1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_instanceKlass.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 HS_DTRACE_PROBE_DECL4(hotspot, class__initialization__required,
  31   char*, intptr_t, oop, intptr_t);
  32 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__recursive,
  33   char*, intptr_t, oop, intptr_t, int);
  34 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__concurrent,
  35   char*, intptr_t, oop, intptr_t, int);
  36 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__erroneous,
  37   char*, intptr_t, oop, intptr_t, int);
  38 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__super__failed,
  39   char*, intptr_t, oop, intptr_t, int);
  40 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__clinit,
  41   char*, intptr_t, oop, intptr_t, int);
  42 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__error,
  43   char*, intptr_t, oop, intptr_t, int);
  44 HS_DTRACE_PROBE_DECL5(hotspot, class__initialization__end,
  45   char*, intptr_t, oop, intptr_t, int);
  46 
  47 #define DTRACE_CLASSINIT_PROBE(type, clss, thread_type)          \
  48   {                                                              \
  49     char* data = NULL;                                           \
  50     int len = 0;                                                 \
  51     symbolOop name = (clss)->name();                             \
  52     if (name != NULL) {                                          \
  53       data = (char*)name->bytes();                               \
  54       len = name->utf8_length();                                 \
  55     }                                                            \
  56     HS_DTRACE_PROBE4(hotspot, class__initialization__##type,     \
  57       data, len, (clss)->class_loader(), thread_type);           \
  58   }
  59 
  60 #define DTRACE_CLASSINIT_PROBE_WAIT(type, clss, thread_type, wait) \
  61   {                                                              \
  62     char* data = NULL;                                           \
  63     int len = 0;                                                 \
  64     symbolOop name = (clss)->name();                             \
  65     if (name != NULL) {                                          \
  66       data = (char*)name->bytes();                               \
  67       len = name->utf8_length();                                 \
  68     }                                                            \
  69     HS_DTRACE_PROBE5(hotspot, class__initialization__##type,     \
  70       data, len, (clss)->class_loader(), thread_type, wait);     \
  71   }
  72 
  73 #else //  ndef DTRACE_ENABLED
  74 
  75 #define DTRACE_CLASSINIT_PROBE(type, clss, thread_type)
  76 #define DTRACE_CLASSINIT_PROBE_WAIT(type, clss, thread_type, wait)
  77 
  78 #endif //  ndef DTRACE_ENABLED
  79 
  80 bool instanceKlass::should_be_initialized() const {
  81   return !is_initialized();
  82 }
  83 
  84 klassVtable* instanceKlass::vtable() const {
  85   return new klassVtable(as_klassOop(), start_of_vtable(), vtable_length() / vtableEntry::size());
  86 }
  87 
  88 klassItable* instanceKlass::itable() const {
  89   return new klassItable(as_klassOop());
  90 }
  91 
  92 void instanceKlass::eager_initialize(Thread *thread) {
  93   if (!EagerInitialization) return;
  94 
  95   if (this->is_not_initialized()) {
  96     // abort if the the class has a class initializer
  97     if (this->class_initializer() != NULL) return;
  98 
  99     // abort if it is java.lang.Object (initialization is handled in genesis)
 100     klassOop super = this->super();
 101     if (super == NULL) return;
 102 
 103     // abort if the super class should be initialized
 104     if (!instanceKlass::cast(super)->is_initialized()) return;
 105 
 106     // call body to expose the this pointer
 107     instanceKlassHandle this_oop(thread, this->as_klassOop());
 108     eager_initialize_impl(this_oop);
 109   }
 110 }
 111 
 112 
 113 void instanceKlass::eager_initialize_impl(instanceKlassHandle this_oop) {
 114   EXCEPTION_MARK;
 115   ObjectLocker ol(this_oop, THREAD);
 116 
 117   // abort if someone beat us to the initialization
 118   if (!this_oop->is_not_initialized()) return;  // note: not equivalent to is_initialized()
 119 
 120   ClassState old_state = this_oop->_init_state;
 121   link_class_impl(this_oop, true, THREAD);
 122   if (HAS_PENDING_EXCEPTION) {
 123     CLEAR_PENDING_EXCEPTION;
 124     // Abort if linking the class throws an exception.
 125 
 126     // Use a test to avoid redundantly resetting the state if there's
 127     // no change.  Set_init_state() asserts that state changes make
 128     // progress, whereas here we might just be spinning in place.
 129     if( old_state != this_oop->_init_state )
 130       this_oop->set_init_state (old_state);
 131   } else {
 132     // linking successfull, mark class as initialized
 133     this_oop->set_init_state (fully_initialized);
 134     // trace
 135     if (TraceClassInitialization) {
 136       ResourceMark rm(THREAD);
 137       tty->print_cr("[Initialized %s without side effects]", this_oop->external_name());
 138     }
 139   }
 140 }
 141 
 142 
 143 // See "The Virtual Machine Specification" section 2.16.5 for a detailed explanation of the class initialization
 144 // process. The step comments refers to the procedure described in that section.
 145 // Note: implementation moved to static method to expose the this pointer.
 146 void instanceKlass::initialize(TRAPS) {
 147   if (this->should_be_initialized()) {
 148     HandleMark hm(THREAD);
 149     instanceKlassHandle this_oop(THREAD, this->as_klassOop());
 150     initialize_impl(this_oop, CHECK);
 151     // Note: at this point the class may be initialized
 152     //       OR it may be in the state of being initialized
 153     //       in case of recursive initialization!
 154   } else {
 155     assert(is_initialized(), "sanity check");
 156   }
 157 }
 158 
 159 
 160 bool instanceKlass::verify_code(
 161     instanceKlassHandle this_oop, bool throw_verifyerror, TRAPS) {
 162   // 1) Verify the bytecodes
 163   Verifier::Mode mode =
 164     throw_verifyerror ? Verifier::ThrowException : Verifier::NoException;
 165   return Verifier::verify(this_oop, mode, this_oop->should_verify_class(), CHECK_false);
 166 }
 167 
 168 
 169 // Used exclusively by the shared spaces dump mechanism to prevent
 170 // classes mapped into the shared regions in new VMs from appearing linked.
 171 
 172 void instanceKlass::unlink_class() {
 173   assert(is_linked(), "must be linked");
 174   _init_state = loaded;
 175 }
 176 
 177 void instanceKlass::link_class(TRAPS) {
 178   assert(is_loaded(), "must be loaded");
 179   if (!is_linked()) {
 180     instanceKlassHandle this_oop(THREAD, this->as_klassOop());
 181     link_class_impl(this_oop, true, CHECK);
 182   }
 183 }
 184 
 185 // Called to verify that a class can link during initialization, without
 186 // throwing a VerifyError.
