1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // The CollectedHeap type requires subtypes to implement a method
  26 // "block_start".  For some subtypes, notably generational
  27 // systems using card-table-based write barriers, the efficiency of this
  28 // operation may be important.  Implementations of the "BlockOffsetArray"
  29 // class may be useful in providing such efficient implementations.
  30 //
  31 // BlockOffsetTable (abstract)
  32 //   - BlockOffsetArray (abstract)
  33 //     - BlockOffsetArrayNonContigSpace
  34 //     - BlockOffsetArrayContigSpace
  35 //
  36 
  37 class ContiguousSpace;
  38 class SerializeOopClosure;
  39 
  40 //////////////////////////////////////////////////////////////////////////
  41 // The BlockOffsetTable "interface"
  42 //////////////////////////////////////////////////////////////////////////
  43 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  44   friend class VMStructs;
  45 protected:
  46   // These members describe the region covered by the table.
  47 
  48   // The space this table is covering.
  49   HeapWord* _bottom;    // == reserved.start
  50   HeapWord* _end;       // End of currently allocated region.
  51 
  52 public:
  53   // Initialize the table to cover the given space.
  54   // The contents of the initial table are undefined.
  55   BlockOffsetTable(HeapWord* bottom, HeapWord* end):
  56     _bottom(bottom), _end(end) {
  57     assert(_bottom <= _end, "arguments out of order");
  58   }
  59 
  60   // Note that the committed size of the covered space may have changed,
  61   // so the table size might also wish to change.
  62   virtual void resize(size_t new_word_size) = 0;
  63 
  64   virtual void set_bottom(HeapWord* new_bottom) {
  65     assert(new_bottom <= _end, "new_bottom > _end");
  66     _bottom = new_bottom;
  67     resize(pointer_delta(_end, _bottom));
  68   }
  69 
  70   // Requires "addr" to be contained by a block, and returns the address of
  71   // the start of that block.
  72   virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
  73 
  74   // Returns the address of the start of the block containing "addr", or
  75   // else "null" if it is covered by no block.
  76   HeapWord* block_start(const void* addr) const;
  77 };
  78 
  79 //////////////////////////////////////////////////////////////////////////
  80 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
  81 // divides the covered region into "N"-word subregions (where
  82 // "N" = 2^"LogN".  An array with an entry for each such subregion
  83 // indicates how far back one must go to find the start of the
  84 // chunk that includes the first word of the subregion.
  85 //
  86 // Each BlockOffsetArray is owned by a Space.  However, the actual array
  87 // may be shared by several BlockOffsetArrays; this is useful
  88 // when a single resizable area (such as a generation) is divided up into
  89 // several spaces in which contiguous allocation takes place.  (Consider,
  90 // for example, the garbage-first generation.)
  91 
  92 // Here is the shared array type.
  93 //////////////////////////////////////////////////////////////////////////
  94 // BlockOffsetSharedArray
  95 //////////////////////////////////////////////////////////////////////////
  96 class BlockOffsetSharedArray: public CHeapObj {
  97   friend class BlockOffsetArray;
  98   friend class BlockOffsetArrayNonContigSpace;
  99   friend class BlockOffsetArrayContigSpace;
 100   friend class VMStructs;
 101 
 102  private:
 103   enum SomePrivateConstants {
 104     LogN = 9,
 105     LogN_words = LogN - LogHeapWordSize,
 106     N_bytes = 1 << LogN,
 107     N_words = 1 << LogN_words
 108   };
 109 
 110   bool _init_to_zero;
 111 
 112   // The reserved region covered by the shared array.
 113   MemRegion _reserved;
 114 
 115   // End of the current committed region.
 116   HeapWord* _end;
 117 
 118   // Array for keeping offsets for retrieving object start fast given an
 119   // address.
 120   VirtualSpace _vs;
 121   u_char* _offset_array;          // byte array keeping backwards offsets
 122 
 123  protected:
 124   // Bounds checking accessors:
 125   // For performance these have to devolve to array accesses in product builds.
 126   u_char offset_array(size_t index) const {
 127     assert(index < _vs.committed_size(), "index out of range");
 128     return _offset_array[index];
 129   }
 130   // An assertion-checking helper method for the set_offset_array() methods below.
 131   void check_reducing_assertion(bool reducing);
 132 
 133   void set_offset_array(size_t index, u_char offset, bool reducing = false) {
 134     check_reducing_assertion(reducing);
 135     assert(index < _vs.committed_size(), "index out of range");
 136     assert(!reducing || _offset_array[index] >= offset, "Not reducing");
 137     _offset_array[index] = offset;
 138   }
 139 
 140   void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
 141     check_reducing_assertion(reducing);
 142     assert(index < _vs.committed_size(), "index out of range");
 143     assert(high >= low, "addresses out of order");
 144     assert(pointer_delta(high, low) <= N_words, "offset too large");
 145     assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
 146            "Not reducing");
 147     _offset_array[index] = (u_char)pointer_delta(high, low);
 148   }
 149 
 150   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
 151     check_reducing_assertion(reducing);
 152     assert(index_for(right - 1) < _vs.committed_size(),
 153            "right address out of range");
 154     assert(left  < right, "Heap addresses out of order");
 155     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 156 
 157     // Below, we may use an explicit loop instead of memset()
 158     // because on certain platforms memset() can give concurrent
 159     // readers "out-of-thin-air," phantom zeros; see 6948537.
 160     if (UseMemSetInBOT) {
 161       memset(&_offset_array[index_for(left)], offset, num_cards);
 162     } else {
 163       size_t i = index_for(left);
 164       const size_t end = i + num_cards;
 165       for (; i < end; i++) {
 166         // Elided until CR 6977974 is fixed properly.
 167         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
 168         _offset_array[i] = offset;
 169       }
 170     }
 171   }
 172 
 173   void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
 174     check_reducing_assertion(reducing);
 175     assert(right < _vs.committed_size(), "right address out of range");
 176     assert(left  <= right, "indexes out of order");
 177     size_t num_cards = right - left + 1;
 178 
 179     // Below, we may use an explicit loop instead of memset
 180     // because on certain platforms memset() can give concurrent
 181     // readers "out-of-thin-air," phantom zeros; see 6948537.
 182     if (UseMemSetInBOT) {
 183       memset(&_offset_array[left], offset, num_cards);
 184     } else {
 185       size_t i = left;
 186       const size_t end = i + num_cards;
 187       for (; i < end; i++) {
 188         // Elided until CR 6977974 is fixed properly.
 189         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
 190         _offset_array[i] = offset;
 191       }
 192     }
 193   }
 194 
 195   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 196     assert(index < _vs.committed_size(), "index out of range");
 197     assert(high >= low, "addresses out of order");
 198     assert(pointer_delta(high, low) <= N_words, "offset too large");
 199     assert(_offset_array[index] == pointer_delta(high, low),
 200            "Wrong offset");
 201   }
 202 
 203   bool is_card_boundary(HeapWord* p) const;
 204 
 205   // Return the number of slots needed for an offset array
 206   // that covers mem_region_words words.
 207   // We always add an extra slot because if an object
 208   // ends on a card boundary we put a 0 in the next
 209   // offset array slot, so we want that slot always
 210   // to be reserved.
 211 
 212   size_t compute_size(size_t mem_region_words) {
 213     size_t number_of_slots = (mem_region_words / N_words) + 1;
 214     return ReservedSpace::allocation_align_size_up(number_of_slots);
 215   }
 216 
 217 public:
 218   // Initialize the table to cover from "base" to (at least)
 219   // "base + init_word_size".  In the future, the table may be expanded
 220   // (see "resize" below) up to the size of "_reserved" (which must be at
 221   // least "init_word_size".)  The contents of the initial table are
 222   // undefined; it is the responsibility of the constituent
 223   // BlockOffsetTable(s) to initialize cards.
 224   BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 225 
 226   // Notes a change in the committed size of the region covered by the
 227   // table.  The "new_word_size" may not be larger than the size of the
 228   // reserved region this table covers.
 229   void resize(size_t new_word_size);
 230 
 231   void set_bottom(HeapWord* new_bottom);
 232 
 233   // Whether entries should be initialized to zero. Used currently only for
 234   // error checking.
 235   void set_init_to_zero(bool val) { _init_to_zero = val; }
 236   bool init_to_zero() { return _init_to_zero; }
 237 
 238   // Updates all the BlockOffsetArray's sharing this shared array to
 239   // reflect the current "top"'s of their spaces.
 240   void update_offset_arrays();   // Not yet implemented!
 241 
 242   // Return the appropriate index into "_offset_array" for "p".
 243   size_t index_for(const void* p) const;
 244 
 245   // Return the address indicating the start of the region corresponding to
 246   // "index" in "_offset_array".
 247   HeapWord* address_for_index(size_t index) const;
 248 
 249   // Return the address "p" incremented by the size of
 250   // a region.  This method does not align the address
 251   // returned to the start of a region.  It is a simple
 252   // primitive.
 253   HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
 254 
 255   // Shared space support
 256   void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
 257 };
 258 
 259 //////////////////////////////////////////////////////////////////////////
 260 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
 261 //////////////////////////////////////////////////////////////////////////
 262 class BlockOffsetArray: public BlockOffsetTable {
 263   friend class VMStructs;
 264   friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
 265  protected:
 266   // The following enums are used by do_block_internal() below
 267   enum Action {
 268     Action_single,      // BOT records a single block (see single_block())
 269     Action_mark,        // BOT marks the start of a block (see mark_block())
 270     Action_check        // Check that BOT records block correctly
 271                         // (see verify_single_block()).
 272   };
 273 
 274   enum SomePrivateConstants {
 275     N_words = BlockOffsetSharedArray::N_words,
 276     LogN    = BlockOffsetSharedArray::LogN,
 277     // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
 278     // All entries are less than "N_words + N_powers".
 279     LogBase = 4,
 280     Base = (1 << LogBase),
 281     N_powers = 14
 282   };
 283 
 284   static size_t power_to_cards_back(uint i) {
 285     return (size_t)(1 << (LogBase * i));
 286   }
 287   static size_t power_to_words_back(uint i) {
 288     return power_to_cards_back(i) * N_words;
 289   }
 290   static size_t entry_to_cards_back(u_char entry) {
 291     assert(entry >= N_words, "Precondition");
 292     return power_to_cards_back(entry - N_words);
 293   }
 294   static size_t entry_to_words_back(u_char entry) {
 295     assert(entry >= N_words, "Precondition");
 296     return power_to_words_back(entry - N_words);
 297   }
 298 
 299   // The shared array, which is shared with other BlockOffsetArray's
 300   // corresponding to different spaces within a generation or span of
 301   // memory.
 302   BlockOffsetSharedArray* _array;
 303 
 304   // The space that owns this subregion.
 305   Space* _sp;
 306 
 307   // If true, array entries are initialized to 0; otherwise, they are
 308   // initialized to point backwards to the beginning of the covered region.
 309   bool _init_to_zero;
 310 
 311   // An assertion-checking helper method for the set_remainder*() methods below.
 312   void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
 313 
 314   // Sets the entries
 315   // corresponding to the cards starting at "start" and ending at "end"
 316   // to point back to the card before "start": the interval [start, end)
 317   // is right-open. The last parameter, reducing, indicates whether the
 318   // updates to individual entries always reduce the entry from a higher
 319   // to a lower value. (For example this would hold true during a temporal
 320   // regime during which only block splits were updating the BOT.
 321   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
 322   // Same as above, except that the args here are a card _index_ interval
 323   // that is closed: [start_index, end_index]
 324   void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
 325 
 326   // A helper function for BOT adjustment/verification work
 327   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
 328 
 329  public:
 330   // The space may not have its bottom and top set yet, which is why the
 331   // region is passed as a parameter.  If "init_to_zero" is true, the
 332   // elements of the array are initialized to zero.  Otherwise, they are
 333   // initialized to point backwards to the beginning.
 334   BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
 335                    bool init_to_zero_);
 336 
 337   // Note: this ought to be part of the constructor, but that would require
 338   // "this" to be passed as a parameter to a member constructor for
 339   // the containing concrete subtype of Space.
 340   // This would be legal C++, but MS VC++ doesn't allow it.
 341   void set_space(Space* sp) { _sp = sp; }
 342 
 343   // Resets the covered region to the given "mr".
 344   void set_region(MemRegion mr) {
 345     _bottom = mr.start();
 346     _end = mr.end();
 347   }
 348 
 349   // Note that the committed size of the covered space may have changed,
 350   // so the table size might also wish to change.
 351   virtual void resize(size_t new_word_size) {
 352     HeapWord* new_end = _bottom + new_word_size;
 353     if (_end < new_end && !init_to_zero()) {
 354       // verify that the old and new boundaries are also card boundaries
 355       assert(_array->is_card_boundary(_end),
 356              "_end not a card boundary");
 357       assert(_array->is_card_boundary(new_end),
 358              "new _end would not be a card boundary");
 359       // set all the newly added cards
 360       _array->set_offset_array(_end, new_end, N_words);
 361     }
 362     _end = new_end;  // update _end
 363   }
 364 
 365   // Adjust the BOT to show that it has a single block in the
 366   // range [blk_start, blk_start + size). All necessary BOT
 367   // cards are adjusted, but _unallocated_block isn't.
 368   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 369   void single_block(HeapWord* blk, size_t size) {
 370     single_block(blk, blk + size);
 371   }
 372 
 373   // When the alloc_block() call returns, the block offset table should
 374   // have enough information such that any subsequent block_start() call
 375   // with an argument equal to an address that is within the range
 376   // [blk_start, blk_end) would return the value blk_start, provided
 377   // there have been no calls in between that reset this information
 378   // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
 379   // for an appropriate range covering the said interval).
 380   // These methods expect to be called with [blk_start, blk_end)
 381   // representing a block of memory in the heap.
 382   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 383   void alloc_block(HeapWord* blk, size_t size) {
 384     alloc_block(blk, blk + size);
 385   }
 386 
 387   // If true, initialize array slots with no allocated blocks to zero.
 388   // Otherwise, make them point back to the front.
 389   bool init_to_zero() { return _init_to_zero; }
 390   // Corresponding setter
 391   void set_init_to_zero(bool val) {
 392     _init_to_zero = val;
 393     assert(_array != NULL, "_array should be non-NULL");
 394     _array->set_init_to_zero(val);
 395   }
 396 
 397   // Debugging
 398   // Return the index of the last entry in the "active" region.
 399   virtual size_t last_active_index() const = 0;
 400   // Verify the block offset table
 401   void verify() const;
 402   void check_all_cards(size_t left_card, size_t right_card) const;
 403 };
 404 
 405 ////////////////////////////////////////////////////////////////////////////
 406 // A subtype of BlockOffsetArray that takes advantage of the fact
 407 // that its underlying space is a NonContiguousSpace, so that some
 408 // specialized interfaces can be made available for spaces that
 409 // manipulate the table.
 410 ////////////////////////////////////////////////////////////////////////////
 411 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
 412   friend class VMStructs;
 413  private:
 414   // The portion [_unallocated_block, _sp.end()) of the space that
 415   // is a single block known not to contain any objects.
 416   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 417   HeapWord* _unallocated_block;
 418 
 419  public:
 420   BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 421     BlockOffsetArray(array, mr, false),
 422     _unallocated_block(_bottom) { }
 423 
 424   // accessor
 425   HeapWord* unallocated_block() const {
 426     assert(BlockOffsetArrayUseUnallocatedBlock,
 427            "_unallocated_block is not being maintained");
 428     return _unallocated_block;
 429   }
 430 
 431   void set_unallocated_block(HeapWord* block) {
 432     assert(BlockOffsetArrayUseUnallocatedBlock,
 433            "_unallocated_block is not being maintained");
 434     assert(block >= _bottom && block <= _end, "out of range");
 435     _unallocated_block = block;
 436   }
 437 
 438   // These methods expect to be called with [blk_start, blk_end)
 439   // representing a block of memory in the heap.
 440   void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 441   void alloc_block(HeapWord* blk, size_t size) {
 442     alloc_block(blk, blk + size);
 443   }
 444 
 445   // The following methods are useful and optimized for a
 446   // non-contiguous space.
 447 
 448   // Given a block [blk_start, blk_start + full_blk_size), and
 449   // a left_blk_size < full_blk_size, adjust the BOT to show two
 450   // blocks [blk_start, blk_start + left_blk_size) and
 451   // [blk_start + left_blk_size, blk_start + full_blk_size).
 452   // It is assumed (and verified in the non-product VM) that the
 453   // BOT was correct for the original block.
 454   void split_block(HeapWord* blk_start, size_t full_blk_size,
 455                            size_t left_blk_size);
 456 
 457   // Adjust BOT to show that it has a block in the range
 458   // [blk_start, blk_start + size). Only the first card
 459   // of BOT is touched. It is assumed (and verified in the
 460   // non-product VM) that the remaining cards of the block
 461   // are correct.
 462   void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
 463   void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
 464     mark_block(blk, blk + size, reducing);
 465   }
 466 
 467   // Adjust _unallocated_block to indicate that a particular
 468   // block has been newly allocated or freed. It is assumed (and
 469   // verified in the non-product VM) that the BOT is correct for
 470   // the given block.
 471   void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
 472     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 473     verify_single_block(blk_start, blk_end);
 474     if (BlockOffsetArrayUseUnallocatedBlock) {
 475       _unallocated_block = MAX2(_unallocated_block, blk_end);
 476     }
 477   }
 478 
 479   void allocated(HeapWord* blk, size_t size, bool reducing = false) {
 480     allocated(blk, blk + size, reducing);
 481   }
 482 
 483   void freed(HeapWord* blk_start, HeapWord* blk_end);
 484   void freed(HeapWord* blk, size_t size);
 485 
 486   HeapWord* block_start_unsafe(const void* addr) const;
 487 
 488   // Requires "addr" to be the start of a card and returns the
 489   // start of the block that contains the given address.
 490   HeapWord* block_start_careful(const void* addr) const;
 491 
 492   // Verification & debugging: ensure that the offset table reflects
 493   // the fact that the block [blk_start, blk_end) or [blk, blk + size)
 494   // is a single block of storage. NOTE: can't const this because of
 495   // call to non-const do_block_internal() below.
 496   void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
 497     PRODUCT_RETURN;
 498   void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
 499 
 500   // Verify that the given block is before _unallocated_block
 501   void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
 502     const PRODUCT_RETURN;
 503   void verify_not_unallocated(HeapWord* blk, size_t size)
 504     const PRODUCT_RETURN;
 505 
 506   // Debugging support
 507   virtual size_t last_active_index() const;
 508 };
 509 
 510 ////////////////////////////////////////////////////////////////////////////
 511 // A subtype of BlockOffsetArray that takes advantage of the fact
 512 // that its underlying space is a ContiguousSpace, so that its "active"
 513 // region can be more efficiently tracked (than for a non-contiguous space).
 514 ////////////////////////////////////////////////////////////////////////////
 515 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
 516   friend class VMStructs;
 517  private:
 518   // allocation boundary at which offset array must be updated
 519   HeapWord* _next_offset_threshold;
 520   size_t    _next_offset_index;      // index corresponding to that boundary
 521 
 522   // Work function when allocation start crosses threshold.
 523   void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
 524 
 525  public:
 526   BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 527     BlockOffsetArray(array, mr, true) {
 528     _next_offset_threshold = NULL;
 529     _next_offset_index = 0;
 530   }
 531 
 532   void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
 533 
 534   // Initialize the threshold for an empty heap.
 535   HeapWord* initialize_threshold();
 536   // Zero out the entry for _bottom (offset will be zero)
 537   void      zero_bottom_entry();
 538 
 539   // Return the next threshold, the point at which the table should be
 540   // updated.
 541   HeapWord* threshold() const { return _next_offset_threshold; }
 542 
 543   // In general, these methods expect to be called with
 544   // [blk_start, blk_end) representing a block of memory in the heap.
 545   // In this implementation, however, we are OK even if blk_start and/or
 546   // blk_end are NULL because NULL is represented as 0, and thus
 547   // never exceeds the "_next_offset_threshold".
 548   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 549     if (blk_end > _next_offset_threshold) {
 550       alloc_block_work(blk_start, blk_end);
 551     }
 552   }
 553   void alloc_block(HeapWord* blk, size_t size) {
 554     alloc_block(blk, blk + size);
 555   }
 556 
 557   HeapWord* block_start_unsafe(const void* addr) const;
 558 
 559   void serialize(SerializeOopClosure* soc);
 560 
 561   // Debugging support
 562   virtual size_t last_active_index() const;
 563 };