1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectForPermanentAllocation;
  47   friend class VM_GenCollectFull;
  48   friend class VM_GenCollectFullConcurrent;
  49   friend class VM_GC_HeapInspection;
  50   friend class VM_HeapDumper;
  51   friend class HeapInspection;
  52   friend class GCCauseSetter;
  53   friend class VMStructs;
  54 public:
  55   enum SomeConstants {
  56     max_gens = 10
  57   };
  58 
  59   friend class VM_PopulateDumpSharedSpace;
  60 
  61  protected:
  62   // Fields:
  63   static GenCollectedHeap* _gch;
  64 
  65  private:
  66   int _n_gens;
  67   Generation* _gens[max_gens];
  68   GenerationSpec** _gen_specs;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // If a generation would bail out of an incremental collection,
  74   // it sets this flag.  If the flag is set, satisfy_failed_allocation
  75   // will attempt allocating in all generations before doing a full GC.
  76   bool _incremental_collection_will_fail;
  77   bool _last_incremental_collection_failed;
  78 
  79   // In support of ExplicitGCInvokesConcurrent functionality
  80   unsigned int _full_collections_completed;
  81 
  82   // Data structure for claiming the (potentially) parallel tasks in
  83   // (gen-specific) strong roots processing.
  84   SubTasksDone* _gen_process_strong_tasks;
  85   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
  86 
  87   // In block contents verification, the number of header words to skip
  88   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  89 
  90   // GC is not allowed during the dump of the shared classes.  Keep track
  91   // of this in order to provide an reasonable error message when terminating.
  92   bool _preloading_shared_classes;
  93 
  94 protected:
  95   // Directs each generation up to and including "collectedGen" to recompute
  96   // its desired size.
  97   void compute_new_generation_sizes(int collectedGen);
  98 
  99   // Helper functions for allocation
 100   HeapWord* attempt_allocation(size_t size,
 101                                bool   is_tlab,
 102                                bool   first_only);
 103 
 104   // Helper function for two callbacks below.
 105   // Considers collection of the first max_level+1 generations.
 106   void do_collection(bool   full,
 107                      bool   clear_all_soft_refs,
 108                      size_t size,
 109                      bool   is_tlab,
 110                      int    max_level);
 111 
 112   // Callback from VM_GenCollectForAllocation operation.
 113   // This function does everything necessary/possible to satisfy an
 114   // allocation request that failed in the youngest generation that should
 115   // have handled it (including collection, expansion, etc.)
 116   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 117 
 118   // Callback from VM_GenCollectFull operation.
 119   // Perform a full collection of the first max_level+1 generations.
 120   void do_full_collection(bool clear_all_soft_refs, int max_level);
 121 
 122   // Does the "cause" of GC indicate that
 123   // we absolutely __must__ clear soft refs?
 124   bool must_clear_all_soft_refs();
 125 
 126 public:
 127   GenCollectedHeap(GenCollectorPolicy *policy);
 128 
 129   GCStats* gc_stats(int level) const;
 130 
 131   // Returns JNI_OK on success
 132   virtual jint initialize();
 133   char* allocate(size_t alignment, PermanentGenerationSpec* perm_gen_spec,
 134                  size_t* _total_reserved, int* _n_covered_regions,
 135                  ReservedSpace* heap_rs);
 136 
 137   // Does operations required after initialization has been done.
 138   void post_initialize();
 139 
 140   // Initialize ("weak") refs processing support
 141   virtual void ref_processing_init();
 142 
 143   virtual CollectedHeap::Name kind() const {
 144     return CollectedHeap::GenCollectedHeap;
 145   }
 146 
 147   // The generational collector policy.
 148   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 149 
 150   // Adaptive size policy
 151   virtual AdaptiveSizePolicy* size_policy() {
 152     return gen_policy()->size_policy();
 153   }
 154 
 155   size_t capacity() const;
 156   size_t used() const;
 157 
 158   // Save the "used_region" for generations level and lower,
 159   // and, if perm is true, for perm gen.
 160   void save_used_regions(int level, bool perm);
 161 
 162   size_t max_capacity() const;
 163 
 164   HeapWord* mem_allocate(size_t size,
 165                          bool   is_large_noref,
 166                          bool   is_tlab,
 167                          bool*  gc_overhead_limit_was_exceeded);
 168 
 169   // We may support a shared contiguous allocation area, if the youngest
 170   // generation does.
 171   bool supports_inline_contig_alloc() const;
 172   HeapWord** top_addr() const;
 173   HeapWord** end_addr() const;
 174 
 175   // Return an estimate of the maximum allocation that could be performed
 176   // without triggering any collection activity.  In a generational
 177   // collector, for example, this is probably the largest allocation that
 178   // could be supported in the youngest generation.  It is "unsafe" because
 179   // no locks are taken; the result should be treated as an approximation,
 180   // not a guarantee.
 181   size_t unsafe_max_alloc();
 182 
 183   // Does this heap support heap inspection? (+PrintClassHistogram)
 184   virtual bool supports_heap_inspection() const { return true; }
 185 
 186   // Perform a full collection of the heap; intended for use in implementing
 187   // "System.gc". This implies as full a collection as the CollectedHeap
 188   // supports. Caller does not hold the Heap_lock on entry.
 189   void collect(GCCause::Cause cause);
 190 
 191   // This interface assumes that it's being called by the
 192   // vm thread. It collects the heap assuming that the
 193   // heap lock is already held and that we are executing in
 194   // the context of the vm thread.
 195   void collect_as_vm_thread(GCCause::Cause cause);
 196 
 197   // The same as above but assume that the caller holds the Heap_lock.
 198   void collect_locked(GCCause::Cause cause);
 199 
 200   // Perform a full collection of the first max_level+1 generations.
 201   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 202   void collect(GCCause::Cause cause, int max_level);
 203 
 204   // Returns "TRUE" iff "p" points into the allocated area of the heap.
 205   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 206   // be expensive to compute in general, so, to prevent
 207   // their inadvertent use in product jvm's, we restrict their use to
 208   // assertion checking or verification only.
 209   bool is_in(const void* p) const;
 210 
 211   // override
 212   bool is_in_closed_subset(const void* p) const {
 213     if (UseConcMarkSweepGC) {
 214       return is_in_reserved(p);
 215     } else {
 216       return is_in(p);
 217     }
 218   }
 219 
 220   // Returns "TRUE" iff "p" points into the youngest generation.
 221   bool is_in_youngest(void* p);
 222 
 223   // Iteration functions.
 224   void oop_iterate(OopClosure* cl);
 225   void oop_iterate(MemRegion mr, OopClosure* cl);
 226   void object_iterate(ObjectClosure* cl);
 227   void safe_object_iterate(ObjectClosure* cl);
 228   void object_iterate_since_last_GC(ObjectClosure* cl);
 229   Space* space_containing(const void* addr) const;
 230 
 231   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 232   // each address in the (reserved) heap is a member of exactly
 233   // one block.  The defining characteristic of a block is that it is
 234   // possible to find its size, and thus to progress forward to the next
 235   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 236   // represent Java objects, or they might be free blocks in a
 237   // free-list-based heap (or subheap), as long as the two kinds are
 238   // distinguishable and the size of each is determinable.
 239 
 240   // Returns the address of the start of the "block" that contains the
 241   // address "addr".  We say "blocks" instead of "object" since some heaps
 242   // may not pack objects densely; a chunk may either be an object or a
 243   // non-object.
 244   virtual HeapWord* block_start(const void* addr) const;
 245 
 246   // Requires "addr" to be the start of a chunk, and returns its size.
 247   // "addr + size" is required to be the start of a new chunk, or the end
 248   // of the active area of the heap. Assumes (and verifies in non-product
 249   // builds) that addr is in the allocated part of the heap and is
 250   // the start of a chunk.
 251   virtual size_t block_size(const HeapWord* addr) const;
 252 
 253   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 254   // the block is an object. Assumes (and verifies in non-product
 255   // builds) that addr is in the allocated part of the heap and is
 256   // the start of a chunk.
 257   virtual bool block_is_obj(const HeapWord* addr) const;
 258 
 259   // Section on TLAB's.
 260   virtual bool supports_tlab_allocation() const;
 261   virtual size_t tlab_capacity(Thread* thr) const;
 262   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 263   virtual HeapWord* allocate_new_tlab(size_t size);
 264 
 265   // Can a compiler initialize a new object without store barriers?
 266   // This permission only extends from the creation of a new object
 267   // via a TLAB up to the first subsequent safepoint.
 268   virtual bool can_elide_tlab_store_barriers() const {
 269     return true;
 270   }
 271 
 272   virtual bool card_mark_must_follow_store() const {
 273     return UseConcMarkSweepGC;
 274   }
 275 
 276   // We don't need barriers for stores to objects in the
 277   // young gen and, a fortiori, for initializing stores to
 278   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 279   // only and may need to be re-examined in case other
 280   // kinds of collectors are implemented in the future.
 281   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 282     // We wanted to assert that:-
 283     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 284     //       "Check can_elide_initializing_store_barrier() for this collector");
 285     // but unfortunately the flag UseSerialGC need not necessarily always
 286     // be set when DefNew+Tenured are being used.
 287     return is_in_youngest((void*)new_obj);
 288   }
 289 
 290   // Can a compiler elide a store barrier when it writes
 291   // a permanent oop into the heap?  Applies when the compiler
 292   // is storing x to the heap, where x->is_perm() is true.
