, # active mutator threads (and load), and mutation rate.
4256   int num_workers = ConcGCThreads;
4257 
4258   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4259   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4260 
4261   CMSConcMarkingTask tsk(this,
4262                          cms_space,
4263                          perm_space,
4264                          asynch,
4265                          conc_workers(),
4266                          task_queues());
4267 
4268   // Since the actual number of workers we get may be different
4269   // from the number we requested above, do we need to do anything different
4270   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4271   // class?? XXX
4272   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4273   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4274 
4275   // Refs discovery is already non-atomic.
4276   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4277   // Mutate the Refs discovery so it is MT during the
4278   // multi-threaded marking phase.
4279   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
4280   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4281   conc_workers()->start_task(&tsk);
4282   while (tsk.yielded()) {
4283     tsk.coordinator_yield();
4284     conc_workers()->continue_task(&tsk);
4285   }
4286   // If the task was aborted, _restart_addr will be non-NULL
4287   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4288   while (_restart_addr != NULL) {
4289     // XXX For now we do not make use of ABORTED state and have not
4290     // yet implemented the right abort semantics (even in the original
4291     // single-threaded CMS case). That needs some more investigation
4292     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4293     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4294     // If _restart_addr is non-NULL, a marking stack overflow
4295     // occurred; we need to do a fresh marking iteration from the
4296     // indicated restart address.
4297     if (_foregroundGCIsActive && asynch) {
4298       // We may be running into repeated stack overflows, having
4299       // reached the limit of the stack size, while making very
4300       // slow forward progress. It may be best to bail out and
4301       // let the foreground collector do its job.
4302       // Clear _restart_addr, so that foreground GC
4303       // works from scratch. This avoids the headache of
4304       // a "rescan" which would otherwise be needed because
4305       // of the dirty mod union table & card table.
4306       _restart_addr = NULL;
4307       return false;
4308     }
4309     // Adjust the task to restart from _restart_addr
4310     tsk.reset(_restart_addr);
4311     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4312                   _restart_addr);
4313     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4314                   _restart_addr);
4315     _restart_addr = NULL;
4316     // Get the workers going again
4317     conc_workers()->start_task(&tsk);
4318     while (tsk.yielded()) {
4319       tsk.coordinator_yield();
4320       conc_workers()->continue_task(&tsk);
4321     }
4322   }
4323   assert(tsk.completed(), "Inconsistency");
4324   assert(tsk.result() == true, "Inconsistency");
4325   return true;
4326 }
4327 
4328 bool CMSCollector::do_marking_st(bool asynch) {
4329   ResourceMark rm;
4330   HandleMark   hm;
4331 
4332   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4333     &_markStack, &_revisitStack, CMSYield && asynch);
4334   // the last argument to iterate indicates whether the iteration
4335   // should be incremental with periodic yields.
4336   _markBitMap.iterate(&markFromRootsClosure);
4337   // If _restart_addr is non-NULL, a marking stack overflow
4338   // occurred; we need to do a fresh iteration from the
4339   // indicated restart address.
4340   while (_restart_addr != NULL) {
4341     if (_foregroundGCIsActive && asynch) {
4342       // We may be running into repeated stack overflows, having
4343       // reached the limit of the stack size, while making very
4344       // slow forward progress. It may be best to bail out and
4345       // let the foreground collector do its job.
4346       // Clear _restart_addr, so that foreground GC
4347       // works from scratch. This avoids the headache of
4348       // a "rescan" which would otherwise be needed because
4349       // of the dirty mod union table & card table.
4350       _restart_addr = NULL;
4351       return false;  // indicating failure to complete marking
4352     }
4353     // Deal with stack overflow:
4354     // we restart marking from _restart_addr
4355     HeapWord* ra = _restart_addr;
4356     markFromRootsClosure.reset(ra);
4357     _restart_addr = NULL;
4358     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4359   }
4360   return true;
4361 }
4362 
4363 void CMSCollector::preclean() {
4364   check_correct_thread_executing();
4365   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4366   verify_work_stacks_empty();
4367   verify_overflow_empty();
4368   _abort_preclean = false;
4369   if (CMSPrecleaningEnabled) {
4370     // Precleaning is currently not MT but the reference processor
4371     // may be set for MT.  Disable it temporarily here.
4372     ReferenceProcessor* rp = ref_processor();
4373     ReferenceProcessorMTProcMutator z(rp, false);
4374     _eden_chunk_index = 0;
4375     size_t used = get_eden_used();
4376     size_t capacity = get_eden_capacity();
4377     // Don't start sampling unless we will get sufficiently
4378     // many samples.
4379     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4380                 * CMSScheduleRemarkEdenPenetration)) {
4381       _start_sampling = true;
4382     } else {
4383       _start_sampling = false;
4384     }
4385     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4386     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4387     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4388   }
4389   CMSTokenSync x(true); // is cms thread
4390   if (CMSPrecleaningEnabled) {
4391     sample_eden();
4392     _collectorState = AbortablePreclean;
4393   } else {
4394     _collectorState = FinalMarking;
4395   }
4396   verify_work_stacks_empty();
4397   verify_overflow_empty();
4398 }
4399 
4400 // Try and schedule the remark such that young gen
4401 // occupancy is CMSScheduleRemarkEdenPenetration %.
4402 void CMSCollector::abortable_preclean() {
4403   check_correct_thread_executing();
4404   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4405   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4406 
4407   // If Eden's current occupancy is below this threshold,
4408   // immediately schedule the remark; else preclean
4409   // past the next scavenge in an effort to
4410   // schedule the pause as described avove. By choosing
4411   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4412   // we will never do an actual abortable preclean cycle.
4413   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4414     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4415     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4416     // We need more smarts in the abortable preclean
4417     // loop below to deal with cases where allocation
4418     // in young gen is very very slow, and our precleaning
4419     // is running a losing race against a horde of
4420     // mutators intent on flooding us with CMS updates
4421     // (dirty cards).
4422     // One, admittedly dumb, strategy is to give up
4423     // after a certain number of abortable precleaning loops
4424     // or after a certain maximum time. We want to make
4425     // this smarter in the next iteration.
4426     // XXX FIX ME!!! YSR
4427     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4428     while (!(should_abort_preclean() ||
4429              ConcurrentMarkSweepThread::should_terminate())) {
4430       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4431       cumworkdone += workdone;
4432       loops++;
4433       // Voluntarily terminate abortable preclean phase if we have
4434       // been at it for too long.
4435       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4436           loops >= CMSMaxAbortablePrecleanLoops) {
4437         if (PrintGCDetails) {
4438           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4439         }
4440         break;
4441       }
4442       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4443         if (PrintGCDetails) {
4444           gclog_or_tty->print(" CMS: abort preclean due to time ");
4445         }
4446         break;
4447       }
4448       // If we are doing little work each iteration, we should
4449       // take a short break.
4450       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4451         // Sleep for some time, waiting for work to accumulate
4452         stopTimer();
4453         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4454         startTimer();
4455         waited++;
4456       }
4457     }
4458     if (PrintCMSStatistics > 0) {
4459       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4460                           loops, waited, cumworkdone);
4461     }
4462   }
4463   CMSTokenSync x(true); // is cms thread
4464   if (_collectorState != Idling) {
4465     assert(_collectorState == AbortablePreclean,
4466            "Spontaneous state transition?");
4467     _collectorState = FinalMarking;
4468   } // Else, a foreground collection completed this CMS cycle.
4469   return;
4470 }
4471 
4472 // Respond to an Eden sampling opportunity
4473 void CMSCollector::sample_eden() {
4474   // Make sure a young gc cannot sneak in between our
4475   // reading and recording of a sample.
4476   assert(Thread::current()->is_ConcurrentGC_thread(),
4477          "Only the cms thread may collect Eden samples");
4478   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4479          "Should collect samples while holding CMS token");
4480   if (!_start_sampling) {
4481     return;
4482   }
4483   if (_eden_chunk_array) {
4484     if (_eden_chunk_index < _eden_chunk_capacity) {
4485       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4486       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4487              "Unexpected state of Eden");
4488       // We'd like to check that what we just sampled is an oop-start address;
4489       // however, we cannot do that here since the object may not yet have been
4490       // initialized. So we'll instead do the check when we _use_ this sample
4491       // later.
4492       if (_eden_chunk_index == 0 ||
4493           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4494                          _eden_chunk_array[_eden_chunk_index-1])
4495            >= CMSSamplingGrain)) {
4496         _eden_chunk_index++;  // commit sample
4497       }
4498     }
4499   }
4500   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4501     size_t used = get_eden_used();
4502     size_t capacity = get_eden_capacity();
4503     assert(used <= capacity, "Unexpected state of Eden");
4504     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4505       _abort_preclean = true;
4506     }
4507   }
4508 }
4509 
4510 
4511 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4512   assert(_collectorState == Precleaning ||
4513          _collectorState == AbortablePreclean, "incorrect state");
4514   ResourceMark rm;
4515   HandleMark   hm;
4516   // Do one pass of scrubbing the discovered reference lists
4517   // to remove any reference objects with strongly-reachable
4518   // referents.
4519   if (clean_refs) {
4520     ReferenceProcessor* rp = ref_processor();
4521     CMSPrecleanRefsYieldClosure yield_cl(this);
4522     assert(rp->span().equals(_span), "Spans should be equal");
4523     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4524                                    &_markStack, &_revisitStack,
4525                                    true /* preclean */);
4526     CMSDrainMarkingStackClosure complete_trace(this,
4527                                    _span, &_markBitMap, &_markStack,
4528                                    &keep_alive, true /* preclean */);
4529 
4530     // We don't want this step to interfere with a young
4531     // collection because we don't want to take CPU
4532     // or memory bandwidth away from the young GC threads
4533     // (which may be as many as there are CPUs).
4534     // Note that we don't need to protect ourselves from
4535     // interference with mutators because they can't
4536     // manipulate the discovered reference lists nor affect
4537     // the computed reachability of the referents, the
4538     // only properties manipulated by the precleaning
4539     // of these reference lists.
4540     stopTimer();
4541     CMSTokenSyncWithLocks x(true /* is cms thread */,
4542                             bitMapLock());
4543     startTimer();
4544     sample_eden();
4545 
4546     // The following will yield to allow foreground
4547     // collection to proceed promptly. XXX YSR:
4548     // The code in this method may need further
4549     // tweaking for better performance and some restructuring
4550     // for cleaner interfaces.
4551     rp->preclean_discovered_references(
4552           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4553           &yield_cl, should_unload_classes());
4554   }
4555 
4556   if (clean_survivor) {  // preclean the active survivor space(s)
4557     assert(_young_gen->kind() == Generation::DefNew ||
4558            _young_gen->kind() == Generation::ParNew ||
4559            _young_gen->kind() == Generation::ASParNew,
4560          "incorrect type for cast");
4561     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4562     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4563                              &_markBitMap, &_modUnionTable,
4564                              &_markStack, &_revisitStack,
4565                              true /* precleaning phase */);
4566     stopTimer();
4567     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4568                              bitMapLock());
4569     startTimer();
4570     unsigned int before_count =
4571       GenCollectedHeap::heap()->total_collections();
4572     SurvivorSpacePrecleanClosure
4573       sss_cl(this, _span, &_markBitMap, &_markStack,
4574              &pam_cl, before_count, CMSYield);
4575     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4576     dng->from()->object_iterate_careful(&sss_cl);
4577     dng->to()->object_iterate_careful(&sss_cl);
4578   }
4579   MarkRefsIntoAndScanClosure
4580     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4581              &_markStack, &_revisitStack, this, CMSYield,
4582              true /* precleaning phase */);
4583   // CAUTION: The following closure has persistent state that may need to
4584   // be reset upon a decrease in the sequence of addresses it
4585   // processes.
4586   ScanMarkedObjectsAgainCarefullyClosure
4587     smoac_cl(this, _span,
4588       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4589 
4590   // Preclean dirty cards in ModUnionTable and CardTable using
4591   // appropriate convergence criterion;
4592   // repeat CMSPrecleanIter times unless we find that
4593   // we are losing.
4594   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4595   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4596          "Bad convergence multiplier");
4597   assert(CMSPrecleanThreshold >= 100,
4598          "Unreasonably low CMSPrecleanThreshold");
4599 
4600   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4601   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4602        numIter < CMSPrecleanIter;
4603        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4604     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4605     if (CMSPermGenPrecleaningEnabled) {
4606       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4607     }
4608     if (Verbose && PrintGCDetails) {
4609       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4610     }
4611     // Either there are very few dirty cards, so re-mark
4612     // pause will be small anyway, or our pre-cleaning isn't
4613     // that much faster than the rate at which cards are being
4614     // dirtied, so we might as well stop and re-mark since
4615     // precleaning won't improve our re-mark time by much.
4616     if (curNumCards <= CMSPrecleanThreshold ||
4617         (numIter > 0 &&
4618          (curNumCards * CMSPrecleanDenominator >
4619          lastNumCards * CMSPrecleanNumerator))) {
4620       numIter++;
4621       cumNumCards += curNumCards;
4622       break;
4623     }
4624   }
4625   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4626   if (CMSPermGenPrecleaningEnabled) {
4627     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4628   }
4629   cumNumCards += curNumCards;
4630   if (PrintGCDetails && PrintCMSStatistics != 0) {
4631     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4632                   curNumCards, cumNumCards, numIter);
4633   }
4634   return cumNumCards;   // as a measure of useful work done
4635 }
4636 
4637 // PRECLEANING NOTES:
4638 // Precleaning involves:
4639 // . reading the bits of the modUnionTable and clearing the set bits.
4640 // . For the cards corresponding to the set bits, we scan the
4641 //   objects on those cards. This means we need the free_list_lock
4642 //   so that we can safely iterate over the CMS space when scanning
4643 //   for oops.
4644 // . When we scan the objects, we'll be both reading and setting
4645 //   marks in the marking bit map, so we'll need the marking bit map.
4646 // . For protecting _collector_state transitions, we take the CGC_lock.
4647 //   Note that any races in the reading of of card table entries by the
4648 //   CMS thread on the one hand and the clearing of those entries by the
4649 //   VM thread or the setting of those entries by the mutator threads on the
4650 //   other are quite benign. However, for efficiency it makes sense to keep
4651 //   the VM thread from racing with the CMS thread while the latter is
4652 //   dirty card info to the modUnionTable. We therefore also use the
4653 //   CGC_lock to protect the reading of the card table and the mod union
4654 //   table by the CM thread.
4655 // . We run concurrently with mutator updates, so scanning
4656 //   needs to be done carefully  -- we should not try to scan
4657 //   potentially uninitialized objects.
4658 //
4659 // Locking strategy: While holding the CGC_lock, we scan over and
4660 // reset a maximal dirty range of the mod union / card tables, then lock
4661 // the free_list_lock and bitmap lock to do a full marking, then
4662 // release these locks; and repeat the cycle. This allows for a
4663 // certain amount of fairness in the sharing of these locks between
4664 // the CMS collector on the one hand, and the VM thread and the
4665 // mutators on the other.
4666 
4667 // NOTE: preclean_mod_union_table() and preclean_card_table()
4668 // further below are largely identical; if you need to modify
4669 // one of these methods, please check the other method too.
4670 
4671 size_t CMSCollector::preclean_mod_union_table(
4672   ConcurrentMarkSweepGeneration* gen,
4673   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4674   verify_work_stacks_empty();
4675   verify_overflow_empty();
4676 
4677   // Turn off checking for this method but turn it back on
4678   // selectively.  There are yield points in this method
4679   // but it is difficult to turn the checking off just around
4680   // the yield points.  It is simpler to selectively turn
4681   // it on.
4682   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4683 
4684   // strategy: starting with the first card, accumulate contiguous
4685   // ranges of dirty cards; clear these cards, then scan the region
4686   // covered by these cards.
4687 
4688   // Since all of the MUT is committed ahead, we can just use
4689   // that, in case the generations expand while we are precleaning.
4690   // It might also be fine to just use the committed part of the
4691   // generation, but we might potentially miss cards when the
4692   // generation is rapidly expanding while we are in the midst
4693   // of precleaning.
4694   HeapWord* startAddr = gen->reserved().start();
4695   HeapWord* endAddr   = gen->reserved().end();
4696 
4697   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4698 
4699   size_t numDirtyCards, cumNumDirtyCards;
4700   HeapWord *nextAddr, *lastAddr;
4701   for (cumNumDirtyCards = numDirtyCards = 0,
4702        nextAddr = lastAddr = startAddr;
4703        nextAddr < endAddr;
4704        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4705 
4706     ResourceMark rm;
4707     HandleMark   hm;
4708 
4709     MemRegion dirtyRegion;
4710     {
4711       stopTimer();
4712       // Potential yield point
4713       CMSTokenSync ts(true);
4714       startTimer();
4715       sample_eden();
4716       // Get dirty region starting at nextOffset (inclusive),
4717       // simultaneously clearing it.
4718       dirtyRegion =
4719         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4720       assert(dirtyRegion.start() >= nextAddr,
4721              "returned region inconsistent?");
4722     }
4723     // Remember where the next search should begin.
4724     // The returned region (if non-empty) is a right open interval,
4725     // so lastOffset is obtained from the right end of that
4726     // interval.
4727     lastAddr = dirtyRegion.end();
4728     // Should do something more transparent and less hacky XXX
4729     numDirtyCards =
4730       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4731 
4732     // We'll scan the cards in the dirty region (with periodic
4733     // yields for foreground GC as needed).
4734     if (!dirtyRegion.is_empty()) {
4735       assert(numDirtyCards > 0, "consistency check");
4736       HeapWord* stop_point = NULL;
4737       stopTimer();
4738       // Potential yield point
4739       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4740                                bitMapLock());
4741       startTimer();
4742       {
4743         verify_work_stacks_empty();
4744         verify_overflow_empty();
4745         sample_eden();
4746         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4747         stop_point =
4748           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4749       }
4750       if (stop_point != NULL) {
4751         // The careful iteration stopped early either because it found an
4752         // uninitialized object, or because we were in the midst of an
4753         // "abortable preclean", which should now be aborted. Redirty
4754         // the bits corresponding to the partially-scanned or unscanned
4755         // cards. We'll either restart at the next block boundary or
4756         // abort the preclean.
4757         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4758                (_collectorState == AbortablePreclean && should_abort_preclean()),
4759                "Unparsable objects should only be in perm gen.");
4760         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4761         if (should_abort_preclean()) {
4762           break; // out of preclean loop
4763         } else {
4764           // Compute the next address at which preclean should pick up;
4765           // might need bitMapLock in order to read P-bits.
4766           lastAddr = next_card_start_after_block(stop_point);
4767         }
4768       }
4769     } else {
4770       assert(lastAddr == endAddr, "consistency check");
4771       assert(numDirtyCards == 0, "consistency check");
4772       break;
4773     }
4774   }
4775   verify_work_stacks_empty();
4776   verify_overflow_empty();
4777   return cumNumDirtyCards;
4778 }
4779 
4780 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4781 // below are largely identical; if you need to modify
4782 // one of these methods, please check the other method too.
4783 
4784 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4785   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4786   // strategy: it's similar to precleamModUnionTable above, in that
4787   // we accumulate contiguous ranges of dirty cards, mark these cards
4788   // precleaned, then scan the region covered by these cards.
4789   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4790   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4791 
4792   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4793 
4794   size_t numDirtyCards, cumNumDirtyCards;
4795   HeapWord *lastAddr, *nextAddr;
4796 
4797   for (cumNumDirtyCards = numDirtyCards = 0,
4798        nextAddr = lastAddr = startAddr;
4799        nextAddr < endAddr;
4800        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4801 
4802     ResourceMark rm;
4803     HandleMark   hm;
4804 
4805     MemRegion dirtyRegion;
4806     {
4807       // See comments in "Precleaning notes" above on why we
4808       // do this locking. XXX Could the locking overheads be
4809       // too high when dirty cards are sparse? [I don't think so.]
4810       stopTimer();
4811       CMSTokenSync x(true); // is cms thread
4812       startTimer();
4813       sample_eden();
4814       // Get and clear dirty region from card table
4815       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4816                                     MemRegion(nextAddr, endAddr),
4817                                     true,
4818                                     CardTableModRefBS::precleaned_card_val());
4819 
4820       assert(dirtyRegion.start() >= nextAddr,
4821              "returned region inconsistent?");
4822     }
4823     lastAddr = dirtyRegion.end();
4824     numDirtyCards =
4825       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4826 
4827     if (!dirtyRegion.is_empty()) {
4828       stopTimer();
4829       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4830       startTimer();
4831       sample_eden();
4832       verify_work_stacks_empty();
4833       verify_overflow_empty();
4834       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4835       HeapWord* stop_point =
4836         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4837       if (stop_point != NULL) {
4838         // The careful iteration stopped early because it found an
4839         // uninitialized object.  Redirty the bits corresponding to the
4840         // partially-scanned or unscanned cards, and start again at the
4841         // next block boundary.
4842         assert(CMSPermGenPrecleaningEnabled ||
4843                (_collectorState == AbortablePreclean && should_abort_preclean()),
4844                "Unparsable objects should only be in perm gen.");
4845         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4846         if (should_abort_preclean()) {
4847           break; // out of preclean loop
4848         } else {
4849           // Compute the next address at which preclean should pick up.
4850           lastAddr = next_card_start_after_block(stop_point);
4851         }
4852       }
4853     } else {
4854       break;
4855     }
4856   }
4857   verify_work_stacks_empty();
4858   verify_overflow_empty();
4859   return cumNumDirtyCards;
4860 }
4861 
4862 void CMSCollector::checkpointRootsFinal(bool asynch,
4863   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4864   assert(_collectorState == FinalMarking, "incorrect state transition?");
4865   check_correct_thread_executing();
4866   // world is stopped at this checkpoint
4867   assert(SafepointSynchronize::is_at_safepoint(),
4868          "world should be stopped");
4869   TraceCMSMemoryManagerStats tms(_collectorState);
4870   verify_work_stacks_empty();
4871   verify_overflow_empty();
4872 
4873   SpecializationStats::clear();
4874   if (PrintGCDetails) {
4875     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4876                         _young_gen->used() / K,
4877                         _young_gen->capacity() / K);
4878   }
4879   if (asynch) {
4880     if (CMSScavengeBeforeRemark) {
4881       GenCollectedHeap* gch = GenCollectedHeap::heap();
4882       // Temporarily set flag to false, GCH->do_collection will
4883       // expect it to be false and set to true
4884       FlagSetting fl(gch->_is_gc_active, false);
4885       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4886         PrintGCDetails && Verbose, true, gclog_or_tty);)
4887       int level = _cmsGen->level() - 1;
4888       if (level >= 0) {
4889         gch->do_collection(true,        // full (i.e. force, see below)
4890                            false,       // !clear_all_soft_refs
4891                            0,           // size
4892                            false,       // is_tlab
4893                            level        // max_level
4894                           );
4895       }
4896     }
4897     FreelistLocker x(this);
4898     MutexLockerEx y(bitMapLock(),
4899                     Mutex::_no_safepoint_check_flag);
4900     assert(!init_mark_was_synchronous, "but that's impossible!");
4901     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4902   } else {
4903     // already have all the locks
4904     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4905                              init_mark_was_synchronous);
4906   }
4907   verify_work_stacks_empty();
4908   verify_overflow_empty();
4909   SpecializationStats::print();
4910 }
4911 
4912 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4913   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4914 
4915   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4916 
4917   assert(haveFreelistLocks(), "must have free list locks");
4918   assert_lock_strong(bitMapLock());
4919 
4920   if (UseAdaptiveSizePolicy) {
4921     size_policy()->checkpoint_roots_final_begin();
4922   }
4923 
4924   ResourceMark rm;
4925   HandleMark   hm;
4926 
4927   GenCollectedHeap* gch = GenCollectedHeap::heap();
4928 
4929   if (should_unload_classes()) {
4930     CodeCache::gc_prologue();
4931   }
4932   assert(haveFreelistLocks(), "must have free list locks");
4933   assert_lock_strong(bitMapLock());
4934 
4935   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4936   if (!init_mark_was_synchronous) {
4937     // We might assume that we need not fill TLAB's when
4938     // CMSScavengeBeforeRemark is set, because we may have just done
4939     // a scavenge which would have filled all TLAB's -- and besides
4940     // Eden would be empty. This however may not always be the case --
4941     // for instance although we asked for a scavenge, it may not have
4942     // happened because of a JNI critical section. We probably need
4943     // a policy for deciding whether we can in that case wait until
4944     // the critical section releases and then do the remark following
4945     // the scavenge, and skip it here. In the absence of that policy,
4946     // or of an indication of whether the scavenge did indeed occur,
4947     // we cannot rely on TLAB's having been filled and must do
4948     // so here just in case a scavenge did not happen.
4949     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4950     // Update the saved marks which may affect the root scans.
4951     gch->save_marks();
4952 
4953     {
4954       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4955 
4956       // Note on the role of the mod union table:
4957       // Since the marker in "markFromRoots" marks concurrently with
4958       // mutators, it is possible for some reachable objects not to have been
4959       // scanned. For instance, an only reference to an object A was
4960       // placed in object B after the marker scanned B. Unless B is rescanned,
4961       // A would be collected. Such updates to references in marked objects
4962       // are detected via the mod union table which is the set of all cards
4963       // dirtied since the first checkpoint in this GC cycle and prior to
4964       // the most recent young generation GC, minus those cleaned up by the
4965       // concurrent precleaning.
4966       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4967         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4968         do_remark_parallel();
4969       } else {
4970         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4971                     gclog_or_tty);
4972         do_remark_non_parallel();
4973       }
4974     }
4975   } else {
4976     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4977     // The initial mark was stop-world, so there's no rescanning to
4978     // do; go straight on to the next step below.
4979   }
4980   verify_work_stacks_empty();
4981   verify_overflow_empty();
4982 
4983   {
4984     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4985     refProcessingWork(asynch, clear_all_soft_refs);
4986   }
4987   verify_work_stacks_empty();
4988   verify_overflow_empty();
4989 
4990   if (should_unload_classes()) {
4991     CodeCache::gc_epilogue();
4992   }
4993 
4994   // If we encountered any (marking stack / work queue) overflow
4995   // events during the current CMS cycle, take appropriate
4996   // remedial measures, where possible, so as to try and avoid
4997   // recurrence of that condition.
4998   assert(_markStack.isEmpty(), "No grey objects");
4999   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5000                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5001   if (ser_ovflw > 0) {
5002     if (PrintCMSStatistics != 0) {
5003       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5004         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5005         ", kac_preclean="SIZE_FORMAT")",
5006         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5007         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5008     }
5009     _markStack.expand();
5010     _ser_pmc_remark_ovflw = 0;
5011     _ser_pmc_preclean_ovflw = 0;
5012     _ser_kac_preclean_ovflw = 0;
5013     _ser_kac_ovflw = 0;
5014   }
5015   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5016     if (PrintCMSStatistics != 0) {
5017       gclog_or_tty->print_cr("Work queue overflow (benign) "
5018         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5019         _par_pmc_remark_ovflw, _par_kac_ovflw);
5020     }
5021     _par_pmc_remark_ovflw = 0;
5022     _par_kac_ovflw = 0;
5023   }
5024   if (PrintCMSStatistics != 0) {
5025      if (_markStack._hit_limit > 0) {
5026        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5027                               _markStack._hit_limit);
5028      }
5029      if (_markStack._failed_double > 0) {
5030        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5031                               " current capacity "SIZE_FORMAT,
5032                               _markStack._failed_double,
5033                               _markStack.capacity());
5034      }
5035   }
5036   _markStack._hit_limit = 0;
5037   _markStack._failed_double = 0;
5038 
5039   // Check that all the klasses have been checked
5040   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5041 
5042   if ((VerifyAfterGC || VerifyDuringGC) &&
5043       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5044     verify_after_remark();
5045   }
5046 
5047   // Change under the freelistLocks.
5048   _collectorState = Sweeping;
5049   // Call isAllClear() under bitMapLock
5050   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5051     " final marking");
5052   if (UseAdaptiveSizePolicy) {
5053     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5054   }
5055 }
5056 
5057 // Parallel remark task
5058 class CMSParRemarkTask: public AbstractGangTask {
5059   CMSCollector* _collector;
5060   int           _n_workers;
5061   CompactibleFreeListSpace* _cms_space;
5062   CompactibleFreeListSpace* _perm_space;
5063 
5064   // The per-thread work queues, available here for stealing.
5065   OopTaskQueueSet*       _task_queues;
5066   ParallelTaskTerminator _term;
5067 
5068  public:
5069   CMSParRemarkTask(CMSCollector* collector,
5070                    CompactibleFreeListSpace* cms_space,
5071                    CompactibleFreeListSpace* perm_space,
5072                    int n_workers, FlexibleWorkGang* workers,
5073                    OopTaskQueueSet* task_queues):
5074     AbstractGangTask("Rescan roots and grey objects in parallel"),
5075     _collector(collector),
5076     _cms_space(cms_space), _perm_space(perm_space),
5077     _n_workers(n_workers),
5078     _task_queues(task_queues),
5079     _term(n_workers, task_queues) { }
5080 
5081   OopTaskQueueSet* task_queues() { return _task_queues; }
5082 
5083   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5084 
5085   ParallelTaskTerminator* terminator() { return &_term; }
5086   int n_workers() { return _n_workers; }
5087 
5088   void work(int i);
5089 
5090  private:
5091   // Work method in support of parallel rescan ... of young gen spaces
5092   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5093                              ContiguousSpace* space,
5094                              HeapWord** chunk_array, size_t chunk_top);
5095 
5096   // ... of  dirty cards in old space
5097   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5098                                   Par_MarkRefsIntoAndScanClosure* cl);
5099 
5100   // ... work stealing for the above
5101   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5102 };
5103 
5104 // work_queue(i) is passed to the closure
5105 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5106 // also is passed to do_dirty_card_rescan_tasks() and to
5107 // do_work_steal() to select the i-th task_queue.
5108 
5109 void CMSParRemarkTask::work(int i) {
5110   elapsedTimer _timer;
5111   ResourceMark rm;
5112   HandleMark   hm;
5113 
5114   // ---------- rescan from roots --------------
5115   _timer.start();
5116   GenCollectedHeap* gch = GenCollectedHeap::heap();
5117   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5118     _collector->_span, _collector->ref_processor(),
5119     &(_collector->_markBitMap),
5120     work_queue(i), &(_collector->_revisitStack));
5121 
5122   // Rescan young gen roots first since these are likely
5123   // coarsely partitioned and may, on that account, constitute
5124   // the critical path; thus, it's best to start off that
5125   // work first.
5126   // ---------- young gen roots --------------
5127   {
5128     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5129     EdenSpace* eden_space = dng->eden();
5130     ContiguousSpace* from_space = dng->from();
5131     ContiguousSpace* to_space   = dng->to();
5132 
5133     HeapWord** eca = _collector->_eden_chunk_array;
5134     size_t     ect = _collector->_eden_chunk_index;
5135     HeapWord** sca = _collector->_survivor_chunk_array;
5136     size_t     sct = _collector->_survivor_chunk_index;
5137 
5138     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5139     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5140 
5141     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
5142     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
5143     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
5144 
5145     _timer.stop();
5146     if (PrintCMSStatistics != 0) {
5147       gclog_or_tty->print_cr(
5148         "Finished young gen rescan work in %dth thread: %3.3f sec",
5149         i, _timer.seconds());
5150     }
5151   }
5152 
5153   // ---------- remaining roots --------------
5154   _timer.reset();
5155   _timer.start();
5156   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5157                                 false,     // yg was scanned above
5158                                 false,     // this is parallel code
5159                                 true,      // collecting perm gen
5160                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5161                                 &par_mrias_cl,
5162                                 true,   // walk all of code cache if (so & SO_CodeCache)
5163                                 NULL);
5164   assert(_collector->should_unload_classes()
5165          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5166          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5167   _timer.stop();
5168   if (PrintCMSStatistics != 0) {
5169     gclog_or_tty->print_cr(
5170       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5171       i, _timer.seconds());
5172   }
5173 
5174   // ---------- rescan dirty cards ------------
5175   _timer.reset();
5176   _timer.start();
5177 
5178   // Do the rescan tasks for each of the two spaces
5179   // (cms_space and perm_space) in turn.
5180   // "i" is passed to select the "i-th" task_queue
5181   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
5182   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
5183   _timer.stop();
5184   if (PrintCMSStatistics != 0) {
5185     gclog_or_tty->print_cr(
5186       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5187       i, _timer.seconds());
5188   }
5189 
5190   // ---------- steal work from other threads ...
5191   // ---------- ... and drain overflow list.
5192   _timer.reset();
5193   _timer.start();
5194   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
5195   _timer.stop();
5196   if (PrintCMSStatistics != 0) {
5197     gclog_or_tty->print_cr(
5198       "Finished work stealing in %dth thread: %3.3f sec",
5199       i, _timer.seconds());
5200   }
5201 }
5202 
5203 // Note that parameter "i" is not used.
5204 void
5205 CMSParRemarkTask::do_young_space_rescan(int i,
5206   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5207   HeapWord** chunk_array, size_t chunk_top) {
5208   // Until all tasks completed:
5209   // . claim an unclaimed task
5210   // . compute region boundaries corresponding to task claimed
5211   //   using chunk_array
5212   // . par_oop_iterate(cl) over that region
5213 
5214   ResourceMark rm;
5215   HandleMark   hm;
5216 
5217   SequentialSubTasksDone* pst = space->par_seq_tasks();
5218   assert(pst->valid(), "Uninitialized use?");
5219 
5220   int nth_task = 0;
5221   int n_tasks  = pst->n_tasks();
5222 
5223   HeapWord *start, *end;
5224   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5225     // We claimed task # nth_task; compute its boundaries.
5226     if (chunk_top == 0) {  // no samples were taken
5227       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5228       start = space->bottom();
5229       end   = space->top();
5230     } else if (nth_task == 0) {
5231       start = space->bottom();
5232       end   = chunk_array[nth_task];
5233     } else if (nth_task < (jint)chunk_top) {
5234       assert(nth_task >= 1, "Control point invariant");
5235       start = chunk_array[nth_task - 1];
5236       end   = chunk_array[nth_task];
5237     } else {
5238       assert(nth_task == (jint)chunk_top, "Control point invariant");
5239       start = chunk_array[chunk_top - 1];
5240       end   = space->top();
5241     }
5242     MemRegion mr(start, end);
5243     // Verify that mr is in space
5244     assert(mr.is_empty() || space->used_region().contains(mr),
5245            "Should be in space");
5246     // Verify that "start" is an object boundary
5247     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5248            "Should be an oop");
5249     space->par_oop_iterate(mr, cl);
5250   }
5251   pst->all_tasks_completed();
5252 }
5253 
5254 void
5255 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5256   CompactibleFreeListSpace* sp, int i,
5257   Par_MarkRefsIntoAndScanClosure* cl) {
5258   // Until all tasks completed:
5259   // . claim an unclaimed task
5260   // . compute region boundaries corresponding to task claimed
5261   // . transfer dirty bits ct->mut for that region
5262   // . apply rescanclosure to dirty mut bits for that region
5263 
5264   ResourceMark rm;
5265   HandleMark   hm;
5266 
5267   OopTaskQueue* work_q = work_queue(i);
5268   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5269   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5270   // CAUTION: This closure has state that persists across calls to
5271   // the work method dirty_range_iterate_clear() in that it has
5272   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5273   // use of that state in the imbedded UpwardsObjectClosure instance
5274   // assumes that the cards are always iterated (even if in parallel
5275   // by several threads) in monotonically increasing order per each
5276   // thread. This is true of the implementation below which picks
5277   // card ranges (chunks) in monotonically increasing order globally
5278   // and, a-fortiori, in monotonically increasing order per thread
5279   // (the latter order being a subsequence of the former).
5280   // If the work code below is ever reorganized into a more chaotic
5281   // work-partitioning form than the current "sequential tasks"
5282   // paradigm, the use of that persistent state will have to be
5283   // revisited and modified appropriately. See also related
5284   // bug 4756801 work on which should examine this code to make
5285   // sure that the changes there do not run counter to the
5286   // assumptions made here and necessary for correctness and
5287   // efficiency. Note also that this code might yield inefficient
5288   // behaviour in the case of very large objects that span one or
5289   // more work chunks. Such objects would potentially be scanned
5290   // several times redundantly. Work on 4756801 should try and
5291   // address that performance anomaly if at all possible. XXX
5292   MemRegion  full_span  = _collector->_span;
5293   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5294   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5295   MarkFromDirtyCardsClosure
5296     greyRescanClosure(_collector, full_span, // entire span of interest
5297                       sp, bm, work_q, rs, cl);
5298 
5299   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5300   assert(pst->valid(), "Uninitialized use?");
5301   int nth_task = 0;
5302   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5303   MemRegion span = sp->used_region();
5304   HeapWord* start_addr = span.start();
5305   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5306                                            alignment);
5307   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5308   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5309          start_addr, "Check alignment");
5310   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5311          chunk_size, "Check alignment");
5312 
5313   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5314     // Having claimed the nth_task, compute corresponding mem-region,
5315     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5316     // The alignment restriction ensures that we do not need any
5317     // synchronization with other gang-workers while setting or
5318     // clearing bits in thus chunk of the MUT.
5319     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5320                                     start_addr + (nth_task+1)*chunk_size);
5321     // The last chunk's end might be way beyond end of the
5322     // used region. In that case pull back appropriately.
5323     if (this_span.end() > end_addr) {
5324       this_span.set_end(end_addr);
5325       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5326     }
5327     // Iterate over the dirty cards covering this chunk, marking them
5328     // precleaned, and setting the corresponding bits in the mod union
5329     // table. Since we have been careful to partition at Card and MUT-word
5330     // boundaries no synchronization is needed between parallel threads.
5331     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5332                                                  &modUnionClosure);
5333 
5334     // Having transferred these marks into the modUnionTable,
5335     // rescan the marked objects on the dirty cards in the modUnionTable.
5336     // Even if this is at a synchronous collection, the initial marking
5337     // may have been done during an asynchronous collection so there
5338     // may be dirty bits in the mod-union table.
5339     _collector->_modUnionTable.dirty_range_iterate_clear(
5340                   this_span, &greyRescanClosure);
5341     _collector->_modUnionTable.verifyNoOneBitsInRange(
5342                                  this_span.start(),
5343                                  this_span.end());
5344   }
5345   pst->all_tasks_completed();  // declare that i am done
5346 }
5347 
5348 // . see if we can share work_queues with ParNew? XXX
5349 void
5350 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5351                                 int* seed) {
5352   OopTaskQueue* work_q = work_queue(i);
5353   NOT_PRODUCT(int num_steals = 0;)
5354   oop obj_to_scan;
5355   CMSBitMap* bm = &(_collector->_markBitMap);
5356 
5357   while (true) {
5358     // Completely finish any left over work from (an) earlier round(s)
5359     cl->trim_queue(0);
5360     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5361                                          (size_t)ParGCDesiredObjsFromOverflowList);
5362     // Now check if there's any work in the overflow list
5363     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5364     // only affects the number of attempts made to get work from the
5365     // overflow list and does not affect the number of workers.  Just
5366     // pass ParallelGCThreads so this behavior is unchanged.
5367     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5368                                                 work_q,
5369                                                 ParallelGCThreads)) {
5370       // found something in global overflow list;
5371       // not yet ready to go stealing work from others.
5372       // We'd like to assert(work_q->size() != 0, ...)
5373       // because we just took work from the overflow list,
5374       // but of course we can't since all of that could have
5375       // been already stolen from us.
5376       // "He giveth and He taketh away."
5377       continue;
5378     }
5379     // Verify that we have no work before we resort to stealing
5380     assert(work_q->size() == 0, "Have work, shouldn't steal");
5381     // Try to steal from other queues that have work
5382     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5383       NOT_PRODUCT(num_steals++;)
5384       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5385       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5386       // Do scanning work
5387       obj_to_scan->oop_iterate(cl);
5388       // Loop around, finish this work, and try to steal some more
5389     } else if (terminator()->offer_termination()) {
5390         break;  // nirvana from the infinite cycle
5391     }
5392   }
5393   NOT_PRODUCT(
5394     if (PrintCMSStatistics != 0) {
5395       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5396     }
5397   )
5398   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5399          "Else our work is not yet done");
5400 }
5401 
5402 // Return a thread-local PLAB recording array, as appropriate.
5403 void* CMSCollector::get_data_recorder(int thr_num) {
5404   if (_survivor_plab_array != NULL &&
5405       (CMSPLABRecordAlways ||
5406        (_collectorState > Marking && _collectorState < FinalMarking))) {
5407     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5408     ChunkArray* ca = &_survivor_plab_array[thr_num];
5409     ca->reset();   // clear it so that fresh data is recorded
5410     return (void*) ca;
5411   } else {
5412     return NULL;
5413   }
5414 }
5415 
5416 // Reset all the thread-local PLAB recording arrays
5417 void CMSCollector::reset_survivor_plab_arrays() {
5418   for (uint i = 0; i < ParallelGCThreads; i++) {
5419     _survivor_plab_array[i].reset();
5420   }
5421 }
5422 
5423 // Merge the per-thread plab arrays into the global survivor chunk
5424 // array which will provide the partitioning of the survivor space
5425 // for CMS rescan.
5426 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5427                                               int no_of_gc_threads) {
5428   assert(_survivor_plab_array  != NULL, "Error");
5429   assert(_survivor_chunk_array != NULL, "Error");
5430   assert(_collectorState == FinalMarking, "Error");
5431   for (int j = 0; j < no_of_gc_threads; j++) {
5432     _cursor[j] = 0;
5433   }
5434   HeapWord* top = surv->top();
5435   size_t i;
5436   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5437     HeapWord* min_val = top;          // Higher than any PLAB address
5438     uint      min_tid = 0;            // position of min_val this round
5439     for (int j = 0; j < no_of_gc_threads; j++) {
5440       ChunkArray* cur_sca = &_survivor_plab_array[j];
5441       if (_cursor[j] == cur_sca->end()) {
5442         continue;
5443       }
5444       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5445       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5446       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5447       if (cur_val < min_val) {
5448         min_tid = j;
5449         min_val = cur_val;
5450       } else {
5451         assert(cur_val < top, "All recorded addresses should be less");
5452       }
5453     }
5454     // At this point min_val and min_tid are respectively
5455     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5456     // and the thread (j) that witnesses that address.
5457     // We record this address in the _survivor_chunk_array[i]
5458     // and increment _cursor[min_tid] prior to the next round i.
5459     if (min_val == top) {
5460       break;
5461     }
5462     _survivor_chunk_array[i] = min_val;
5463     _cursor[min_tid]++;
5464   }
5465   // We are all done; record the size of the _survivor_chunk_array
5466   _survivor_chunk_index = i; // exclusive: [0, i)
5467   if (PrintCMSStatistics > 0) {
5468     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5469   }
5470   // Verify that we used up all the recorded entries
5471   #ifdef ASSERT
5472     size_t total = 0;
5473     for (int j = 0; j < no_of_gc_threads; j++) {
5474       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5475       total += _cursor[j];
5476     }
5477     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5478     // Check that the merged array is in sorted order
5479     if (total > 0) {
5480       for (size_t i = 0; i < total - 1; i++) {
5481         if (PrintCMSStatistics > 0) {
5482           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5483                               i, _survivor_chunk_array[i]);
5484         }
5485         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5486                "Not sorted");
5487       }
5488     }
5489   #endif // ASSERT
5490 }
5491 
5492 // Set up the space's par_seq_tasks structure for work claiming
5493 // for parallel rescan of young gen.
5494 // See ParRescanTask where this is currently used.
5495 void
5496 CMSCollector::
5497 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5498   assert(n_threads > 0, "Unexpected n_threads argument");
5499   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5500 
5501   // Eden space
5502   {
5503     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5504     assert(!pst->valid(), "Clobbering existing data?");
5505     // Each valid entry in [0, _eden_chunk_index) represents a task.
5506     size_t n_tasks = _eden_chunk_index + 1;
5507     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5508     // Sets the condition for completion of the subtask (how many threads
5509     // need to finish in order to be done).
5510     pst->set_n_threads(n_threads);
5511     pst->set_n_tasks((int)n_tasks);
5512   }
5513 
5514   // Merge the survivor plab arrays into _survivor_chunk_array
5515   if (_survivor_plab_array != NULL) {
5516     merge_survivor_plab_arrays(dng->from(), n_threads);
5517   } else {
5518     assert(_survivor_chunk_index == 0, "Error");
5519   }
5520 
5521   // To space
5522   {
5523     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5524     assert(!pst->valid(), "Clobbering existing data?");
5525     // Sets the condition for completion of the subtask (how many threads
5526     // need to finish in order to be done).
5527     pst->set_n_threads(n_threads);
5528     pst->set_n_tasks(1);
5529     assert(pst->valid(), "Error");
5530   }
5531 
5532   // From space
5533   {
5534     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5535     assert(!pst->valid(), "Clobbering existing data?");
5536     size_t n_tasks = _survivor_chunk_index + 1;
5537     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5538     // Sets the condition for completion of the subtask (how many threads
5539     // need to finish in order to be done).
