1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  27 #include "memory/sharedHeap.hpp"
  28 #include "oops/arrayOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 
  31 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
  32   _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
  33   _end(NULL), _hard_end(NULL),
  34   _retained(false), _retained_filler(),
  35   _allocated(0), _wasted(0)
  36 {
  37   assert (min_size() > AlignmentReserve, "Inconsistency!");
  38   // arrayOopDesc::header_size depends on command line initialization.
  39   FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
  40   AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
  41 }
  42 
  43 size_t ParGCAllocBuffer::FillerHeaderSize;
  44 
  45 // If the minimum object size is greater than MinObjAlignment, we can
  46 // end up with a shard at the end of the buffer that's smaller than
  47 // the smallest object.  We can't allow that because the buffer must
  48 // look like it's full of objects when we retire it, so we make
  49 // sure we have enough space for a filler int array object.
  50 size_t ParGCAllocBuffer::AlignmentReserve;
  51 
  52 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
  53   assert(!retain || end_of_gc, "Can only retain at GC end.");
  54   if (_retained) {
  55     // If the buffer had been retained shorten the previous filler object.
  56     assert(_retained_filler.end() <= _top, "INVARIANT");
  57     CollectedHeap::fill_with_object(_retained_filler);
  58     // Wasted space book-keeping, otherwise (normally) done in invalidate()
  59     _wasted += _retained_filler.word_size();
  60     _retained = false;
  61   }
  62   assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
  63   if (_top < _hard_end) {
  64     CollectedHeap::fill_with_object(_top, _hard_end);
  65     if (!retain) {
  66       invalidate();
  67     } else {
  68       // Is there wasted space we'd like to retain for the next GC?
  69       if (pointer_delta(_end, _top) > FillerHeaderSize) {
  70         _retained = true;
  71         _retained_filler = MemRegion(_top, FillerHeaderSize);
  72         _top = _top + FillerHeaderSize;
  73       } else {
  74         invalidate();
  75       }
  76     }
  77   }
  78 }
  79 
  80 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
  81   assert(ResizePLAB, "Wasted work");
  82   stats->add_allocated(_allocated);
  83   stats->add_wasted(_wasted);
  84   stats->add_unused(pointer_delta(_end, _top));
  85 }
  86 
  87 // Compute desired plab size and latch result for later
  88 // use. This should be called once at the end of parallel
  89 // scavenge; it clears the sensor accumulators.
  90 void PLABStats::adjust_desired_plab_sz() {
  91   assert(ResizePLAB, "Not set");
  92   if (_allocated == 0) {
  93     assert(_unused == 0, "Inconsistency in PLAB stats");
  94     _allocated = 1;
  95   }
  96   double wasted_frac    = (double)_unused/(double)_allocated;
  97   size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
  98                                    TargetPLABWastePct);
  99   if (target_refills == 0) {
 100     target_refills = 1;
 101   }
 102   _used = _allocated - _wasted - _unused;
 103   size_t plab_sz = _used/(target_refills*ParallelGCThreads);
 104   if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
 105   // Take historical weighted average
 106   _filter.sample(plab_sz);
 107   // Clip from above and below, and align to object boundary
 108   plab_sz = MAX2(min_size(), (size_t)_filter.average());
 109   plab_sz = MIN2(max_size(), plab_sz);
 110   plab_sz = align_object_size(plab_sz);
 111   // Latch the result
 112   if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
 113   if (ResizePLAB) {
 114     _desired_plab_sz = plab_sz;
 115   }
 116   // Now clear the accumulators for next round:
 117   // note this needs to be fixed in the case where we
 118   // are retaining across scavenges. FIX ME !!! XXX
 119   _allocated = 0;
 120   _wasted    = 0;
 121   _unused    = 0;
 122 }
 123 
 124 #ifndef PRODUCT
 125 void ParGCAllocBuffer::print() {
 126   gclog_or_tty->print("parGCAllocBuffer: _bottom: %p  _top: %p  _end: %p  _hard_end: %p"
 127              "_retained: %c _retained_filler: [%p,%p)\n",
 128              _bottom, _top, _end, _hard_end,
 129              "FT"[_retained], _retained_filler.start(), _retained_filler.end());
 130 }
 131 #endif // !PRODUCT
 132 
 133 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
 134 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
 135      ((size_t)Generation::GenGrain)/HeapWordSize);
 136 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
 137 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
 138      (size_t)Generation::GenGrain);
 139 
 140 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
 141                                                  BlockOffsetSharedArray* bsa) :
 142   ParGCAllocBuffer(word_sz),
 143   _bsa(bsa),
 144   _bt(bsa, MemRegion(_bottom, _hard_end)),
 145   _true_end(_hard_end)
 146 {}
 147 
 148 // The buffer comes with its own BOT, with a shared (obviously) underlying
 149 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
 150 // as we would for any contiguous space. However, on accasion we
 151 // need to do some buffer surgery at the extremities before we
 152 // start using the body of the buffer for allocations. Such surgery
 153 // (as explained elsewhere) is to prevent allocation on a card that
 154 // is in the process of being walked concurrently by another GC thread.