 187 bool instanceKlass::link_class_or_fail(TRAPS) {
 188   assert(is_loaded(), "must be loaded");
 189   if (!is_linked()) {
 190     instanceKlassHandle this_oop(THREAD, this->as_klassOop());
 191     link_class_impl(this_oop, false, CHECK_false);
 192   }
 193   return is_linked();
 194 }
 195 
 196 bool instanceKlass::link_class_impl(
 197     instanceKlassHandle this_oop, bool throw_verifyerror, TRAPS) {
 198   // check for error state
 199   if (this_oop->is_in_error_state()) {
 200     ResourceMark rm(THREAD);
 201     THROW_MSG_(vmSymbols::java_lang_NoClassDefFoundError(),
 202                this_oop->external_name(), false);
 203   }
 204   // return if already verified
 205   if (this_oop->is_linked()) {
 206     return true;
 207   }
 208 
 209   // Timing
 210   // timer handles recursion
 211   assert(THREAD->is_Java_thread(), "non-JavaThread in link_class_impl");
 212   JavaThread* jt = (JavaThread*)THREAD;
 213 
 214   // link super class before linking this class
 215   instanceKlassHandle super(THREAD, this_oop->super());
 216   if (super.not_null()) {
 217     if (super->is_interface()) {  // check if super class is an interface
 218       ResourceMark rm(THREAD);
 219       Exceptions::fthrow(
 220         THREAD_AND_LOCATION,
 221         vmSymbolHandles::java_lang_IncompatibleClassChangeError(),
 222         "class %s has interface %s as super class",
 223         this_oop->external_name(),
 224         super->external_name()
 225       );
 226       return false;
 227     }
 228 
 229     link_class_impl(super, throw_verifyerror, CHECK_false);
 230   }
 231 
 232   // link all interfaces implemented by this class before linking this class
 233   objArrayHandle interfaces (THREAD, this_oop->local_interfaces());
 234   int num_interfaces = interfaces->length();
 235   for (int index = 0; index < num_interfaces; index++) {
 236     HandleMark hm(THREAD);
 237     instanceKlassHandle ih(THREAD, klassOop(interfaces->obj_at(index)));
 238     link_class_impl(ih, throw_verifyerror, CHECK_false);
 239   }
 240 
 241   // in case the class is linked in the process of linking its superclasses
 242   if (this_oop->is_linked()) {
 243     return true;
 244   }
 245 
 246   // trace only the link time for this klass that includes
 247   // the verification time
 248   PerfClassTraceTime vmtimer(ClassLoader::perf_class_link_time(),
 249                              ClassLoader::perf_class_link_selftime(),
 250                              ClassLoader::perf_classes_linked(),
 251                              jt->get_thread_stat()->perf_recursion_counts_addr(),
 252                              jt->get_thread_stat()->perf_timers_addr(),
 253                              PerfClassTraceTime::CLASS_LINK);
 254 
 255   // verification & rewriting
 256   {
 257     ObjectLocker ol(this_oop, THREAD);
 258     // rewritten will have been set if loader constraint error found
 259     // on an earlier link attempt
 260     // don't verify or rewrite if already rewritten
 261     if (!this_oop->is_linked()) {
 262       if (!this_oop->is_rewritten()) {
 263         {
 264           // Timer includes any side effects of class verification (resolution,
 265           // etc), but not recursive entry into verify_code().
 266           PerfClassTraceTime timer(ClassLoader::perf_class_verify_time(),
 267                                    ClassLoader::perf_class_verify_selftime(),
 268                                    ClassLoader::perf_classes_verified(),
 269                                    jt->get_thread_stat()->perf_recursion_counts_addr(),
 270                                    jt->get_thread_stat()->perf_timers_addr(),
 271                                    PerfClassTraceTime::CLASS_VERIFY);
 272           bool verify_ok = verify_code(this_oop, throw_verifyerror, THREAD);
 273           if (!verify_ok) {
 274             return false;
 275           }
 276         }
 277 
 278         // Just in case a side-effect of verify linked this class already
 279         // (which can sometimes happen since the verifier loads classes
 280         // using custom class loaders, which are free to initialize things)
 281         if (this_oop->is_linked()) {
 282           return true;
 283         }
 284 
 285         // also sets rewritten
 286         this_oop->rewrite_class(CHECK_false);
 287       }
 288 
 289       // Initialize the vtable and interface table after
 290       // methods have been rewritten since rewrite may
 291       // fabricate new methodOops.
 292       // also does loader constraint checking
 293       if (!this_oop()->is_shared()) {
 294         ResourceMark rm(THREAD);
 295         this_oop->vtable()->initialize_vtable(true, CHECK_false);
 296         this_oop->itable()->initialize_itable(true, CHECK_false);
 297       }
 298 #ifdef ASSERT
 299       else {
 300         ResourceMark rm(THREAD);
 301         this_oop->vtable()->verify(tty, true);
 302         // In case itable verification is ever added.
 303         // this_oop->itable()->verify(tty, true);
 304       }
 305 #endif
 306       this_oop->set_init_state(linked);
 307       if (JvmtiExport::should_post_class_prepare()) {
 308         Thread *thread = THREAD;
 309         assert(thread->is_Java_thread(), "thread->is_Java_thread()");
 310         JvmtiExport::post_class_prepare((JavaThread *) thread, this_oop());
 311       }
 312     }
 313   }
 314   return true;
 315 }
 316 
 317 
 318 // Rewrite the byte codes of all of the methods of a class.
 319 // Three cases:
 320 //    During the link of a newly loaded class.
 321 //    During the preloading of classes to be written to the shared spaces.
 322 //      - Rewrite the methods and update the method entry points.
 323 //
 324 //    During the link of a class in the shared spaces.
 325 //      - The methods were already rewritten, update the metho entry points.
 326 //
 327 // The rewriter must be called exactly once. Rewriting must happen after
 328 // verification but before the first method of the class is executed.
 329 
 330 void instanceKlass::rewrite_class(TRAPS) {
 331   assert(is_loaded(), "must be loaded");
 332   instanceKlassHandle this_oop(THREAD, this->as_klassOop());
 333   if (this_oop->is_rewritten()) {
 334     assert(this_oop()->is_shared(), "rewriting an unshared class?");
 335     return;
 336   }
 337   Rewriter::rewrite(this_oop, CHECK); // No exception can happen here
 338   this_oop->set_rewritten();
 339 }
 340 
 341 
 342 void instanceKlass::initialize_impl(instanceKlassHandle this_oop, TRAPS) {
 343   // Make sure klass is linked (verified) before initialization
 344   // A class could already be verified, since it has been reflected upon.
 345   this_oop->link_class(CHECK);
 346 
 347   DTRACE_CLASSINIT_PROBE(required, instanceKlass::cast(this_oop()), -1);
 348 
 349   bool wait = false;
 350 
 351   // refer to the JVM book page 47 for description of steps
 352   // Step 1
 353   { ObjectLocker ol(this_oop, THREAD);
 354 
 355     Thread *self = THREAD; // it's passed the current thread
 356 
 357     // Step 2
 358     // If we were to use wait() instead of waitInterruptibly() then
 359     // we might end up throwing IE from link/symbol resolution sites
 360     // that aren't expected to throw.  This would wreak havoc.  See 6320309.
 361     while(this_oop->is_being_initialized() && !this_oop->is_reentrant_initialization(self)) {
 362         wait = true;
 363       ol.waitUninterruptibly(CHECK);
 364     }
 365 
 366     // Step 3
 367     if (this_oop->is_being_initialized() && this_oop->is_reentrant_initialization(self)) {
 368       DTRACE_CLASSINIT_PROBE_WAIT(recursive, instanceKlass::cast(this_oop()), -1,wait);
 369       return;
 370     }
 371 
 372     // Step 4
 373     if (this_oop->is_initialized()) {
 374       DTRACE_CLASSINIT_PROBE_WAIT(concurrent, instanceKlass::cast(this_oop()), -1,wait);
 375       return;
 376     }
 377 
 378     // Step 5
 379     if (this_oop->is_in_error_state()) {
 380       DTRACE_CLASSINIT_PROBE_WAIT(erroneous, instanceKlass::cast(this_oop()), -1,wait);
 381       ResourceMark rm(THREAD);
 382       const char* desc = "Could not initialize class ";
 383       const char* className = this_oop->external_name();
 384       size_t msglen = strlen(desc) + strlen(className) + 1;
 385       char* message = NEW_RESOURCE_ARRAY(char, msglen);
 386       if (NULL == message) {
 387         // Out of memory: can't create detailed error message
 388         THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), className);
 389       } else {
 390         jio_snprintf(message, msglen, "%s%s", desc, className);
 391         THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), message);
 392       }
 393     }
 394 
 395     // Step 6
 396     this_oop->set_init_state(being_initialized);
 397     this_oop->set_init_thread(self);
 398   }
 399 
 400   // Step 7
 401   klassOop super_klass = this_oop->super();
 402   if (super_klass != NULL && !this_oop->is_interface() && Klass::cast(super_klass)->should_be_initialized()) {
 403     Klass::cast(super_klass)->initialize(THREAD);
 404 
 405     if (HAS_PENDING_EXCEPTION) {
 406       Handle e(THREAD, PENDING_EXCEPTION);
 407       CLEAR_PENDING_EXCEPTION;
 408       {
 409         EXCEPTION_MARK;
 410         this_oop->set_initialization_state_and_notify(initialization_error, THREAD); // Locks object, set state, and notify all waiting threads
 411         CLEAR_PENDING_EXCEPTION;   // ignore any exception thrown, superclass initialization error is thrown below
 412       }
 413       DTRACE_CLASSINIT_PROBE_WAIT(super__failed, instanceKlass::cast(this_oop()), -1,wait);
 414       THROW_OOP(e());
 415     }
 416   }
 417 
 418   // Step 8
 419   {
 420     assert(THREAD->is_Java_thread(), "non-JavaThread in initialize_impl");
 421     JavaThread* jt = (JavaThread*)THREAD;
 422     DTRACE_CLASSINIT_PROBE_WAIT(clinit, instanceKlass::cast(this_oop()), -1,wait);
 423     // Timer includes any side effects of class initialization (resolution,
 424     // etc), but not recursive entry into call_class_initializer().