5540     pst->set_n_threads(n_threads);
5541     pst->set_n_tasks((int)n_tasks);
5542     assert(pst->valid(), "Error");
5543   }
5544 }
5545 
5546 // Parallel version of remark
5547 void CMSCollector::do_remark_parallel() {
5548   GenCollectedHeap* gch = GenCollectedHeap::heap();
5549   FlexibleWorkGang* workers = gch->workers();
5550   assert(workers != NULL, "Need parallel worker threads.");
5551   int n_workers = workers->total_workers();
5552   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5553   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5554 
5555   CMSParRemarkTask tsk(this,
5556     cms_space, perm_space,
5557     n_workers, workers, task_queues());
5558 
5559   // Set up for parallel process_strong_roots work.
5560   gch->set_par_threads(n_workers);
5561   // We won't be iterating over the cards in the card table updating
5562   // the younger_gen cards, so we shouldn't call the following else
5563   // the verification code as well as subsequent younger_refs_iterate
5564   // code would get confused. XXX
5565   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5566 
5567   // The young gen rescan work will not be done as part of
5568   // process_strong_roots (which currently doesn't knw how to
5569   // parallelize such a scan), but rather will be broken up into
5570   // a set of parallel tasks (via the sampling that the [abortable]
5571   // preclean phase did of EdenSpace, plus the [two] tasks of
5572   // scanning the [two] survivor spaces. Further fine-grain
5573   // parallelization of the scanning of the survivor spaces
5574   // themselves, and of precleaning of the younger gen itself
5575   // is deferred to the future.
5576   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5577 
5578   // The dirty card rescan work is broken up into a "sequence"
5579   // of parallel tasks (per constituent space) that are dynamically
5580   // claimed by the parallel threads.
5581   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5582   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5583 
5584   // It turns out that even when we're using 1 thread, doing the work in a
5585   // separate thread causes wide variance in run times.  We can't help this
5586   // in the multi-threaded case, but we special-case n=1 here to get
5587   // repeatable measurements of the 1-thread overhead of the parallel code.
5588   if (n_workers > 1) {
5589     // Make refs discovery MT-safe
5590     ReferenceProcessorMTMutator mt(ref_processor(), true);
5591     GenCollectedHeap::StrongRootsScope srs(gch);
5592     workers->run_task(&tsk);
5593   } else {
5594     GenCollectedHeap::StrongRootsScope srs(gch);
5595     tsk.work(0);
5596   }
5597   gch->set_par_threads(0);  // 0 ==> non-parallel.
5598   // restore, single-threaded for now, any preserved marks
5599   // as a result of work_q overflow
5600   restore_preserved_marks_if_any();
5601 }
5602 
5603 // Non-parallel version of remark
5604 void CMSCollector::do_remark_non_parallel() {
5605   ResourceMark rm;
5606   HandleMark   hm;
5607   GenCollectedHeap* gch = GenCollectedHeap::heap();
5608   MarkRefsIntoAndScanClosure
5609     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5610              &_markStack, &_revisitStack, this,
5611              false /* should_yield */, false /* not precleaning */);
5612   MarkFromDirtyCardsClosure
5613     markFromDirtyCardsClosure(this, _span,
5614                               NULL,  // space is set further below
5615                               &_markBitMap, &_markStack, &_revisitStack,
5616                               &mrias_cl);
5617   {
5618     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5619     // Iterate over the dirty cards, setting the corresponding bits in the
5620     // mod union table.
5621     {
5622       ModUnionClosure modUnionClosure(&_modUnionTable);
5623       _ct->ct_bs()->dirty_card_iterate(
5624                       _cmsGen->used_region(),
5625                       &modUnionClosure);
5626       _ct->ct_bs()->dirty_card_iterate(
5627                       _permGen->used_region(),
5628                       &modUnionClosure);
5629     }
5630     // Having transferred these marks into the modUnionTable, we just need
5631     // to rescan the marked objects on the dirty cards in the modUnionTable.
5632     // The initial marking may have been done during an asynchronous
5633     // collection so there may be dirty bits in the mod-union table.
5634     const int alignment =
5635       CardTableModRefBS::card_size * BitsPerWord;
5636     {
5637       // ... First handle dirty cards in CMS gen
5638       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5639       MemRegion ur = _cmsGen->used_region();
5640       HeapWord* lb = ur.start();
5641       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5642       MemRegion cms_span(lb, ub);
5643       _modUnionTable.dirty_range_iterate_clear(cms_span,
5644                                                &markFromDirtyCardsClosure);
5645       verify_work_stacks_empty();
5646       if (PrintCMSStatistics != 0) {
5647         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5648           markFromDirtyCardsClosure.num_dirty_cards());
5649       }
5650     }
5651     {
5652       // .. and then repeat for dirty cards in perm gen
5653       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5654       MemRegion ur = _permGen->used_region();
5655       HeapWord* lb = ur.start();
5656       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5657       MemRegion perm_span(lb, ub);
5658       _modUnionTable.dirty_range_iterate_clear(perm_span,
5659                                                &markFromDirtyCardsClosure);
5660       verify_work_stacks_empty();
5661       if (PrintCMSStatistics != 0) {
5662         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5663           markFromDirtyCardsClosure.num_dirty_cards());
5664       }
5665     }
5666   }
5667   if (VerifyDuringGC &&
5668       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5669     HandleMark hm;  // Discard invalid handles created during verification
5670     Universe::verify(true);
5671   }
5672   {
5673     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5674 
5675     verify_work_stacks_empty();
5676 
5677     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5678     GenCollectedHeap::StrongRootsScope srs(gch);
5679     gch->gen_process_strong_roots(_cmsGen->level(),
5680                                   true,  // younger gens as roots
5681                                   false, // use the local StrongRootsScope
5682                                   true,  // collecting perm gen
5683                                   SharedHeap::ScanningOption(roots_scanning_options()),
5684                                   &mrias_cl,
5685                                   true,   // walk code active on stacks
5686                                   NULL);
5687     assert(should_unload_classes()
5688            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5689            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5690   }
5691   verify_work_stacks_empty();
5692   // Restore evacuated mark words, if any, used for overflow list links
5693   if (!CMSOverflowEarlyRestoration) {
5694     restore_preserved_marks_if_any();
5695   }
5696   verify_overflow_empty();
5697 }
5698 
5699 ////////////////////////////////////////////////////////
5700 // Parallel Reference Processing Task Proxy Class
5701 ////////////////////////////////////////////////////////
5702 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5703   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5704   CMSCollector*          _collector;
5705   CMSBitMap*             _mark_bit_map;
5706   const MemRegion        _span;
5707   ProcessTask&           _task;
5708 
5709 public:
5710   CMSRefProcTaskProxy(ProcessTask&     task,
5711                       CMSCollector*    collector,
5712                       const MemRegion& span,
5713                       CMSBitMap*       mark_bit_map,
5714                       AbstractWorkGang* workers,
5715                       OopTaskQueueSet* task_queues):
5716     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5717       task_queues),
5718     _task(task),
5719     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5720     {
5721       assert(_collector->_span.equals(_span) && !_span.is_empty(),
5722              "Inconsistency in _span");
5723     }
5724 
5725   OopTaskQueueSet* task_queues() { return queues(); }
5726 
5727   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5728 
5729   void do_work_steal(int i,
5730                      CMSParDrainMarkingStackClosure* drain,
5731                      CMSParKeepAliveClosure* keep_alive,
5732                      int* seed);
5733 
5734   virtual void work(int i);
5735 };
5736 
5737 void CMSRefProcTaskProxy::work(int i) {
5738   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5739   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5740                                         _mark_bit_map,
5741                                         &_collector->_revisitStack,
5742                                         work_queue(i));
5743   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5744                                                  _mark_bit_map,
5745                                                  &_collector->_revisitStack,
5746                                                  work_queue(i));
5747   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5748   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
5749   if (_task.marks_oops_alive()) {
5750     do_work_steal(i, &par_drain_stack, &par_keep_alive,
5751                   _collector->hash_seed(i));
5752   }
5753   assert(work_queue(i)->size() == 0, "work_queue should be empty");
5754   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5755 }
5756 
5757 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5758   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5759   EnqueueTask& _task;
5760 
5761 public:
5762   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5763     : AbstractGangTask("Enqueue reference objects in parallel"),
5764       _task(task)
5765   { }
5766 
5767   virtual void work(int i)
5768   {
5769     _task.work(i);
5770   }
5771 };
5772 
5773 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5774   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5775   OopTaskQueue* work_queue):
5776    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5777    _span(span),
5778    _bit_map(bit_map),
5779    _work_queue(work_queue),
5780    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5781    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5782                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5783 { }
5784 
5785 // . see if we can share work_queues with ParNew? XXX
5786 void CMSRefProcTaskProxy::do_work_steal(int i,
5787   CMSParDrainMarkingStackClosure* drain,
5788   CMSParKeepAliveClosure* keep_alive,
5789   int* seed) {
5790   OopTaskQueue* work_q = work_queue(i);
5791   NOT_PRODUCT(int num_steals = 0;)
5792   oop obj_to_scan;
5793 
5794   while (true) {
5795     // Completely finish any left over work from (an) earlier round(s)
5796     drain->trim_queue(0);
5797     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5798                                          (size_t)ParGCDesiredObjsFromOverflowList);
5799     // Now check if there's any work in the overflow list
5800     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5801     // only affects the number of attempts made to get work from the
5802     // overflow list and does not affect the number of workers.  Just
5803     // pass ParallelGCThreads so this behavior is unchanged.
5804     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5805                                                 work_q,
5806                                                 ParallelGCThreads)) {
5807       // Found something in global overflow list;
5808       // not yet ready to go stealing work from others.
5809       // We'd like to assert(work_q->size() != 0, ...)
5810       // because we just took work from the overflow list,
5811       // but of course we can't, since all of that might have
5812       // been already stolen from us.
5813       continue;
5814     }
5815     // Verify that we have no work before we resort to stealing
5816     assert(work_q->size() == 0, "Have work, shouldn't steal");
5817     // Try to steal from other queues that have work
5818     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5819       NOT_PRODUCT(num_steals++;)
5820       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5821       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5822       // Do scanning work
5823       obj_to_scan->oop_iterate(keep_alive);
5824       // Loop around, finish this work, and try to steal some more
5825     } else if (terminator()->offer_termination()) {
5826       break;  // nirvana from the infinite cycle
5827     }
5828   }
5829   NOT_PRODUCT(
5830     if (PrintCMSStatistics != 0) {
5831       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5832     }
5833   )
5834 }
5835 
5836 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5837 {
5838   GenCollectedHeap* gch = GenCollectedHeap::heap();
5839   FlexibleWorkGang* workers = gch->workers();
5840   assert(workers != NULL, "Need parallel worker threads.");
5841   CMSRefProcTaskProxy rp_task(task, &_collector,
5842                               _collector.ref_processor()->span(),
5843                               _collector.markBitMap(),
5844                               workers, _collector.task_queues());
5845   workers->run_task(&rp_task);
5846 }
5847 
5848 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5849 {
5850 
5851   GenCollectedHeap* gch = GenCollectedHeap::heap();
5852   FlexibleWorkGang* workers = gch->workers();
5853   assert(workers != NULL, "Need parallel worker threads.");
5854   CMSRefEnqueueTaskProxy enq_task(task);
5855   workers->run_task(&enq_task);
5856 }
5857 
5858 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5859 
5860   ResourceMark rm;
5861   HandleMark   hm;
5862 
5863   ReferenceProcessor* rp = ref_processor();
5864   assert(rp->span().equals(_span), "Spans should be equal");
5865   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5866   // Process weak references.
5867   rp->setup_policy(clear_all_soft_refs);
5868   verify_work_stacks_empty();
5869 
5870   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5871                                           &_markStack, &_revisitStack,
5872                                           false /* !preclean */);
5873   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5874                                 _span, &_markBitMap, &_markStack,
5875                                 &cmsKeepAliveClosure, false /* !preclean */);
5876   {
5877     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5878     if (rp->processing_is_mt()) {
5879       // Set the degree of MT here.  If the discovery is done MT, there
5880       // may have been a different number of threads doing the discovery
5881       // and a different number of discovered lists may have Ref objects.
5882       // That is OK as long as the Reference lists are balanced (see
5883       // balance_all_queues() and balance_queues()).
5884 
5885 
5886       rp->set_mt_degree(ParallelGCThreads);
5887       CMSRefProcTaskExecutor task_executor(*this);
5888       rp->process_discovered_references(&_is_alive_closure,
5889                                         &cmsKeepAliveClosure,
5890                                         &cmsDrainMarkingStackClosure,
5891                                         &task_executor);
5892     } else {
5893       rp->process_discovered_references(&_is_alive_closure,
5894                                         &cmsKeepAliveClosure,
5895                                         &cmsDrainMarkingStackClosure,
5896                                         NULL);
5897     }
5898     verify_work_stacks_empty();
5899   }
5900 
5901   if (should_unload_classes()) {
5902     {
5903       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5904 
5905       // Follow SystemDictionary roots and unload classes
5906       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5907 
5908       // Follow CodeCache roots and unload any methods marked for unloading
5909       CodeCache::do_unloading(&_is_alive_closure,
5910                               &cmsKeepAliveClosure,
5911                               purged_class);
5912 
5913       cmsDrainMarkingStackClosure.do_void();
5914       verify_work_stacks_empty();
5915 
5916       // Update subklass/sibling/implementor links in KlassKlass descendants
5917       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5918       oop k;
5919       while ((k = _revisitStack.pop()) != NULL) {
5920         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5921                        &_is_alive_closure,
5922                        &cmsKeepAliveClosure);
5923       }
5924       assert(!ClassUnloading ||
5925              (_markStack.isEmpty() && overflow_list_is_empty()),
5926              "Should not have found new reachable objects");
5927       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5928       cmsDrainMarkingStackClosure.do_void();
5929       verify_work_stacks_empty();
5930     }
5931 
5932     {
5933       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
5934       // Now clean up stale oops in SymbolTable and StringTable
5935       SymbolTable::unlink(&_is_alive_closure);
5936       StringTable::unlink(&_is_alive_closure);
5937     }
5938   }
5939 
5940   verify_work_stacks_empty();
5941   // Restore any preserved marks as a result of mark stack or
5942   // work queue overflow
5943   restore_preserved_marks_if_any();  // done single-threaded for now
5944 
5945   rp->set_enqueuing_is_done(true);
5946   if (rp->processing_is_mt()) {
5947     rp->balance_all_queues();
5948     CMSRefProcTaskExecutor task_executor(*this);
5949     rp->enqueue_discovered_references(&task_executor);
5950   } else {
5951     rp->enqueue_discovered_references(NULL);
5952   }
5953   rp->verify_no_references_recorded();
5954   assert(!rp->discovery_enabled(), "should have been disabled");
5955 
5956   // JVMTI object tagging is based on JNI weak refs. If any of these
5957   // refs were cleared then JVMTI needs to update its maps and
5958   // maybe post ObjectFrees to agents.
5959   JvmtiExport::cms_ref_processing_epilogue();
5960 }
5961 
5962 #ifndef PRODUCT
5963 void CMSCollector::check_correct_thread_executing() {
5964   Thread* t = Thread::current();
5965   // Only the VM thread or the CMS thread should be here.
5966   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5967          "Unexpected thread type");
5968   // If this is the vm thread, the foreground process
5969   // should not be waiting.  Note that _foregroundGCIsActive is
5970   // true while the foreground collector is waiting.
5971   if (_foregroundGCShouldWait) {
5972     // We cannot be the VM thread
5973     assert(t->is_ConcurrentGC_thread(),
5974            "Should be CMS thread");
5975   } else {
5976     // We can be the CMS thread only if we are in a stop-world
5977     // phase of CMS collection.
5978     if (t->is_ConcurrentGC_thread()) {
5979       assert(_collectorState == InitialMarking ||
5980              _collectorState == FinalMarking,
5981              "Should be a stop-world phase");
5982       // The CMS thread should be holding the CMS_token.
5983       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5984              "Potential interference with concurrently "
5985              "executing VM thread");
5986     }
5987   }
5988 }
5989 #endif
5990 
5991 void CMSCollector::sweep(bool asynch) {
5992   assert(_collectorState == Sweeping, "just checking");
5993   check_correct_thread_executing();
5994   verify_work_stacks_empty();
5995   verify_overflow_empty();
5996   increment_sweep_count();
5997   TraceCMSMemoryManagerStats tms(_collectorState);
5998 
5999   _inter_sweep_timer.stop();
6000   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6001   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6002 
6003   // PermGen verification support: If perm gen sweeping is disabled in
6004   // this cycle, we preserve the perm gen object "deadness" information
6005   // in the perm_gen_verify_bit_map. In order to do that we traverse
6006   // all blocks in perm gen and mark all dead objects.
6007   if (verifying() && !should_unload_classes()) {
6008     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
6009            "Should have already been allocated");
6010     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
6011                                markBitMap(), perm_gen_verify_bit_map());
6012     if (asynch) {
6013       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6014                                bitMapLock());
6015       _permGen->cmsSpace()->blk_iterate(&mdo);
6016     } else {
6017       // In the case of synchronous sweep, we already have
6018       // the requisite locks/tokens.
6019       _permGen->cmsSpace()->blk_iterate(&mdo);
6020     }
6021   }
6022 
6023   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6024   _intra_sweep_timer.reset();
6025   _intra_sweep_timer.start();
6026   if (asynch) {
6027     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6028     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6029     // First sweep the old gen then the perm gen
6030     {
6031       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6032                                bitMapLock());
6033       sweepWork(_cmsGen, asynch);
6034     }
6035 
6036     // Now repeat for perm gen
6037     if (should_unload_classes()) {
6038       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6039                              bitMapLock());
6040       sweepWork(_permGen, asynch);
6041     }
6042 
6043     // Update Universe::_heap_*_at_gc figures.
6044     // We need all the free list locks to make the abstract state
6045     // transition from Sweeping to Resetting. See detailed note
6046     // further below.
6047     {
6048       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6049                                _permGen->freelistLock());
6050       // Update heap occupancy information which is used as
6051       // input to soft ref clearing policy at the next gc.
6052       Universe::update_heap_info_at_gc();
6053       _collectorState = Resizing;
6054     }
6055   } else {
6056     // already have needed locks
6057     sweepWork(_cmsGen,  asynch);
6058 
6059     if (should_unload_classes()) {
6060       sweepWork(_permGen, asynch);
6061     }
6062     // Update heap occupancy information which is used as
6063     // input to soft ref clearing policy at the next gc.
6064     Universe::update_heap_info_at_gc();
6065     _collectorState = Resizing;
6066   }
6067   verify_work_stacks_empty();
6068   verify_overflow_empty();
6069 
6070   _intra_sweep_timer.stop();
6071   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6072 
6073   _inter_sweep_timer.reset();
6074   _inter_sweep_timer.start();
6075 
6076   update_time_of_last_gc(os::javaTimeMillis());
6077 
6078   // NOTE on abstract state transitions:
6079   // Mutators allocate-live and/or mark the mod-union table dirty
6080   // based on the state of the collection.  The former is done in
6081   // the interval [Marking, Sweeping] and the latter in the interval
6082   // [Marking, Sweeping).  Thus the transitions into the Marking state
6083   // and out of the Sweeping state must be synchronously visible
6084   // globally to the mutators.
6085   // The transition into the Marking state happens with the world
6086   // stopped so the mutators will globally see it.  Sweeping is
6087   // done asynchronously by the background collector so the transition
6088   // from the Sweeping state to the Resizing state must be done
6089   // under the freelistLock (as is the check for whether to
6090   // allocate-live and whether to dirty the mod-union table).
6091   assert(_collectorState == Resizing, "Change of collector state to"
6092     " Resizing must be done under the freelistLocks (plural)");
6093 
6094   // Now that sweeping has been completed, if the GCH's
6095   // incremental_collection_will_fail flag is set, clear it,
6096   // thus inviting a younger gen collection to promote into
6097   // this generation. If such a promotion may still fail,
6098   // the flag will be set again when a young collection is
6099   // attempted.
6100   // I think the incremental_collection_will_fail flag's use
6101   // is specific to a 2 generation collection policy, so i'll
6102   // assert that that's the configuration we are operating within.
6103   // The use of the flag can and should be generalized appropriately
6104   // in the future to deal with a general n-generation system.
6105 
6106   GenCollectedHeap* gch = GenCollectedHeap::heap();
6107   assert(gch->collector_policy()->is_two_generation_policy(),
6108          "Resetting of incremental_collection_will_fail flag"
6109          " may be incorrect otherwise");
6110   gch->clear_incremental_collection_will_fail();
6111   gch->update_full_collections_completed(_collection_count_start);
6112 }
6113 
6114 // FIX ME!!! Looks like this belongs in CFLSpace, with
6115 // CMSGen merely delegating to it.
6116 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6117   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6118   HeapWord*  minAddr        = _cmsSpace->bottom();
6119   HeapWord*  largestAddr    =
6120     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
6121   if (largestAddr == NULL) {
6122     // The dictionary appears to be empty.  In this case
6123     // try to coalesce at the end of the heap.
6124     largestAddr = _cmsSpace->end();
6125   }
6126   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6127   size_t nearLargestOffset =
6128     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6129   if (PrintFLSStatistics != 0) {
6130     gclog_or_tty->print_cr(
6131       "CMS: Large Block: " PTR_FORMAT ";"
6132       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6133       largestAddr,
6134       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6135   }
6136   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6137 }
6138 
6139 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6140   return addr >= _cmsSpace->nearLargestChunk();
6141 }
6142 
6143 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6144   return _cmsSpace->find_chunk_at_end();
6145 }
6146 
6147 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6148                                                     bool full) {
6149   // The next lower level has been collected.  Gather any statistics
6150   // that are of interest at this point.
6151   if (!full && (current_level + 1) == level()) {
6152     // Gather statistics on the young generation collection.
6153     collector()->stats().record_gc0_end(used());
6154   }
6155 }
6156 
6157 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6158   GenCollectedHeap* gch = GenCollectedHeap::heap();
6159   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6160     "Wrong type of heap");
6161   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6162     gch->gen_policy()->size_policy();
6163   assert(sp->is_gc_cms_adaptive_size_policy(),
6164     "Wrong type of size policy");
6165   return sp;
6166 }
6167 
6168 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6169   if (PrintGCDetails && Verbose) {
6170     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6171   }
6172   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6173   _debug_collection_type =
6174     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6175   if (PrintGCDetails && Verbose) {
6176     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6177   }
6178 }
6179 
6180 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6181   bool asynch) {
6182   // We iterate over the space(s) underlying this generation,
6183   // checking the mark bit map to see if the bits corresponding
6184   // to specific blocks are marked or not. Blocks that are
6185   // marked are live and are not swept up. All remaining blocks
6186   // are swept up, with coalescing on-the-fly as we sweep up
6187   // contiguous free and/or garbage blocks:
6188   // We need to ensure that the sweeper synchronizes with allocators
6189   // and stop-the-world collectors. In particular, the following
6190   // locks are used:
6191   // . CMS token: if this is held, a stop the world collection cannot occur
6192   // . freelistLock: if this is held no allocation can occur from this
6193   //                 generation by another thread
6194   // . bitMapLock: if this is held, no other thread can access or update
6195   //
6196 
6197   // Note that we need to hold the freelistLock if we use
6198   // block iterate below; else the iterator might go awry if
6199   // a mutator (or promotion) causes block contents to change
6200   // (for instance if the allocator divvies up a block).