 155 // When such surgery happens at a point that is far removed (to the
 156 // right of the current allocation point, top), we use the "contig"
 157 // parameter below to directly manipulate the shared array without
 158 // modifying the _next_threshold state in the BOT.
 159 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
 160                                                      bool contig) {
 161   CollectedHeap::fill_with_object(mr);
 162   if (contig) {
 163     _bt.alloc_block(mr.start(), mr.end());
 164   } else {
 165     _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
 166   }
 167 }
 168 
 169 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
 170   HeapWord* res = NULL;
 171   if (_true_end > _hard_end) {
 172     assert((HeapWord*)align_size_down(intptr_t(_hard_end),
 173                                       ChunkSizeInBytes) == _hard_end,
 174            "or else _true_end should be equal to _hard_end");
 175     assert(_retained, "or else _true_end should be equal to _hard_end");
 176     assert(_retained_filler.end() <= _top, "INVARIANT");
 177     CollectedHeap::fill_with_object(_retained_filler);
 178     if (_top < _hard_end) {
 179       fill_region_with_block(MemRegion(_top, _hard_end), true);
 180     }
 181     HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
 182     _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
 183     _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
 184     _top      = _retained_filler.end();
 185     _hard_end = next_hard_end;
 186     _end      = _hard_end - AlignmentReserve;
 187     res       = ParGCAllocBuffer::allocate(word_sz);
 188     if (res != NULL) {
 189       _bt.alloc_block(res, word_sz);
 190     }
 191   }
 192   return res;
 193 }
 194 
 195 void
 196 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
 197   ParGCAllocBuffer::undo_allocation(obj, word_sz);
 198   // This may back us up beyond the previous threshold, so reset.
 199   _bt.set_region(MemRegion(_top, _hard_end));
 200   _bt.initialize_threshold();
 201 }
 202 
 203 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
 204   assert(!retain || end_of_gc, "Can only retain at GC end.");
 205   if (_retained) {
 206     // We're about to make the retained_filler into a block.
 207     _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
 208                                       _retained_filler.end());
 209   }
 210   // Reset _hard_end to _true_end (and update _end)
 211   if (retain && _hard_end != NULL) {
 212     assert(_hard_end <= _true_end, "Invariant.");
 213     _hard_end = _true_end;
 214     _end      = MAX2(_top, _hard_end - AlignmentReserve);
 215     assert(_end <= _hard_end, "Invariant.");
 216   }
 217   _true_end = _hard_end;
 218   HeapWord* pre_top = _top;
 219 
 220   ParGCAllocBuffer::retire(end_of_gc, retain);
 221   // Now any old _retained_filler is cut back to size, the free part is
 222   // filled with a filler object, and top is past the header of that
 223   // object.
 224 
 225   if (retain && _top < _end) {
 226     assert(end_of_gc && retain, "Or else retain should be false.");
 227     // If the lab does not start on a card boundary, we don't want to
 228     // allocate onto that card, since that might lead to concurrent
 229     // allocation and card scanning, which we don't support.  So we fill
 230     // the first card with a garbage object.
 231     size_t first_card_index = _bsa->index_for(pre_top);
 232     HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
 233     if (first_card_start < pre_top) {
 234       HeapWord* second_card_start =
 235         _bsa->inc_by_region_size(first_card_start);
 236 
 237       // Ensure enough room to fill with the smallest block
 238       second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
 239 
 240       // If the end is already in the first card, don't go beyond it!
 241       // Or if the remainder is too small for a filler object, gobble it up.
 242       if (_hard_end < second_card_start ||
 243           pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
 244         second_card_start = _hard_end;
 245       }
 246       if (pre_top < second_card_start) {
 247         MemRegion first_card_suffix(pre_top, second_card_start);
 248         fill_region_with_block(first_card_suffix, true);
 249       }
 250       pre_top = second_card_start;
 251       _top = pre_top;
 252       _end = MAX2(_top, _hard_end - AlignmentReserve);
 253     }
 254 
 255     // If the lab does not end on a card boundary, we don't want to
 256     // allocate onto that card, since that might lead to concurrent
 257     // allocation and card scanning, which we don't support.  So we fill
 258     // the last card with a garbage object.
 259     size_t last_card_index = _bsa->index_for(_hard_end);
 260     HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
 261     if (last_card_start < _hard_end) {
 262 
 263       // Ensure enough room to fill with the smallest block
 264       last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
 265 
 266       // If the top is already in the last card, don't go back beyond it!
 267       // Or if the remainder is too small for a filler object, gobble it up.
 268       if (_top > last_card_start ||
 269           pointer_delta(last_card_start, _top) < AlignmentReserve) {
 270         last_card_start = _top;
 271       }
 272       if (last_card_start < _hard_end) {
 273         MemRegion last_card_prefix(last_card_start, _hard_end);
 274         fill_region_with_block(last_card_prefix, false);
 275       }
 276       _hard_end = last_card_start;
 277       _end      = MAX2(_top, _hard_end - AlignmentReserve);
 278       _true_end = _hard_end;
 279       assert(_end <= _hard_end, "Invariant.");
 280     }
 281 
 282     // At this point:
 283     //   1) we had a filler object from the original top to hard_end.
 284     //   2) We've filled in any partial cards at the front and back.
 285     if (pre_top < _hard_end) {
 286       // Now we can reset the _bt to do allocation in the given area.
 287       MemRegion new_filler(pre_top, _hard_end);
 288       fill_region_with_block(new_filler, false);
 289       _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
 290       // If there's no space left, don't retain.
 291       if (_top >= _end) {
 292         _retained = false;
 293         invalidate();
 294         return;
 295       }
 296       _retained_filler = MemRegion(pre_top, _top);
 297       _bt.set_region(MemRegion(_top, _hard_end));
 298       _bt.initialize_threshold();
 299       assert(_bt.threshold() > _top, "initialize_threshold failed!");
 300 
 301       // There may be other reasons for queries into the middle of the
 302       // filler object.  When such queries are done in parallel with
 303       // allocation, bad things can happen, if the query involves object
 304       // iteration.  So we ensure that such queries do not involve object
 305       // iteration, by putting another filler object on the boundaries of
 306       // such queries.  One such is the object spanning a parallel card
 307       // chunk boundary.
 308 
 309       // "chunk_boundary" is the address of the first chunk boundary less
 310       // than "hard_end".
 311       HeapWord* chunk_boundary =
 312         (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
 313       assert(chunk_boundary < _hard_end, "Or else above did not work.");
 314       assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
 315              "Consequence of last card handling above.");
 316 
 317       if (_top <= chunk_boundary) {
 318         assert(_true_end == _hard_end, "Invariant.");
 319         while (_top <= chunk_boundary) {
 320           assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
 321                  "Consequence of last card handling above.");
 322           _bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
 323           CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
 324           _hard_end = chunk_boundary;
 325           chunk_boundary -= ChunkSizeInWords;
 326         }
 327         _end = _hard_end - AlignmentReserve;
 328         assert(_top <= _end, "Invariant.");
 329         // Now reset the initial filler chunk so it doesn't overlap with
 330         // the one(s) inserted above.
 331         MemRegion new_filler(pre_top, _hard_end);
 332         fill_region_with_block(new_filler, false);
 333       }
 334     } else {
 335       _retained = false;
 336       invalidate();
 337     }
 338   } else {
 339     assert(!end_of_gc ||
 340            (!_retained && _true_end == _hard_end), "Checking.");
 341   }
 342   assert(_end <= _hard_end, "Invariant.");
 343   assert(_top < _end || _top == _hard_end, "Invariant");
 344 }