 425     PerfClassTraceTime timer(ClassLoader::perf_class_init_time(),
 426                              ClassLoader::perf_class_init_selftime(),
 427                              ClassLoader::perf_classes_inited(),
 428                              jt->get_thread_stat()->perf_recursion_counts_addr(),
 429                              jt->get_thread_stat()->perf_timers_addr(),
 430                              PerfClassTraceTime::CLASS_CLINIT);
 431     this_oop->call_class_initializer(THREAD);
 432   }
 433 
 434   // Step 9
 435   if (!HAS_PENDING_EXCEPTION) {
 436     this_oop->set_initialization_state_and_notify(fully_initialized, CHECK);
 437     { ResourceMark rm(THREAD);
 438       debug_only(this_oop->vtable()->verify(tty, true);)
 439     }
 440   }
 441   else {
 442     // Step 10 and 11
 443     Handle e(THREAD, PENDING_EXCEPTION);
 444     CLEAR_PENDING_EXCEPTION;
 445     {
 446       EXCEPTION_MARK;
 447       this_oop->set_initialization_state_and_notify(initialization_error, THREAD);
 448       CLEAR_PENDING_EXCEPTION;   // ignore any exception thrown, class initialization error is thrown below
 449     }
 450     DTRACE_CLASSINIT_PROBE_WAIT(error, instanceKlass::cast(this_oop()), -1,wait);
 451     if (e->is_a(SystemDictionary::Error_klass())) {
 452       THROW_OOP(e());
 453     } else {
 454       JavaCallArguments args(e);
 455       THROW_ARG(vmSymbolHandles::java_lang_ExceptionInInitializerError(),
 456                 vmSymbolHandles::throwable_void_signature(),
 457                 &args);
 458     }
 459   }
 460   DTRACE_CLASSINIT_PROBE_WAIT(end, instanceKlass::cast(this_oop()), -1,wait);
 461 }
 462 
 463 
 464 // Note: implementation moved to static method to expose the this pointer.
 465 void instanceKlass::set_initialization_state_and_notify(ClassState state, TRAPS) {
 466   instanceKlassHandle kh(THREAD, this->as_klassOop());
 467   set_initialization_state_and_notify_impl(kh, state, CHECK);
 468 }
 469 
 470 void instanceKlass::set_initialization_state_and_notify_impl(instanceKlassHandle this_oop, ClassState state, TRAPS) {
 471   ObjectLocker ol(this_oop, THREAD);
 472   this_oop->set_init_state(state);
 473   ol.notify_all(CHECK);
 474 }
 475 
 476 void instanceKlass::add_implementor(klassOop k) {
 477   assert(Compile_lock->owned_by_self(), "");
 478   // Filter out my subinterfaces.
 479   // (Note: Interfaces are never on the subklass list.)
 480   if (instanceKlass::cast(k)->is_interface()) return;
 481 
 482   // Filter out subclasses whose supers already implement me.
 483   // (Note: CHA must walk subclasses of direct implementors
 484   // in order to locate indirect implementors.)
 485   klassOop sk = instanceKlass::cast(k)->super();
 486   if (sk != NULL && instanceKlass::cast(sk)->implements_interface(as_klassOop()))
 487     // We only need to check one immediate superclass, since the
 488     // implements_interface query looks at transitive_interfaces.
 489     // Any supers of the super have the same (or fewer) transitive_interfaces.
 490     return;
 491 
 492   // Update number of implementors
 493   int i = _nof_implementors++;
 494 
 495   // Record this implementor, if there are not too many already
 496   if (i < implementors_limit) {
 497     assert(_implementors[i] == NULL, "should be exactly one implementor");
 498     oop_store_without_check((oop*)&_implementors[i], k);
 499   } else if (i == implementors_limit) {
 500     // clear out the list on first overflow
 501     for (int i2 = 0; i2 < implementors_limit; i2++)
 502       oop_store_without_check((oop*)&_implementors[i2], NULL);
 503   }
 504 
 505   // The implementor also implements the transitive_interfaces
 506   for (int index = 0; index < local_interfaces()->length(); index++) {
 507     instanceKlass::cast(klassOop(local_interfaces()->obj_at(index)))->add_implementor(k);
 508   }
 509 }
 510 
 511 void instanceKlass::init_implementor() {
 512   for (int i = 0; i < implementors_limit; i++)
 513     oop_store_without_check((oop*)&_implementors[i], NULL);
 514   _nof_implementors = 0;
 515 }
 516 
 517 
 518 void instanceKlass::process_interfaces(Thread *thread) {
 519   // link this class into the implementors list of every interface it implements
 520   KlassHandle this_as_oop (thread, this->as_klassOop());
 521   for (int i = local_interfaces()->length() - 1; i >= 0; i--) {
 522     assert(local_interfaces()->obj_at(i)->is_klass(), "must be a klass");
 523     instanceKlass* interf = instanceKlass::cast(klassOop(local_interfaces()->obj_at(i)));
 524     assert(interf->is_interface(), "expected interface");
 525     interf->add_implementor(this_as_oop());
 526   }
 527 }
 528 
 529 bool instanceKlass::can_be_primary_super_slow() const {
 530   if (is_interface())
 531     return false;
 532   else
 533     return Klass::can_be_primary_super_slow();
 534 }
 535 
 536 objArrayOop instanceKlass::compute_secondary_supers(int num_extra_slots, TRAPS) {
 537   // The secondaries are the implemented interfaces.