6201   // If we hold the free list lock, for all practical purposes
6202   // young generation GC's can't occur (they'll usually need to
6203   // promote), so we might as well prevent all young generation
6204   // GC's while we do a sweeping step. For the same reason, we might
6205   // as well take the bit map lock for the entire duration
6206 
6207   // check that we hold the requisite locks
6208   assert(have_cms_token(), "Should hold cms token");
6209   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6210          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6211         "Should possess CMS token to sweep");
6212   assert_lock_strong(gen->freelistLock());
6213   assert_lock_strong(bitMapLock());
6214 
6215   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6216   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6217   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6218                                       _inter_sweep_estimate.padded_average(),
6219                                       _intra_sweep_estimate.padded_average());
6220   gen->setNearLargestChunk();
6221 
6222   {
6223     SweepClosure sweepClosure(this, gen, &_markBitMap,
6224                             CMSYield && asynch);
6225     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6226     // We need to free-up/coalesce garbage/blocks from a
6227     // co-terminal free run. This is done in the SweepClosure
6228     // destructor; so, do not remove this scope, else the
6229     // end-of-sweep-census below will be off by a little bit.
6230   }
6231   gen->cmsSpace()->sweep_completed();
6232   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6233   if (should_unload_classes()) {                // unloaded classes this cycle,
6234     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6235   } else {                                      // did not unload classes,
6236     _concurrent_cycles_since_last_unload++;     // ... increment count
6237   }
6238 }
6239 
6240 // Reset CMS data structures (for now just the marking bit map)
6241 // preparatory for the next cycle.
6242 void CMSCollector::reset(bool asynch) {
6243   GenCollectedHeap* gch = GenCollectedHeap::heap();
6244   CMSAdaptiveSizePolicy* sp = size_policy();
6245   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6246   if (asynch) {
6247     CMSTokenSyncWithLocks ts(true, bitMapLock());
6248 
6249     // If the state is not "Resetting", the foreground  thread
6250     // has done a collection and the resetting.
6251     if (_collectorState != Resetting) {
6252       assert(_collectorState == Idling, "The state should only change"
6253         " because the foreground collector has finished the collection");
6254       return;
6255     }
6256 
6257     // Clear the mark bitmap (no grey objects to start with)
6258     // for the next cycle.
6259     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6260     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6261 
6262     HeapWord* curAddr = _markBitMap.startWord();
6263     while (curAddr < _markBitMap.endWord()) {
6264       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6265       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6266       _markBitMap.clear_large_range(chunk);
6267       if (ConcurrentMarkSweepThread::should_yield() &&
6268           !foregroundGCIsActive() &&
6269           CMSYield) {
6270         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6271                "CMS thread should hold CMS token");
6272         assert_lock_strong(bitMapLock());
6273         bitMapLock()->unlock();
6274         ConcurrentMarkSweepThread::desynchronize(true);
6275         ConcurrentMarkSweepThread::acknowledge_yield_request();
6276         stopTimer();
6277         if (PrintCMSStatistics != 0) {
6278           incrementYields();
6279         }
6280         icms_wait();
6281 
6282         // See the comment in coordinator_yield()
6283         for (unsigned i = 0; i < CMSYieldSleepCount &&
6284                          ConcurrentMarkSweepThread::should_yield() &&
6285                          !CMSCollector::foregroundGCIsActive(); ++i) {
6286           os::sleep(Thread::current(), 1, false);
6287           ConcurrentMarkSweepThread::acknowledge_yield_request();
6288         }
6289 
6290         ConcurrentMarkSweepThread::synchronize(true);
6291         bitMapLock()->lock_without_safepoint_check();
6292         startTimer();
6293       }
6294       curAddr = chunk.end();
6295     }
6296     // A successful mostly concurrent collection has been done.
6297     // Because only the full (i.e., concurrent mode failure) collections
6298     // are being measured for gc overhead limits, clean the "near" flag
6299     // and count.
6300     sp->reset_gc_overhead_limit_count();
6301     _collectorState = Idling;
6302   } else {
6303     // already have the lock
6304     assert(_collectorState == Resetting, "just checking");
6305     assert_lock_strong(bitMapLock());
6306     _markBitMap.clear_all();
6307     _collectorState = Idling;
6308   }
6309 
6310   // Stop incremental mode after a cycle completes, so that any future cycles
6311   // are triggered by allocation.
6312   stop_icms();
6313 
6314   NOT_PRODUCT(
6315     if (RotateCMSCollectionTypes) {
6316       _cmsGen->rotate_debug_collection_type();
6317     }
6318   )
6319 }
6320 
6321 void CMSCollector::do_CMS_operation(CMS_op_type op) {
6322   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6323   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6324   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
6325   TraceCollectorStats tcs(counters());
6326 
6327   switch (op) {
6328     case CMS_op_checkpointRootsInitial: {
6329       checkpointRootsInitial(true);       // asynch
6330       if (PrintGC) {
6331         _cmsGen->printOccupancy("initial-mark");
6332       }
6333       break;
6334     }
6335     case CMS_op_checkpointRootsFinal: {
6336       checkpointRootsFinal(true,    // asynch
6337                            false,   // !clear_all_soft_refs
6338                            false);  // !init_mark_was_synchronous
6339       if (PrintGC) {
6340         _cmsGen->printOccupancy("remark");
6341       }
6342       break;
6343     }
6344     default:
6345       fatal("No such CMS_op");
6346   }
6347 }
6348 
6349 #ifndef PRODUCT
6350 size_t const CMSCollector::skip_header_HeapWords() {
6351   return FreeChunk::header_size();
6352 }
6353 
6354 // Try and collect here conditions that should hold when
6355 // CMS thread is exiting. The idea is that the foreground GC
6356 // thread should not be blocked if it wants to terminate
6357 // the CMS thread and yet continue to run the VM for a while
6358 // after that.
6359 void CMSCollector::verify_ok_to_terminate() const {
6360   assert(Thread::current()->is_ConcurrentGC_thread(),
6361          "should be called by CMS thread");
6362   assert(!_foregroundGCShouldWait, "should be false");
6363   // We could check here that all the various low-level locks
6364   // are not held by the CMS thread, but that is overkill; see
6365   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6366   // is checked.
6367 }
6368 #endif
6369 
6370 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6371    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6372           "missing Printezis mark?");
6373   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6374   size_t size = pointer_delta(nextOneAddr + 1, addr);
6375   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6376          "alignment problem");
6377   assert(size >= 3, "Necessary for Printezis marks to work");
6378   return size;
6379 }
6380 
6381 // A variant of the above (block_size_using_printezis_bits()) except
6382 // that we return 0 if the P-bits are not yet set.
6383 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6384   if (_markBitMap.isMarked(addr)) {
6385     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
6386     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6387     size_t size = pointer_delta(nextOneAddr + 1, addr);
6388     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6389            "alignment problem");
6390     assert(size >= 3, "Necessary for Printezis marks to work");
6391     return size;
6392   } else {
6393     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
6394     return 0;
6395   }
6396 }
6397 
6398 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6399   size_t sz = 0;
6400   oop p = (oop)addr;
6401   if (p->klass_or_null() != NULL && p->is_parsable()) {
6402     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6403   } else {
6404     sz = block_size_using_printezis_bits(addr);
6405   }
6406   assert(sz > 0, "size must be nonzero");
6407   HeapWord* next_block = addr + sz;
6408   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6409                                              CardTableModRefBS::card_size);
6410   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6411          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6412          "must be different cards");
6413   return next_card;
6414 }
6415 
6416 
6417 // CMS Bit Map Wrapper /////////////////////////////////////////
6418 
6419 // Construct a CMS bit map infrastructure, but don't create the
6420 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6421 // further below.
6422 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6423   _bm(),
6424   _shifter(shifter),
6425   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6426 {
6427   _bmStartWord = 0;
6428   _bmWordSize  = 0;
6429 }
6430 
6431 bool CMSBitMap::allocate(MemRegion mr) {
6432   _bmStartWord = mr.start();
6433   _bmWordSize  = mr.word_size();
6434   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6435                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6436   if (!brs.is_reserved()) {
6437     warning("CMS bit map allocation failure");
6438     return false;
6439   }
6440   // For now we'll just commit all of the bit map up fromt.
6441   // Later on we'll try to be more parsimonious with swap.
6442   if (!_virtual_space.initialize(brs, brs.size())) {
6443     warning("CMS bit map backing store failure");
6444     return false;
6445   }
6446   assert(_virtual_space.committed_size() == brs.size(),
6447          "didn't reserve backing store for all of CMS bit map?");
6448   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6449   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6450          _bmWordSize, "inconsistency in bit map sizing");
6451   _bm.set_size(_bmWordSize >> _shifter);
6452 
6453   // bm.clear(); // can we rely on getting zero'd memory? verify below
6454   assert(isAllClear(),
6455          "Expected zero'd memory from ReservedSpace constructor");
6456   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6457          "consistency check");
6458   return true;
6459 }
6460 
6461 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6462   HeapWord *next_addr, *end_addr, *last_addr;
6463   assert_locked();
6464   assert(covers(mr), "out-of-range error");
6465   // XXX assert that start and end are appropriately aligned
6466   for (next_addr = mr.start(), end_addr = mr.end();
6467        next_addr < end_addr; next_addr = last_addr) {
6468     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6469     last_addr = dirty_region.end();
6470     if (!dirty_region.is_empty()) {
6471       cl->do_MemRegion(dirty_region);
6472     } else {
6473       assert(last_addr == end_addr, "program logic");
6474       return;
6475     }
6476   }
6477 }
6478 
6479 #ifndef PRODUCT
6480 void CMSBitMap::assert_locked() const {
6481   CMSLockVerifier::assert_locked(lock());
6482 }
6483 
6484 bool CMSBitMap::covers(MemRegion mr) const {
6485   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6486   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6487          "size inconsistency");
6488   return (mr.start() >= _bmStartWord) &&
6489          (mr.end()   <= endWord());
6490 }
6491 
6492 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6493     return (start >= _bmStartWord && (start + size) <= endWord());
6494 }
6495 
6496 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6497   // verify that there are no 1 bits in the interval [left, right)
6498   FalseBitMapClosure falseBitMapClosure;
6499   iterate(&falseBitMapClosure, left, right);
6500 }
6501 
6502 void CMSBitMap::region_invariant(MemRegion mr)
6503 {
6504   assert_locked();
6505   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6506   assert(!mr.is_empty(), "unexpected empty region");
6507   assert(covers(mr), "mr should be covered by bit map");
6508   // convert address range into offset range
6509   size_t start_ofs = heapWordToOffset(mr.start());
6510   // Make sure that end() is appropriately aligned
6511   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6512                         (1 << (_shifter+LogHeapWordSize))),
6513          "Misaligned mr.end()");
6514   size_t end_ofs   = heapWordToOffset(mr.end());
6515   assert(end_ofs > start_ofs, "Should mark at least one bit");
6516 }
6517 
6518 #endif
6519 
6520 bool CMSMarkStack::allocate(size_t size) {
6521   // allocate a stack of the requisite depth
6522   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6523                    size * sizeof(oop)));
6524   if (!rs.is_reserved()) {
6525     warning("CMSMarkStack allocation failure");
6526     return false;
6527   }
6528   if (!_virtual_space.initialize(rs, rs.size())) {
6529     warning("CMSMarkStack backing store failure");
6530     return false;
6531   }
6532   assert(_virtual_space.committed_size() == rs.size(),
6533          "didn't reserve backing store for all of CMS stack?");
6534   _base = (oop*)(_virtual_space.low());
6535   _index = 0;
6536   _capacity = size;
6537   NOT_PRODUCT(_max_depth = 0);
6538   return true;
6539 }
6540 
6541 // XXX FIX ME !!! In the MT case we come in here holding a
6542 // leaf lock. For printing we need to take a further lock
6543 // which has lower rank. We need to recallibrate the two
6544 // lock-ranks involved in order to be able to rpint the
6545 // messages below. (Or defer the printing to the caller.
6546 // For now we take the expedient path of just disabling the
6547 // messages for the problematic case.)
6548 void CMSMarkStack::expand() {
6549   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6550   if (_capacity == MarkStackSizeMax) {
6551     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6552       // We print a warning message only once per CMS cycle.
6553       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6554     }
6555     return;
6556   }
6557   // Double capacity if possible
6558   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6559   // Do not give up existing stack until we have managed to
6560   // get the double capacity that we desired.
6561   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6562                    new_capacity * sizeof(oop)));
6563   if (rs.is_reserved()) {
6564     // Release the backing store associated with old stack
6565     _virtual_space.release();
6566     // Reinitialize virtual space for new stack
6567     if (!_virtual_space.initialize(rs, rs.size())) {
6568       fatal("Not enough swap for expanded marking stack");
6569     }
6570     _base = (oop*)(_virtual_space.low());
6571     _index = 0;
6572     _capacity = new_capacity;
6573   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6574     // Failed to double capacity, continue;
6575     // we print a detail message only once per CMS cycle.
6576     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6577             SIZE_FORMAT"K",
6578             _capacity / K, new_capacity / K);
6579   }
6580 }
6581 
6582 
6583 // Closures
6584 // XXX: there seems to be a lot of code  duplication here;
6585 // should refactor and consolidate common code.
6586 
6587 // This closure is used to mark refs into the CMS generation in
6588 // the CMS bit map. Called at the first checkpoint. This closure
6589 // assumes that we do not need to re-mark dirty cards; if the CMS
6590 // generation on which this is used is not an oldest (modulo perm gen)
6591 // generation then this will lose younger_gen cards!
6592 
6593 MarkRefsIntoClosure::MarkRefsIntoClosure(
6594   MemRegion span, CMSBitMap* bitMap):
6595     _span(span),
6596     _bitMap(bitMap)
6597 {
6598     assert(_ref_processor == NULL, "deliberately left NULL");
6599     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6600 }
6601 
6602 void MarkRefsIntoClosure::do_oop(oop obj) {
6603   // if p points into _span, then mark corresponding bit in _markBitMap
6604   assert(obj->is_oop(), "expected an oop");
6605   HeapWord* addr = (HeapWord*)obj;
6606   if (_span.contains(addr)) {
6607     // this should be made more efficient
6608     _bitMap->mark(addr);
6609   }
6610 }
6611 
6612 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6613 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6614 
6615 // A variant of the above, used for CMS marking verification.
6616 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6617   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6618     _span(span),
6619     _verification_bm(verification_bm),
6620     _cms_bm(cms_bm)
6621 {
6622     assert(_ref_processor == NULL, "deliberately left NULL");
6623     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6624 }
6625 
6626 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6627   // if p points into _span, then mark corresponding bit in _markBitMap
6628   assert(obj->is_oop(), "expected an oop");
6629   HeapWord* addr = (HeapWord*)obj;
6630   if (_span.contains(addr)) {
6631     _verification_bm->mark(addr);
6632     if (!_cms_bm->isMarked(addr)) {
6633       oop(addr)->print();
6634       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6635       fatal("... aborting");
6636     }
6637   }
6638 }
6639 
6640 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6641 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6642 
6643 //////////////////////////////////////////////////
6644 // MarkRefsIntoAndScanClosure
6645 //////////////////////////////////////////////////
6646 
6647 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6648                                                        ReferenceProcessor* rp,
6649                                                        CMSBitMap* bit_map,
6650                                                        CMSBitMap* mod_union_table,
6651                                                        CMSMarkStack*  mark_stack,
6652                                                        CMSMarkStack*  revisit_stack,
6653                                                        CMSCollector* collector,
6654                                                        bool should_yield,
6655                                                        bool concurrent_precleaning):
6656   _collector(collector),
6657   _span(span),
6658   _bit_map(bit_map),
6659   _mark_stack(mark_stack),
6660   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6661                       mark_stack, revisit_stack, concurrent_precleaning),
6662   _yield(should_yield),
6663   _concurrent_precleaning(concurrent_precleaning),
6664   _freelistLock(NULL)
6665 {
6666   _ref_processor = rp;
6667   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6668 }
6669 
6670 // This closure is used to mark refs into the CMS generation at the
6671 // second (final) checkpoint, and to scan and transitively follow
6672 // the unmarked oops. It is also used during the concurrent precleaning
6673 // phase while scanning objects on dirty cards in the CMS generation.
6674 // The marks are made in the marking bit map and the marking stack is
6675 // used for keeping the (newly) grey objects during the scan.
6676 // The parallel version (Par_...) appears further below.
6677 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6678   if (obj != NULL) {
6679     assert(obj->is_oop(), "expected an oop");
6680     HeapWord* addr = (HeapWord*)obj;
6681     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6682     assert(_collector->overflow_list_is_empty(),
6683            "overflow list should be empty");
6684     if (_span.contains(addr) &&
6685         !_bit_map->isMarked(addr)) {
6686       // mark bit map (object is now grey)
6687       _bit_map->mark(addr);
6688       // push on marking stack (stack should be empty), and drain the
6689       // stack by applying this closure to the oops in the oops popped
6690       // from the stack (i.e. blacken the grey objects)
6691       bool res = _mark_stack->push(obj);
6692       assert(res, "Should have space to push on empty stack");
6693       do {
6694         oop new_oop = _mark_stack->pop();
6695         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6696         assert(new_oop->is_parsable(), "Found unparsable oop");
6697         assert(_bit_map->isMarked((HeapWord*)new_oop),
6698                "only grey objects on this stack");
6699         // iterate over the oops in this oop, marking and pushing
6700         // the ones in CMS heap (i.e. in _span).
6701         new_oop->oop_iterate(&_pushAndMarkClosure);
6702         // check if it's time to yield
6703         do_yield_check();
6704       } while (!_mark_stack->isEmpty() ||
6705                (!_concurrent_precleaning && take_from_overflow_list()));
6706         // if marking stack is empty, and we are not doing this
6707         // during precleaning, then check the overflow list
6708     }
6709     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6710     assert(_collector->overflow_list_is_empty(),
6711            "overflow list was drained above");
6712     // We could restore evacuated mark words, if any, used for
6713     // overflow list links here because the overflow list is
6714     // provably empty here. That would reduce the maximum
6715     // size requirements for preserved_{oop,mark}_stack.
6716     // But we'll just postpone it until we are all done
6717     // so we can just stream through.
6718     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6719       _collector->restore_preserved_marks_if_any();
6720       assert(_collector->no_preserved_marks(), "No preserved marks");
6721     }
6722     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6723            "All preserved marks should have been restored above");
6724   }
6725 }
6726 
6727 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6728 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6729 
6730 void MarkRefsIntoAndScanClosure::do_yield_work() {
6731   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6732          "CMS thread should hold CMS token");
6733   assert_lock_strong(_freelistLock);
6734   assert_lock_strong(_bit_map->lock());
6735   // relinquish the free_list_lock and bitMaplock()
6736   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6737   _bit_map->lock()->unlock();
6738   _freelistLock->unlock();
6739   ConcurrentMarkSweepThread::desynchronize(true);
6740   ConcurrentMarkSweepThread::acknowledge_yield_request();
6741   _collector->stopTimer();
6742   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6743   if (PrintCMSStatistics != 0) {
6744     _collector->incrementYields();
6745   }
6746   _collector->icms_wait();
6747 
6748   // See the comment in coordinator_yield()
6749   for (unsigned i = 0;
6750        i < CMSYieldSleepCount &&
6751        ConcurrentMarkSweepThread::should_yield() &&
6752        !CMSCollector::foregroundGCIsActive();
6753        ++i) {
6754     os::sleep(Thread::current(), 1, false);
6755     ConcurrentMarkSweepThread::acknowledge_yield_request();
6756   }
6757 
6758   ConcurrentMarkSweepThread::synchronize(true);
6759   _freelistLock->lock_without_safepoint_check();
6760   _bit_map->lock()->lock_without_safepoint_check();
6761   _collector->startTimer();
6762 }
6763 
6764 ///////////////////////////////////////////////////////////
6765 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6766 //                                 MarkRefsIntoAndScanClosure
6767 ///////////////////////////////////////////////////////////
6768 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6769   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6770   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6771   _span(span),
6772   _bit_map(bit_map),
6773   _work_queue(work_queue),
6774   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6775                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6776   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6777                           revisit_stack)
6778 {
6779   _ref_processor = rp;
6780   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6781 }
6782 
6783 // This closure is used to mark refs into the CMS generation at the
6784 // second (final) checkpoint, and to scan and transitively follow
6785 // the unmarked oops. The marks are made in the marking bit map and
6786 // the work_queue is used for keeping the (newly) grey objects during
6787 // the scan phase whence they are also available for stealing by parallel
6788 // threads. Since the marking bit map is shared, updates are
6789 // synchronized (via CAS).
6790 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6791   if (obj != NULL) {
6792     // Ignore mark word because this could be an already marked oop
6793     // that may be chained at the end of the overflow list.
6794     assert(obj->is_oop(true), "expected an oop");
6795     HeapWord* addr = (HeapWord*)obj;
6796     if (_span.contains(addr) &&
6797         !_bit_map->isMarked(addr)) {
6798       // mark bit map (object will become grey):
6799       // It is possible for several threads to be
6800       // trying to "claim" this object concurrently;
6801       // the unique thread that succeeds in marking the
6802       // object first will do the subsequent push on
6803       // to the work queue (or overflow list).
6804       if (_bit_map->par_mark(addr)) {
6805         // push on work_queue (which may not be empty), and trim the
6806         // queue to an appropriate length by applying this closure to
6807         // the oops in the oops popped from the stack (i.e. blacken the
6808         // grey objects)
6809         bool res = _work_queue->push(obj);
6810         assert(res, "Low water mark should be less than capacity?");
6811         trim_queue(_low_water_mark);
6812       } // Else, another thread claimed the object
6813     }
6814   }
6815 }
6816 
6817 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6818 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6819 
6820 // This closure is used to rescan the marked objects on the dirty cards
6821 // in the mod union table and the card table proper.
6822 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6823   oop p, MemRegion mr) {
6824 
6825   size_t size = 0;
6826   HeapWord* addr = (HeapWord*)p;
6827   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6828   assert(_span.contains(addr), "we are scanning the CMS generation");
6829   // check if it's time to yield
6830   if (do_yield_check()) {
6831     // We yielded for some foreground stop-world work,
6832     // and we have been asked to abort this ongoing preclean cycle.
6833     return 0;
6834   }
6835   if (_bitMap->isMarked(addr)) {
6836     // it's marked; is it potentially uninitialized?
6837     if (p->klass_or_null() != NULL) {
6838       // If is_conc_safe is false, the object may be undergoing
6839       // change by the VM outside a safepoint.  Don't try to
6840       // scan it, but rather leave it for the remark phase.
6841       if (CMSPermGenPrecleaningEnabled &&
6842           (!p->is_conc_safe() || !p->is_parsable())) {
6843         // Signal precleaning to redirty the card since
6844         // the klass pointer is already installed.
6845         assert(size == 0, "Initial value");
6846       } else {
6847         assert(p->is_parsable(), "must be parsable.");
6848         // an initialized object; ignore mark word in verification below
6849         // since we are running concurrent with mutators
6850         assert(p->is_oop(true), "should be an oop");
6851         if (p->is_objArray()) {
6852           // objArrays are precisely marked; restrict scanning
6853           // to dirty cards only.
6854           size = CompactibleFreeListSpace::adjustObjectSize(
6855                    p->oop_iterate(_scanningClosure, mr));
6856         } else {
6857           // A non-array may have been imprecisely marked; we need
6858           // to scan object in its entirety.
6859           size = CompactibleFreeListSpace::adjustObjectSize(
6860                    p->oop_iterate(_scanningClosure));
6861         }
6862         #ifdef DEBUG
6863           size_t direct_size =
6864             CompactibleFreeListSpace::adjustObjectSize(p->size());
6865           assert(size == direct_size, "Inconsistency in size");
6866           assert(size >= 3, "Necessary for Printezis marks to work");
6867           if (!_bitMap->isMarked(addr+1)) {
6868             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6869           } else {
6870             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6871             assert(_bitMap->isMarked(addr+size-1),
6872                    "inconsistent Printezis mark");
6873           }
6874         #endif // DEBUG
6875       }
6876     } else {
6877       // an unitialized object
6878       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6879       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6880       size = pointer_delta(nextOneAddr + 1, addr);
6881       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6882              "alignment problem");
6883       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6884       // will dirty the card when the klass pointer is installed in the
6885       // object (signalling the completion of initialization).
6886     }
6887   } else {
6888     // Either a not yet marked object or an uninitialized object
6889     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6890       // An uninitialized object, skip to the next card, since
6891       // we may not be able to read its P-bits yet.
6892       assert(size == 0, "Initial value");
6893     } else {
6894       // An object not (yet) reached by marking: we merely need to
6895       // compute its size so as to go look at the next block.
6896       assert(p->is_oop(true), "should be an oop");
6897       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6898     }
6899   }
6900   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6901   return size;
6902 }
6903 
6904 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6905   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6906          "CMS thread should hold CMS token");
6907   assert_lock_strong(_freelistLock);
6908   assert_lock_strong(_bitMap->lock());
6909   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6910   // relinquish the free_list_lock and bitMaplock()
6911   _bitMap->lock()->unlock();
6912   _freelistLock->unlock();
6913   ConcurrentMarkSweepThread::desynchronize(true);
6914   ConcurrentMarkSweepThread::acknowledge_yield_request();
6915   _collector->stopTimer();
6916   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6917   if (PrintCMSStatistics != 0) {
6918     _collector->incrementYields();
6919   }
6920   _collector->icms_wait();
6921 
6922   // See the comment in coordinator_yield()
6923   for (unsigned i = 0; i < CMSYieldSleepCount &&
6924                    ConcurrentMarkSweepThread::should_yield() &&
6925                    !CMSCollector::foregroundGCIsActive(); ++i) {
6926     os::sleep(Thread::current(), 1, false);
6927     ConcurrentMarkSweepThread::acknowledge_yield_request();
6928   }
6929 
6930   ConcurrentMarkSweepThread::synchronize(true);
6931   _freelistLock->lock_without_safepoint_check();
6932   _bitMap->lock()->lock_without_safepoint_check();
6933   _collector->startTimer();
6934 }
6935 
6936 
6937 //////////////////////////////////////////////////////////////////
6938 // SurvivorSpacePrecleanClosure
6939 //////////////////////////////////////////////////////////////////
6940 // This (single-threaded) closure is used to preclean the oops in
6941 // the survivor spaces.
6942 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6943 
6944   HeapWord* addr = (HeapWord*)p;
6945   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6946   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6947   assert(p->klass_or_null() != NULL, "object should be initializd");
6948   assert(p->is_parsable(), "must be parsable.");
6949   // an initialized object; ignore mark word in verification below
6950   // since we are running concurrent with mutators
6951   assert(p->is_oop(true), "should be an oop");
6952   // Note that we do not yield while we iterate over
6953   // the interior oops of p, pushing the relevant ones
6954   // on our marking stack.
6955   size_t size = p->oop_iterate(_scanning_closure);
6956   do_yield_check();
6957   // Observe that below, we do not abandon the preclean
6958   // phase as soon as we should; rather we empty the
6959   // marking stack before returning. This is to satisfy
6960   // some existing assertions. In general, it may be a
6961   // good idea to abort immediately and complete the marking
6962   // from the grey objects at a later time.
6963   while (!_mark_stack->isEmpty()) {
6964     oop new_oop = _mark_stack->pop();
6965     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6966     assert(new_oop->is_parsable(), "Found unparsable oop");
6967     assert(_bit_map->isMarked((HeapWord*)new_oop),
6968            "only grey objects on this stack");
6969     // iterate over the oops in this oop, marking and pushing
6970     // the ones in CMS heap (i.e. in _span).
6971     new_oop->oop_iterate(_scanning_closure);
6972     // check if it's time to yield
6973     do_yield_check();
6974   }
6975   unsigned int after_count =
6976     GenCollectedHeap::heap()->total_collections();
6977   bool abort = (_before_count != after_count) ||
6978                _collector->should_abort_preclean();
6979   return abort ? 0 : size;
6980 }
6981 
6982 void SurvivorSpacePrecleanClosure::do_yield_work() {
6983   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6984          "CMS thread should hold CMS token");
6985   assert_lock_strong(_bit_map->lock());
6986   DEBUG_ONLY(RememberKlassesChecker smx(false);)
6987   // Relinquish the bit map lock
6988   _bit_map->lock()->unlock();
6989   ConcurrentMarkSweepThread::desynchronize(true);
6990   ConcurrentMarkSweepThread::acknowledge_yield_request();
6991   _collector->stopTimer();
6992   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6993   if (PrintCMSStatistics != 0) {
6994     _collector->incrementYields();
6995   }
6996   _collector->icms_wait();
6997 
6998   // See the comment in coordinator_yield()
6999   for (unsigned i = 0; i < CMSYieldSleepCount &&
7000                        ConcurrentMarkSweepThread::should_yield() &&
7001                        !CMSCollector::foregroundGCIsActive(); ++i) {
7002     os::sleep(Thread::current(), 1, false);
7003     ConcurrentMarkSweepThread::acknowledge_yield_request();
7004   }
7005 
7006   ConcurrentMarkSweepThread::synchronize(true);
7007   _bit_map->lock()->lock_without_safepoint_check();
7008   _collector->startTimer();
7009 }
7010 
7011 // This closure is used to rescan the marked objects on the dirty cards
7012 // in the mod union table and the card table proper. In the parallel
7013 // case, although the bitMap is shared, we do a single read so the
7014 // isMarked() query is "safe".
7015 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7016   // Ignore mark word because we are running concurrent with mutators
7017   assert(p->is_oop_or_null(true), "expected an oop or null");
7018   HeapWord* addr = (HeapWord*)p;
7019   assert(_span.contains(addr), "we are scanning the CMS generation");
7020   bool is_obj_array = false;
7021   #ifdef DEBUG
7022     if (!_parallel) {
7023       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7024       assert(_collector->overflow_list_is_empty(),
7025              "overflow list should be empty");
7026 
7027     }
7028   #endif // DEBUG
7029   if (_bit_map->isMarked(addr)) {
7030     // Obj arrays are precisely marked, non-arrays are not;
7031     // so we scan objArrays precisely and non-arrays in their
7032     // entirety.
7033     if (p->is_objArray()) {
7034       is_obj_array = true;
7035       if (_parallel) {
7036         p->oop_iterate(_par_scan_closure, mr);
7037       } else {
7038         p->oop_iterate(_scan_closure, mr);
7039       }
7040     } else {
7041       if (_parallel) {
7042         p->oop_iterate(_par_scan_closure);
7043       } else {
7044         p->oop_iterate(_scan_closure);
7045       }
7046     }
7047   }
7048   #ifdef DEBUG
7049     if (!_parallel) {
7050       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7051       assert(_collector->overflow_list_is_empty(),
7052              "overflow list should be empty");
7053 
7054     }
7055   #endif // DEBUG
7056   return is_obj_array;
7057 }
7058 
7059 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7060                         MemRegion span,
7061                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7062                         CMSMarkStack*  revisitStack,
7063                         bool should_yield, bool verifying):
7064   _collector(collector),
7065   _span(span),
7066   _bitMap(bitMap),
7067   _mut(&collector->_modUnionTable),
7068   _markStack(markStack),
7069   _revisitStack(revisitStack),
7070   _yield(should_yield),
7071   _skipBits(0)
7072 {
7073   assert(_markStack->isEmpty(), "stack should be empty");
7074   _finger = _bitMap->startWord();
7075   _threshold = _finger;
7076   assert(_collector->_restart_addr == NULL, "Sanity check");
7077   assert(_span.contains(_finger), "Out of bounds _finger?");
7078   DEBUG_ONLY(_verifying = verifying;)
7079 }
7080 
7081 void MarkFromRootsClosure::reset(HeapWord* addr) {
7082   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7083   assert(_span.contains(addr), "Out of bounds _finger?");
7084   _finger = addr;
7085   _threshold = (HeapWord*)round_to(
7086                  (intptr_t)_finger, CardTableModRefBS::card_size);
7087 }
7088 
7089 // Should revisit to see if this should be restructured for
7090 // greater efficiency.
7091 bool MarkFromRootsClosure::do_bit(size_t offset) {
7092   if (_skipBits > 0) {
7093     _skipBits--;
7094     return true;
7095   }
7096   // convert offset into a HeapWord*
7097   HeapWord* addr = _bitMap->startWord() + offset;
7098   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7099          "address out of range");
7100   assert(_bitMap->isMarked(addr), "tautology");
7101   if (_bitMap->isMarked(addr+1)) {
7102     // this is an allocated but not yet initialized object
7103     assert(_skipBits == 0, "tautology");
7104     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7105     oop p = oop(addr);
7106     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7107       DEBUG_ONLY(if (!_verifying) {)
7108         // We re-dirty the cards on which this object lies and increase
7109         // the _threshold so that we'll come back to scan this object
7110         // during the preclean or remark phase. (CMSCleanOnEnter)
7111         if (CMSCleanOnEnter) {
7112           size_t sz = _collector->block_size_using_printezis_bits(addr);
7113           HeapWord* end_card_addr   = (HeapWord*)round_to(
7114                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7115           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7116           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7117           // Bump _threshold to end_card_addr; note that
7118           // _threshold cannot possibly exceed end_card_addr, anyhow.
7119           // This prevents future clearing of the card as the scan proceeds
7120           // to the right.
7121           assert(_threshold <= end_card_addr,
7122                  "Because we are just scanning into this object");
7123           if (_threshold < end_card_addr) {
7124             _threshold = end_card_addr;
7125           }
7126           if (p->klass_or_null() != NULL) {
7127             // Redirty the range of cards...
7128             _mut->mark_range(redirty_range);
7129           } // ...else the setting of klass will dirty the card anyway.
7130         }
7131       DEBUG_ONLY(})
7132       return true;
7133     }
7134   }
7135   scanOopsInOop(addr);
7136   return true;
7137 }
7138 
7139 // We take a break if we've been at this for a while,
7140 // so as to avoid monopolizing the locks involved.
7141 void MarkFromRootsClosure::do_yield_work() {
7142   // First give up the locks, then yield, then re-lock
7143   // We should probably use a constructor/destructor idiom to
7144   // do this unlock/lock or modify the MutexUnlocker class to
7145   // serve our purpose. XXX
7146   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7147          "CMS thread should hold CMS token");
7148   assert_lock_strong(_bitMap->lock());
7149   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7150   _bitMap->lock()->unlock();
7151   ConcurrentMarkSweepThread::desynchronize(true);
7152   ConcurrentMarkSweepThread::acknowledge_yield_request();
7153   _collector->stopTimer();
7154   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7155   if (PrintCMSStatistics != 0) {
7156     _collector->incrementYields();
7157   }
7158   _collector->icms_wait();
7159 
7160   // See the comment in coordinator_yield()
7161   for (unsigned i = 0; i < CMSYieldSleepCount &&
7162                        ConcurrentMarkSweepThread::should_yield() &&
7163                        !CMSCollector::foregroundGCIsActive(); ++i) {
7164     os::sleep(Thread::current(), 1, false);
7165     ConcurrentMarkSweepThread::acknowledge_yield_request();
7166   }
7167 
7168   ConcurrentMarkSweepThread::synchronize(true);
7169   _bitMap->lock()->lock_without_safepoint_check();
7170   _collector->startTimer();
7171 }
7172 
7173 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7174   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7175   assert(_markStack->isEmpty(),
7176          "should drain stack to limit stack usage");
7177   // convert ptr to an oop preparatory to scanning
7178   oop obj = oop(ptr);
7179   // Ignore mark word in verification below, since we
7180   // may be running concurrent with mutators.
7181   assert(obj->is_oop(true), "should be an oop");
7182   assert(_finger <= ptr, "_finger runneth ahead");
7183   // advance the finger to right end of this object
7184   _finger = ptr + obj->size();
7185   assert(_finger > ptr, "we just incremented it above");
7186   // On large heaps, it may take us some time to get through
7187   // the marking phase (especially if running iCMS). During
7188   // this time it's possible that a lot of mutations have
7189   // accumulated in the card table and the mod union table --
7190   // these mutation records are redundant until we have
7191   // actually traced into the corresponding card.
7192   // Here, we check whether advancing the finger would make
7193   // us cross into a new card, and if so clear corresponding
7194   // cards in the MUT (preclean them in the card-table in the
7195   // future).
7196 
7197   DEBUG_ONLY(if (!_verifying) {)
7198     // The clean-on-enter optimization is disabled by default,
7199     // until we fix 6178663.
7200     if (CMSCleanOnEnter && (_finger > _threshold)) {
7201       // [_threshold, _finger) represents the interval
7202       // of cards to be cleared  in MUT (or precleaned in card table).
7203       // The set of cards to be cleared is all those that overlap
7204       // with the interval [_threshold, _finger); note that
7205       // _threshold is always kept card-aligned but _finger isn't
7206       // always card-aligned.
7207       HeapWord* old_threshold = _threshold;
7208       assert(old_threshold == (HeapWord*)round_to(
7209               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7210              "_threshold should always be card-aligned");
7211       _threshold = (HeapWord*)round_to(
7212                      (intptr_t)_finger, CardTableModRefBS::card_size);
7213       MemRegion mr(old_threshold, _threshold);
7214       assert(!mr.is_empty(), "Control point invariant");
7215       assert(_span.contains(mr), "Should clear within span");
7216       // XXX When _finger crosses from old gen into perm gen
7217       // we may be doing unnecessary cleaning; do better in the
7218       // future by detecting that condition and clearing fewer
7219       // MUT/CT entries.
7220       _mut->clear_range(mr);
7221     }
7222   DEBUG_ONLY(})
7223   // Note: the finger doesn't advance while we drain
7224   // the stack below.
7225   PushOrMarkClosure pushOrMarkClosure(_collector,
7226                                       _span, _bitMap, _markStack,
7227                                       _revisitStack,
7228                                       _finger, this);
7229   bool res = _markStack->push(obj);
7230   assert(res, "Empty non-zero size stack should have space for single push");
7231   while (!_markStack->isEmpty()) {
7232     oop new_oop = _markStack->pop();
7233     // Skip verifying header mark word below because we are
7234     // running concurrent with mutators.
7235     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7236     // now scan this oop's oops
7237     new_oop->oop_iterate(&pushOrMarkClosure);
7238     do_yield_check();
7239   }
7240   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7241 }
7242 
7243 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7244                        CMSCollector* collector, MemRegion span,
7245                        CMSBitMap* bit_map,
7246                        OopTaskQueue* work_queue,
7247                        CMSMarkStack*  overflow_stack,
7248                        CMSMarkStack*  revisit_stack,
7249                        bool should_yield):
7250   _collector(collector),
7251   _whole_span(collector->_span),
7252   _span(span),
7253   _bit_map(bit_map),
7254   _mut(&collector->_modUnionTable),
7255   _work_queue(work_queue),
7256   _overflow_stack(overflow_stack),
7257   _revisit_stack(revisit_stack),
7258   _yield(should_yield),
7259   _skip_bits(0),
7260   _task(task)
7261 {
7262   assert(_work_queue->size() == 0, "work_queue should be empty");
7263   _finger = span.start();
7264   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7265   assert(_span.contains(_finger), "Out of bounds _finger?");
7266 }
7267 
7268 // Should revisit to see if this should be restructured for
7269 // greater efficiency.
7270 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7271   if (_skip_bits > 0) {
7272     _skip_bits--;
7273     return true;
7274   }
7275   // convert offset into a HeapWord*
7276   HeapWord* addr = _bit_map->startWord() + offset;
7277   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7278          "address out of range");
7279   assert(_bit_map->isMarked(addr), "tautology");
7280   if (_bit_map->isMarked(addr+1)) {
7281     // this is an allocated object that might not yet be initialized
7282     assert(_skip_bits == 0, "tautology");
7283     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7284     oop p = oop(addr);
7285     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7286       // in the case of Clean-on-Enter optimization, redirty card
7287       // and avoid clearing card by increasing  the threshold.
7288       return true;
7289     }
7290   }
7291   scan_oops_in_oop(addr);
7292   return true;
7293 }
7294 
7295 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7296   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7297   // Should we assert that our work queue is empty or
7298   // below some drain limit?
7299   assert(_work_queue->size() == 0,
7300          "should drain stack to limit stack usage");
7301   // convert ptr to an oop preparatory to scanning
7302   oop obj = oop(ptr);
7303   // Ignore mark word in verification below, since we
7304   // may be running concurrent with mutators.
7305   assert(obj->is_oop(true), "should be an oop");
7306   assert(_finger <= ptr, "_finger runneth ahead");
7307   // advance the finger to right end of this object
7308   _finger = ptr + obj->size();
7309   assert(_finger > ptr, "we just incremented it above");
7310   // On large heaps, it may take us some time to get through
7311   // the marking phase (especially if running iCMS). During
7312   // this time it's possible that a lot of mutations have
7313   // accumulated in the card table and the mod union table --
7314   // these mutation records are redundant until we have
7315   // actually traced into the corresponding card.
7316   // Here, we check whether advancing the finger would make
7317   // us cross into a new card, and if so clear corresponding
7318   // cards in the MUT (preclean them in the card-table in the
7319   // future).
7320 
7321   // The clean-on-enter optimization is disabled by default,
7322   // until we fix 6178663.
7323   if (CMSCleanOnEnter && (_finger > _threshold)) {
7324     // [_threshold, _finger) represents the interval
7325     // of cards to be cleared  in MUT (or precleaned in card table).
7326     // The set of cards to be cleared is all those that overlap
7327     // with the interval [_threshold, _finger); note that
7328     // _threshold is always kept card-aligned but _finger isn't
7329     // always card-aligned.
7330     HeapWord* old_threshold = _threshold;
7331     assert(old_threshold == (HeapWord*)round_to(
7332             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7333            "_threshold should always be card-aligned");
7334     _threshold = (HeapWord*)round_to(
7335                    (intptr_t)_finger, CardTableModRefBS::card_size);
7336     MemRegion mr(old_threshold, _threshold);
7337     assert(!mr.is_empty(), "Control point invariant");
7338     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7339     // XXX When _finger crosses from old gen into perm gen
7340     // we may be doing unnecessary cleaning; do better in the
7341     // future by detecting that condition and clearing fewer
7342     // MUT/CT entries.
7343     _mut->clear_range(mr);
7344   }
7345 
7346   // Note: the local finger doesn't advance while we drain
7347   // the stack below, but the global finger sure can and will.
7348   HeapWord** gfa = _task->global_finger_addr();
7349   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7350                                       _span, _bit_map,
7351                                       _work_queue,
7352                                       _overflow_stack,
7353                                       _revisit_stack,
7354                                       _finger,
7355                                       gfa, this);
7356   bool res = _work_queue->push(obj);   // overflow could occur here
7357   assert(res, "Will hold once we use workqueues");
7358   while (true) {
7359     oop new_oop;
7360     if (!_work_queue->pop_local(new_oop)) {
7361       // We emptied our work_queue; check if there's stuff that can
7362       // be gotten from the overflow stack.
7363       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7364             _overflow_stack, _work_queue)) {
7365         do_yield_check();
7366         continue;
7367       } else {  // done
7368         break;
7369       }
7370     }
7371     // Skip verifying header mark word below because we are
7372     // running concurrent with mutators.
7373     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7374     // now scan this oop's oops
7375     new_oop->oop_iterate(&pushOrMarkClosure);
7376     do_yield_check();
7377   }
7378   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7379 }
7380 
7381 // Yield in response to a request from VM Thread or
7382 // from mutators.
7383 void Par_MarkFromRootsClosure::do_yield_work() {
7384   assert(_task != NULL, "sanity");
7385   _task->yield();
7386 }
7387 
7388 // A variant of the above used for verifying CMS marking work.
7389 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7390                         MemRegion span,
7391                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7392                         CMSMarkStack*  mark_stack):
7393   _collector(collector),
7394   _span(span),
7395   _verification_bm(verification_bm),
7396   _cms_bm(cms_bm),
7397   _mark_stack(mark_stack),
7398   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7399                       mark_stack)
7400 {
7401   assert(_mark_stack->isEmpty(), "stack should be empty");
7402   _finger = _verification_bm->startWord();
7403   assert(_collector->_restart_addr == NULL, "Sanity check");
7404   assert(_span.contains(_finger), "Out of bounds _finger?");
7405 }
7406 
7407 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7408   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7409   assert(_span.contains(addr), "Out of bounds _finger?");
7410   _finger = addr;
7411 }
7412 
7413 // Should revisit to see if this should be restructured for
7414 // greater efficiency.
7415 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7416   // convert offset into a HeapWord*
7417   HeapWord* addr = _verification_bm->startWord() + offset;
7418   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7419          "address out of range");
7420   assert(_verification_bm->isMarked(addr), "tautology");
7421   assert(_cms_bm->isMarked(addr), "tautology");
7422 
7423   assert(_mark_stack->isEmpty(),
7424          "should drain stack to limit stack usage");
7425   // convert addr to an oop preparatory to scanning
7426   oop obj = oop(addr);
7427   assert(obj->is_oop(), "should be an oop");
7428   assert(_finger <= addr, "_finger runneth ahead");
7429   // advance the finger to right end of this object
7430   _finger = addr + obj->size();
7431   assert(_finger > addr, "we just incremented it above");
7432   // Note: the finger doesn't advance while we drain
7433   // the stack below.
7434   bool res = _mark_stack->push(obj);
7435   assert(res, "Empty non-zero size stack should have space for single push");
7436   while (!_mark_stack->isEmpty()) {
7437     oop new_oop = _mark_stack->pop();
7438     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7439     // now scan this oop's oops
7440     new_oop->oop_iterate(&_pam_verify_closure);
7441   }
7442   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7443   return true;
7444 }
7445 
7446 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7447   CMSCollector* collector, MemRegion span,
7448   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7449   CMSMarkStack*  mark_stack):
7450   OopClosure(collector->ref_processor()),
7451   _collector(collector),
7452   _span(span),
7453   _verification_bm(verification_bm),
7454   _cms_bm(cms_bm),
7455   _mark_stack(mark_stack)
7456 { }
7457 
7458 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7459 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7460 
7461 // Upon stack overflow, we discard (part of) the stack,
7462 // remembering the least address amongst those discarded
7463 // in CMSCollector's _restart_address.
7464 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7465   // Remember the least grey address discarded
7466   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7467   _collector->lower_restart_addr(ra);
7468   _mark_stack->reset();  // discard stack contents
7469   _mark_stack->expand(); // expand the stack if possible
7470 }
7471 
7472 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7473   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7474   HeapWord* addr = (HeapWord*)obj;
7475   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7476     // Oop lies in _span and isn't yet grey or black
7477     _verification_bm->mark(addr);            // now grey
7478     if (!_cms_bm->isMarked(addr)) {
7479       oop(addr)->print();
7480       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7481                              addr);
7482       fatal("... aborting");
7483     }
7484 
7485     if (!_mark_stack->push(obj)) { // stack overflow
7486       if (PrintCMSStatistics != 0) {
7487         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7488                                SIZE_FORMAT, _mark_stack->capacity());
7489       }
7490       assert(_mark_stack->isFull(), "Else push should have succeeded");
7491       handle_stack_overflow(addr);
7492     }
7493     // anything including and to the right of _finger
7494     // will be scanned as we iterate over the remainder of the
7495     // bit map
7496   }
7497 }
7498 
7499 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7500                      MemRegion span,
7501                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7502                      CMSMarkStack*  revisitStack,
7503                      HeapWord* finger, MarkFromRootsClosure* parent) :
7504   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7505   _span(span),
7506   _bitMap(bitMap),
7507   _markStack(markStack),
7508   _finger(finger),
7509   _parent(parent)
7510 { }
7511 
7512 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7513                      MemRegion span,
7514                      CMSBitMap* bit_map,
7515                      OopTaskQueue* work_queue,
7516                      CMSMarkStack*  overflow_stack,
7517                      CMSMarkStack*  revisit_stack,
7518                      HeapWord* finger,
7519                      HeapWord** global_finger_addr,
7520                      Par_MarkFromRootsClosure* parent) :
7521   Par_KlassRememberingOopClosure(collector,
7522                             collector->ref_processor(),
7523                             revisit_stack),
7524   _whole_span(collector->_span),
7525   _span(span),
7526   _bit_map(bit_map),
7527   _work_queue(work_queue),
7528   _overflow_stack(overflow_stack),
7529   _finger(finger),
7530   _global_finger_addr(global_finger_addr),
7531   _parent(parent)
7532 { }
7533 
7534 // Assumes thread-safe access by callers, who are
7535 // responsible for mutual exclusion.
7536 void CMSCollector::lower_restart_addr(HeapWord* low) {
7537   assert(_span.contains(low), "Out of bounds addr");
7538   if (_restart_addr == NULL) {
7539     _restart_addr = low;
7540   } else {
7541     _restart_addr = MIN2(_restart_addr, low);
7542   }
7543 }
7544 
7545 // Upon stack overflow, we discard (part of) the stack,
7546 // remembering the least address amongst those discarded
7547 // in CMSCollector's _restart_address.
7548 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7549   // Remember the least grey address discarded
7550   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7551   _collector->lower_restart_addr(ra);
7552   _markStack->reset();  // discard stack contents
7553   _markStack->expand(); // expand the stack if possible
7554 }
7555 
7556 // Upon stack overflow, we discard (part of) the stack,
7557 // remembering the least address amongst those discarded
7558 // in CMSCollector's _restart_address.
7559 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7560   // We need to do this under a mutex to prevent other
7561   // workers from interfering with the work done below.
7562   MutexLockerEx ml(_overflow_stack->par_lock(),
7563                    Mutex::_no_safepoint_check_flag);
7564   // Remember the least grey address discarded
7565   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7566   _collector->lower_restart_addr(ra);
7567   _overflow_stack->reset();  // discard stack contents
7568   _overflow_stack->expand(); // expand the stack if possible
7569 }
7570 
7571 void PushOrMarkClosure::do_oop(oop obj) {
7572   // Ignore mark word because we are running concurrent with mutators.
7573   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7574   HeapWord* addr = (HeapWord*)obj;
7575   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7576     // Oop lies in _span and isn't yet grey or black
7577     _bitMap->mark(addr);            // now grey
7578     if (addr < _finger) {
7579       // the bit map iteration has already either passed, or
7580       // sampled, this bit in the bit map; we'll need to
7581       // use the marking stack to scan this oop's oops.
7582       bool simulate_overflow = false;
7583       NOT_PRODUCT(
7584         if (CMSMarkStackOverflowALot &&
7585             _collector->simulate_overflow()) {
7586           // simulate a stack overflow
7587           simulate_overflow = true;
7588         }
7589       )
7590       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7591         if (PrintCMSStatistics != 0) {
7592           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7593                                  SIZE_FORMAT, _markStack->capacity());
7594         }
7595         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7596         handle_stack_overflow(addr);
7597       }
7598     }
7599     // anything including and to the right of _finger
7600     // will be scanned as we iterate over the remainder of the
7601     // bit map
7602     do_yield_check();
7603   }
7604 }
7605 
7606 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7607 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7608 
7609 void Par_PushOrMarkClosure::do_oop(oop obj) {
7610   // Ignore mark word because we are running concurrent with mutators.
7611   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7612   HeapWord* addr = (HeapWord*)obj;
7613   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7614     // Oop lies in _span and isn't yet grey or black
7615     // We read the global_finger (volatile read) strictly after marking oop
7616     bool res = _bit_map->par_mark(addr);    // now grey
7617     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7618     // Should we push this marked oop on our stack?
7619     // -- if someone else marked it, nothing to do
7620     // -- if target oop is above global finger nothing to do
7621     // -- if target oop is in chunk and above local finger
7622     //      then nothing to do
7623     // -- else push on work queue
7624     if (   !res       // someone else marked it, they will deal with it
7625         || (addr >= *gfa)  // will be scanned in a later task
7626         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7627       return;
7628     }
7629     // the bit map iteration has already either passed, or
7630     // sampled, this bit in the bit map; we'll need to
7631     // use the marking stack to scan this oop's oops.
7632     bool simulate_overflow = false;
7633     NOT_PRODUCT(
7634       if (CMSMarkStackOverflowALot &&
7635           _collector->simulate_overflow()) {
7636         // simulate a stack overflow
7637         simulate_overflow = true;
7638       }
7639     )
7640     if (simulate_overflow ||
7641         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7642       // stack overflow
7643       if (PrintCMSStatistics != 0) {
7644         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7645                                SIZE_FORMAT, _overflow_stack->capacity());
7646       }
7647       // We cannot assert that the overflow stack is full because
7648       // it may have been emptied since.
7649       assert(simulate_overflow ||
7650              _work_queue->size() == _work_queue->max_elems(),
7651             "Else push should have succeeded");
7652       handle_stack_overflow(addr);
7653     }
7654     do_yield_check();
7655   }
7656 }
7657 
7658 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7659 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7660 
7661 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7662                                              ReferenceProcessor* rp,
7663                                              CMSMarkStack* revisit_stack) :
7664   OopClosure(rp),
7665   _collector(collector),
7666   _revisit_stack(revisit_stack),
7667   _should_remember_klasses(collector->should_unload_classes()) {}
7668 
7669 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7670                                        MemRegion span,
7671                                        ReferenceProcessor* rp,
7672                                        CMSBitMap* bit_map,
7673                                        CMSBitMap* mod_union_table,
7674                                        CMSMarkStack*  mark_stack,
7675                                        CMSMarkStack*  revisit_stack,
7676                                        bool           concurrent_precleaning):
7677   KlassRememberingOopClosure(collector, rp, revisit_stack),
7678   _span(span),
7679   _bit_map(bit_map),
7680   _mod_union_table(mod_union_table),
7681   _mark_stack(mark_stack),
7682   _concurrent_precleaning(concurrent_precleaning)
7683 {
7684   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7685 }
7686 
7687 // Grey object rescan during pre-cleaning and second checkpoint phases --
7688 // the non-parallel version (the parallel version appears further below.)
7689 void PushAndMarkClosure::do_oop(oop obj) {
7690   // Ignore mark word verification. If during concurrent precleaning,
7691   // the object monitor may be locked. If during the checkpoint
7692   // phases, the object may already have been reached by a  different
7693   // path and may be at the end of the global overflow list (so
7694   // the mark word may be NULL).
7695   assert(obj->is_oop_or_null(true /* ignore mark word */),
7696          "expected an oop or NULL");
7697   HeapWord* addr = (HeapWord*)obj;
7698   // Check if oop points into the CMS generation
7699   // and is not marked
7700   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7701     // a white object ...
7702     _bit_map->mark(addr);         // ... now grey
7703     // push on the marking stack (grey set)
7704     bool simulate_overflow = false;
7705     NOT_PRODUCT(
7706       if (CMSMarkStackOverflowALot &&
7707           _collector->simulate_overflow()) {
7708         // simulate a stack overflow
7709         simulate_overflow = true;
7710       }
7711     )
7712     if (simulate_overflow || !_mark_stack->push(obj)) {
7713       if (_concurrent_precleaning) {
7714          // During precleaning we can just dirty the appropriate card(s)
7715          // in the mod union table, thus ensuring that the object remains
7716          // in the grey set  and continue. In the case of object arrays
7717          // we need to dirty all of the cards that the object spans,
7718          // since the rescan of object arrays will be limited to the
7719          // dirty cards.
7720          // Note that no one can be intefering with us in this action
7721          // of dirtying the mod union table, so no locking or atomics
7722          // are required.
7723          if (obj->is_objArray()) {
7724            size_t sz = obj->size();
7725            HeapWord* end_card_addr = (HeapWord*)round_to(
7726                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7727            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7728            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7729            _mod_union_table->mark_range(redirty_range);
7730          } else {
7731            _mod_union_table->mark(addr);
7732          }
7733          _collector->_ser_pmc_preclean_ovflw++;
7734       } else {
7735          // During the remark phase, we need to remember this oop
7736          // in the overflow list.
7737          _collector->push_on_overflow_list(obj);
7738          _collector->_ser_pmc_remark_ovflw++;
7739       }
7740     }
7741   }
7742 }
7743 
7744 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7745                                                MemRegion span,
7746                                                ReferenceProcessor* rp,
7747                                                CMSBitMap* bit_map,
7748                                                OopTaskQueue* work_queue,
7749                                                CMSMarkStack* revisit_stack):
7750   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7751   _span(span),
7752   _bit_map(bit_map),
7753   _work_queue(work_queue)
7754 {
7755   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7756 }
7757 
7758 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7759 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7760 
7761 // Grey object rescan during second checkpoint phase --
7762 // the parallel version.
7763 void Par_PushAndMarkClosure::do_oop(oop obj) {
7764   // In the assert below, we ignore the mark word because
7765   // this oop may point to an already visited object that is
7766   // on the overflow stack (in which case the mark word has
7767   // been hijacked for chaining into the overflow stack --
7768   // if this is the last object in the overflow stack then
7769   // its mark word will be NULL). Because this object may
7770   // have been subsequently popped off the global overflow
7771   // stack, and the mark word possibly restored to the prototypical
7772   // value, by the time we get to examined this failing assert in
7773   // the debugger, is_oop_or_null(false) may subsequently start
7774   // to hold.
7775   assert(obj->is_oop_or_null(true),
7776          "expected an oop or NULL");
7777   HeapWord* addr = (HeapWord*)obj;
7778   // Check if oop points into the CMS generation
7779   // and is not marked
7780   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7781     // a white object ...
7782     // If we manage to "claim" the object, by being the
7783     // first thread to mark it, then we push it on our
7784     // marking stack
7785     if (_bit_map->par_mark(addr)) {     // ... now grey
7786       // push on work queue (grey set)
7787       bool simulate_overflow = false;
7788       NOT_PRODUCT(
7789         if (CMSMarkStackOverflowALot &&
7790             _collector->par_simulate_overflow()) {
7791           // simulate a stack overflow
7792           simulate_overflow = true;
7793         }
7794       )
7795       if (simulate_overflow || !_work_queue->push(obj)) {
7796         _collector->par_push_on_overflow_list(obj);
7797         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7798       }
7799     } // Else, some other thread got there first
7800   }
7801 }
7802 
7803 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7804 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7805 
7806 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7807   // TBD
7808 }
7809 
7810 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7811   // TBD
7812 }
7813 
7814 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7815   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7816   Mutex* bml = _collector->bitMapLock();
7817   assert_lock_strong(bml);
7818   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7819          "CMS thread should hold CMS token");
7820 
7821   bml->unlock();
7822   ConcurrentMarkSweepThread::desynchronize(true);
7823 
7824   ConcurrentMarkSweepThread::acknowledge_yield_request();
7825 
7826   _collector->stopTimer();
7827   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7828   if (PrintCMSStatistics != 0) {
7829     _collector->incrementYields();
7830   }
7831   _collector->icms_wait();
7832 
7833   // See the comment in coordinator_yield()
7834   for (unsigned i = 0; i < CMSYieldSleepCount &&
7835                        ConcurrentMarkSweepThread::should_yield() &&
7836                        !CMSCollector::foregroundGCIsActive(); ++i) {
7837     os::sleep(Thread::current(), 1, false);
7838     ConcurrentMarkSweepThread::acknowledge_yield_request();
7839   }
7840 
7841   ConcurrentMarkSweepThread::synchronize(true);
7842   bml->lock();
7843 
7844   _collector->startTimer();
7845 }
7846 
7847 bool CMSPrecleanRefsYieldClosure::should_return() {
7848   if (ConcurrentMarkSweepThread::should_yield()) {
7849     do_yield_work();
7850   }
7851   return _collector->foregroundGCIsActive();
7852 }
7853 
7854 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7855   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7856          "mr should be aligned to start at a card boundary");
7857   // We'd like to assert:
7858   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7859   //        "mr should be a range of cards");
7860   // However, that would be too strong in one case -- the last
7861   // partition ends at _unallocated_block which, in general, can be
7862   // an arbitrary boundary, not necessarily card aligned.
7863   if (PrintCMSStatistics != 0) {
7864     _num_dirty_cards +=
7865          mr.word_size()/CardTableModRefBS::card_size_in_words;
7866   }
7867   _space->object_iterate_mem(mr, &_scan_cl);
7868 }
7869 
7870 SweepClosure::SweepClosure(CMSCollector* collector,
7871                            ConcurrentMarkSweepGeneration* g,
7872                            CMSBitMap* bitMap, bool should_yield) :
7873   _collector(collector),
7874   _g(g),
7875   _sp(g->cmsSpace()),
7876   _limit(_sp->sweep_limit()),
7877   _freelistLock(_sp->freelistLock()),
7878   _bitMap(bitMap),
7879   _yield(should_yield),
7880   _inFreeRange(false),           // No free range at beginning of sweep
7881   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7882   _lastFreeRangeCoalesced(false),
7883   _freeFinger(g->used_region().start())
7884 {
7885   NOT_PRODUCT(
7886     _numObjectsFreed = 0;
7887     _numWordsFreed   = 0;
7888     _numObjectsLive = 0;
7889     _numWordsLive = 0;
7890     _numObjectsAlreadyFree = 0;
7891     _numWordsAlreadyFree = 0;
7892     _last_fc = NULL;
7893 
7894     _sp->initializeIndexedFreeListArrayReturnedBytes();
7895     _sp->dictionary()->initializeDictReturnedBytes();
7896   )
7897   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7898          "sweep _limit out of bounds");
7899   if (CMSTraceSweeper) {
7900     gclog_or_tty->print("\n====================\nStarting new sweep\n");
7901   }
7902 }
7903 
7904 // We need this destructor to reclaim any space at the end
7905 // of the space, which do_blk below may not have added back to
7906 // the free lists. [basically dealing with the "fringe effect"]
7907 SweepClosure::~SweepClosure() {
7908   assert_lock_strong(_freelistLock);
7909   // this should be treated as the end of a free run if any
7910   // The current free range should be returned to the free lists
7911   // as one coalesced chunk.
7912   if (inFreeRange()) {
7913     flushCurFreeChunk(freeFinger(),
7914       pointer_delta(_limit, freeFinger()));
7915     assert(freeFinger() < _limit, "the finger pointeth off base");
7916     if (CMSTraceSweeper) {
7917       gclog_or_tty->print("destructor:");
7918       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
7919                  "[coalesced:"SIZE_FORMAT"]\n",
7920                  freeFinger(), pointer_delta(_limit, freeFinger()),
7921                  lastFreeRangeCoalesced());
7922     }
7923   }
7924   NOT_PRODUCT(
7925     if (Verbose && PrintGC) {
7926       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
7927                           SIZE_FORMAT " bytes",
7928                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7929       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7930                              SIZE_FORMAT" bytes  "
7931         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7932         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7933         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7934       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
7935         sizeof(HeapWord);
7936       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7937 
7938       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7939         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7940         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
7941         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
7942         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
7943         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7944           indexListReturnedBytes);
7945         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7946           dictReturnedBytes);
7947       }
7948     }
7949   )
7950   // Now, in debug mode, just null out the sweep_limit
7951   NOT_PRODUCT(_sp->clear_sweep_limit();)
7952   if (CMSTraceSweeper) {
7953     gclog_or_tty->print("end of sweep\n================\n");
7954   }
7955 }
7956 
7957 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7958     bool freeRangeInFreeLists) {
7959   if (CMSTraceSweeper) {
7960     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
7961                freeFinger, _sp->block_size(freeFinger),
7962                freeRangeInFreeLists);
7963   }
7964   assert(!inFreeRange(), "Trampling existing free range");
7965   set_inFreeRange(true);
7966   set_lastFreeRangeCoalesced(false);
7967 
7968   set_freeFinger(freeFinger);
7969   set_freeRangeInFreeLists(freeRangeInFreeLists);
7970   if (CMSTestInFreeList) {
7971     if (freeRangeInFreeLists) {
7972       FreeChunk* fc = (FreeChunk*) freeFinger;
7973       assert(fc->isFree(), "A chunk on the free list should be free.");
7974       assert(fc->size() > 0, "Free range should have a size");
7975       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
7976     }
7977   }
7978 }
7979 
7980 // Note that the sweeper runs concurrently with mutators. Thus,
7981 // it is possible for direct allocation in this generation to happen
7982 // in the middle of the sweep. Note that the sweeper also coalesces
7983 // contiguous free blocks. Thus, unless the sweeper and the allocator
7984 // synchronize appropriately freshly allocated blocks may get swept up.
7985 // This is accomplished by the sweeper locking the free lists while
7986 // it is sweeping. Thus blocks that are determined to be free are
7987 // indeed free. There is however one additional complication:
7988 // blocks that have been allocated since the final checkpoint and
7989 // mark, will not have been marked and so would be treated as
7990 // unreachable and swept up. To prevent this, the allocator marks
7991 // the bit map when allocating during the sweep phase. This leads,
7992 // however, to a further complication -- objects may have been allocated
7993 // but not yet initialized -- in the sense that the header isn't yet
7994 // installed. The sweeper can not then determine the size of the block
7995 // in order to skip over it. To deal with this case, we use a technique
7996 // (due to Printezis) to encode such uninitialized block sizes in the
7997 // bit map. Since the bit map uses a bit per every HeapWord, but the
7998 // CMS generation has a minimum object size of 3 HeapWords, it follows
7999 // that "normal marks" won't be adjacent in the bit map (there will
8000 // always be at least two 0 bits between successive 1 bits). We make use
8001 // of these "unused" bits to represent uninitialized blocks -- the bit
8002 // corresponding to the start of the uninitialized object and the next
8003 // bit are both set. Finally, a 1 bit marks the end of the object that
8004 // started with the two consecutive 1 bits to indicate its potentially
8005 // uninitialized state.
8006 
8007 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8008   FreeChunk* fc = (FreeChunk*)addr;
8009   size_t res;
8010 
8011   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8012   // than "addr == _limit" because although _limit was a block boundary when
8013   // we started the sweep, it may no longer be one because heap expansion
8014   // may have caused us to coalesce the block ending at the address _limit
8015   // with a newly expanded chunk (this happens when _limit was set to the
8016   // previous _end of the space), so we may have stepped past _limit; see CR 6977970.
8017   if (addr >= _limit) { // we have swept up to or past the limit, do nothing more
8018     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8019            "sweep _limit out of bounds");
8020     assert(addr < _sp->end(), "addr out of bounds");
8021     // help the closure application finish
8022     return pointer_delta(_sp->end(), addr);
8023   }
8024   assert(addr < _limit, "sweep invariant");
8025 
8026   // check if we should yield
8027   do_yield_check(addr);
8028   if (fc->isFree()) {
8029     // Chunk that is already free
8030     res = fc->size();
8031     doAlreadyFreeChunk(fc);
8032     debug_only(_sp->verifyFreeLists());
8033     assert(res == fc->size(), "Don't expect the size to change");
8034     NOT_PRODUCT(
8035       _numObjectsAlreadyFree++;
8036       _numWordsAlreadyFree += res;
8037     )
8038     NOT_PRODUCT(_last_fc = fc;)
8039   } else if (!_bitMap->isMarked(addr)) {
8040     // Chunk is fresh garbage
8041     res = doGarbageChunk(fc);
8042     debug_only(_sp->verifyFreeLists());
8043     NOT_PRODUCT(
8044       _numObjectsFreed++;
8045       _numWordsFreed += res;
8046     )
8047   } else {
8048     // Chunk that is alive.
8049     res = doLiveChunk(fc);
8050     debug_only(_sp->verifyFreeLists());
8051     NOT_PRODUCT(
8052         _numObjectsLive++;
8053         _numWordsLive += res;
8054     )
8055   }
8056   return res;
8057 }
8058 
8059 // For the smart allocation, record following
8060 //  split deaths - a free chunk is removed from its free list because
8061 //      it is being split into two or more chunks.
