1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A Generation models a heap area for similarly-aged objects.
  26 // It will contain one ore more spaces holding the actual objects.
  27 //
  28 // The Generation class hierarchy:
  29 //
  30 // Generation                      - abstract base class
  31 // - DefNewGeneration              - allocation area (copy collected)
  32 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  33 //                                   several threads
  34 // - CardGeneration                 - abstract class adding offset array behavior
  35 //   - OneContigSpaceCardGeneration - abstract class holding a single
  36 //                                    contiguous space with card marking
  37 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  38 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
  39 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  40 //                                       (Detlefs-Printezis refinement of
  41 //                                       Boehm-Demers-Schenker)
  42 //
  43 // The system configurations currently allowed are:
  44 //
  45 //   DefNewGeneration + TenuredGeneration + PermGeneration
  46 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  47 //
  48 //   ParNewGeneration + TenuredGeneration + PermGeneration
  49 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  50 //
  51 
  52 class DefNewGeneration;
  53 class GenerationSpec;
  54 class CompactibleSpace;
  55 class ContiguousSpace;
  56 class CompactPoint;
  57 class OopsInGenClosure;
  58 class OopClosure;
  59 class ScanClosure;
  60 class FastScanClosure;
  61 class GenCollectedHeap;
  62 class GenRemSet;
  63 class GCStats;
  64 
  65 // A "ScratchBlock" represents a block of memory in one generation usable by
  66 // another.  It represents "num_words" free words, starting at and including
  67 // the address of "this".
  68 struct ScratchBlock {
  69   ScratchBlock* next;
  70   size_t num_words;
  71   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  72                               // first two fields are word-sized.)
  73 };
  74 
  75 
  76 class Generation: public CHeapObj {
  77   friend class VMStructs;
  78  private:
  79   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  80   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  81                                // used region at some specific point during collection.
  82 
  83  protected:
  84   // Minimum and maximum addresses for memory reserved (not necessarily
  85   // committed) for generation.
  86   // Used by card marking code. Must not overlap with address ranges of
  87   // other generations.
  88   MemRegion _reserved;
  89 
  90   // Memory area reserved for generation
  91   VirtualSpace _virtual_space;
  92 
  93   // Level in the generation hierarchy.
  94   int _level;
  95 
  96   // ("Weak") Reference processing support
  97   ReferenceProcessor* _ref_processor;
  98 
  99   // Performance Counters
 100   CollectorCounters* _gc_counters;
 101 
 102   // Statistics for garbage collection
 103   GCStats* _gc_stats;
 104 
 105   // Returns the next generation in the configuration, or else NULL if this
 106   // is the highest generation.
 107   Generation* next_gen() const;
 108 
 109   // Initialize the generation.
 110   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 111 
 112   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 113   // "sp" that point into younger generations.
 114   // The iteration is only over objects allocated at the start of the
 115   // iterations; objects allocated as a result of applying the closure are
 116   // not included.
 117   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 118 
 119  public:
 120   // The set of possible generation kinds.
 121   enum Name {
 122     ASParNew,
 123     ASConcurrentMarkSweep,
 124     DefNew,
 125     ParNew,
 126     MarkSweepCompact,
 127     ConcurrentMarkSweep,
 128     Other
 129   };
 130 
 131   enum SomePublicConstants {
 132     // Generations are GenGrain-aligned and have size that are multiples of
 133     // GenGrain.
 134     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 135     // (we expect its low byte to be zero - see implementation of post_barrier)
 136     LogOfGenGrain = 16 ARM_ONLY(+1),
 137     GenGrain = 1 << LogOfGenGrain
 138   };
 139 
 140   // allocate and initialize ("weak") refs processing support
 141   virtual void ref_processor_init();
 142   void set_ref_processor(ReferenceProcessor* rp) {
 143     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 144     _ref_processor = rp;
 145   }
 146 
 147   virtual Generation::Name kind() { return Generation::Other; }
 148   GenerationSpec* spec();
 149 
 150   // This properly belongs in the collector, but for now this
 151   // will do.
 152   virtual bool refs_discovery_is_atomic() const { return true;  }
 153   virtual bool refs_discovery_is_mt()     const { return false; }
 154 
 155   // Space enquiries (results in bytes)
 156   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 157                                         // generation can currently hold.
 158   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 159   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 160 
 161   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 162   // Returns the total number of bytes  available in a generation
 163   // for the allocation of objects.
 164   virtual size_t max_capacity() const;
 165 
 166   // If this is a young generation, the maximum number of bytes that can be
 167   // allocated in this generation before a GC is triggered.
 168   virtual size_t capacity_before_gc() const { return 0; }
 169 
 170   // The largest number of contiguous free bytes in the generation,
 171   // including expansion  (Assumes called at a safepoint.)
 172   virtual size_t contiguous_available() const = 0;
 173   // The largest number of contiguous free bytes in this or any higher generation.
 174   virtual size_t max_contiguous_available() const;
 175 
 176   // Returns true if promotions of the specified amount can
 177   // be attempted safely (without a vm failure).
 178   // Promotion of the full amount is not guaranteed but
 179   // can be attempted.
 180   //   younger_handles_promotion_failure
 181   // is true if the younger generation handles a promotion
 182   // failure.
 183   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
 184     bool younger_handles_promotion_failure) const;
 185 
 186   // For a non-young generation, this interface can be used to inform a
 187   // generation that a promotion attempt into that generation failed.
 188   // Typically used to enable diagnostic output for post-mortem analysis,
 189   // but other uses of the interface are not ruled out.
 190   virtual void promotion_failure_occurred() { /* does nothing */ }
 191 
 192   // Return an estimate of the maximum allocation that could be performed
 193   // in the generation without triggering any collection or expansion
 194   // activity.  It is "unsafe" because no locks are taken; the result
 195   // should be treated as an approximation, not a guarantee, for use in
 196   // heuristic resizing decisions.
 197   virtual size_t unsafe_max_alloc_nogc() const = 0;
 198 
 199   // Returns true if this generation cannot be expanded further
 200   // without a GC. Override as appropriate.
 201   virtual bool is_maximal_no_gc() const {
 202     return _virtual_space.uncommitted_size() == 0;
 203   }
 204 
 205   MemRegion reserved() const { return _reserved; }
 206 
 207   // Returns a region guaranteed to contain all the objects in the
 208   // generation.
 209   virtual MemRegion used_region() const { return _reserved; }
 210 
 211   MemRegion prev_used_region() const { return _prev_used_region; }
 212   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 213 
 214   // Returns "TRUE" iff "p" points into an allocated object in the generation.
 215   // For some kinds of generations, this may be an expensive operation.
 216   // To avoid performance problems stemming from its inadvertent use in
 217   // product jvm's, we restrict its use to assertion checking or
 218   // verification only.
 219   virtual bool is_in(const void* p) const;
 220 
 221   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 222   bool is_in_reserved(const void* p) const {
 223     return _reserved.contains(p);
 224   }
 225 
 226   // Check that the generation kind is DefNewGeneration or a sub
 227   // class of DefNewGeneration and return a DefNewGeneration*
 228   DefNewGeneration*  as_DefNewGeneration();
 229 
 230   // If some space in the generation contains the given "addr", return a
 231   // pointer to that space, else return "NULL".
 232   virtual Space* space_containing(const void* addr) const;
 233 
 234   // Iteration - do not use for time critical operations
 235   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 236 
 237   // Returns the first space, if any, in the generation that can participate
 238   // in compaction, or else "NULL".
 239   virtual CompactibleSpace* first_compaction_space() const = 0;
 240 
 241   // Returns "true" iff this generation should be used to allocate an
 242   // object of the given size.  Young generations might
 243   // wish to exclude very large objects, for example, since, if allocated
 244   // often, they would greatly increase the frequency of young-gen
 245   // collection.
 246   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 247     bool result = false;
 248     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 249     if (!is_tlab || supports_tlab_allocation()) {
 250       result = (word_size > 0) && (word_size < overflow_limit);
 251     }
 252     return result;
 253   }
 254 
 255   // Allocate and returns a block of the requested size, or returns "NULL".
 256   // Assumes the caller has done any necessary locking.
 257   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 258 
 259   // Like "allocate", but performs any necessary locking internally.
 260   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 261 
 262   // A 'younger' gen has reached an allocation limit, and uses this to notify
 263   // the next older gen.  The return value is a new limit, or NULL if none.  The
 264   // caller must do the necessary locking.
 265   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 266                                              size_t word_size) {
 267     return NULL;
 268   }
 269 
 270   // Some generation may offer a region for shared, contiguous allocation,
 271   // via inlined code (by exporting the address of the top and end fields
 272   // defining the extent of the contiguous allocation region.)
 273 
 274   // This function returns "true" iff the heap supports this kind of
 275   // allocation.  (More precisely, this means the style of allocation that
 276   // increments *top_addr()" with a CAS.) (Default is "no".)
 277   // A generation that supports this allocation style must use lock-free
 278   // allocation for *all* allocation, since there are times when lock free
 279   // allocation will be concurrent with plain "allocate" calls.
 280   virtual bool supports_inline_contig_alloc() const { return false; }
 281 
 282   // These functions return the addresses of the fields that define the
 283   // boundaries of the contiguous allocation area.  (These fields should be
 284   // physicall near to one another.)
 285   virtual HeapWord** top_addr() const { return NULL; }
 286   virtual HeapWord** end_addr() const { return NULL; }
 287 
 288   // Thread-local allocation buffers
 289   virtual bool supports_tlab_allocation() const { return false; }
 290   virtual size_t tlab_capacity() const {
 291     guarantee(false, "Generation doesn't support thread local allocation buffers");
 292     return 0;
 293   }
 294   virtual size_t unsafe_max_tlab_alloc() const {
 295     guarantee(false, "Generation doesn't support thread local allocation buffers");
 296     return 0;
 297   }
 298 
 299   // "obj" is the address of an object in a younger generation.  Allocate space
 300   // for "obj" in the current (or some higher) generation, and copy "obj" into
 301   // the newly allocated space, if possible, returning the result (or NULL if
 302   // the allocation failed).
 303   //
 304   // The "obj_size" argument is just obj->size(), passed along so the caller can
 305   // avoid repeating the virtual call to retrieve it.
 306   virtual oop promote(oop obj, size_t obj_size);
 307 
 308   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 309   // object "obj", whose original mark word was "m", and whose size is
 310   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 311   // (taking care to copy "m" into the mark word when done, since the mark
 312   // word of "obj" may have been overwritten with a forwarding pointer, and
 313   // also taking care to copy the klass pointer *last*.  Returns the new
 314   // object if successful, or else NULL.
 315   virtual oop par_promote(int thread_num,
 316                           oop obj, markOop m, size_t word_sz);
 317 
 318   // Undo, if possible, the most recent par_promote_alloc allocation by
 319   // "thread_num" ("obj", of "word_sz").
 320   virtual void par_promote_alloc_undo(int thread_num,
 321                                       HeapWord* obj, size_t word_sz);
 322 
 323   // Informs the current generation that all par_promote_alloc's in the
 324   // collection have been completed; any supporting data structures can be
 325   // reset.  Default is to do nothing.
 326   virtual void par_promote_alloc_done(int thread_num) {}
 327 
 328   // Informs the current generation that all oop_since_save_marks_iterates
 329   // performed by "thread_num" in the current collection, if any, have been
 330   // completed; any supporting data structures can be reset.  Default is to
 331   // do nothing.
 332   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 333 
 334   // This generation will collect all younger generations
 335   // during a full collection.
 336   virtual bool full_collects_younger_generations() const { return false; }
 337 
 338   // This generation does in-place marking, meaning that mark words
 339   // are mutated during the marking phase and presumably reinitialized
 340   // to a canonical value after the GC. This is currently used by the
 341   // biased locking implementation to determine whether additional
 342   // work is required during the GC prologue and epilogue.
 343   virtual bool performs_in_place_marking() const { return true; }
 344 
 345   // Returns "true" iff collect() should subsequently be called on this
 346   // this generation. See comment below.
 347   // This is a generic implementation which can be overridden.
 348   //
 349   // Note: in the current (1.4) implementation, when genCollectedHeap's
 350   // incremental_collection_will_fail flag is set, all allocations are
 351   // slow path (the only fast-path place to allocate is DefNew, which
 352   // will be full if the flag is set).
 353   // Thus, older generations which collect younger generations should
 354   // test this flag and collect if it is set.
 355   virtual bool should_collect(bool   full,
 356                               size_t word_size,
 357                               bool   is_tlab) {
 358     return (full || should_allocate(word_size, is_tlab));
 359   }
 360 
 361   // Perform a garbage collection.
 362   // If full is true attempt a full garbage collection of this generation.
 363   // Otherwise, attempting to (at least) free enough space to support an
 364   // allocation of the given "word_size".
 365   virtual void collect(bool   full,
 366                        bool   clear_all_soft_refs,
 367                        size_t word_size,
 368                        bool   is_tlab) = 0;
 369 
 370   // Perform a heap collection, attempting to create (at least) enough
 371   // space to support an allocation of the given "word_size".  If
 372   // successful, perform the allocation and return the resulting
 373   // "oop" (initializing the allocated block). If the allocation is
 374   // still unsuccessful, return "NULL".
 375   virtual HeapWord* expand_and_allocate(size_t word_size,
 376                                         bool is_tlab,
 377                                         bool parallel = false) = 0;
 378 
 379   // Some generations may require some cleanup or preparation actions before
 380   // allowing a collection.  The default is to do nothing.
 381   virtual void gc_prologue(bool full) {};
 382 
 383   // Some generations may require some cleanup actions after a collection.
 384   // The default is to do nothing.
 385   virtual void gc_epilogue(bool full) {};
 386 
 387   // Save the high water marks for the used space in a generation.
 388   virtual void record_spaces_top() {};
 389 
 390   // Some generations may need to be "fixed-up" after some allocation
 391   // activity to make them parsable again. The default is to do nothing.
 392   virtual void ensure_parsability() {};
 393 
 394   // Time (in ms) when we were last collected or now if a collection is
 395   // in progress.
 396   virtual jlong time_of_last_gc(jlong now) {
 397     // XXX See note in genCollectedHeap::millis_since_last_gc()
 398     NOT_PRODUCT(
 399       if (now < _time_of_last_gc) {
 400         warning("time warp: %d to %d", _time_of_last_gc, now);
 401       }
 402     )
 403     return _time_of_last_gc;
 404   }
 405 
 406   virtual void update_time_of_last_gc(jlong now)  {
 407     _time_of_last_gc = now;
 408   }
 409 
 410   // Generations may keep statistics about collection.  This
 411   // method updates those statistics.  current_level is
 412   // the level of the collection that has most recently
 413   // occurred.  This allows the generation to decide what
 414   // statistics are valid to collect.  For example, the
 415   // generation can decide to gather the amount of promoted data
 416   // if the collection of the younger generations has completed.
 417   GCStats* gc_stats() const { return _gc_stats; }
 418   virtual void update_gc_stats(int current_level, bool full) {}
 419 
 420   // Mark sweep support phase2
 421   virtual void prepare_for_compaction(CompactPoint* cp);
 422   // Mark sweep support phase3
 423   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
 424   virtual void adjust_pointers();
 425   // Mark sweep support phase4
 426   virtual void compact();
 427   virtual void post_compact() {ShouldNotReachHere();}
 428 
 429   // Support for CMS's rescan. In this general form we return a pointer
 430   // to an abstract object that can be used, based on specific previously
 431   // decided protocols, to exchange information between generations,
 432   // information that may be useful for speeding up certain types of
 433   // garbage collectors. A NULL value indicates to the client that
 434   // no data recording is expected by the provider. The data-recorder is
 435   // expected to be GC worker thread-local, with the worker index
 436   // indicated by "thr_num".
 437   virtual void* get_data_recorder(int thr_num) { return NULL; }
 438 
 439   // Some generations may require some cleanup actions before allowing
 440   // a verification.
 441   virtual void prepare_for_verify() {};
 442 
 443   // Accessing "marks".
 444 
 445   // This function gives a generation a chance to note a point between
 446   // collections.  For example, a contiguous generation might note the
 447   // beginning allocation point post-collection, which might allow some later
 448   // operations to be optimized.
 449   virtual void save_marks() {}
 450 
 451   // This function allows generations to initialize any "saved marks".  That
 452   // is, should only be called when the generation is empty.
 453   virtual void reset_saved_marks() {}
 454 
 455   // This function is "true" iff any no allocations have occurred in the
 456   // generation since the last call to "save_marks".
 457   virtual bool no_allocs_since_save_marks() = 0;
 458 
 459   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 460   // allocated in the current generation since the last call to "save_marks".
 461   // If more objects are allocated in this generation as a result of applying
 462   // the closure, iterates over reference fields in those objects as well.
 463   // Calls "save_marks" at the end of the iteration.
 464   // General signature...
 465   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 466   // ...and specializations for de-virtualization.  (The general
 467   // implemention of the _nv versions call the virtual version.
 468   // Note that the _nv suffix is not really semantically necessary,
 469   // but it avoids some not-so-useful warnings on Solaris.)
 470 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 471   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 472     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 473   }
 474   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 475 
 476 #undef Generation_SINCE_SAVE_MARKS_DECL
 477 
 478   // The "requestor" generation is performing some garbage collection
 479   // action for which it would be useful to have scratch space.  If
 480   // the target is not the requestor, no gc actions will be required
 481   // of the target.  The requestor promises to allocate no more than
 482   // "max_alloc_words" in the target generation (via promotion say,
 483   // if the requestor is a young generation and the target is older).
 484   // If the target generation can provide any scratch space, it adds
 485   // it to "list", leaving "list" pointing to the head of the
 486   // augmented list.  The default is to offer no space.
 487   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 488                                   size_t max_alloc_words) {}
 489 
 490   // Give each generation an opportunity to do clean up for any
 491   // contributed scratch.
 492   virtual void reset_scratch() {};
 493 
 494   // When an older generation has been collected, and perhaps resized,
 495   // this method will be invoked on all younger generations (from older to
 496   // younger), allowing them to resize themselves as appropriate.
 497   virtual void compute_new_size() = 0;
 498 
 499   // Printing
 500   virtual const char* name() const = 0;
 501   virtual const char* short_name() const = 0;
 502 
 503   int level() const { return _level; }
 504 
 505   // Attributes
 506 
 507   // True iff the given generation may only be the youngest generation.
 508   virtual bool must_be_youngest() const = 0;
 509   // True iff the given generation may only be the oldest generation.
 510   virtual bool must_be_oldest() const = 0;
 511 
 512   // Reference Processing accessor
 513   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 514 
 515   // Iteration.
 516 
 517   // Iterate over all the ref-containing fields of all objects in the
 518   // generation, calling "cl.do_oop" on each.
 519   virtual void oop_iterate(OopClosure* cl);
 520 
 521   // Same as above, restricted to the intersection of a memory region and
 522   // the generation.
 523   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
 524 
 525   // Iterate over all objects in the generation, calling "cl.do_object" on
 526   // each.
 527   virtual void object_iterate(ObjectClosure* cl);
 528 
 529   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 530   // each.  An object is safe if its references point to other objects in
 531   // the heap.  This defaults to object_iterate() unless overridden.
 532   virtual void safe_object_iterate(ObjectClosure* cl);
 533 
 534   // Iterate over all objects allocated in the generation since the last
 535   // collection, calling "cl.do_object" on each.  The generation must have
 536   // been initialized properly to support this function, or else this call
 537   // will fail.
 538   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
 539 
 540   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 541   // in the current generation that contain pointers to objects in younger
 542   // generations. Objects allocated since the last "save_marks" call are
 543   // excluded.
 544   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 545 
 546   // Inform a generation that it longer contains references to objects
 547   // in any younger generation.    [e.g. Because younger gens are empty,
 548   // clear the card table.]
 549   virtual void clear_remembered_set() { }
 550 
 551   // Inform a generation that some of its objects have moved.  [e.g. The
 552   // generation's spaces were compacted, invalidating the card table.]
 553   virtual void invalidate_remembered_set() { }
 554 
 555   // Block abstraction.
 556 
 557   // Returns the address of the start of the "block" that contains the
 558   // address "addr".  We say "blocks" instead of "object" since some heaps
 559   // may not pack objects densely; a chunk may either be an object or a
 560   // non-object.
 561   virtual HeapWord* block_start(const void* addr) const;
 562 
 563   // Requires "addr" to be the start of a chunk, and returns its size.
 564   // "addr + size" is required to be the start of a new chunk, or the end
 565   // of the active area of the heap.
 566   virtual size_t block_size(const HeapWord* addr) const ;
 567 
 568   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 569   // the block is an object.
 570   virtual bool block_is_obj(const HeapWord* addr) const;
 571 
 572 
 573   // PrintGC, PrintGCDetails support
 574   void print_heap_change(size_t prev_used) const;
 575 
 576   // PrintHeapAtGC support
 577   virtual void print() const;
 578   virtual void print_on(outputStream* st) const;
 579 
 580   virtual void verify(bool allow_dirty) = 0;
 581 
 582   struct StatRecord {
 583     int invocations;
 584     elapsedTimer accumulated_time;
 585     StatRecord() :
 586       invocations(0),
 587       accumulated_time(elapsedTimer()) {}
 588   };
 589 private:
 590   StatRecord _stat_record;
 591 public:
 592   StatRecord* stat_record() { return &_stat_record; }
 593 
 594   virtual void print_summary_info();
 595   virtual void print_summary_info_on(outputStream* st);
 596 
 597   // Performance Counter support
 598   virtual void update_counters() = 0;
 599   virtual CollectorCounters* counters() { return _gc_counters; }
 600 };
 601 
 602 // Class CardGeneration is a generation that is covered by a card table,
 603 // and uses a card-size block-offset array to implement block_start.
 604 
 605 // class BlockOffsetArray;
 606 // class BlockOffsetArrayContigSpace;
 607 class BlockOffsetSharedArray;
 608 
 609 class CardGeneration: public Generation {
 610   friend class VMStructs;
 611  protected:
 612   // This is shared with other generations.
 613   GenRemSet* _rs;
 614   // This is local to this generation.
 615   BlockOffsetSharedArray* _bts;
 616 
 617   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 618                  GenRemSet* remset);
 619 
 620  public:
 621 
 622   // Attempt to expand the generation by "bytes".  Expand by at a
 623   // minimum "expand_bytes".  Return true if some amount (not
 624   // necessarily the full "bytes") was done.
 625   virtual bool expand(size_t bytes, size_t expand_bytes);
 626 
 627   virtual void clear_remembered_set();
 628 
 629   virtual void invalidate_remembered_set();
 630 
 631   virtual void prepare_for_verify();
 632 
 633   // Grow generation with specified size (returns false if unable to grow)
 634   virtual bool grow_by(size_t bytes) = 0;
 635   // Grow generation to reserved size.
 636   virtual bool grow_to_reserved() = 0;
 637 };
 638 
 639 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 640 // contiguous space.
 641 //
 642 // Garbage collection is performed using mark-compact.
 643 
 644 class OneContigSpaceCardGeneration: public CardGeneration {
 645   friend class VMStructs;
 646   // Abstractly, this is a subtype that gets access to protected fields.
 647   friend class CompactingPermGen;
 648   friend class VM_PopulateDumpSharedSpace;
 649 
 650  protected:
 651   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
 652   ContiguousSpace*  _the_space;       // actual space holding objects
 653   WaterMark  _last_gc;                // watermark between objects allocated before
 654                                       // and after last GC.
 655 
 656   // Grow generation with specified size (returns false if unable to grow)
 657   virtual bool grow_by(size_t bytes);
 658   // Grow generation to reserved size.
 659   virtual bool grow_to_reserved();
 660   // Shrink generation with specified size (returns false if unable to shrink)
 661   void shrink_by(size_t bytes);
 662 
 663   // Allocation failure
 664   virtual bool expand(size_t bytes, size_t expand_bytes);
 665   void shrink(size_t bytes);
 666 
 667   // Accessing spaces
 668   ContiguousSpace* the_space() const { return _the_space; }
 669 
 670  public:
 671   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 672                                size_t min_heap_delta_bytes,
 673                                int level, GenRemSet* remset,
 674                                ContiguousSpace* space) :
 675     CardGeneration(rs, initial_byte_size, level, remset),
 676     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
 677   {}
 678 
 679   inline bool is_in(const void* p) const;
 680 
 681   // Space enquiries
 682   size_t capacity() const;
 683   size_t used() const;
 684   size_t free() const;
 685 
 686   MemRegion used_region() const;
 687 
 688   size_t unsafe_max_alloc_nogc() const;
 689   size_t contiguous_available() const;
 690 
 691   // Iteration
 692   void object_iterate(ObjectClosure* blk);
 693   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 694   void object_iterate_since_last_GC(ObjectClosure* cl);
 695 
 696   void younger_refs_iterate(OopsInGenClosure* blk);
 697 
 698   inline CompactibleSpace* first_compaction_space() const;
 699 
 700   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 701   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 702 
 703   // Accessing marks
 704   inline WaterMark top_mark();
 705   inline WaterMark bottom_mark();
 706 
 707 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 708   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 709   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 710   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 711 
 712   void save_marks();
 713   void reset_saved_marks();
 714   bool no_allocs_since_save_marks();
 715 
 716   inline size_t block_size(const HeapWord* addr) const;
 717 
 718   inline bool block_is_obj(const HeapWord* addr) const;
 719 
 720   virtual void collect(bool full,
 721                        bool clear_all_soft_refs,
 722                        size_t size,
 723                        bool is_tlab);
 724   HeapWord* expand_and_allocate(size_t size,
 725                                 bool is_tlab,
 726                                 bool parallel = false);
 727 
 728   virtual void prepare_for_verify();
 729 
 730   virtual void gc_epilogue(bool full);
 731 
 732   virtual void record_spaces_top();
 733 
 734   virtual void verify(bool allow_dirty);
 735   virtual void print_on(outputStream* st) const;
 736 };