1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
  26 #define SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
  27 
  28 #include "memory/modRefBarrierSet.hpp"
  29 #include "oops/oop.hpp"
  30 #include "oops/oop.inline2.hpp"
  31 
  32 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  33 // enumerate ref fields that have been modified (since the last
  34 // enumeration.)
  35 
  36 // As it currently stands, this barrier is *imprecise*: when a ref field in
  37 // an object "o" is modified, the card table entry for the card containing
  38 // the head of "o" is dirtied, not necessarily the card containing the
  39 // modified field itself.  For object arrays, however, the barrier *is*
  40 // precise; only the card containing the modified element is dirtied.
  41 // Any MemRegionClosures used to scan dirty cards should take these
  42 // considerations into account.
  43 
  44 class Generation;
  45 class OopsInGenClosure;
  46 class DirtyCardToOopClosure;
  47 
  48 class CardTableModRefBS: public ModRefBarrierSet {
  49   // Some classes get to look at some private stuff.
  50   friend class BytecodeInterpreter;
  51   friend class VMStructs;
  52   friend class CardTableRS;
  53   friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
  54   friend class SharkBuilder;
  55 #ifndef PRODUCT
  56   // For debugging.
  57   friend class GuaranteeNotModClosure;
  58 #endif
  59  protected:
  60 
  61   enum CardValues {
  62     clean_card                  = -1,
  63     // The mask contains zeros in places for all other values.
  64     clean_card_mask             = clean_card - 31,
  65 
  66     dirty_card                  =  0,
  67     precleaned_card             =  1,
  68     claimed_card                =  2,
  69     deferred_card               =  4,
  70     last_card                   =  8,
  71     CT_MR_BS_last_reserved      = 16
  72   };
  73 
  74   // dirty and precleaned are equivalent wrt younger_refs_iter.
  75   static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
  76     return cv == dirty_card || cv == precleaned_card;
  77   }
  78 
  79   // Returns "true" iff the value "cv" will cause the card containing it
  80   // to be scanned in the current traversal.  May be overridden by
  81   // subtypes.
  82   virtual bool card_will_be_scanned(jbyte cv) {
  83     return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
  84   }
  85 
  86   // Returns "true" iff the value "cv" may have represented a dirty card at
  87   // some point.
  88   virtual bool card_may_have_been_dirty(jbyte cv) {
  89     return card_is_dirty_wrt_gen_iter(cv);
  90   }
  91 
  92   // The declaration order of these const fields is important; see the
  93   // constructor before changing.
  94   const MemRegion _whole_heap;       // the region covered by the card table
  95   const size_t    _guard_index;      // index of very last element in the card
  96                                      // table; it is set to a guard value
  97                                      // (last_card) and should never be modified
  98   const size_t    _last_valid_index; // index of the last valid element
  99   const size_t    _page_size;        // page size used when mapping _byte_map
 100   const size_t    _byte_map_size;    // in bytes
 101   jbyte*          _byte_map;         // the card marking array
 102 
 103   int _cur_covered_regions;
 104   // The covered regions should be in address order.
 105   MemRegion* _covered;
 106   // The committed regions correspond one-to-one to the covered regions.
 107   // They represent the card-table memory that has been committed to service
 108   // the corresponding covered region.  It may be that committed region for
 109   // one covered region corresponds to a larger region because of page-size
 110   // roundings.  Thus, a committed region for one covered region may
 111   // actually extend onto the card-table space for the next covered region.
 112   MemRegion* _committed;
 113 
 114   // The last card is a guard card, and we commit the page for it so
 115   // we can use the card for verification purposes. We make sure we never
 116   // uncommit the MemRegion for that page.
 117   MemRegion _guard_region;
 118 
 119  protected:
 120   // Initialization utilities; covered_words is the size of the covered region
 121   // in, um, words.
 122   inline size_t cards_required(size_t covered_words);
 123   inline size_t compute_byte_map_size();
 124 
 125   // Finds and return the index of the region, if any, to which the given
 126   // region would be contiguous.  If none exists, assign a new region and
 127   // returns its index.  Requires that no more than the maximum number of
 128   // covered regions defined in the constructor are ever in use.
 129   int find_covering_region_by_base(HeapWord* base);
 130 
 131   // Same as above, but finds the region containing the given address
 132   // instead of starting at a given base address.
 133   int find_covering_region_containing(HeapWord* addr);
 134 
 135   // Resize one of the regions covered by the remembered set.
 136   void resize_covered_region(MemRegion new_region);
 137 
 138   // Returns the leftmost end of a committed region corresponding to a
 139   // covered region before covered region "ind", or else "NULL" if "ind" is
 140   // the first covered region.