8062 //  split birth - a free chunk is being added to its free list because
8063 //      a larger free chunk has been split and resulted in this free chunk.
8064 //  coal death - a free chunk is being removed from its free list because
8065 //      it is being coalesced into a large free chunk.
8066 //  coal birth - a free chunk is being added to its free list because
8067 //      it was created when two or more free chunks where coalesced into
8068 //      this free chunk.
8069 //
8070 // These statistics are used to determine the desired number of free
8071 // chunks of a given size.  The desired number is chosen to be relative
8072 // to the end of a CMS sweep.  The desired number at the end of a sweep
8073 // is the
8074 //      count-at-end-of-previous-sweep (an amount that was enough)
8075 //              - count-at-beginning-of-current-sweep  (the excess)
8076 //              + split-births  (gains in this size during interval)
8077 //              - split-deaths  (demands on this size during interval)
8078 // where the interval is from the end of one sweep to the end of the
8079 // next.
8080 //
8081 // When sweeping the sweeper maintains an accumulated chunk which is
8082 // the chunk that is made up of chunks that have been coalesced.  That
8083 // will be termed the left-hand chunk.  A new chunk of garbage that
8084 // is being considered for coalescing will be referred to as the
8085 // right-hand chunk.
8086 //
8087 // When making a decision on whether to coalesce a right-hand chunk with
8088 // the current left-hand chunk, the current count vs. the desired count
8089 // of the left-hand chunk is considered.  Also if the right-hand chunk
8090 // is near the large chunk at the end of the heap (see
8091 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8092 // left-hand chunk is coalesced.
8093 //
8094 // When making a decision about whether to split a chunk, the desired count
8095 // vs. the current count of the candidate to be split is also considered.
8096 // If the candidate is underpopulated (currently fewer chunks than desired)
8097 // a chunk of an overpopulated (currently more chunks than desired) size may
8098 // be chosen.  The "hint" associated with a free list, if non-null, points
8099 // to a free list which may be overpopulated.
8100 //
8101 
8102 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
8103   size_t size = fc->size();
8104   // Chunks that cannot be coalesced are not in the
8105   // free lists.
8106   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8107     assert(_sp->verifyChunkInFreeLists(fc),
8108       "free chunk should be in free lists");
8109   }
8110   // a chunk that is already free, should not have been
8111   // marked in the bit map
8112   HeapWord* addr = (HeapWord*) fc;
8113   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8114   // Verify that the bit map has no bits marked between
8115   // addr and purported end of this block.
8116   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8117 
8118   // Some chunks cannot be coalesced in under any circumstances.
8119   // See the definition of cantCoalesce().
8120   if (!fc->cantCoalesce()) {
8121     // This chunk can potentially be coalesced.
8122     if (_sp->adaptive_freelists()) {
8123       // All the work is done in
8124       doPostIsFreeOrGarbageChunk(fc, size);
8125     } else {  // Not adaptive free lists
8126       // this is a free chunk that can potentially be coalesced by the sweeper;
8127       if (!inFreeRange()) {
8128         // if the next chunk is a free block that can't be coalesced
8129         // it doesn't make sense to remove this chunk from the free lists
8130         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8131         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
8132         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
8133             nextChunk->isFree()    &&            // which is free...
8134             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
8135           // nothing to do
8136         } else {
8137           // Potentially the start of a new free range:
8138           // Don't eagerly remove it from the free lists.
8139           // No need to remove it if it will just be put
8140           // back again.  (Also from a pragmatic point of view
8141           // if it is a free block in a region that is beyond
8142           // any allocated blocks, an assertion will fail)
8143           // Remember the start of a free run.
8144           initialize_free_range(addr, true);
8145           // end - can coalesce with next chunk
8146         }
8147       } else {
8148         // the midst of a free range, we are coalescing
8149         debug_only(record_free_block_coalesced(fc);)
8150         if (CMSTraceSweeper) {
8151           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8152         }
8153         // remove it from the free lists
8154         _sp->removeFreeChunkFromFreeLists(fc);
8155         set_lastFreeRangeCoalesced(true);
8156         // If the chunk is being coalesced and the current free range is
8157         // in the free lists, remove the current free range so that it
8158         // will be returned to the free lists in its entirety - all
8159         // the coalesced pieces included.
8160         if (freeRangeInFreeLists()) {
8161           FreeChunk* ffc = (FreeChunk*) freeFinger();
8162           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8163             "Size of free range is inconsistent with chunk size.");
8164           if (CMSTestInFreeList) {
8165             assert(_sp->verifyChunkInFreeLists(ffc),
8166               "free range is not in free lists");
8167           }
8168           _sp->removeFreeChunkFromFreeLists(ffc);
8169           set_freeRangeInFreeLists(false);
8170         }
8171       }
8172     }
8173   } else {
8174     // Code path common to both original and adaptive free lists.
8175 
8176     // cant coalesce with previous block; this should be treated
8177     // as the end of a free run if any
8178     if (inFreeRange()) {
8179       // we kicked some butt; time to pick up the garbage
8180       assert(freeFinger() < addr, "the finger pointeth off base");
8181       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
8182     }
8183     // else, nothing to do, just continue
8184   }
8185 }
8186 
8187 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
8188   // This is a chunk of garbage.  It is not in any free list.
8189   // Add it to a free list or let it possibly be coalesced into
8190   // a larger chunk.
8191   HeapWord* addr = (HeapWord*) fc;
8192   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8193 
8194   if (_sp->adaptive_freelists()) {
8195     // Verify that the bit map has no bits marked between
8196     // addr and purported end of just dead object.
8197     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8198 
8199     doPostIsFreeOrGarbageChunk(fc, size);
8200   } else {
8201     if (!inFreeRange()) {
8202       // start of a new free range
8203       assert(size > 0, "A free range should have a size");
8204       initialize_free_range(addr, false);
8205 
8206     } else {
8207       // this will be swept up when we hit the end of the
8208       // free range
8209       if (CMSTraceSweeper) {
8210         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8211       }
8212       // If the chunk is being coalesced and the current free range is
8213       // in the free lists, remove the current free range so that it
8214       // will be returned to the free lists in its entirety - all
8215       // the coalesced pieces included.
8216       if (freeRangeInFreeLists()) {
8217         FreeChunk* ffc = (FreeChunk*)freeFinger();
8218         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8219           "Size of free range is inconsistent with chunk size.");
8220         if (CMSTestInFreeList) {
8221           assert(_sp->verifyChunkInFreeLists(ffc),
8222             "free range is not in free lists");
8223         }
8224         _sp->removeFreeChunkFromFreeLists(ffc);
8225         set_freeRangeInFreeLists(false);
8226       }
8227       set_lastFreeRangeCoalesced(true);
8228     }
8229     // this will be swept up when we hit the end of the free range
8230 
8231     // Verify that the bit map has no bits marked between
8232     // addr and purported end of just dead object.
8233     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8234   }
8235   return size;
8236 }
8237 
8238 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
8239   HeapWord* addr = (HeapWord*) fc;
8240   // The sweeper has just found a live object. Return any accumulated
8241   // left hand chunk to the free lists.
8242   if (inFreeRange()) {
8243     if (_sp->adaptive_freelists()) {
8244       flushCurFreeChunk(freeFinger(),
8245                         pointer_delta(addr, freeFinger()));
8246     } else { // not adaptive freelists
8247       set_inFreeRange(false);
8248       // Add the free range back to the free list if it is not already
8249       // there.
8250       if (!freeRangeInFreeLists()) {
8251         assert(freeFinger() < addr, "the finger pointeth off base");
8252         if (CMSTraceSweeper) {
8253           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
8254             "[coalesced:%d]\n",
8255             freeFinger(), pointer_delta(addr, freeFinger()),
8256             lastFreeRangeCoalesced());
8257         }
8258         _sp->addChunkAndRepairOffsetTable(freeFinger(),
8259           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
8260       }
8261     }
8262   }
8263 
8264   // Common code path for original and adaptive free lists.
8265 
8266   // this object is live: we'd normally expect this to be
8267   // an oop, and like to assert the following:
8268   // assert(oop(addr)->is_oop(), "live block should be an oop");
8269   // However, as we commented above, this may be an object whose
8270   // header hasn't yet been initialized.
8271   size_t size;
8272   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8273   if (_bitMap->isMarked(addr + 1)) {
8274     // Determine the size from the bit map, rather than trying to
8275     // compute it from the object header.
8276     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8277     size = pointer_delta(nextOneAddr + 1, addr);
8278     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8279            "alignment problem");
8280 
8281     #ifdef DEBUG
8282       if (oop(addr)->klass_or_null() != NULL &&
8283           (   !_collector->should_unload_classes()
8284            || (oop(addr)->is_parsable()) &&
8285                oop(addr)->is_conc_safe())) {
8286         // Ignore mark word because we are running concurrent with mutators
8287         assert(oop(addr)->is_oop(true), "live block should be an oop");
8288         // is_conc_safe is checked before performing this assertion
8289         // because an object that is not is_conc_safe may yet have
8290         // the return from size() correct.
8291         assert(size ==
8292                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8293                "P-mark and computed size do not agree");
8294       }
8295     #endif
8296 
8297   } else {
8298     // This should be an initialized object that's alive.
8299     assert(oop(addr)->klass_or_null() != NULL &&
8300            (!_collector->should_unload_classes()
8301             || oop(addr)->is_parsable()),
8302            "Should be an initialized object");
8303     // Note that there are objects used during class redefinition
8304     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
8305     // which are discarded with their is_conc_safe state still
8306     // false.  These object may be floating garbage so may be
8307     // seen here.  If they are floating garbage their size
8308     // should be attainable from their klass.  Do not that
8309     // is_conc_safe() is true for oop(addr).
8310     // Ignore mark word because we are running concurrent with mutators
8311     assert(oop(addr)->is_oop(true), "live block should be an oop");
8312     // Verify that the bit map has no bits marked between
8313     // addr and purported end of this block.
8314     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8315     assert(size >= 3, "Necessary for Printezis marks to work");
8316     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8317     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8318   }
8319   return size;
8320 }
8321 
8322 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
8323                                             size_t chunkSize) {
8324   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
8325   // scheme.
8326   bool fcInFreeLists = fc->isFree();
8327   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8328   assert((HeapWord*)fc <= _limit, "sweep invariant");
8329   if (CMSTestInFreeList && fcInFreeLists) {
8330     assert(_sp->verifyChunkInFreeLists(fc),
8331       "free chunk is not in free lists");
8332   }
8333 
8334 
8335   if (CMSTraceSweeper) {
8336     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8337   }
8338 
8339   HeapWord* addr = (HeapWord*) fc;
8340 
8341   bool coalesce;
8342   size_t left  = pointer_delta(addr, freeFinger());
8343   size_t right = chunkSize;
8344   switch (FLSCoalescePolicy) {
8345     // numeric value forms a coalition aggressiveness metric
8346     case 0:  { // never coalesce
8347       coalesce = false;
8348       break;
8349     }
8350     case 1: { // coalesce if left & right chunks on overpopulated lists
8351       coalesce = _sp->coalOverPopulated(left) &&
8352                  _sp->coalOverPopulated(right);
8353       break;
8354     }
8355     case 2: { // coalesce if left chunk on overpopulated list (default)
8356       coalesce = _sp->coalOverPopulated(left);
8357       break;
8358     }
8359     case 3: { // coalesce if left OR right chunk on overpopulated list
8360       coalesce = _sp->coalOverPopulated(left) ||
8361                  _sp->coalOverPopulated(right);
8362       break;
8363     }
8364     case 4: { // always coalesce
8365       coalesce = true;
8366       break;
8367     }
8368     default:
8369      ShouldNotReachHere();
8370   }
8371 
8372   // Should the current free range be coalesced?
8373   // If the chunk is in a free range and either we decided to coalesce above
8374   // or the chunk is near the large block at the end of the heap
8375   // (isNearLargestChunk() returns true), then coalesce this chunk.
8376   bool doCoalesce = inFreeRange() &&
8377     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
8378   if (doCoalesce) {
8379     // Coalesce the current free range on the left with the new
8380     // chunk on the right.  If either is on a free list,
8381     // it must be removed from the list and stashed in the closure.
8382     if (freeRangeInFreeLists()) {
8383       FreeChunk* ffc = (FreeChunk*)freeFinger();
8384       assert(ffc->size() == pointer_delta(addr, freeFinger()),
8385         "Size of free range is inconsistent with chunk size.");
8386       if (CMSTestInFreeList) {
8387         assert(_sp->verifyChunkInFreeLists(ffc),
8388           "Chunk is not in free lists");
8389       }
8390       _sp->coalDeath(ffc->size());
8391       _sp->removeFreeChunkFromFreeLists(ffc);
8392       set_freeRangeInFreeLists(false);
8393     }
8394     if (fcInFreeLists) {
8395       _sp->coalDeath(chunkSize);
8396       assert(fc->size() == chunkSize,
8397         "The chunk has the wrong size or is not in the free lists");
8398       _sp->removeFreeChunkFromFreeLists(fc);
8399     }
8400     set_lastFreeRangeCoalesced(true);
8401   } else {  // not in a free range and/or should not coalesce
8402     // Return the current free range and start a new one.
8403     if (inFreeRange()) {
8404       // In a free range but cannot coalesce with the right hand chunk.
8405       // Put the current free range into the free lists.
8406       flushCurFreeChunk(freeFinger(),
8407         pointer_delta(addr, freeFinger()));
8408     }
8409     // Set up for new free range.  Pass along whether the right hand
8410     // chunk is in the free lists.
8411     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8412   }
8413 }
8414 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
8415   assert(inFreeRange(), "Should only be called if currently in a free range.");
8416   assert(size > 0,
8417     "A zero sized chunk cannot be added to the free lists.");
8418   if (!freeRangeInFreeLists()) {
8419     if(CMSTestInFreeList) {
8420       FreeChunk* fc = (FreeChunk*) chunk;
8421       fc->setSize(size);
8422       assert(!_sp->verifyChunkInFreeLists(fc),
8423         "chunk should not be in free lists yet");
8424     }
8425     if (CMSTraceSweeper) {
8426       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8427                     chunk, size);
8428     }
8429     // A new free range is going to be starting.  The current
8430     // free range has not been added to the free lists yet or
8431     // was removed so add it back.
8432     // If the current free range was coalesced, then the death
8433     // of the free range was recorded.  Record a birth now.
8434     if (lastFreeRangeCoalesced()) {
8435       _sp->coalBirth(size);
8436     }
8437     _sp->addChunkAndRepairOffsetTable(chunk, size,
8438             lastFreeRangeCoalesced());
8439   }
8440   set_inFreeRange(false);
8441   set_freeRangeInFreeLists(false);
8442 }
8443 
8444 // We take a break if we've been at this for a while,
8445 // so as to avoid monopolizing the locks involved.
8446 void SweepClosure::do_yield_work(HeapWord* addr) {
8447   // Return current free chunk being used for coalescing (if any)
8448   // to the appropriate freelist.  After yielding, the next
8449   // free block encountered will start a coalescing range of
8450   // free blocks.  If the next free block is adjacent to the
8451   // chunk just flushed, they will need to wait for the next
8452   // sweep to be coalesced.
8453   if (inFreeRange()) {
8454     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
8455   }
8456 
8457   // First give up the locks, then yield, then re-lock.
8458   // We should probably use a constructor/destructor idiom to
8459   // do this unlock/lock or modify the MutexUnlocker class to
8460   // serve our purpose. XXX
8461   assert_lock_strong(_bitMap->lock());
8462   assert_lock_strong(_freelistLock);
8463   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8464          "CMS thread should hold CMS token");
8465   _bitMap->lock()->unlock();
8466   _freelistLock->unlock();
8467   ConcurrentMarkSweepThread::desynchronize(true);
8468   ConcurrentMarkSweepThread::acknowledge_yield_request();
8469   _collector->stopTimer();
8470   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8471   if (PrintCMSStatistics != 0) {
8472     _collector->incrementYields();
8473   }
8474   _collector->icms_wait();
8475 
8476   // See the comment in coordinator_yield()
8477   for (unsigned i = 0; i < CMSYieldSleepCount &&
8478                        ConcurrentMarkSweepThread::should_yield() &&
8479                        !CMSCollector::foregroundGCIsActive(); ++i) {
8480     os::sleep(Thread::current(), 1, false);
8481     ConcurrentMarkSweepThread::acknowledge_yield_request();
8482   }
8483 
8484   ConcurrentMarkSweepThread::synchronize(true);
8485   _freelistLock->lock();
8486   _bitMap->lock()->lock_without_safepoint_check();
8487   _collector->startTimer();
8488 }
8489 
8490 #ifndef PRODUCT
8491 // This is actually very useful in a product build if it can
8492 // be called from the debugger.  Compile it into the product
8493 // as needed.
8494 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
8495   return debug_cms_space->verifyChunkInFreeLists(fc);
8496 }
8497 
8498 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
8499   if (CMSTraceSweeper) {
8500     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
8501   }
8502 }
8503 #endif
8504 
8505 // CMSIsAliveClosure
8506 bool CMSIsAliveClosure::do_object_b(oop obj) {
8507   HeapWord* addr = (HeapWord*)obj;
8508   return addr != NULL &&
8509          (!_span.contains(addr) || _bit_map->isMarked(addr));
8510 }
8511 
8512 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8513                       MemRegion span,
8514                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8515                       CMSMarkStack* revisit_stack, bool cpc):
8516   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8517   _span(span),
8518   _bit_map(bit_map),
8519   _mark_stack(mark_stack),
8520   _concurrent_precleaning(cpc) {
8521   assert(!_span.is_empty(), "Empty span could spell trouble");
8522 }
8523 
8524 
8525 // CMSKeepAliveClosure: the serial version
8526 void CMSKeepAliveClosure::do_oop(oop obj) {
8527   HeapWord* addr = (HeapWord*)obj;
8528   if (_span.contains(addr) &&
8529       !_bit_map->isMarked(addr)) {
8530     _bit_map->mark(addr);
8531     bool simulate_overflow = false;
8532     NOT_PRODUCT(
8533       if (CMSMarkStackOverflowALot &&
8534           _collector->simulate_overflow()) {
8535         // simulate a stack overflow
8536         simulate_overflow = true;
8537       }
8538     )
8539     if (simulate_overflow || !_mark_stack->push(obj)) {
8540       if (_concurrent_precleaning) {
8541         // We dirty the overflown object and let the remark
8542         // phase deal with it.
8543         assert(_collector->overflow_list_is_empty(), "Error");
8544         // In the case of object arrays, we need to dirty all of
8545         // the cards that the object spans. No locking or atomics
8546         // are needed since no one else can be mutating the mod union
8547         // table.
8548         if (obj->is_objArray()) {
8549           size_t sz = obj->size();
8550           HeapWord* end_card_addr =
8551             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8552           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8553           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8554           _collector->_modUnionTable.mark_range(redirty_range);
8555         } else {
8556           _collector->_modUnionTable.mark(addr);
8557         }
8558         _collector->_ser_kac_preclean_ovflw++;
8559       } else {
8560         _collector->push_on_overflow_list(obj);
8561         _collector->_ser_kac_ovflw++;
8562       }
8563     }
8564   }
8565 }
8566 
8567 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8568 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8569 
8570 // CMSParKeepAliveClosure: a parallel version of the above.
8571 // The work queues are private to each closure (thread),
8572 // but (may be) available for stealing by other threads.
8573 void CMSParKeepAliveClosure::do_oop(oop obj) {
8574   HeapWord* addr = (HeapWord*)obj;
8575   if (_span.contains(addr) &&
8576       !_bit_map->isMarked(addr)) {
8577     // In general, during recursive tracing, several threads
8578     // may be concurrently getting here; the first one to
8579     // "tag" it, claims it.
8580     if (_bit_map->par_mark(addr)) {
8581       bool res = _work_queue->push(obj);
8582       assert(res, "Low water mark should be much less than capacity");
8583       // Do a recursive trim in the hope that this will keep
8584       // stack usage lower, but leave some oops for potential stealers
8585       trim_queue(_low_water_mark);
8586     } // Else, another thread got there first
8587   }
8588 }
8589 
8590 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8591 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8592 
8593 void CMSParKeepAliveClosure::trim_queue(uint max) {
8594   while (_work_queue->size() > max) {
8595     oop new_oop;
8596     if (_work_queue->pop_local(new_oop)) {
8597       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8598       assert(_bit_map->isMarked((HeapWord*)new_oop),
8599              "no white objects on this stack!");
8600       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8601       // iterate over the oops in this oop, marking and pushing
8602       // the ones in CMS heap (i.e. in _span).
8603       new_oop->oop_iterate(&_mark_and_push);
8604     }
8605   }
8606 }
8607 
8608 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8609                                 CMSCollector* collector,
8610                                 MemRegion span, CMSBitMap* bit_map,
8611                                 CMSMarkStack* revisit_stack,
8612                                 OopTaskQueue* work_queue):
8613   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8614   _span(span),
8615   _bit_map(bit_map),
8616   _work_queue(work_queue) { }
8617 
8618 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8619   HeapWord* addr = (HeapWord*)obj;
8620   if (_span.contains(addr) &&
8621       !_bit_map->isMarked(addr)) {
8622     if (_bit_map->par_mark(addr)) {
8623       bool simulate_overflow = false;
8624       NOT_PRODUCT(
8625         if (CMSMarkStackOverflowALot &&
8626             _collector->par_simulate_overflow()) {
8627           // simulate a stack overflow
8628           simulate_overflow = true;
8629         }
8630       )
8631       if (simulate_overflow || !_work_queue->push(obj)) {
8632         _collector->par_push_on_overflow_list(obj);
8633         _collector->_par_kac_ovflw++;
8634       }
8635     } // Else another thread got there already
8636   }
8637 }
8638 
8639 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8640 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8641 
8642 //////////////////////////////////////////////////////////////////
8643 //  CMSExpansionCause                /////////////////////////////
8644 //////////////////////////////////////////////////////////////////
8645 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8646   switch (cause) {
8647     case _no_expansion:
8648       return "No expansion";
8649     case _satisfy_free_ratio:
8650       return "Free ratio";
8651     case _satisfy_promotion:
8652       return "Satisfy promotion";
8653     case _satisfy_allocation:
8654       return "allocation";
8655     case _allocate_par_lab:
8656       return "Par LAB";
8657     case _allocate_par_spooling_space:
8658       return "Par Spooling Space";
8659     case _adaptive_size_policy:
8660       return "Ergonomics";
8661     default:
8662       return "unknown";
8663   }
8664 }
8665 
8666 void CMSDrainMarkingStackClosure::do_void() {
8667   // the max number to take from overflow list at a time
8668   const size_t num = _mark_stack->capacity()/4;
8669   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8670          "Overflow list should be NULL during concurrent phases");
8671   while (!_mark_stack->isEmpty() ||
8672          // if stack is empty, check the overflow list
8673          _collector->take_from_overflow_list(num, _mark_stack)) {
8674     oop obj = _mark_stack->pop();
8675     HeapWord* addr = (HeapWord*)obj;
8676     assert(_span.contains(addr), "Should be within span");
8677     assert(_bit_map->isMarked(addr), "Should be marked");
8678     assert(obj->is_oop(), "Should be an oop");
8679     obj->oop_iterate(_keep_alive);
8680   }
8681 }
8682 
8683 void CMSParDrainMarkingStackClosure::do_void() {
8684   // drain queue
8685   trim_queue(0);
8686 }
8687 
8688 // Trim our work_queue so its length is below max at return
8689 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8690   while (_work_queue->size() > max) {
8691     oop new_oop;
8692     if (_work_queue->pop_local(new_oop)) {
8693       assert(new_oop->is_oop(), "Expected an oop");
8694       assert(_bit_map->isMarked((HeapWord*)new_oop),
8695              "no white objects on this stack!");
8696       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8697       // iterate over the oops in this oop, marking and pushing
8698       // the ones in CMS heap (i.e. in _span).
8699       new_oop->oop_iterate(&_mark_and_push);
8700     }
8701   }
8702 }
8703 
8704 ////////////////////////////////////////////////////////////////////
8705 // Support for Marking Stack Overflow list handling and related code
8706 ////////////////////////////////////////////////////////////////////
8707 // Much of the following code is similar in shape and spirit to the
8708 // code used in ParNewGC. We should try and share that code
8709 // as much as possible in the future.
8710 
8711 #ifndef PRODUCT
8712 // Debugging support for CMSStackOverflowALot
8713 
8714 // It's OK to call this multi-threaded;  the worst thing
8715 // that can happen is that we'll get a bunch of closely
8716 // spaced simulated oveflows, but that's OK, in fact
8717 // probably good as it would exercise the overflow code
8718 // under contention.
8719 bool CMSCollector::simulate_overflow() {
8720   if (_overflow_counter-- <= 0) { // just being defensive
8721     _overflow_counter = CMSMarkStackOverflowInterval;
8722     return true;
8723   } else {
8724     return false;
8725   }
8726 }
8727 
8728 bool CMSCollector::par_simulate_overflow() {
8729   return simulate_overflow();
8730 }
8731 #endif
8732 
8733 // Single-threaded
8734 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8735   assert(stack->isEmpty(), "Expected precondition");
8736   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8737   size_t i = num;
8738   oop  cur = _overflow_list;
8739   const markOop proto = markOopDesc::prototype();
8740   NOT_PRODUCT(ssize_t n = 0;)
8741   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8742     next = oop(cur->mark());
8743     cur->set_mark(proto);   // until proven otherwise
8744     assert(cur->is_oop(), "Should be an oop");
8745     bool res = stack->push(cur);
8746     assert(res, "Bit off more than can chew?");
8747     NOT_PRODUCT(n++;)
8748   }
8749   _overflow_list = cur;
8750 #ifndef PRODUCT
8751   assert(_num_par_pushes >= n, "Too many pops?");
8752   _num_par_pushes -=n;
8753 #endif
8754   return !stack->isEmpty();
8755 }
8756 
8757 #define BUSY  (oop(0x1aff1aff))
8758 // (MT-safe) Get a prefix of at most "num" from the list.
8759 // The overflow list is chained through the mark word of
8760 // each object in the list. We fetch the entire list,
8761 // break off a prefix of the right size and return the
8762 // remainder. If other threads try to take objects from
8763 // the overflow list at that time, they will wait for
8764 // some time to see if data becomes available. If (and
8765 // only if) another thread places one or more object(s)
8766 // on the global list before we have returned the suffix
8767 // to the global list, we will walk down our local list
8768 // to find its end and append the global list to
8769 // our suffix before returning it. This suffix walk can
8770 // prove to be expensive (quadratic in the amount of traffic)
8771 // when there are many objects in the overflow list and
8772 // there is much producer-consumer contention on the list.
8773 // *NOTE*: The overflow list manipulation code here and
8774 // in ParNewGeneration:: are very similar in shape,
8775 // except that in the ParNew case we use the old (from/eden)
8776 // copy of the object to thread the list via its klass word.
8777 // Because of the common code, if you make any changes in
8778 // the code below, please check the ParNew version to see if
8779 // similar changes might be needed.
8780 // CR 6797058 has been filed to consolidate the common code.
8781 bool CMSCollector::par_take_from_overflow_list(size_t num,
8782                                                OopTaskQueue* work_q,
8783                                                int no_of_gc_threads) {
8784   assert(work_q->size() == 0, "First empty local work queue");
8785   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8786   if (_overflow_list == NULL) {
8787     return false;
8788   }
8789   // Grab the entire list; we'll put back a suffix
8790   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8791   Thread* tid = Thread::current();
8792   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8793   // set to ParallelGCThreads.
8794   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8795   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8796   // If the list is busy, we spin for a short while,
8797   // sleeping between attempts to get the list.
8798   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8799     os::sleep(tid, sleep_time_millis, false);
8800     if (_overflow_list == NULL) {
8801       // Nothing left to take
8802       return false;
8803     } else if (_overflow_list != BUSY) {
8804       // Try and grab the prefix
8805       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8806     }
8807   }
8808   // If the list was found to be empty, or we spun long
8809   // enough, we give up and return empty-handed. If we leave
8810   // the list in the BUSY state below, it must be the case that
8811   // some other thread holds the overflow list and will set it
8812   // to a non-BUSY state in the future.
8813   if (prefix == NULL || prefix == BUSY) {
8814      // Nothing to take or waited long enough
8815      if (prefix == NULL) {
8816        // Write back the NULL in case we overwrote it with BUSY above
8817        // and it is still the same value.
8818        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8819      }
8820      return false;
8821   }
8822   assert(prefix != NULL && prefix != BUSY, "Error");
8823   size_t i = num;
8824   oop cur = prefix;
8825   // Walk down the first "num" objects, unless we reach the end.
8826   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8827   if (cur->mark() == NULL) {
8828     // We have "num" or fewer elements in the list, so there
8829     // is nothing to return to the global list.
8830     // Write back the NULL in lieu of the BUSY we wrote
8831     // above, if it is still the same value.
8832     if (_overflow_list == BUSY) {
8833       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8834     }
8835   } else {
8836     // Chop off the suffix and rerturn it to the global list.
8837     assert(cur->mark() != BUSY, "Error");
8838     oop suffix_head = cur->mark(); // suffix will be put back on global list
8839     cur->set_mark(NULL);           // break off suffix
8840     // It's possible that the list is still in the empty(busy) state
8841     // we left it in a short while ago; in that case we may be
8842     // able to place back the suffix without incurring the cost
8843     // of a walk down the list.
8844     oop observed_overflow_list = _overflow_list;
8845     oop cur_overflow_list = observed_overflow_list;
8846     bool attached = false;
8847     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8848       observed_overflow_list =
8849         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8850       if (cur_overflow_list == observed_overflow_list) {
8851         attached = true;
8852         break;
8853       } else cur_overflow_list = observed_overflow_list;
8854     }
8855     if (!attached) {
8856       // Too bad, someone else sneaked in (at least) an element; we'll need
8857       // to do a splice. Find tail of suffix so we can prepend suffix to global
8858       // list.
8859       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8860       oop suffix_tail = cur;
8861       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8862              "Tautology");
8863       observed_overflow_list = _overflow_list;
8864       do {
8865         cur_overflow_list = observed_overflow_list;
8866         if (cur_overflow_list != BUSY) {
8867           // Do the splice ...
8868           suffix_tail->set_mark(markOop(cur_overflow_list));
8869         } else { // cur_overflow_list == BUSY
8870           suffix_tail->set_mark(NULL);
8871         }
8872         // ... and try to place spliced list back on overflow_list ...
8873         observed_overflow_list =
8874           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8875       } while (cur_overflow_list != observed_overflow_list);
8876       // ... until we have succeeded in doing so.
8877     }
8878   }
8879 
8880   // Push the prefix elements on work_q
8881   assert(prefix != NULL, "control point invariant");
8882   const markOop proto = markOopDesc::prototype();
8883   oop next;
8884   NOT_PRODUCT(ssize_t n = 0;)
8885   for (cur = prefix; cur != NULL; cur = next) {
8886     next = oop(cur->mark());
8887     cur->set_mark(proto);   // until proven otherwise
8888     assert(cur->is_oop(), "Should be an oop");
8889     bool res = work_q->push(cur);
8890     assert(res, "Bit off more than we can chew?");
8891     NOT_PRODUCT(n++;)
8892   }
8893 #ifndef PRODUCT
8894   assert(_num_par_pushes >= n, "Too many pops?");
8895   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8896 #endif
8897   return true;
8898 }
8899 
8900 // Single-threaded
8901 void CMSCollector::push_on_overflow_list(oop p) {
8902   NOT_PRODUCT(_num_par_pushes++;)
8903   assert(p->is_oop(), "Not an oop");
8904   preserve_mark_if_necessary(p);
8905   p->set_mark((markOop)_overflow_list);
8906   _overflow_list = p;
8907 }
8908 
8909 // Multi-threaded; use CAS to prepend to overflow list
8910 void CMSCollector::par_push_on_overflow_list(oop p) {
8911   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8912   assert(p->is_oop(), "Not an oop");
8913   par_preserve_mark_if_necessary(p);
8914   oop observed_overflow_list = _overflow_list;
8915   oop cur_overflow_list;
8916   do {
8917     cur_overflow_list = observed_overflow_list;
8918     if (cur_overflow_list != BUSY) {
8919       p->set_mark(markOop(cur_overflow_list));
8920     } else {
8921       p->set_mark(NULL);
8922     }
8923     observed_overflow_list =
8924       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8925   } while (cur_overflow_list != observed_overflow_list);
8926 }
8927 #undef BUSY
8928 
8929 // Single threaded
8930 // General Note on GrowableArray: pushes may silently fail
8931 // because we are (temporarily) out of C-heap for expanding
8932 // the stack. The problem is quite ubiquitous and affects
8933 // a lot of code in the JVM. The prudent thing for GrowableArray
8934 // to do (for now) is to exit with an error. However, that may
8935 // be too draconian in some cases because the caller may be
8936 // able to recover without much harm. For such cases, we
8937 // should probably introduce a "soft_push" method which returns
8938 // an indication of success or failure with the assumption that
8939 // the caller may be able to recover from a failure; code in
8940 // the VM can then be changed, incrementally, to deal with such
8941 // failures where possible, thus, incrementally hardening the VM
8942 // in such low resource situations.
8943 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8944   _preserved_oop_stack.push(p);
8945   _preserved_mark_stack.push(m);
8946   assert(m == p->mark(), "Mark word changed");
8947   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8948          "bijection");
8949 }
8950 
8951 // Single threaded
8952 void CMSCollector::preserve_mark_if_necessary(oop p) {
8953   markOop m = p->mark();
8954   if (m->must_be_preserved(p)) {
8955     preserve_mark_work(p, m);
8956   }
8957 }
8958 
8959 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8960   markOop m = p->mark();
8961   if (m->must_be_preserved(p)) {
8962     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8963     // Even though we read the mark word without holding
8964     // the lock, we are assured that it will not change
8965     // because we "own" this oop, so no other thread can
8966     // be trying to push it on the overflow list; see
8967     // the assertion in preserve_mark_work() that checks
8968     // that m == p->mark().
8969     preserve_mark_work(p, m);
8970   }
8971 }
8972 
8973 // We should be able to do this multi-threaded,
8974 // a chunk of stack being a task (this is
8975 // correct because each oop only ever appears
8976 // once in the overflow list. However, it's
8977 // not very easy to completely overlap this with
8978 // other operations, so will generally not be done
8979 // until all work's been completed. Because we
8980 // expect the preserved oop stack (set) to be small,
8981 // it's probably fine to do this single-threaded.
8982 // We can explore cleverer concurrent/overlapped/parallel
8983 // processing of preserved marks if we feel the
8984 // need for this in the future. Stack overflow should
8985 // be so rare in practice and, when it happens, its
8986 // effect on performance so great that this will
8987 // likely just be in the noise anyway.
8988 void CMSCollector::restore_preserved_marks_if_any() {
8989   assert(SafepointSynchronize::is_at_safepoint(),
8990          "world should be stopped");
8991   assert(Thread::current()->is_ConcurrentGC_thread() ||
8992          Thread::current()->is_VM_thread(),
8993          "should be single-threaded");
8994   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8995          "bijection");
8996 
8997   while (!_preserved_oop_stack.is_empty()) {
8998     oop p = _preserved_oop_stack.pop();
8999     assert(p->is_oop(), "Should be an oop");
9000     assert(_span.contains(p), "oop should be in _span");
9001     assert(p->mark() == markOopDesc::prototype(),
9002            "Set when taken from overflow list");
9003     markOop m = _preserved_mark_stack.pop();
9004     p->set_mark(m);
9005   }
9006   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9007          "stacks were cleared above");
9008 }
9009 
9010 #ifndef PRODUCT
9011 bool CMSCollector::no_preserved_marks() const {
9012   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9013 }
9014 #endif
9015 
9016 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9017 {
9018   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9019   CMSAdaptiveSizePolicy* size_policy =
9020     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9021   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9022     "Wrong type for size policy");
9023   return size_policy;
9024 }
9025 
9026 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9027                                            size_t desired_promo_size) {
9028   if (cur_promo_size < desired_promo_size) {
9029     size_t expand_bytes = desired_promo_size - cur_promo_size;
9030     if (PrintAdaptiveSizePolicy && Verbose) {
9031       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9032         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9033         expand_bytes);
9034     }
9035     expand(expand_bytes,
9036            MinHeapDeltaBytes,
9037            CMSExpansionCause::_adaptive_size_policy);
9038   } else if (desired_promo_size < cur_promo_size) {
9039     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9040     if (PrintAdaptiveSizePolicy && Verbose) {
9041       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9042         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9043         shrink_bytes);
9044     }
9045     shrink(shrink_bytes);
9046   }
9047 }
9048 
9049 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9050   GenCollectedHeap* gch = GenCollectedHeap::heap();
9051   CMSGCAdaptivePolicyCounters* counters =
9052     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9053   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9054     "Wrong kind of counters");
9055   return counters;
9056 }
9057 
9058 
9059 void ASConcurrentMarkSweepGeneration::update_counters() {
9060   if (UsePerfData) {
9061     _space_counters->update_all();
9062     _gen_counters->update_all();
9063     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9064     GenCollectedHeap* gch = GenCollectedHeap::heap();
9065     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9066     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9067       "Wrong gc statistics type");
9068     counters->update_counters(gc_stats_l);
9069   }
9070 }
9071 
9072 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9073   if (UsePerfData) {
9074     _space_counters->update_used(used);
9075     _space_counters->update_capacity();
9076     _gen_counters->update_all();
9077 
9078     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9079     GenCollectedHeap* gch = GenCollectedHeap::heap();
9080     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9081     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9082       "Wrong gc statistics type");
9083     counters->update_counters(gc_stats_l);
9084   }
9085 }
9086 
9087 // The desired expansion delta is computed so that:
9088 // . desired free percentage or greater is used
9089 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9090   assert_locked_or_safepoint(Heap_lock);
9091 
9092   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9093 
9094   // If incremental collection failed, we just want to expand
9095   // to the limit.
9096   if (incremental_collection_failed()) {
9097     clear_incremental_collection_failed();
9098     grow_to_reserved();
9099     return;
9100   }
9101 
9102   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9103 
9104   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9105     "Wrong type of heap");
9106   int prev_level = level() - 1;
9107   assert(prev_level >= 0, "The cms generation is the lowest generation");
9108   Generation* prev_gen = gch->get_gen(prev_level);
9109   assert(prev_gen->kind() == Generation::ASParNew,
9110     "Wrong type of young generation");
9111   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9112   size_t cur_eden = younger_gen->eden()->capacity();
9113   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9114   size_t cur_promo = free();
9115   size_policy->compute_tenured_generation_free_space(cur_promo,
9116                                                        max_available(),
9117                                                        cur_eden);
9118   resize(cur_promo, size_policy->promo_size());
9119 
9120   // Record the new size of the space in the cms generation
9121   // that is available for promotions.  This is temporary.
9122   // It should be the desired promo size.
9123   size_policy->avg_cms_promo()->sample(free());
9124   size_policy->avg_old_live()->sample(used());
9125 
9126   if (UsePerfData) {
9127     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9128     counters->update_cms_capacity_counter(capacity());
9129   }
9130 }
9131 
9132 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9133   assert_locked_or_safepoint(Heap_lock);
9134   assert_lock_strong(freelistLock());
9135   HeapWord* old_end = _cmsSpace->end();
9136   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9137   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9138   FreeChunk* chunk_at_end = find_chunk_at_end();
9139   if (chunk_at_end == NULL) {
9140     // No room to shrink
9141     if (PrintGCDetails && Verbose) {
9142       gclog_or_tty->print_cr("No room to shrink: old_end  "
9143         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9144         " chunk_at_end  " PTR_FORMAT,
9145         old_end, unallocated_start, chunk_at_end);
9146     }
9147     return;
9148   } else {
9149 
9150     // Find the chunk at the end of the space and determine
9151     // how much it can be shrunk.
9152     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9153     size_t aligned_shrinkable_size_in_bytes =
9154       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9155     assert(unallocated_start <= chunk_at_end->end(),
9156       "Inconsistent chunk at end of space");
9157     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9158     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9159 
9160     // Shrink the underlying space
9161     _virtual_space.shrink_by(bytes);
9162     if (PrintGCDetails && Verbose) {
9163       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9164         " desired_bytes " SIZE_FORMAT
9165         " shrinkable_size_in_bytes " SIZE_FORMAT
9166         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9167         "  bytes  " SIZE_FORMAT,
9168         desired_bytes, shrinkable_size_in_bytes,
9169         aligned_shrinkable_size_in_bytes, bytes);
9170       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9171         "  unallocated_start  " SIZE_FORMAT,
9172         old_end, unallocated_start);
9173     }
9174 
9175     // If the space did shrink (shrinking is not guaranteed),
9176     // shrink the chunk at the end by the appropriate amount.
9177     if (((HeapWord*)_virtual_space.high()) < old_end) {
9178       size_t new_word_size =
9179         heap_word_size(_virtual_space.committed_size());
9180 
9181       // Have to remove the chunk from the dictionary because it is changing
9182       // size and might be someplace elsewhere in the dictionary.
9183 
9184       // Get the chunk at end, shrink it, and put it
9185       // back.
9186       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9187       size_t word_size_change = word_size_before - new_word_size;
9188       size_t chunk_at_end_old_size = chunk_at_end->size();
9189       assert(chunk_at_end_old_size >= word_size_change,
9190         "Shrink is too large");
9191       chunk_at_end->setSize(chunk_at_end_old_size -
9192                           word_size_change);
9193       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9194         word_size_change);
9195 
9196       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9197 
9198       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9199       _bts->resize(new_word_size);  // resize the block offset shared array
9200       Universe::heap()->barrier_set()->resize_covered_region(mr);
9201       _cmsSpace->assert_locked();
9202       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9203 
9204       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9205 
9206       // update the space and generation capacity counters
9207       if (UsePerfData) {
9208         _space_counters->update_capacity();
9209         _gen_counters->update_all();
9210       }
9211 
9212       if (Verbose && PrintGCDetails) {
9213         size_t new_mem_size = _virtual_space.committed_size();
9214         size_t old_mem_size = new_mem_size + bytes;
9215         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9216                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9217       }
9218     }
9219 
9220     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9221       "Inconsistency at end of space");
9222     assert(chunk_at_end->end() == _cmsSpace->end(),
9223       "Shrinking is inconsistent");
9224     return;
9225   }
9226 }
9227 
9228 // Transfer some number of overflown objects to usual marking
9229 // stack. Return true if some objects were transferred.
9230 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9231   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9232                     (size_t)ParGCDesiredObjsFromOverflowList);
9233 
9234   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9235   assert(_collector->overflow_list_is_empty() || res,
9236          "If list is not empty, we should have taken something");
9237   assert(!res || !_mark_stack->isEmpty(),
9238          "If we took something, it should now be on our stack");
9239   return res;
9240 }
9241 
9242 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9243   size_t res = _sp->block_size_no_stall(addr, _collector);
9244   assert(res != 0, "Should always be able to compute a size");
9245   if (_sp->block_is_obj(addr)) {
9246     if (_live_bit_map->isMarked(addr)) {
9247       // It can't have been dead in a previous cycle
9248       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9249     } else {
9250       _dead_bit_map->mark(addr);      // mark the dead object
9251     }
9252   }
9253   return res;
9254 }
9255 
9256 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase): TraceMemoryManagerStats() {
9257 
9258   switch (phase) {
9259     case CMSCollector::InitialMarking:
9260       initialize(true  /* fullGC */ ,
9261                  true  /* recordGCBeginTime */,
9262                  true  /* recordPreGCUsage */,
9263                  false /* recordPeakUsage */,
9264                  false /* recordPostGCusage */,
9265                  true  /* recordAccumulatedGCTime */,
9266                  false /* recordGCEndTime */,
9267                  false /* countCollection */  );
9268       break;
9269 
9270     case CMSCollector::FinalMarking:
9271       initialize(true  /* fullGC */ ,
9272                  false /* recordGCBeginTime */,
9273                  false /* recordPreGCUsage */,
9274                  false /* recordPeakUsage */,
9275                  false /* recordPostGCusage */,
9276                  true  /* recordAccumulatedGCTime */,
9277                  false /* recordGCEndTime */,
9278                  false /* countCollection */  );
9279       break;
9280 
9281     case CMSCollector::Sweeping:
9282       initialize(true  /* fullGC */ ,
9283                  false /* recordGCBeginTime */,
9284                  false /* recordPreGCUsage */,
9285                  true  /* recordPeakUsage */,
9286                  true  /* recordPostGCusage */,
9287                  false /* recordAccumulatedGCTime */,
9288                  true  /* recordGCEndTime */,
9289                  true  /* countCollection */  );
9290       break;
9291 
9292     default:
9293       ShouldNotReachHere();
9294   }
9295 }
9296 
9297 // when bailing out of cms in concurrent mode failure
9298 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(): TraceMemoryManagerStats() {
9299   initialize(true /* fullGC */ ,
9300              true /* recordGCBeginTime */,
9301              true /* recordPreGCUsage */,
9302              true /* recordPeakUsage */,
9303              true /* recordPostGCusage */,
9304              true /* recordAccumulatedGCTime */,
9305              true /* recordGCEndTime */,
9306              true /* countCollection */ );
9307 }