 538   instanceKlass* ik = instanceKlass::cast(as_klassOop());
 539   objArrayHandle interfaces (THREAD, ik->transitive_interfaces());
 540   int num_secondaries = num_extra_slots + interfaces->length();
 541   if (num_secondaries == 0) {
 542     return Universe::the_empty_system_obj_array();
 543   } else if (num_extra_slots == 0) {
 544     return interfaces();
 545   } else {
 546     // a mix of both
 547     objArrayOop secondaries = oopFactory::new_system_objArray(num_secondaries, CHECK_NULL);
 548     for (int i = 0; i < interfaces->length(); i++) {
 549       secondaries->obj_at_put(num_extra_slots+i, interfaces->obj_at(i));
 550     }
 551     return secondaries;
 552   }
 553 }
 554 
 555 bool instanceKlass::compute_is_subtype_of(klassOop k) {
 556   if (Klass::cast(k)->is_interface()) {
 557     return implements_interface(k);
 558   } else {
 559     return Klass::compute_is_subtype_of(k);
 560   }
 561 }
 562 
 563 bool instanceKlass::implements_interface(klassOop k) const {
 564   if (as_klassOop() == k) return true;
 565   assert(Klass::cast(k)->is_interface(), "should be an interface class");
 566   for (int i = 0; i < transitive_interfaces()->length(); i++) {
 567     if (transitive_interfaces()->obj_at(i) == k) {
 568       return true;
 569     }
 570   }
 571   return false;
 572 }
 573 
 574 objArrayOop instanceKlass::allocate_objArray(int n, int length, TRAPS) {
 575   if (length < 0) THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
 576   if (length > arrayOopDesc::max_array_length(T_OBJECT)) {
 577     report_java_out_of_memory("Requested array size exceeds VM limit");
 578     THROW_OOP_0(Universe::out_of_memory_error_array_size());
 579   }
 580   int size = objArrayOopDesc::object_size(length);
 581   klassOop ak = array_klass(n, CHECK_NULL);
 582   KlassHandle h_ak (THREAD, ak);
 583   objArrayOop o =
 584     (objArrayOop)CollectedHeap::array_allocate(h_ak, size, length, CHECK_NULL);
 585   return o;
 586 }
 587 
 588 instanceOop instanceKlass::register_finalizer(instanceOop i, TRAPS) {
 589   if (TraceFinalizerRegistration) {
 590     tty->print("Registered ");
 591     i->print_value_on(tty);
 592     tty->print_cr(" (" INTPTR_FORMAT ") as finalizable", (address)i);
 593   }
 594   instanceHandle h_i(THREAD, i);
 595   // Pass the handle as argument, JavaCalls::call expects oop as jobjects
 596   JavaValue result(T_VOID);
 597   JavaCallArguments args(h_i);
 598   methodHandle mh (THREAD, Universe::finalizer_register_method());
 599   JavaCalls::call(&result, mh, &args, CHECK_NULL);
 600   return h_i();
 601 }
 602 
 603 instanceOop instanceKlass::allocate_instance(TRAPS) {
 604   bool has_finalizer_flag = has_finalizer(); // Query before possible GC
 605   int size = size_helper();  // Query before forming handle.
 606 
 607   KlassHandle h_k(THREAD, as_klassOop());
 608 
 609   instanceOop i;
 610 
 611   i = (instanceOop)CollectedHeap::obj_allocate(h_k, size, CHECK_NULL);
 612   if (has_finalizer_flag && !RegisterFinalizersAtInit) {
 613     i = register_finalizer(i, CHECK_NULL);
 614   }
 615   return i;
 616 }
 617 
 618 instanceOop instanceKlass::allocate_permanent_instance(TRAPS) {
 619   // Finalizer registration occurs in the Object.<init> constructor
 620   // and constructors normally aren't run when allocating perm
 621   // instances so simply disallow finalizable perm objects.  This can
 622   // be relaxed if a need for it is found.
 623   assert(!has_finalizer(), "perm objects not allowed to have finalizers");
 624   int size = size_helper();  // Query before forming handle.
 625   KlassHandle h_k(THREAD, as_klassOop());
 626   instanceOop i = (instanceOop)
 627     CollectedHeap::permanent_obj_allocate(h_k, size, CHECK_NULL);
 628   return i;
 629 }
 630 
 631 void instanceKlass::check_valid_for_instantiation(bool throwError, TRAPS) {
 632   if (is_interface() || is_abstract()) {
 633     ResourceMark rm(THREAD);
 634     THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 635               : vmSymbols::java_lang_InstantiationException(), external_name());
 636   }
 637   if (as_klassOop() == SystemDictionary::Class_klass()) {
 638     ResourceMark rm(THREAD);
 639     THROW_MSG(throwError ? vmSymbols::java_lang_IllegalAccessError()
 640               : vmSymbols::java_lang_IllegalAccessException(), external_name());
 641   }
 642 }
 643 
 644 klassOop instanceKlass::array_klass_impl(bool or_null, int n, TRAPS) {
 645   instanceKlassHandle this_oop(THREAD, as_klassOop());
 646   return array_klass_impl(this_oop, or_null, n, THREAD);
 647 }
 648 
 649 klassOop instanceKlass::array_klass_impl(instanceKlassHandle this_oop, bool or_null, int n, TRAPS) {
 650   if (this_oop->array_klasses() == NULL) {
 651     if (or_null) return NULL;
 652 
 653     ResourceMark rm;
 654     JavaThread *jt = (JavaThread *)THREAD;
 655     {
 656       // Atomic creation of array_klasses
 657       MutexLocker mc(Compile_lock, THREAD);   // for vtables
 658       MutexLocker ma(MultiArray_lock, THREAD);
 659 
 660       // Check if update has already taken place
 661       if (this_oop->array_klasses() == NULL) {
 662         objArrayKlassKlass* oakk =
 663           (objArrayKlassKlass*)Universe::objArrayKlassKlassObj()->klass_part();
 664 
 665         klassOop  k = oakk->allocate_objArray_klass(1, this_oop, CHECK_NULL);
 666         this_oop->set_array_klasses(k);
 667       }
 668     }
 669   }
 670   // _this will always be set at this point
 671   objArrayKlass* oak = (objArrayKlass*)this_oop->array_klasses()->klass_part();
 672   if (or_null) {
 673     return oak->array_klass_or_null(n);
 674   }
 675   return oak->array_klass(n, CHECK_NULL);
 676 }
 677 
 678 klassOop instanceKlass::array_klass_impl(bool or_null, TRAPS) {
 679   return array_klass_impl(or_null, 1, THREAD);
 680 }
 681 
 682 void instanceKlass::call_class_initializer(TRAPS) {
 683   instanceKlassHandle ik (THREAD, as_klassOop());
 684   call_class_initializer_impl(ik, THREAD);
 685 }
 686 
 687 static int call_class_initializer_impl_counter = 0;   // for debugging
 688 
 689 methodOop instanceKlass::class_initializer() {
 690   return find_method(vmSymbols::class_initializer_name(), vmSymbols::void_method_signature());
 691 }
 692 
 693 void instanceKlass::call_class_initializer_impl(instanceKlassHandle this_oop, TRAPS) {
 694   methodHandle h_method(THREAD, this_oop->class_initializer());
 695   assert(!this_oop->is_initialized(), "we cannot initialize twice");
 696   if (TraceClassInitialization) {
 697     tty->print("%d Initializing ", call_class_initializer_impl_counter++);
 698     this_oop->name()->print_value();
 699     tty->print_cr("%s (" INTPTR_FORMAT ")", h_method() == NULL ? "(no method)" : "", (address)this_oop());
 700   }
 701   if (h_method() != NULL) {
 702     JavaCallArguments args; // No arguments
 703     JavaValue result(T_VOID);
 704     JavaCalls::call(&result, h_method, &args, CHECK); // Static call (no args)
 705   }
 706 }
 707 
 708 
 709 void instanceKlass::mask_for(methodHandle method, int bci,
 710   InterpreterOopMap* entry_for) {
 711   // Dirty read, then double-check under a lock.
 712   if (_oop_map_cache == NULL) {
 713     // Otherwise, allocate a new one.
 714     MutexLocker x(OopMapCacheAlloc_lock);
 715     // First time use. Allocate a cache in C heap
 716     if (_oop_map_cache == NULL) {
 717       _oop_map_cache = new OopMapCache();
 718     }
 719   }
 720   // _oop_map_cache is constant after init; lookup below does is own locking.
 721   _oop_map_cache->lookup(method, bci, entry_for);
 722 }
 723 
 724 
 725 bool instanceKlass::find_local_field(symbolOop name, symbolOop sig, fieldDescriptor* fd) const {
 726   const int n = fields()->length();
 727   for (int i = 0; i < n; i += next_offset ) {
 728     int name_index = fields()->ushort_at(i + name_index_offset);
 729     int sig_index  = fields()->ushort_at(i + signature_index_offset);
 730     symbolOop f_name = constants()->symbol_at(name_index);
 731     symbolOop f_sig  = constants()->symbol_at(sig_index);
 732     if (f_name == name && f_sig == sig) {
 733       fd->initialize(as_klassOop(), i);
 734       return true;
 735     }
 736   }
 737   return false;
 738 }
 739 
 740 
 741 void instanceKlass::field_names_and_sigs_iterate(OopClosure* closure) {
 742   const int n = fields()->length();
 743   for (int i = 0; i < n; i += next_offset ) {
 744     int name_index = fields()->ushort_at(i + name_index_offset);
 745     symbolOop name = constants()->symbol_at(name_index);
 746     closure->do_oop((oop*)&name);
 747 
 748     int sig_index  = fields()->ushort_at(i + signature_index_offset);
 749     symbolOop sig = constants()->symbol_at(sig_index);
 750     closure->do_oop((oop*)&sig);
 751   }
 752 }
 753 
 754 
 755 klassOop instanceKlass::find_interface_field(symbolOop name, symbolOop sig, fieldDescriptor* fd) const {
 756   const int n = local_interfaces()->length();
 757   for (int i = 0; i < n; i++) {
 758     klassOop intf1 = klassOop(local_interfaces()->obj_at(i));
 759     assert(Klass::cast(intf1)->is_interface(), "just checking type");
 760     // search for field in current interface
 761     if (instanceKlass::cast(intf1)->find_local_field(name, sig, fd)) {
 762       assert(fd->is_static(), "interface field must be static");
 763       return intf1;
 764     }
 765     // search for field in direct superinterfaces
 766     klassOop intf2 = instanceKlass::cast(intf1)->find_interface_field(name, sig, fd);
 767     if (intf2 != NULL) return intf2;
 768   }
 769   // otherwise field lookup fails
 770   return NULL;
 771 }
 772 
 773 
 774 klassOop instanceKlass::find_field(symbolOop name, symbolOop sig, fieldDescriptor* fd) const {
 775   // search order according to newest JVM spec (5.4.3.2, p.167).
 776   // 1) search for field in current klass
 777   if (find_local_field(name, sig, fd)) {
 778     return as_klassOop();
 779   }
 780   // 2) search for field recursively in direct superinterfaces
 781   { klassOop intf = find_interface_field(name, sig, fd);
 782     if (intf != NULL) return intf;
 783   }
 784   // 3) apply field lookup recursively if superclass exists
 785   { klassOop supr = super();
 786     if (supr != NULL) return instanceKlass::cast(supr)->find_field(name, sig, fd);
 787   }
 788   // 4) otherwise field lookup fails
 789   return NULL;
 790 }
 791 
 792 
 793 klassOop instanceKlass::find_field(symbolOop name, symbolOop sig, bool is_static, fieldDescriptor* fd) const {
 794   // search order according to newest JVM spec (5.4.3.2, p.167).
 795   // 1) search for field in current klass
 796   if (find_local_field(name, sig, fd)) {
 797     if (fd->is_static() == is_static) return as_klassOop();
 798   }
 799   // 2) search for field recursively in direct superinterfaces
 800   if (is_static) {
 801     klassOop intf = find_interface_field(name, sig, fd);
 802     if (intf != NULL) return intf;
 803   }
 804   // 3) apply field lookup recursively if superclass exists
 805   { klassOop supr = super();
 806     if (supr != NULL) return instanceKlass::cast(supr)->find_field(name, sig, is_static, fd);
 807   }
 808   // 4) otherwise field lookup fails
 809   return NULL;
 810 }
 811 
 812 
 813 bool instanceKlass::find_local_field_from_offset(int offset, bool is_static, fieldDescriptor* fd) const {
 814   int length = fields()->length();
 815   for (int i = 0; i < length; i += next_offset) {
 816     if (offset_from_fields( i ) == offset) {
 817       fd->initialize(as_klassOop(), i);
 818       if (fd->is_static() == is_static) return true;
 819     }
 820   }
 821   return false;
 822 }
 823 
 824 
 825 bool instanceKlass::find_field_from_offset(int offset, bool is_static, fieldDescriptor* fd) const {
 826   klassOop klass = as_klassOop();
 827   while (klass != NULL) {
 828     if (instanceKlass::cast(klass)->find_local_field_from_offset(offset, is_static, fd)) {
 829       return true;
 830     }
 831     klass = Klass::cast(klass)->super();
 832   }
 833   return false;
 834 }
 835 
 836 
 837 void instanceKlass::methods_do(void f(methodOop method)) {
 838   int len = methods()->length();
 839   for (int index = 0; index < len; index++) {
 840     methodOop m = methodOop(methods()->obj_at(index));
 841     assert(m->is_method(), "must be method");
 842     f(m);
 843   }
 844 }
 845 
 846 void instanceKlass::do_local_static_fields(FieldClosure* cl) {
 847   fieldDescriptor fd;
 848   int length = fields()->length();
 849   for (int i = 0; i < length; i += next_offset) {
 850     fd.initialize(as_klassOop(), i);
 851     if (fd.is_static()) cl->do_field(&fd);
 852   }
 853 }
 854 
 855 
 856 void instanceKlass::do_local_static_fields(void f(fieldDescriptor*, TRAPS), TRAPS) {
 857   instanceKlassHandle h_this(THREAD, as_klassOop());
 858   do_local_static_fields_impl(h_this, f, CHECK);
 859 }
 860 
 861 
 862 void instanceKlass::do_local_static_fields_impl(instanceKlassHandle this_oop, void f(fieldDescriptor* fd, TRAPS), TRAPS) {
 863   fieldDescriptor fd;
 864   int length = this_oop->fields()->length();
 865   for (int i = 0; i < length; i += next_offset) {
 866     fd.initialize(this_oop(), i);
 867     if (fd.is_static()) { f(&fd, CHECK); } // Do NOT remove {}! (CHECK macro expands into several statements)
 868   }
 869 }
 870 
 871 
 872 static int compare_fields_by_offset(int* a, int* b) {
 873   return a[0] - b[0];
 874 }
 875 
 876 void instanceKlass::do_nonstatic_fields(FieldClosure* cl) {
 877   instanceKlass* super = superklass();
 878   if (super != NULL) {
 879     super->do_nonstatic_fields(cl);
 880   }
 881   fieldDescriptor fd;
 882   int length = fields()->length();
 883   // In DebugInfo nonstatic fields are sorted by offset.
 884   int* fields_sorted = NEW_C_HEAP_ARRAY(int, 2*(length+1));
 885   int j = 0;
 886   for (int i = 0; i < length; i += next_offset) {
 887     fd.initialize(as_klassOop(), i);
 888     if (!fd.is_static()) {
 889       fields_sorted[j + 0] = fd.offset();
 890       fields_sorted[j + 1] = i;
 891       j += 2;
 892     }
 893   }
 894   if (j > 0) {
 895     length = j;
 896     // _sort_Fn is defined in growableArray.hpp.
 897     qsort(fields_sorted, length/2, 2*sizeof(int), (_sort_Fn)compare_fields_by_offset);
 898     for (int i = 0; i < length; i += 2) {
 899       fd.initialize(as_klassOop(), fields_sorted[i + 1]);
 900       assert(!fd.is_static() && fd.offset() == fields_sorted[i], "only nonstatic fields");
 901       cl->do_field(&fd);
 902     }
 903   }
 904   FREE_C_HEAP_ARRAY(int, fields_sorted);
 905 }
 906 
 907 
 908 void instanceKlass::array_klasses_do(void f(klassOop k)) {
 909   if (array_klasses() != NULL)
 910     arrayKlass::cast(array_klasses())->array_klasses_do(f);
 911 }
 912 
 913 
 914 void instanceKlass::with_array_klasses_do(void f(klassOop k)) {
 915   f(as_klassOop());
 916   array_klasses_do(f);
 917 }
 918 
 919 #ifdef ASSERT
 920 static int linear_search(objArrayOop methods, symbolOop name, symbolOop signature) {
 921   int len = methods->length();
 922   for (int index = 0; index < len; index++) {
 923     methodOop m = (methodOop)(methods->obj_at(index));
 924     assert(m->is_method(), "must be method");
 925     if (m->signature() == signature && m->name() == name) {
 926        return index;
 927     }
 928   }
 929   return -1;
 930 }
 931 #endif
 932 
 933 methodOop instanceKlass::find_method(symbolOop name, symbolOop signature) const {
 934   return instanceKlass::find_method(methods(), name, signature);
 935 }
 936 
 937 methodOop instanceKlass::find_method(objArrayOop methods, symbolOop name, symbolOop signature) {
 938   int len = methods->length();
 939   // methods are sorted, so do binary search
 940   int l = 0;
 941   int h = len - 1;
 942   while (l <= h) {
 943     int mid = (l + h) >> 1;
 944     methodOop m = (methodOop)methods->obj_at(mid);
 945     assert(m->is_method(), "must be method");
 946     int res = m->name()->fast_compare(name);
 947     if (res == 0) {
 948       // found matching name; do linear search to find matching signature
 949       // first, quick check for common case
 950       if (m->signature() == signature) return m;
 951       // search downwards through overloaded methods
 952       int i;
 953       for (i = mid - 1; i >= l; i--) {
 954         methodOop m = (methodOop)methods->obj_at(i);
 955         assert(m->is_method(), "must be method");
 956         if (m->name() != name) break;
 957         if (m->signature() == signature) return m;
 958       }
 959       // search upwards
 960       for (i = mid + 1; i <= h; i++) {
 961         methodOop m = (methodOop)methods->obj_at(i);
 962         assert(m->is_method(), "must be method");
 963         if (m->name() != name) break;
 964         if (m->signature() == signature) return m;
 965       }
 966       // not found
 967 #ifdef ASSERT
 968       int index = linear_search(methods, name, signature);
 969       assert(index == -1, err_msg("binary search should have found entry %d", index));
 970 #endif
 971       return NULL;
 972     } else if (res < 0) {
 973       l = mid + 1;
 974     } else {
 975       h = mid - 1;
 976     }
 977   }
 978 #ifdef ASSERT
 979   int index = linear_search(methods, name, signature);
 980   assert(index == -1, err_msg("binary search should have found entry %d", index));
 981 #endif
 982   return NULL;
 983 }
 984 
 985 methodOop instanceKlass::uncached_lookup_method(symbolOop name, symbolOop signature) const {
 986   klassOop klass = as_klassOop();
 987   while (klass != NULL) {
 988     methodOop method = instanceKlass::cast(klass)->find_method(name, signature);
 989     if (method != NULL) return method;
 990     klass = instanceKlass::cast(klass)->super();
 991   }
 992   return NULL;
 993 }
 994 
 995 // lookup a method in all the interfaces that this class implements
 996 methodOop instanceKlass::lookup_method_in_all_interfaces(symbolOop name,
 997                                                          symbolOop signature) const {
 998   objArrayOop all_ifs = instanceKlass::cast(as_klassOop())->transitive_interfaces();
 999   int num_ifs = all_ifs->length();
1000   instanceKlass *ik = NULL;
1001   for (int i = 0; i < num_ifs; i++) {
1002     ik = instanceKlass::cast(klassOop(all_ifs->obj_at(i)));
1003     methodOop m = ik->lookup_method(name, signature);
1004     if (m != NULL) {
1005       return m;
1006     }
1007   }
1008   return NULL;
1009 }
1010 
1011 /* jni_id_for_impl for jfieldIds only */
1012 JNIid* instanceKlass::jni_id_for_impl(instanceKlassHandle this_oop, int offset) {
1013   MutexLocker ml(JfieldIdCreation_lock);
1014   // Retry lookup after we got the lock
1015   JNIid* probe = this_oop->jni_ids() == NULL ? NULL : this_oop->jni_ids()->find(offset);
1016   if (probe == NULL) {
1017     // Slow case, allocate new static field identifier
1018     probe = new JNIid(this_oop->as_klassOop(), offset, this_oop->jni_ids());
1019     this_oop->set_jni_ids(probe);
1020   }
1021   return probe;
1022 }
1023 
1024 
1025 /* jni_id_for for jfieldIds only */
1026 JNIid* instanceKlass::jni_id_for(int offset) {
1027   JNIid* probe = jni_ids() == NULL ? NULL : jni_ids()->find(offset);
1028   if (probe == NULL) {
1029     probe = jni_id_for_impl(this->as_klassOop(), offset);
1030   }
1031   return probe;
1032 }
1033 
1034 
1035 // Lookup or create a jmethodID.
1036 // This code is called by the VMThread and JavaThreads so the
1037 // locking has to be done very carefully to avoid deadlocks
1038 // and/or other cache consistency problems.
1039 //
1040 jmethodID instanceKlass::get_jmethod_id(instanceKlassHandle ik_h, methodHandle method_h) {
1041   size_t idnum = (size_t)method_h->method_idnum();
1042   jmethodID* jmeths = ik_h->methods_jmethod_ids_acquire();
1043   size_t length = 0;
1044   jmethodID id = NULL;
1045 
1046   // We use a double-check locking idiom here because this cache is
1047   // performance sensitive. In the normal system, this cache only
1048   // transitions from NULL to non-NULL which is safe because we use
1049   // release_set_methods_jmethod_ids() to advertise the new cache.
1050   // A partially constructed cache should never be seen by a racing
1051   // thread. We also use release_store_ptr() to save a new jmethodID
1052   // in the cache so a partially constructed jmethodID should never be
1053   // seen either. Cache reads of existing jmethodIDs proceed without a
1054   // lock, but cache writes of a new jmethodID requires uniqueness and
1055   // creation of the cache itself requires no leaks so a lock is
1056   // generally acquired in those two cases.
1057   //
1058   // If the RedefineClasses() API has been used, then this cache can
1059   // grow and we'll have transitions from non-NULL to bigger non-NULL.
1060   // Cache creation requires no leaks and we require safety between all
1061   // cache accesses and freeing of the old cache so a lock is generally
1062   // acquired when the RedefineClasses() API has been used.
1063 
1064   if (jmeths != NULL) {
1065     // the cache already exists
1066     if (!ik_h->idnum_can_increment()) {
1067       // the cache can't grow so we can just get the current values
1068       get_jmethod_id_length_value(jmeths, idnum, &length, &id);
1069     } else {
1070       // cache can grow so we have to be more careful
1071       if (Threads::number_of_threads() == 0 ||
1072           SafepointSynchronize::is_at_safepoint()) {
1073         // we're single threaded or at a safepoint - no locking needed
1074         get_jmethod_id_length_value(jmeths, idnum, &length, &id);
1075       } else {
1076         MutexLocker ml(JmethodIdCreation_lock);
1077         get_jmethod_id_length_value(jmeths, idnum, &length, &id);
1078       }
1079     }
1080   }
1081   // implied else:
1082   // we need to allocate a cache so default length and id values are good
1083 
1084   if (jmeths == NULL ||   // no cache yet
1085       length <= idnum ||  // cache is too short
1086       id == NULL) {       // cache doesn't contain entry
1087 
1088     // This function can be called by the VMThread so we have to do all
1089     // things that might block on a safepoint before grabbing the lock.
1090     // Otherwise, we can deadlock with the VMThread or have a cache
1091     // consistency issue. These vars keep track of what we might have
1092     // to free after the lock is dropped.