 293   virtual bool can_elide_permanent_oop_store_barriers() const {
 294     // CMS needs to see all, even intra-generational, ref updates.
 295     return !UseConcMarkSweepGC;
 296   }
 297 
 298   // The "requestor" generation is performing some garbage collection
 299   // action for which it would be useful to have scratch space.  The
 300   // requestor promises to allocate no more than "max_alloc_words" in any
 301   // older generation (via promotion say.)   Any blocks of space that can
 302   // be provided are returned as a list of ScratchBlocks, sorted by
 303   // decreasing size.
 304   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 305   // Allow each generation to reset any scratch space that it has
 306   // contributed as it needs.
 307   void release_scratch();
 308 
 309   size_t large_typearray_limit();
 310 
 311   // Ensure parsability: override
 312   virtual void ensure_parsability(bool retire_tlabs);
 313 
 314   // Time in ms since the longest time a collector ran in
 315   // in any generation.
 316   virtual jlong millis_since_last_gc();
 317 
 318   // Total number of full collections completed.
 319   unsigned int total_full_collections_completed() {
 320     assert(_full_collections_completed <= _total_full_collections,
 321            "Can't complete more collections than were started");
 322     return _full_collections_completed;
 323   }
 324 
 325   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 326   unsigned int update_full_collections_completed();
 327   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 328   unsigned int update_full_collections_completed(unsigned int count);
 329 
 330   // Update "time of last gc" for all constituent generations
 331   // to "now".
 332   void update_time_of_last_gc(jlong now) {
 333     for (int i = 0; i < _n_gens; i++) {
 334       _gens[i]->update_time_of_last_gc(now);
 335     }
 336     perm_gen()->update_time_of_last_gc(now);
 337   }
 338 
 339   // Update the gc statistics for each generation.
 340   // "level" is the level of the lastest collection
 341   void update_gc_stats(int current_level, bool full) {
 342     for (int i = 0; i < _n_gens; i++) {
 343       _gens[i]->update_gc_stats(current_level, full);
 344     }
 345     perm_gen()->update_gc_stats(current_level, full);
 346   }
 347 
 348   // Override.
 349   bool no_gc_in_progress() { return !is_gc_active(); }
 350 
 351   // Override.
 352   void prepare_for_verify();
 353 
 354   // Override.
 355   void verify(bool allow_dirty, bool silent, bool /* option */);
 356 
 357   // Override.
 358   void print() const;
 359   void print_on(outputStream* st) const;
 360   virtual void print_gc_threads_on(outputStream* st) const;
 361   virtual void gc_threads_do(ThreadClosure* tc) const;
 362   virtual void print_tracing_info() const;
 363 
 364   // PrintGC, PrintGCDetails support
 365   void print_heap_change(size_t prev_used) const;
 366   void print_perm_heap_change(size_t perm_prev_used) const;
 367 
 368   // The functions below are helper functions that a subclass of
 369   // "CollectedHeap" can use in the implementation of its virtual
 370   // functions.
 371 
 372   class GenClosure : public StackObj {
 373    public:
 374     virtual void do_generation(Generation* gen) = 0;
 375   };
 376 
 377   // Apply "cl.do_generation" to all generations in the heap (not including
 378   // the permanent generation).  If "old_to_young" determines the order.
 379   void generation_iterate(GenClosure* cl, bool old_to_young);
 380 
 381   void space_iterate(SpaceClosure* cl);
 382 
 383   // Return "true" if all generations (but perm) have reached the
 384   // maximal committed limit that they can reach, without a garbage
 385   // collection.
 386   virtual bool is_maximal_no_gc() const;
 387 
 388   // Return the generation before "gen", or else NULL.
 389   Generation* prev_gen(Generation* gen) const {
 390     int l = gen->level();
 391     if (l == 0) return NULL;
 392     else return _gens[l-1];
 393   }
 394 
 395   // Return the generation after "gen", or else NULL.
 396   Generation* next_gen(Generation* gen) const {
 397     int l = gen->level() + 1;
 398     if (l == _n_gens) return NULL;
 399     else return _gens[l];
 400   }
 401 
 402   Generation* get_gen(int i) const {
 403     if (i >= 0 && i < _n_gens)
 404       return _gens[i];
 405     else
 406       return NULL;
 407   }
 408 
 409   int n_gens() const {
 410     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 411     return _n_gens;
 412   }
 413 
 414   // Convenience function to be used in situations where the heap type can be
 415   // asserted to be this type.
 416   static GenCollectedHeap* heap();
 417 
 418   void set_par_threads(int t);
 419 
 420 
 421   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 422   // or "older_gens" on root locations for the generation at
 423   // "level".  (The "older_gens" closure is used for scanning references
 424   // from older generations; "not_older_gens" is used everywhere else.)
 425   // If "younger_gens_as_roots" is false, younger generations are
 426   // not scanned as roots; in this case, the caller must be arranging to
 427   // scan the younger generations itself.  (For example, a generation might
 428   // explicitly mark reachable objects in younger generations, to avoid
 429   // excess storage retention.)  If "collecting_perm_gen" is false, then
 430   // roots that may only contain references to permGen objects are not
 431   // scanned. The "so" argument determines which of the roots
 432   // the closure is applied to:
 433   // "SO_None" does none;
 434   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 435   // "SO_SystemClasses" to all the "system" classes and loaders;
 436   // "SO_Symbols_and_Strings" applies the closure to all entries in
 437   // SymbolsTable and StringTable.
 438   void gen_process_strong_roots(int level,
 439                                 bool younger_gens_as_roots,
 440                                 // The remaining arguments are in an order
 441                                 // consistent with SharedHeap::process_strong_roots:
 442                                 bool activate_scope,
 443                                 bool collecting_perm_gen,
 444                                 SharedHeap::ScanningOption so,
 445                                 OopsInGenClosure* not_older_gens,
 446                                 bool do_code_roots,
 447                                 OopsInGenClosure* older_gens);
 448 
 449   // Apply "blk" to all the weak roots of the system.  These include
 450   // JNI weak roots, the code cache, system dictionary, symbol table,
 451   // string table, and referents of reachable weak refs.
 452   void gen_process_weak_roots(OopClosure* root_closure,
 453                               CodeBlobClosure* code_roots,
 454                               OopClosure* non_root_closure);
 455 
 456   // Set the saved marks of generations, if that makes sense.
 457   // In particular, if any generation might iterate over the oops
 458   // in other generations, it should call this method.
 459   void save_marks();
 460 
 461   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 462   // allocated since the last call to save_marks in generations at or above
 463   // "level" (including the permanent generation.)  The "cur" closure is
 464   // applied to references in the generation at "level", and the "older"
 465   // closure to older (and permanent) generations.
 466 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 467   void oop_since_save_marks_iterate(int level,                          \
 468                                     OopClosureType* cur,                \
 469                                     OopClosureType* older);
 470 
 471   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 472 
 473 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 474 
 475   // Returns "true" iff no allocations have occurred in any generation at
 476   // "level" or above (including the permanent generation) since the last
 477   // call to "save_marks".
 478   bool no_allocs_since_save_marks(int level);
 479 
 480   // If a generation bails out of an incremental collection,
 481   // it sets this flag.
 482   bool incremental_collection_will_fail() {
 483     return _incremental_collection_will_fail;
 484   }
 485   void set_incremental_collection_will_fail() {
 486     _incremental_collection_will_fail = true;
 487   }
 488   void clear_incremental_collection_will_fail() {
 489     _incremental_collection_will_fail = false;
 490   }
 491 
 492   bool last_incremental_collection_failed() const {
 493     return _last_incremental_collection_failed;
 494   }
 495   void set_last_incremental_collection_failed() {
 496     _last_incremental_collection_failed = true;
 497   }
 498   void clear_last_incremental_collection_failed() {
 499     _last_incremental_collection_failed = false;
 500   }
 501 
 502   // Promotion of obj into gen failed.  Try to promote obj to higher non-perm
 503   // gens in ascending order; return the new location of obj if successful.
 504   // Otherwise, try expand-and-allocate for obj in each generation starting at
 505   // gen; return the new location of obj if successful.  Otherwise, return NULL.
 506   oop handle_failed_promotion(Generation* gen,
 507                               oop obj,
 508                               size_t obj_size);
 509 
 510 private:
 511   // Accessor for memory state verification support
 512   NOT_PRODUCT(
 513     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 514   )
 515 
 516   // Override
 517   void check_for_non_bad_heap_word_value(HeapWord* addr,
 518     size_t size) PRODUCT_RETURN;
 519 
 520   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 521   // in an essential way: compaction is performed across generations, by
 522   // iterating over spaces.
 523   void prepare_for_compaction();
 524 
 525   // Perform a full collection of the first max_level+1 generations.
 526   // This is the low level interface used by the public versions of
 527   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 528   void collect_locked(GCCause::Cause cause, int max_level);
 529 
 530   // Returns success or failure.
 531   bool create_cms_collector();
 532 
 533   // In support of ExplicitGCInvokesConcurrent functionality
 534   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 535   void collect_mostly_concurrent(GCCause::Cause cause);
 536 
 537   // Save the tops of the spaces in all generations
 538   void record_gen_tops_before_GC() PRODUCT_RETURN;
 539 
 540 protected:
 541   virtual void gc_prologue(bool full);
 542   virtual void gc_epilogue(bool full);
 543 
 544 public:
 545   virtual void preload_and_dump(TRAPS) KERNEL_RETURN;
 546 };
 547 
 548 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP