1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/memRegion.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "memory/universe.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 
  38 // A Generation models a heap area for similarly-aged objects.
  39 // It will contain one ore more spaces holding the actual objects.
  40 //
  41 // The Generation class hierarchy:
  42 //
  43 // Generation                      - abstract base class
  44 // - DefNewGeneration              - allocation area (copy collected)
  45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  46 //                                   several threads
  47 // - CardGeneration                 - abstract class adding offset array behavior
  48 //   - OneContigSpaceCardGeneration - abstract class holding a single
  49 //                                    contiguous space with card marking
  50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  51 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
  52 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  53 //                                       (Detlefs-Printezis refinement of
  54 //                                       Boehm-Demers-Schenker)
  55 //
  56 // The system configurations currently allowed are:
  57 //
  58 //   DefNewGeneration + TenuredGeneration + PermGeneration
  59 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  60 //
  61 //   ParNewGeneration + TenuredGeneration + PermGeneration
  62 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  63 //
  64 
  65 class DefNewGeneration;
  66 class GenerationSpec;
  67 class CompactibleSpace;
  68 class ContiguousSpace;
  69 class CompactPoint;
  70 class OopsInGenClosure;
  71 class OopClosure;
  72 class ScanClosure;
  73 class FastScanClosure;
  74 class GenCollectedHeap;
  75 class GenRemSet;
  76 class GCStats;
  77 
  78 // A "ScratchBlock" represents a block of memory in one generation usable by
  79 // another.  It represents "num_words" free words, starting at and including
  80 // the address of "this".
  81 struct ScratchBlock {
  82   ScratchBlock* next;
  83   size_t num_words;
  84   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  85                               // first two fields are word-sized.)
  86 };
  87 
  88 
  89 class Generation: public CHeapObj {
  90   friend class VMStructs;
  91  private:
  92   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  93   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  94                                // used region at some specific point during collection.
  95 
  96  protected:
  97   // Minimum and maximum addresses for memory reserved (not necessarily
  98   // committed) for generation.
  99   // Used by card marking code. Must not overlap with address ranges of
 100   // other generations.
 101   MemRegion _reserved;
 102 
 103   // Memory area reserved for generation
 104   VirtualSpace _virtual_space;
 105 
 106   // Level in the generation hierarchy.
 107   int _level;
 108 
 109   // ("Weak") Reference processing support
 110   ReferenceProcessor* _ref_processor;
 111 
 112   // Performance Counters
 113   CollectorCounters* _gc_counters;
 114 
 115   // Statistics for garbage collection
 116   GCStats* _gc_stats;
 117 
 118   // Returns the next generation in the configuration, or else NULL if this
 119   // is the highest generation.
 120   Generation* next_gen() const;
 121 
 122   // Initialize the generation.
 123   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 124 
 125   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 126   // "sp" that point into younger generations.
 127   // The iteration is only over objects allocated at the start of the
 128   // iterations; objects allocated as a result of applying the closure are
 129   // not included.
 130   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 131 
 132  public:
 133   // The set of possible generation kinds.
 134   enum Name {
 135     ASParNew,
 136     ASConcurrentMarkSweep,
 137     DefNew,
 138     ParNew,
 139     MarkSweepCompact,
 140     ConcurrentMarkSweep,
 141     Other
 142   };
 143 
 144   enum SomePublicConstants {
 145     // Generations are GenGrain-aligned and have size that are multiples of
 146     // GenGrain.
 147     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 148     // (we expect its low byte to be zero - see implementation of post_barrier)
 149     LogOfGenGrain = 16 ARM_ONLY(+1),
 150     GenGrain = 1 << LogOfGenGrain
 151   };
 152 
 153   // allocate and initialize ("weak") refs processing support
 154   virtual void ref_processor_init();
 155   void set_ref_processor(ReferenceProcessor* rp) {
 156     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 157     _ref_processor = rp;
 158   }
 159 
 160   virtual Generation::Name kind() { return Generation::Other; }
 161   GenerationSpec* spec();
 162 
 163   // This properly belongs in the collector, but for now this
 164   // will do.
 165   virtual bool refs_discovery_is_atomic() const { return true;  }
 166   virtual bool refs_discovery_is_mt()     const { return false; }
 167 
 168   // Space enquiries (results in bytes)
 169   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 170                                         // generation can currently hold.
 171   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 172   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 173 
 174   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 175   // Returns the total number of bytes  available in a generation
 176   // for the allocation of objects.
 177   virtual size_t max_capacity() const;
 178 
 179   // If this is a young generation, the maximum number of bytes that can be
 180   // allocated in this generation before a GC is triggered.
 181   virtual size_t capacity_before_gc() const { return 0; }
 182 
 183   // The largest number of contiguous free bytes in the generation,
 184   // including expansion  (Assumes called at a safepoint.)
 185   virtual size_t contiguous_available() const = 0;
 186   // The largest number of contiguous free bytes in this or any higher generation.
 187   virtual size_t max_contiguous_available() const;
 188 
 189   // Returns true if promotions of the specified amount can
 190   // be attempted safely (without a vm failure).
 191   // Promotion of the full amount is not guaranteed but
 192   // can be attempted.
 193   //   younger_handles_promotion_failure
 194   // is true if the younger generation handles a promotion
 195   // failure.
 196   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
 197     bool younger_handles_promotion_failure) const;
 198 
 199   // For a non-young generation, this interface can be used to inform a
 200   // generation that a promotion attempt into that generation failed.
 201   // Typically used to enable diagnostic output for post-mortem analysis,
 202   // but other uses of the interface are not ruled out.
 203   virtual void promotion_failure_occurred() { /* does nothing */ }
 204 
 205   // Return an estimate of the maximum allocation that could be performed
 206   // in the generation without triggering any collection or expansion
 207   // activity.  It is "unsafe" because no locks are taken; the result
 208   // should be treated as an approximation, not a guarantee, for use in
 209   // heuristic resizing decisions.
 210   virtual size_t unsafe_max_alloc_nogc() const = 0;
 211 
 212   // Returns true if this generation cannot be expanded further
 213   // without a GC. Override as appropriate.
 214   virtual bool is_maximal_no_gc() const {
 215     return _virtual_space.uncommitted_size() == 0;
 216   }
 217 
 218   MemRegion reserved() const { return _reserved; }
 219 
 220   // Returns a region guaranteed to contain all the objects in the
 221   // generation.
 222   virtual MemRegion used_region() const { return _reserved; }
 223 
 224   MemRegion prev_used_region() const { return _prev_used_region; }
 225   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 226 
 227   // Returns "TRUE" iff "p" points into an allocated object in the generation.
 228   // For some kinds of generations, this may be an expensive operation.
 229   // To avoid performance problems stemming from its inadvertent use in
 230   // product jvm's, we restrict its use to assertion checking or
 231   // verification only.
 232   virtual bool is_in(const void* p) const;
 233 
 234   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 235   bool is_in_reserved(const void* p) const {
 236     return _reserved.contains(p);
 237   }
 238 
 239   // Check that the generation kind is DefNewGeneration or a sub
 240   // class of DefNewGeneration and return a DefNewGeneration*
 241   DefNewGeneration*  as_DefNewGeneration();
 242 
 243   // If some space in the generation contains the given "addr", return a
 244   // pointer to that space, else return "NULL".
 245   virtual Space* space_containing(const void* addr) const;
 246 
 247   // Iteration - do not use for time critical operations
 248   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 249 
 250   // Returns the first space, if any, in the generation that can participate
 251   // in compaction, or else "NULL".
 252   virtual CompactibleSpace* first_compaction_space() const = 0;
 253 
 254   // Returns "true" iff this generation should be used to allocate an
 255   // object of the given size.  Young generations might
 256   // wish to exclude very large objects, for example, since, if allocated
 257   // often, they would greatly increase the frequency of young-gen
 258   // collection.
 259   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 260     bool result = false;
 261     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 262     if (!is_tlab || supports_tlab_allocation()) {
 263       result = (word_size > 0) && (word_size < overflow_limit);
 264     }
 265     return result;
 266   }
 267 
 268   // Allocate and returns a block of the requested size, or returns "NULL".
 269   // Assumes the caller has done any necessary locking.
 270   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 271 
 272   // Like "allocate", but performs any necessary locking internally.
 273   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 274 
 275   // A 'younger' gen has reached an allocation limit, and uses this to notify
 276   // the next older gen.  The return value is a new limit, or NULL if none.  The
 277   // caller must do the necessary locking.
 278   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 279                                              size_t word_size) {
 280     return NULL;
 281   }
 282 
 283   // Some generation may offer a region for shared, contiguous allocation,
 284   // via inlined code (by exporting the address of the top and end fields
 285   // defining the extent of the contiguous allocation region.)
 286 
 287   // This function returns "true" iff the heap supports this kind of
 288   // allocation.  (More precisely, this means the style of allocation that
 289   // increments *top_addr()" with a CAS.) (Default is "no".)
 290   // A generation that supports this allocation style must use lock-free
 291   // allocation for *all* allocation, since there are times when lock free
 292   // allocation will be concurrent with plain "allocate" calls.
 293   virtual bool supports_inline_contig_alloc() const { return false; }
 294 
 295   // These functions return the addresses of the fields that define the
 296   // boundaries of the contiguous allocation area.  (These fields should be
 297   // physicall near to one another.)
 298   virtual HeapWord** top_addr() const { return NULL; }
 299   virtual HeapWord** end_addr() const { return NULL; }
 300 
 301   // Thread-local allocation buffers
 302   virtual bool supports_tlab_allocation() const { return false; }
 303   virtual size_t tlab_capacity() const {
 304     guarantee(false, "Generation doesn't support thread local allocation buffers");
 305     return 0;
 306   }
 307   virtual size_t unsafe_max_tlab_alloc() const {
 308     guarantee(false, "Generation doesn't support thread local allocation buffers");
 309     return 0;
 310   }
 311 
 312   // "obj" is the address of an object in a younger generation.  Allocate space
 313   // for "obj" in the current (or some higher) generation, and copy "obj" into
 314   // the newly allocated space, if possible, returning the result (or NULL if
 315   // the allocation failed).
 316   //
 317   // The "obj_size" argument is just obj->size(), passed along so the caller can
 318   // avoid repeating the virtual call to retrieve it.
 319   virtual oop promote(oop obj, size_t obj_size);
 320 
 321   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 322   // object "obj", whose original mark word was "m", and whose size is
 323   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 324   // (taking care to copy "m" into the mark word when done, since the mark
 325   // word of "obj" may have been overwritten with a forwarding pointer, and
 326   // also taking care to copy the klass pointer *last*.  Returns the new
 327   // object if successful, or else NULL.
 328   virtual oop par_promote(int thread_num,
 329                           oop obj, markOop m, size_t word_sz);
 330 
 331   // Undo, if possible, the most recent par_promote_alloc allocation by
 332   // "thread_num" ("obj", of "word_sz").
 333   virtual void par_promote_alloc_undo(int thread_num,
 334                                       HeapWord* obj, size_t word_sz);
 335 
 336   // Informs the current generation that all par_promote_alloc's in the
 337   // collection have been completed; any supporting data structures can be
 338   // reset.  Default is to do nothing.
 339   virtual void par_promote_alloc_done(int thread_num) {}
 340 
 341   // Informs the current generation that all oop_since_save_marks_iterates
 342   // performed by "thread_num" in the current collection, if any, have been
 343   // completed; any supporting data structures can be reset.  Default is to
 344   // do nothing.
 345   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 346 
 347   // This generation will collect all younger generations
 348   // during a full collection.
 349   virtual bool full_collects_younger_generations() const { return false; }
 350 
 351   // This generation does in-place marking, meaning that mark words
 352   // are mutated during the marking phase and presumably reinitialized
 353   // to a canonical value after the GC. This is currently used by the
 354   // biased locking implementation to determine whether additional
 355   // work is required during the GC prologue and epilogue.
 356   virtual bool performs_in_place_marking() const { return true; }
 357 
 358   // Returns "true" iff collect() should subsequently be called on this
 359   // this generation. See comment below.
 360   // This is a generic implementation which can be overridden.
 361   //
 362   // Note: in the current (1.4) implementation, when genCollectedHeap's
 363   // incremental_collection_will_fail flag is set, all allocations are
 364   // slow path (the only fast-path place to allocate is DefNew, which
 365   // will be full if the flag is set).
 366   // Thus, older generations which collect younger generations should
 367   // test this flag and collect if it is set.
 368   virtual bool should_collect(bool   full,
 369                               size_t word_size,
 370                               bool   is_tlab) {
 371     return (full || should_allocate(word_size, is_tlab));
 372   }
 373 
 374   // Perform a garbage collection.
 375   // If full is true attempt a full garbage collection of this generation.
 376   // Otherwise, attempting to (at least) free enough space to support an
 377   // allocation of the given "word_size".
 378   virtual void collect(bool   full,
 379                        bool   clear_all_soft_refs,
 380                        size_t word_size,
 381                        bool   is_tlab) = 0;
 382 
 383   // Perform a heap collection, attempting to create (at least) enough
 384   // space to support an allocation of the given "word_size".  If
 385   // successful, perform the allocation and return the resulting
 386   // "oop" (initializing the allocated block). If the allocation is
 387   // still unsuccessful, return "NULL".
 388   virtual HeapWord* expand_and_allocate(size_t word_size,
 389                                         bool is_tlab,
 390                                         bool parallel = false) = 0;
 391 
 392   // Some generations may require some cleanup or preparation actions before
 393   // allowing a collection.  The default is to do nothing.
 394   virtual void gc_prologue(bool full) {};
 395 
 396   // Some generations may require some cleanup actions after a collection.
 397   // The default is to do nothing.
 398   virtual void gc_epilogue(bool full) {};
 399 
 400   // Save the high water marks for the used space in a generation.
 401   virtual void record_spaces_top() {};
 402 
 403   // Some generations may need to be "fixed-up" after some allocation
 404   // activity to make them parsable again. The default is to do nothing.
 405   virtual void ensure_parsability() {};
 406 
 407   // Time (in ms) when we were last collected or now if a collection is
 408   // in progress.
 409   virtual jlong time_of_last_gc(jlong now) {
 410     // XXX See note in genCollectedHeap::millis_since_last_gc()
 411     NOT_PRODUCT(
 412       if (now < _time_of_last_gc) {
 413         warning("time warp: %d to %d", _time_of_last_gc, now);
 414       }
 415     )
 416     return _time_of_last_gc;
 417   }
 418 
 419   virtual void update_time_of_last_gc(jlong now)  {
 420     _time_of_last_gc = now;
 421   }
 422 
 423   // Generations may keep statistics about collection.  This
 424   // method updates those statistics.  current_level is
 425   // the level of the collection that has most recently
 426   // occurred.  This allows the generation to decide what
 427   // statistics are valid to collect.  For example, the
 428   // generation can decide to gather the amount of promoted data
 429   // if the collection of the younger generations has completed.
 430   GCStats* gc_stats() const { return _gc_stats; }
 431   virtual void update_gc_stats(int current_level, bool full) {}
 432 
 433   // Mark sweep support phase2
 434   virtual void prepare_for_compaction(CompactPoint* cp);
 435   // Mark sweep support phase3
 436   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
 437   virtual void adjust_pointers();
 438   // Mark sweep support phase4
 439   virtual void compact();
 440   virtual void post_compact() {ShouldNotReachHere();}
 441 
 442   // Support for CMS's rescan. In this general form we return a pointer
 443   // to an abstract object that can be used, based on specific previously
 444   // decided protocols, to exchange information between generations,
 445   // information that may be useful for speeding up certain types of
 446   // garbage collectors. A NULL value indicates to the client that
 447   // no data recording is expected by the provider. The data-recorder is
 448   // expected to be GC worker thread-local, with the worker index
 449   // indicated by "thr_num".
 450   virtual void* get_data_recorder(int thr_num) { return NULL; }
 451 
 452   // Some generations may require some cleanup actions before allowing
 453   // a verification.
 454   virtual void prepare_for_verify() {};
 455 
 456   // Accessing "marks".
 457 
 458   // This function gives a generation a chance to note a point between
 459   // collections.  For example, a contiguous generation might note the
 460   // beginning allocation point post-collection, which might allow some later
 461   // operations to be optimized.
 462   virtual void save_marks() {}
 463 
 464   // This function allows generations to initialize any "saved marks".  That
 465   // is, should only be called when the generation is empty.
 466   virtual void reset_saved_marks() {}
 467 
 468   // This function is "true" iff any no allocations have occurred in the
 469   // generation since the last call to "save_marks".
 470   virtual bool no_allocs_since_save_marks() = 0;
 471 
 472   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 473   // allocated in the current generation since the last call to "save_marks".
 474   // If more objects are allocated in this generation as a result of applying
 475   // the closure, iterates over reference fields in those objects as well.
 476   // Calls "save_marks" at the end of the iteration.
 477   // General signature...
 478   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 479   // ...and specializations for de-virtualization.  (The general
 480   // implemention of the _nv versions call the virtual version.
 481   // Note that the _nv suffix is not really semantically necessary,
 482   // but it avoids some not-so-useful warnings on Solaris.)
 483 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 484   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 485     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 486   }
 487   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 488 
 489 #undef Generation_SINCE_SAVE_MARKS_DECL
 490 
 491   // The "requestor" generation is performing some garbage collection
 492   // action for which it would be useful to have scratch space.  If
 493   // the target is not the requestor, no gc actions will be required
 494   // of the target.  The requestor promises to allocate no more than
 495   // "max_alloc_words" in the target generation (via promotion say,
 496   // if the requestor is a young generation and the target is older).
 497   // If the target generation can provide any scratch space, it adds
 498   // it to "list", leaving "list" pointing to the head of the
 499   // augmented list.  The default is to offer no space.
 500   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 501                                   size_t max_alloc_words) {}
 502 
 503   // Give each generation an opportunity to do clean up for any
 504   // contributed scratch.
 505   virtual void reset_scratch() {};
 506 
 507   // When an older generation has been collected, and perhaps resized,
 508   // this method will be invoked on all younger generations (from older to
 509   // younger), allowing them to resize themselves as appropriate.
 510   virtual void compute_new_size() = 0;
 511 
 512   // Printing
 513   virtual const char* name() const = 0;
 514   virtual const char* short_name() const = 0;
 515 
 516   int level() const { return _level; }
 517 
 518   // Attributes
 519 
 520   // True iff the given generation may only be the youngest generation.
 521   virtual bool must_be_youngest() const = 0;
 522   // True iff the given generation may only be the oldest generation.
 523   virtual bool must_be_oldest() const = 0;
 524 
 525   // Reference Processing accessor
 526   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 527 
 528   // Iteration.
 529 
 530   // Iterate over all the ref-containing fields of all objects in the
 531   // generation, calling "cl.do_oop" on each.
 532   virtual void oop_iterate(OopClosure* cl);
 533 
 534   // Same as above, restricted to the intersection of a memory region and
 535   // the generation.
 536   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
 537 
 538   // Iterate over all objects in the generation, calling "cl.do_object" on
 539   // each.
 540   virtual void object_iterate(ObjectClosure* cl);
 541 
 542   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 543   // each.  An object is safe if its references point to other objects in
 544   // the heap.  This defaults to object_iterate() unless overridden.
 545   virtual void safe_object_iterate(ObjectClosure* cl);
 546 
 547   // Iterate over all objects allocated in the generation since the last
 548   // collection, calling "cl.do_object" on each.  The generation must have
 549   // been initialized properly to support this function, or else this call
 550   // will fail.
 551   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
 552 
 553   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 554   // in the current generation that contain pointers to objects in younger
 555   // generations. Objects allocated since the last "save_marks" call are
 556   // excluded.
 557   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 558 
 559   // Inform a generation that it longer contains references to objects
 560   // in any younger generation.    [e.g. Because younger gens are empty,
 561   // clear the card table.]
 562   virtual void clear_remembered_set() { }
 563 
 564   // Inform a generation that some of its objects have moved.  [e.g. The
 565   // generation's spaces were compacted, invalidating the card table.]
 566   virtual void invalidate_remembered_set() { }
 567 
 568   // Block abstraction.
 569 
 570   // Returns the address of the start of the "block" that contains the
 571   // address "addr".  We say "blocks" instead of "object" since some heaps
 572   // may not pack objects densely; a chunk may either be an object or a
 573   // non-object.
 574   virtual HeapWord* block_start(const void* addr) const;
 575 
 576   // Requires "addr" to be the start of a chunk, and returns its size.
 577   // "addr + size" is required to be the start of a new chunk, or the end
 578   // of the active area of the heap.
 579   virtual size_t block_size(const HeapWord* addr) const ;
 580 
 581   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 582   // the block is an object.
 583   virtual bool block_is_obj(const HeapWord* addr) const;
 584 
 585 
 586   // PrintGC, PrintGCDetails support
 587   void print_heap_change(size_t prev_used) const;
 588 
 589   // PrintHeapAtGC support
 590   virtual void print() const;
 591   virtual void print_on(outputStream* st) const;
 592 
 593   virtual void verify(bool allow_dirty) = 0;
 594 
 595   struct StatRecord {
 596     int invocations;
 597     elapsedTimer accumulated_time;
 598     StatRecord() :
 599       invocations(0),
 600       accumulated_time(elapsedTimer()) {}
 601   };
 602 private:
 603   StatRecord _stat_record;
 604 public:
 605   StatRecord* stat_record() { return &_stat_record; }
 606 
 607   virtual void print_summary_info();
 608   virtual void print_summary_info_on(outputStream* st);
 609 
 610   // Performance Counter support
 611   virtual void update_counters() = 0;
 612   virtual CollectorCounters* counters() { return _gc_counters; }
 613 };
 614 
 615 // Class CardGeneration is a generation that is covered by a card table,
 616 // and uses a card-size block-offset array to implement block_start.
 617 
 618 // class BlockOffsetArray;
 619 // class BlockOffsetArrayContigSpace;
 620 class BlockOffsetSharedArray;
 621 
 622 class CardGeneration: public Generation {
 623   friend class VMStructs;
 624  protected:
 625   // This is shared with other generations.
 626   GenRemSet* _rs;
 627   // This is local to this generation.
 628   BlockOffsetSharedArray* _bts;
 629 
 630   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 631                  GenRemSet* remset);
 632 
 633  public:
 634 
 635   // Attempt to expand the generation by "bytes".  Expand by at a
 636   // minimum "expand_bytes".  Return true if some amount (not
 637   // necessarily the full "bytes") was done.
 638   virtual bool expand(size_t bytes, size_t expand_bytes);
 639 
 640   virtual void clear_remembered_set();
 641 
 642   virtual void invalidate_remembered_set();
 643 
 644   virtual void prepare_for_verify();
 645 
 646   // Grow generation with specified size (returns false if unable to grow)
 647   virtual bool grow_by(size_t bytes) = 0;
 648   // Grow generation to reserved size.
 649   virtual bool grow_to_reserved() = 0;
 650 };
 651 
 652 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 653 // contiguous space.
 654 //
 655 // Garbage collection is performed using mark-compact.
 656 
 657 class OneContigSpaceCardGeneration: public CardGeneration {
 658   friend class VMStructs;
 659   // Abstractly, this is a subtype that gets access to protected fields.
 660   friend class CompactingPermGen;
 661   friend class VM_PopulateDumpSharedSpace;
 662 
 663  protected:
 664   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
 665   ContiguousSpace*  _the_space;       // actual space holding objects
 666   WaterMark  _last_gc;                // watermark between objects allocated before
 667                                       // and after last GC.
 668 
 669   // Grow generation with specified size (returns false if unable to grow)
 670   virtual bool grow_by(size_t bytes);
 671   // Grow generation to reserved size.
 672   virtual bool grow_to_reserved();
 673   // Shrink generation with specified size (returns false if unable to shrink)
 674   void shrink_by(size_t bytes);
 675 
 676   // Allocation failure
 677   virtual bool expand(size_t bytes, size_t expand_bytes);
 678   void shrink(size_t bytes);
 679 
 680   // Accessing spaces
 681   ContiguousSpace* the_space() const { return _the_space; }
 682 
 683  public:
 684   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 685                                size_t min_heap_delta_bytes,
 686                                int level, GenRemSet* remset,
 687                                ContiguousSpace* space) :
 688     CardGeneration(rs, initial_byte_size, level, remset),
 689     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
 690   {}
 691 
 692   inline bool is_in(const void* p) const;
 693 
 694   // Space enquiries
 695   size_t capacity() const;
 696   size_t used() const;
 697   size_t free() const;
 698 
 699   MemRegion used_region() const;
 700 
 701   size_t unsafe_max_alloc_nogc() const;
 702   size_t contiguous_available() const;
 703 
 704   // Iteration
 705   void object_iterate(ObjectClosure* blk);
 706   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 707   void object_iterate_since_last_GC(ObjectClosure* cl);
 708 
 709   void younger_refs_iterate(OopsInGenClosure* blk);
 710 
 711   inline CompactibleSpace* first_compaction_space() const;
 712 
 713   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 714   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 715 
 716   // Accessing marks
 717   inline WaterMark top_mark();
 718   inline WaterMark bottom_mark();
 719 
 720 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 721   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 722   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 723   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 724 
 725   void save_marks();
 726   void reset_saved_marks();
 727   bool no_allocs_since_save_marks();
 728 
 729   inline size_t block_size(const HeapWord* addr) const;
 730 
 731   inline bool block_is_obj(const HeapWord* addr) const;
 732 
 733   virtual void collect(bool full,
 734                        bool clear_all_soft_refs,
 735                        size_t size,
 736                        bool is_tlab);
 737   HeapWord* expand_and_allocate(size_t size,
 738                                 bool is_tlab,
 739                                 bool parallel = false);
 740 
 741   virtual void prepare_for_verify();
 742 
 743   virtual void gc_epilogue(bool full);
 744 
 745   virtual void record_spaces_top();
 746 
 747   virtual void verify(bool allow_dirty);
 748   virtual void print_on(outputStream* st) const;
 749 };
 750 
 751 #endif // SHARE_VM_MEMORY_GENERATION_HPP