 141   HeapWord* largest_prev_committed_end(int ind) const;
 142 
 143   // Returns the part of the region mr that doesn't intersect with
 144   // any committed region other than self.  Used to prevent uncommitting
 145   // regions that are also committed by other regions.  Also protects
 146   // against uncommitting the guard region.
 147   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 148 
 149   // Mapping from address to card marking array entry
 150   jbyte* byte_for(const void* p) const {
 151     assert(_whole_heap.contains(p),
 152            "out of bounds access to card marking array");
 153     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
 154     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
 155            "out of bounds accessor for card marking array");
 156     return result;
 157   }
 158 
 159   // The card table byte one after the card marking array
 160   // entry for argument address. Typically used for higher bounds
 161   // for loops iterating through the card table.
 162   jbyte* byte_after(const void* p) const {
 163     return byte_for(p) + 1;
 164   }
 165 
 166   // Iterate over the portion of the card-table which covers the given
 167   // region mr in the given space and apply cl to any dirty sub-regions
 168   // of mr. cl and dcto_cl must either be the same closure or cl must
 169   // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
 170   // may be modified. Note that this function will operate in a parallel
 171   // mode if worker threads are available.
 172   void non_clean_card_iterate(Space* sp, MemRegion mr,
 173                               DirtyCardToOopClosure* dcto_cl,
 174                               MemRegionClosure* cl,
 175                               bool clear);
 176 
 177   // Utility function used to implement the other versions below.
 178   void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl,
 179                                    bool clear);
 180 
 181   void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
 182                                        DirtyCardToOopClosure* dcto_cl,
 183                                        MemRegionClosure* cl,
 184                                        bool clear,
 185                                        int n_threads);
 186 
 187   // Dirty the bytes corresponding to "mr" (not all of which must be
 188   // covered.)
 189   void dirty_MemRegion(MemRegion mr);
 190 
 191   // Clear (to clean_card) the bytes entirely contained within "mr" (not
 192   // all of which must be covered.)
 193   void clear_MemRegion(MemRegion mr);
 194 
 195   // *** Support for parallel card scanning.
 196 
 197   enum SomeConstantsForParallelism {
 198     StridesPerThread    = 2,
 199     CardsPerStrideChunk = 256
 200   };
 201 
 202   // This is an array, one element per covered region of the card table.
 203   // Each entry is itself an array, with one element per chunk in the
 204   // covered region.  Each entry of these arrays is the lowest non-clean
 205   // card of the corresponding chunk containing part of an object from the
 206   // previous chunk, or else NULL.
 207   typedef jbyte*  CardPtr;
 208   typedef CardPtr* CardArr;
 209   CardArr* _lowest_non_clean;
 210   size_t*  _lowest_non_clean_chunk_size;
 211   uintptr_t* _lowest_non_clean_base_chunk_index;
 212   int* _last_LNC_resizing_collection;
 213 
 214   // Initializes "lowest_non_clean" to point to the array for the region
 215   // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
 216   // index of the corresponding to the first element of that array.
 217   // Ensures that these arrays are of sufficient size, allocating if necessary.
 218   // May be called by several threads concurrently.
 219   void get_LNC_array_for_space(Space* sp,
 220                                jbyte**& lowest_non_clean,
 221                                uintptr_t& lowest_non_clean_base_chunk_index,
 222                                size_t& lowest_non_clean_chunk_size);
 223 
 224   // Returns the number of chunks necessary to cover "mr".
 225   size_t chunks_to_cover(MemRegion mr) {
 226     return (size_t)(addr_to_chunk_index(mr.last()) -
 227                     addr_to_chunk_index(mr.start()) + 1);
 228   }
 229 
 230   // Returns the index of the chunk in a stride which
 231   // covers the given address.
 232   uintptr_t addr_to_chunk_index(const void* addr) {
 233     uintptr_t card = (uintptr_t) byte_for(addr);
 234     return card / CardsPerStrideChunk;
 235   }
 236 
 237   // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
 238   // to the cards in the stride (of n_strides) within the given space.
 239   void process_stride(Space* sp,
 240                       MemRegion used,
 241                       jint stride, int n_strides,
 242                       DirtyCardToOopClosure* dcto_cl,
 243                       MemRegionClosure* cl,
 244                       bool clear,
 245                       jbyte** lowest_non_clean,
 246                       uintptr_t lowest_non_clean_base_chunk_index,
 247                       size_t lowest_non_clean_chunk_size);
 248 
 249   // Makes sure that chunk boundaries are handled appropriately, by
 250   // adjusting the min_done of dcto_cl, and by using a special card-table
 251   // value to indicate how min_done should be set.
 252   void process_chunk_boundaries(Space* sp,
 253                                 DirtyCardToOopClosure* dcto_cl,
 254                                 MemRegion chunk_mr,
 255                                 MemRegion used,
 256                                 jbyte** lowest_non_clean,
 257                                 uintptr_t lowest_non_clean_base_chunk_index,
 258                                 size_t    lowest_non_clean_chunk_size);
 259 
 260 public:
 261   // Constants
 262   enum SomePublicConstants {
 263     card_shift                  = 9,
 264     card_size                   = 1 << card_shift,
 265     card_size_in_words          = card_size / sizeof(HeapWord)
 266   };
 267 
 268   static int clean_card_val()      { return clean_card; }
 269   static int clean_card_mask_val() { return clean_card_mask; }
 270   static int dirty_card_val()      { return dirty_card; }
 271   static int claimed_card_val()    { return claimed_card; }
 272   static int precleaned_card_val() { return precleaned_card; }
 273   static int deferred_card_val()   { return deferred_card; }
 274 
 275   // For RTTI simulation.
 276   bool is_a(BarrierSet::Name bsn) {
 277     return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
 278   }
 279 
 280   CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
 281 
 282   // *** Barrier set functions.
 283 
 284   bool has_write_ref_pre_barrier() { return false; }
 285 
 286   inline bool write_ref_needs_barrier(void* field, oop new_val) {
 287     // Note that this assumes the perm gen is the highest generation
 288     // in the address space
 289     return new_val != NULL && !new_val->is_perm();
 290   }
 291 
 292   // Record a reference update. Note that these versions are precise!
 293   // The scanning code has to handle the fact that the write barrier may be
 294   // either precise or imprecise. We make non-virtual inline variants of
 295   // these functions here for performance.
 296 protected:
 297   void write_ref_field_work(oop obj, size_t offset, oop newVal);
 298   virtual void write_ref_field_work(void* field, oop newVal);
 299 public:
 300 
 301   bool has_write_ref_array_opt() { return true; }
 302   bool has_write_region_opt() { return true; }
 303 
 304   inline void inline_write_region(MemRegion mr) {
 305     dirty_MemRegion(mr);
 306   }
 307 protected:
 308   void write_region_work(MemRegion mr) {
 309     inline_write_region(mr);
 310   }
 311 public:
 312 
 313   inline void inline_write_ref_array(MemRegion mr) {
 314     dirty_MemRegion(mr);
 315   }
 316 protected:
 317   void write_ref_array_work(MemRegion mr) {
 318     inline_write_ref_array(mr);
 319   }
 320 public:
 321 
 322   bool is_aligned(HeapWord* addr) {
 323     return is_card_aligned(addr);
 324   }
 325 
 326   // *** Card-table-barrier-specific things.
 327 
 328   template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
 329 
 330   template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
 331     jbyte* byte = byte_for((void*)field);
 332     *byte = dirty_card;
 333   }
 334 
 335   // These are used by G1, when it uses the card table as a temporary data
 336   // structure for card claiming.
 337   bool is_card_dirty(size_t card_index) {
 338     return _byte_map[card_index] == dirty_card_val();
 339   }
 340 
 341   void mark_card_dirty(size_t card_index) {
 342     _byte_map[card_index] = dirty_card_val();
 343   }
 344 
 345   bool is_card_claimed(size_t card_index) {
 346     jbyte val = _byte_map[card_index];
 347     return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
 348   }
 349 
 350   void set_card_claimed(size_t card_index) {
 351       jbyte val = _byte_map[card_index];
 352       if (val == clean_card_val()) {
 353         val = (jbyte)claimed_card_val();
 354       } else {
 355         val |= (jbyte)claimed_card_val();
 356       }
 357       _byte_map[card_index] = val;
 358   }
 359 
 360   bool claim_card(size_t card_index);
 361 
 362   bool is_card_clean(size_t card_index) {
 363     return _byte_map[card_index] == clean_card_val();
 364   }
 365 
 366   bool is_card_deferred(size_t card_index) {
 367     jbyte val = _byte_map[card_index];
 368     return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
 369   }
 370 
 371   bool mark_card_deferred(size_t card_index);
 372 
 373   // Card marking array base (adjusted for heap low boundary)
 374   // This would be the 0th element of _byte_map, if the heap started at 0x0.
 375   // But since the heap starts at some higher address, this points to somewhere
 376   // before the beginning of the actual _byte_map.
 377   jbyte* byte_map_base;
 378 
 379   // Return true if "p" is at the start of a card.
 380   bool is_card_aligned(HeapWord* p) {
 381     jbyte* pcard = byte_for(p);
 382     return (addr_for(pcard) == p);
 383   }
 384 
 385   // The kinds of precision a CardTableModRefBS may offer.
 386   enum PrecisionStyle {
 387     Precise,
 388     ObjHeadPreciseArray
 389   };
 390 
 391   // Tells what style of precision this card table offers.
 392   PrecisionStyle precision() {
 393     return ObjHeadPreciseArray; // Only one supported for now.
 394   }
 395 
 396   // ModRefBS functions.
 397   virtual void invalidate(MemRegion mr, bool whole_heap = false);
 398   void clear(MemRegion mr);
 399   void dirty(MemRegion mr);
 400   void mod_oop_in_space_iterate(Space* sp, OopClosure* cl,
 401                                 bool clear = false,
 402                                 bool before_save_marks = false);
 403 
 404   // *** Card-table-RemSet-specific things.
 405 
 406   // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
 407   // includes all the modified cards (expressing each card as a
 408   // MemRegion).  Thus, several modified cards may be lumped into one
 409   // region.  The regions are non-overlapping, and are visited in
 410   // *decreasing* address order.  (This order aids with imprecise card
 411   // marking, where a dirty card may cause scanning, and summarization
 412   // marking, of objects that extend onto subsequent cards.)
 413   // If "clear" is true, the card is (conceptually) marked unmodified before
 414   // applying the closure.
 415   void mod_card_iterate(MemRegionClosure* cl, bool clear = false) {
 416     non_clean_card_iterate_work(_whole_heap, cl, clear);
 417   }
 418 
 419   // Like the "mod_cards_iterate" above, except only invokes the closure
 420   // for cards within the MemRegion "mr" (which is required to be
 421   // card-aligned and sized.)
 422   void mod_card_iterate(MemRegion mr, MemRegionClosure* cl,
 423                         bool clear = false) {
 424     non_clean_card_iterate_work(mr, cl, clear);
 425   }
 426 
 427   static uintx ct_max_alignment_constraint();
 428 
 429   // Apply closure "cl" to the dirty cards containing some part of
 430   // MemRegion "mr".
 431   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
 432 
 433   // Return the MemRegion corresponding to the first maximal run
 434   // of dirty cards lying completely within MemRegion mr.
 435   // If reset is "true", then sets those card table entries to the given
 436   // value.
 437   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
 438                                          int reset_val);
 439 
 440   // Set all the dirty cards in the given region to precleaned state.
 441   void preclean_dirty_cards(MemRegion mr);
 442 
 443   // Provide read-only access to the card table array.
 444   const jbyte* byte_for_const(const void* p) const {
 445     return byte_for(p);
 446   }
 447   const jbyte* byte_after_const(const void* p) const {
 448     return byte_after(p);
 449   }
 450 
 451   // Mapping from card marking array entry to address of first word
 452   HeapWord* addr_for(const jbyte* p) const {
 453     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
 454            "out of bounds access to card marking array");
 455     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
 456     HeapWord* result = (HeapWord*) (delta << card_shift);
 457     assert(_whole_heap.contains(result),
 458            "out of bounds accessor from card marking array");
 459     return result;
 460   }
 461 
 462   // Mapping from address to card marking array index.
 463   size_t index_for(void* p) {
 464     assert(_whole_heap.contains(p),
 465            "out of bounds access to card marking array");
 466     return byte_for(p) - _byte_map;
 467   }
 468 
 469   const jbyte* byte_for_index(const size_t card_index) const {
 470     return _byte_map + card_index;
 471   }
 472 
 473   void verify();
 474   void verify_guard();
 475 
 476   void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
 477   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
 478 
 479   static size_t par_chunk_heapword_alignment() {
 480     return CardsPerStrideChunk * card_size_in_words;
 481   }
 482 
 483 };
 484 
 485 class CardTableRS;
 486 
 487 // A specialization for the CardTableRS gen rem set.
 488 class CardTableModRefBSForCTRS: public CardTableModRefBS {
 489   CardTableRS* _rs;
 490 protected:
 491   bool card_will_be_scanned(jbyte cv);
 492   bool card_may_have_been_dirty(jbyte cv);
 493 public:
 494   CardTableModRefBSForCTRS(MemRegion whole_heap,
 495                            int max_covered_regions) :
 496     CardTableModRefBS(whole_heap, max_covered_regions) {}
 497 
 498   void set_CTRS(CardTableRS* rs) { _rs = rs; }
 499 };
 500 
 501 #endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP