1 /*
   2  * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class AllocationStats VALUE_OBJ_CLASS_SPEC {
  26   // A duration threshold (in ms) used to filter
  27   // possibly unreliable samples.
  28   static float _threshold;
  29 
  30   // We measure the demand between the end of the previous sweep and
  31   // beginning of this sweep:
  32   //   Count(end_last_sweep) - Count(start_this_sweep)
  33   //     + splitBirths(between) - splitDeaths(between)
  34   // The above number divided by the time since the end of the
  35   // previous sweep gives us a time rate of demand for blocks
  36   // of this size. We compute a padded average of this rate as
  37   // our current estimate for the time rate of demand for blocks
  38   // of this size. Similarly, we keep a padded average for the time
  39   // between sweeps. Our current estimate for demand for blocks of
  40   // this size is then simply computed as the product of these two
  41   // estimates.
  42   AdaptivePaddedAverage _demand_rate_estimate;
  43 
  44   ssize_t     _desired;         // Demand stimate computed as described above
  45   ssize_t     _coalDesired;     // desired +/- small-percent for tuning coalescing
  46 
  47   ssize_t     _surplus;         // count - (desired +/- small-percent),
  48                                 // used to tune splitting in best fit
  49   ssize_t     _bfrSurp;         // surplus at start of current sweep
  50   ssize_t     _prevSweep;       // count from end of previous sweep
  51   ssize_t     _beforeSweep;     // count from before current sweep
  52   ssize_t     _coalBirths;      // additional chunks from coalescing
  53   ssize_t     _coalDeaths;      // loss from coalescing
  54   ssize_t     _splitBirths;     // additional chunks from splitting
  55   ssize_t     _splitDeaths;     // loss from splitting
  56   size_t      _returnedBytes;   // number of bytes returned to list.
  57  public:
  58   void initialize(bool split_birth = false) {
  59     AdaptivePaddedAverage* dummy =
  60       new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
  61                                                          CMS_FLSPadding);
  62     _desired = 0;
  63     _coalDesired = 0;
  64     _surplus = 0;
  65     _bfrSurp = 0;
  66     _prevSweep = 0;
  67     _beforeSweep = 0;
  68     _coalBirths = 0;
  69     _coalDeaths = 0;
  70     _splitBirths = split_birth? 1 : 0;
  71     _splitDeaths = 0;
  72     _returnedBytes = 0;
  73   }
  74 
  75   AllocationStats() {
  76     initialize();
  77   }
  78 
  79   // The rate estimate is in blocks per second.
  80   void compute_desired(size_t count,
  81                        float inter_sweep_current,
  82                        float inter_sweep_estimate,
  83                        float intra_sweep_estimate) {
  84     // If the latest inter-sweep time is below our granularity
  85     // of measurement, we may call in here with
  86     // inter_sweep_current == 0. However, even for suitably small
  87     // but non-zero inter-sweep durations, we may not trust the accuracy
  88     // of accumulated data, since it has not been "integrated"
  89     // (read "low-pass-filtered") long enough, and would be
  90     // vulnerable to noisy glitches. In such cases, we
  91     // ignore the current sample and use currently available
  92     // historical estimates.
  93     // XXX NEEDS TO BE FIXED
  94     // assert(prevSweep() + splitBirths() >= splitDeaths() + (ssize_t)count, "Conservation Principle");
  95     //     ^^^^^^^^^^^^^^^^^^^^^^^^^^^    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  96     //     "Total Stock"                  "Not used at this block size"
  97     if (inter_sweep_current > _threshold) {
  98       ssize_t demand = prevSweep() - (ssize_t)count + splitBirths() - splitDeaths();
  99       // XXX NEEDS TO BE FIXED
 100       // assert(demand >= 0, "Demand should be non-negative");
 101       // Defensive: adjust for imprecision in event counting
 102       if (demand < 0) {
 103         demand = 0;
 104       }
 105       float old_rate = _demand_rate_estimate.padded_average();
 106       float rate = ((float)demand)/inter_sweep_current;
 107       _demand_rate_estimate.sample(rate);
 108       float new_rate = _demand_rate_estimate.padded_average();
 109       ssize_t old_desired = _desired;
 110       _desired = (ssize_t)(new_rate * (inter_sweep_estimate
 111                                        + CMSExtrapolateSweep
 112                                          ? intra_sweep_estimate
 113                                          : 0.0));
 114       if (PrintFLSStatistics > 1) {
 115         gclog_or_tty->print_cr("demand: %d, old_rate: %f, current_rate: %f, new_rate: %f, old_desired: %d, new_desired: %d",
 116                                 demand,     old_rate,     rate,             new_rate,     old_desired,     _desired);
 117       }
 118     }
 119   }
 120 
 121   ssize_t desired() const { return _desired; }
 122   void set_desired(ssize_t v) { _desired = v; }
 123 
 124   ssize_t coalDesired() const { return _coalDesired; }
 125   void set_coalDesired(ssize_t v) { _coalDesired = v; }
 126 
 127   ssize_t surplus() const { return _surplus; }
 128   void set_surplus(ssize_t v) { _surplus = v; }
 129   void increment_surplus() { _surplus++; }
 130   void decrement_surplus() { _surplus--; }
 131 
 132   ssize_t bfrSurp() const { return _bfrSurp; }
 133   void set_bfrSurp(ssize_t v) { _bfrSurp = v; }
 134   ssize_t prevSweep() const { return _prevSweep; }
 135   void set_prevSweep(ssize_t v) { _prevSweep = v; }
 136   ssize_t beforeSweep() const { return _beforeSweep; }
 137   void set_beforeSweep(ssize_t v) { _beforeSweep = v; }
 138 
 139   ssize_t coalBirths() const { return _coalBirths; }
 140   void set_coalBirths(ssize_t v) { _coalBirths = v; }
 141   void increment_coalBirths() { _coalBirths++; }
 142 
 143   ssize_t coalDeaths() const { return _coalDeaths; }
 144   void set_coalDeaths(ssize_t v) { _coalDeaths = v; }
 145   void increment_coalDeaths() { _coalDeaths++; }
 146 
 147   ssize_t splitBirths() const { return _splitBirths; }
 148   void set_splitBirths(ssize_t v) { _splitBirths = v; }
 149   void increment_splitBirths() { _splitBirths++; }
 150 
 151   ssize_t splitDeaths() const { return _splitDeaths; }
 152   void set_splitDeaths(ssize_t v) { _splitDeaths = v; }
 153   void increment_splitDeaths() { _splitDeaths++; }
 154 
 155   NOT_PRODUCT(
 156     size_t returnedBytes() const { return _returnedBytes; }
 157     void set_returnedBytes(size_t v) { _returnedBytes = v; }
 158   )
 159 };