1093     jmethodID  to_dealloc_id     = NULL;
1094     jmethodID* to_dealloc_jmeths = NULL;
1095 
1096     // may not allocate new_jmeths or use it if we allocate it
1097     jmethodID* new_jmeths = NULL;
1098     if (length <= idnum) {
1099       // allocate a new cache that might be used
1100       size_t size = MAX2(idnum+1, (size_t)ik_h->idnum_allocated_count());
1101       new_jmeths = NEW_C_HEAP_ARRAY(jmethodID, size+1);
1102       memset(new_jmeths, 0, (size+1)*sizeof(jmethodID));
1103       // cache size is stored in element[0], other elements offset by one
1104       new_jmeths[0] = (jmethodID)size;
1105     }
1106 
1107     // allocate a new jmethodID that might be used
1108     jmethodID new_id = NULL;
1109     if (method_h->is_old() && !method_h->is_obsolete()) {
1110       // The method passed in is old (but not obsolete), we need to use the current version
1111       methodOop current_method = ik_h->method_with_idnum((int)idnum);
1112       assert(current_method != NULL, "old and but not obsolete, so should exist");
1113       methodHandle current_method_h(current_method == NULL? method_h() : current_method);
1114       new_id = JNIHandles::make_jmethod_id(current_method_h);
1115     } else {
1116       // It is the current version of the method or an obsolete method,
1117       // use the version passed in
1118       new_id = JNIHandles::make_jmethod_id(method_h);
1119     }
1120 
1121     if (Threads::number_of_threads() == 0 ||
1122         SafepointSynchronize::is_at_safepoint()) {
1123       // we're single threaded or at a safepoint - no locking needed
1124       id = get_jmethod_id_fetch_or_update(ik_h, idnum, new_id, new_jmeths,
1125                                           &to_dealloc_id, &to_dealloc_jmeths);
1126     } else {
1127       MutexLocker ml(JmethodIdCreation_lock);
1128       id = get_jmethod_id_fetch_or_update(ik_h, idnum, new_id, new_jmeths,
1129                                           &to_dealloc_id, &to_dealloc_jmeths);
1130     }
1131 
1132     // The lock has been dropped so we can free resources.
1133     // Free up either the old cache or the new cache if we allocated one.
1134     if (to_dealloc_jmeths != NULL) {
1135       FreeHeap(to_dealloc_jmeths);
1136     }
1137     // free up the new ID since it wasn't needed
1138     if (to_dealloc_id != NULL) {
1139       JNIHandles::destroy_jmethod_id(to_dealloc_id);
1140     }
1141   }
1142   return id;
1143 }
1144 
1145 
1146 // Common code to fetch the jmethodID from the cache or update the
1147 // cache with the new jmethodID. This function should never do anything
1148 // that causes the caller to go to a safepoint or we can deadlock with
1149 // the VMThread or have cache consistency issues.
1150 //
1151 jmethodID instanceKlass::get_jmethod_id_fetch_or_update(
1152             instanceKlassHandle ik_h, size_t idnum, jmethodID new_id,
1153             jmethodID* new_jmeths, jmethodID* to_dealloc_id_p,
1154             jmethodID** to_dealloc_jmeths_p) {
1155   assert(new_id != NULL, "sanity check");
1156   assert(to_dealloc_id_p != NULL, "sanity check");
1157   assert(to_dealloc_jmeths_p != NULL, "sanity check");
1158   assert(Threads::number_of_threads() == 0 ||
1159          SafepointSynchronize::is_at_safepoint() ||
1160          JmethodIdCreation_lock->owned_by_self(), "sanity check");
1161 
1162   // reacquire the cache - we are locked, single threaded or at a safepoint
1163   jmethodID* jmeths = ik_h->methods_jmethod_ids_acquire();
1164   jmethodID  id     = NULL;
1165   size_t     length = 0;
1166 
1167   if (jmeths == NULL ||                         // no cache yet
1168       (length = (size_t)jmeths[0]) <= idnum) {  // cache is too short
1169     if (jmeths != NULL) {
1170       // copy any existing entries from the old cache
1171       for (size_t index = 0; index < length; index++) {
1172         new_jmeths[index+1] = jmeths[index+1];
1173       }
1174       *to_dealloc_jmeths_p = jmeths;  // save old cache for later delete
1175     }
1176     ik_h->release_set_methods_jmethod_ids(jmeths = new_jmeths);
1177   } else {
1178     // fetch jmethodID (if any) from the existing cache
1179     id = jmeths[idnum+1];
1180     *to_dealloc_jmeths_p = new_jmeths;  // save new cache for later delete
1181   }
1182   if (id == NULL) {
1183     // No matching jmethodID in the existing cache or we have a new
1184     // cache or we just grew the cache. This cache write is done here
1185     // by the first thread to win the foot race because a jmethodID
1186     // needs to be unique once it is generally available.
1187     id = new_id;
1188 
1189     // The jmethodID cache can be read while unlocked so we have to
1190     // make sure the new jmethodID is complete before installing it
1191     // in the cache.
1192     OrderAccess::release_store_ptr(&jmeths[idnum+1], id);
1193   } else {
1194     *to_dealloc_id_p = new_id; // save new id for later delete
1195   }
1196   return id;
1197 }
1198 
1199 
1200 // Common code to get the jmethodID cache length and the jmethodID
1201 // value at index idnum if there is one.
1202 //
1203 void instanceKlass::get_jmethod_id_length_value(jmethodID* cache,
1204        size_t idnum, size_t *length_p, jmethodID* id_p) {
1205   assert(cache != NULL, "sanity check");
1206   assert(length_p != NULL, "sanity check");
1207   assert(id_p != NULL, "sanity check");
1208 
1209   // cache size is stored in element[0], other elements offset by one
1210   *length_p = (size_t)cache[0];
1211   if (*length_p <= idnum) {  // cache is too short
1212     *id_p = NULL;
1213   } else {
1214     *id_p = cache[idnum+1];  // fetch jmethodID (if any)
1215   }
1216 }
1217 
1218 
1219 // Lookup a jmethodID, NULL if not found.  Do no blocking, no allocations, no handles
1220 jmethodID instanceKlass::jmethod_id_or_null(methodOop method) {
1221   size_t idnum = (size_t)method->method_idnum();
1222   jmethodID* jmeths = methods_jmethod_ids_acquire();
1223   size_t length;                                // length assigned as debugging crumb
1224   jmethodID id = NULL;
1225   if (jmeths != NULL &&                         // If there is a cache
1226       (length = (size_t)jmeths[0]) > idnum) {   // and if it is long enough,
1227     id = jmeths[idnum+1];                       // Look up the id (may be NULL)
1228   }
1229   return id;
1230 }
1231 
1232 
1233 // Cache an itable index
1234 void instanceKlass::set_cached_itable_index(size_t idnum, int index) {
1235   int* indices = methods_cached_itable_indices_acquire();
1236   int* to_dealloc_indices = NULL;
1237 
1238   // We use a double-check locking idiom here because this cache is
1239   // performance sensitive. In the normal system, this cache only
1240   // transitions from NULL to non-NULL which is safe because we use
1241   // release_set_methods_cached_itable_indices() to advertise the
1242   // new cache. A partially constructed cache should never be seen
1243   // by a racing thread. Cache reads and writes proceed without a
1244   // lock, but creation of the cache itself requires no leaks so a
1245   // lock is generally acquired in that case.
1246   //
1247   // If the RedefineClasses() API has been used, then this cache can
1248   // grow and we'll have transitions from non-NULL to bigger non-NULL.
1249   // Cache creation requires no leaks and we require safety between all
1250   // cache accesses and freeing of the old cache so a lock is generally
1251   // acquired when the RedefineClasses() API has been used.
1252 
1253   if (indices == NULL || idnum_can_increment()) {
1254     // we need a cache or the cache can grow
1255     MutexLocker ml(JNICachedItableIndex_lock);
1256     // reacquire the cache to see if another thread already did the work
1257     indices = methods_cached_itable_indices_acquire();
1258     size_t length = 0;
1259     // cache size is stored in element[0], other elements offset by one
1260     if (indices == NULL || (length = (size_t)indices[0]) <= idnum) {
1261       size_t size = MAX2(idnum+1, (size_t)idnum_allocated_count());
1262       int* new_indices = NEW_C_HEAP_ARRAY(int, size+1);
1263       new_indices[0] = (int)size;
1264       // copy any existing entries
1265       size_t i;
1266       for (i = 0; i < length; i++) {
1267         new_indices[i+1] = indices[i+1];
1268       }
1269       // Set all the rest to -1
1270       for (i = length; i < size; i++) {
1271         new_indices[i+1] = -1;
1272       }
1273       if (indices != NULL) {
1274         // We have an old cache to delete so save it for after we
1275         // drop the lock.
1276         to_dealloc_indices = indices;
1277       }
1278       release_set_methods_cached_itable_indices(indices = new_indices);
1279     }
1280 
1281     if (idnum_can_increment()) {
1282       // this cache can grow so we have to write to it safely
1283       indices[idnum+1] = index;
1284     }
1285   } else {
1286     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1287   }
1288 
1289   if (!idnum_can_increment()) {
1290     // The cache cannot grow and this JNI itable index value does not
1291     // have to be unique like a jmethodID. If there is a race to set it,
1292     // it doesn't matter.
1293     indices[idnum+1] = index;
1294   }
1295 
1296   if (to_dealloc_indices != NULL) {
1297     // we allocated a new cache so free the old one
1298     FreeHeap(to_dealloc_indices);
1299   }
1300 }
1301 
1302 
1303 // Retrieve a cached itable index
1304 int instanceKlass::cached_itable_index(size_t idnum) {
1305   int* indices = methods_cached_itable_indices_acquire();
1306   if (indices != NULL && ((size_t)indices[0]) > idnum) {
1307      // indices exist and are long enough, retrieve possible cached
1308     return indices[idnum+1];
1309   }
1310   return -1;
1311 }
1312 
1313 
1314 //
1315 // nmethodBucket is used to record dependent nmethods for
1316 // deoptimization.  nmethod dependencies are actually <klass, method>
1317 // pairs but we really only care about the klass part for purposes of
1318 // finding nmethods which might need to be deoptimized.  Instead of
1319 // recording the method, a count of how many times a particular nmethod
1320 // was recorded is kept.  This ensures that any recording errors are
1321 // noticed since an nmethod should be removed as many times are it's
1322 // added.
1323 //
1324 class nmethodBucket {
1325  private:
1326   nmethod*       _nmethod;
1327   int            _count;
1328   nmethodBucket* _next;
1329 
1330  public:
1331   nmethodBucket(nmethod* nmethod, nmethodBucket* next) {
1332     _nmethod = nmethod;
1333     _next = next;
1334     _count = 1;
1335   }
1336   int count()                             { return _count; }
1337   int increment()                         { _count += 1; return _count; }
1338   int decrement()                         { _count -= 1; assert(_count >= 0, "don't underflow"); return _count; }
1339   nmethodBucket* next()                   { return _next; }
1340   void set_next(nmethodBucket* b)         { _next = b; }
1341   nmethod* get_nmethod()                  { return _nmethod; }
1342 };
1343 
1344 
1345 //
1346 // Walk the list of dependent nmethods searching for nmethods which
1347 // are dependent on the klassOop that was passed in and mark them for
1348 // deoptimization.  Returns the number of nmethods found.
1349 //
1350 int instanceKlass::mark_dependent_nmethods(DepChange& changes) {
1351   assert_locked_or_safepoint(CodeCache_lock);
1352   int found = 0;
1353   nmethodBucket* b = _dependencies;
1354   while (b != NULL) {
1355     nmethod* nm = b->get_nmethod();
1356     // since dependencies aren't removed until an nmethod becomes a zombie,
1357     // the dependency list may contain nmethods which aren't alive.
1358     if (nm->is_alive() && !nm->is_marked_for_deoptimization() && nm->check_dependency_on(changes)) {
1359       if (TraceDependencies) {
1360         ResourceMark rm;
1361         tty->print_cr("Marked for deoptimization");
1362         tty->print_cr("  context = %s", this->external_name());
1363         changes.print();
1364         nm->print();
1365         nm->print_dependencies();
1366       }
1367       nm->mark_for_deoptimization();
1368       found++;
1369     }
1370     b = b->next();
1371   }
1372   return found;
1373 }
1374 
1375 
1376 //
1377 // Add an nmethodBucket to the list of dependencies for this nmethod.
1378 // It's possible that an nmethod has multiple dependencies on this klass
1379 // so a count is kept for each bucket to guarantee that creation and
1380 // deletion of dependencies is consistent.
1381 //
1382 void instanceKlass::add_dependent_nmethod(nmethod* nm) {
1383   assert_locked_or_safepoint(CodeCache_lock);
1384   nmethodBucket* b = _dependencies;
1385   nmethodBucket* last = NULL;
1386   while (b != NULL) {
1387     if (nm == b->get_nmethod()) {
1388       b->increment();
1389       return;
1390     }
1391     b = b->next();
1392   }
1393   _dependencies = new nmethodBucket(nm, _dependencies);
1394 }
1395 
1396 
1397 //
1398 // Decrement count of the nmethod in the dependency list and remove
1399 // the bucket competely when the count goes to 0.  This method must
1400 // find a corresponding bucket otherwise there's a bug in the
1401 // recording of dependecies.
1402 //
1403 void instanceKlass::remove_dependent_nmethod(nmethod* nm) {
1404   assert_locked_or_safepoint(CodeCache_lock);
1405   nmethodBucket* b = _dependencies;
1406   nmethodBucket* last = NULL;
1407   while (b != NULL) {
1408     if (nm == b->get_nmethod()) {
1409       if (b->decrement() == 0) {
1410         if (last == NULL) {
1411           _dependencies = b->next();
1412         } else {
1413           last->set_next(b->next());
1414         }
1415         delete b;
1416       }
1417       return;
1418     }
1419     last = b;
1420     b = b->next();
1421   }
1422 #ifdef ASSERT
1423   tty->print_cr("### %s can't find dependent nmethod:", this->external_name());
1424   nm->print();
1425 #endif // ASSERT
1426   ShouldNotReachHere();
1427 }
1428 
1429 
1430 #ifndef PRODUCT
1431 void instanceKlass::print_dependent_nmethods(bool verbose) {
1432   nmethodBucket* b = _dependencies;
1433   int idx = 0;
1434   while (b != NULL) {
1435     nmethod* nm = b->get_nmethod();
1436     tty->print("[%d] count=%d { ", idx++, b->count());
1437     if (!verbose) {
1438       nm->print_on(tty, "nmethod");
1439       tty->print_cr(" } ");
1440     } else {
1441       nm->print();
1442       nm->print_dependencies();
1443       tty->print_cr("--- } ");
1444     }
1445     b = b->next();
1446   }
1447 }
1448 
1449 
1450 bool instanceKlass::is_dependent_nmethod(nmethod* nm) {
1451   nmethodBucket* b = _dependencies;
1452   while (b != NULL) {
1453     if (nm == b->get_nmethod()) {
1454       return true;
1455     }
1456     b = b->next();
1457   }
1458   return false;
1459 }
1460 #endif //PRODUCT
1461 
1462 
1463 #ifdef ASSERT
1464 template <class T> void assert_is_in(T *p) {
1465   T heap_oop = oopDesc::load_heap_oop(p);
1466   if (!oopDesc::is_null(heap_oop)) {
1467     oop o = oopDesc::decode_heap_oop_not_null(heap_oop);
1468     assert(Universe::heap()->is_in(o), "should be in heap");
1469   }
1470 }
1471 template <class T> void assert_is_in_closed_subset(T *p) {
1472   T heap_oop = oopDesc::load_heap_oop(p);
1473   if (!oopDesc::is_null(heap_oop)) {
1474     oop o = oopDesc::decode_heap_oop_not_null(heap_oop);
1475     assert(Universe::heap()->is_in_closed_subset(o), "should be in closed");
1476   }
1477 }
1478 template <class T> void assert_is_in_reserved(T *p) {
1479   T heap_oop = oopDesc::load_heap_oop(p);
1480   if (!oopDesc::is_null(heap_oop)) {
1481     oop o = oopDesc::decode_heap_oop_not_null(heap_oop);
1482     assert(Universe::heap()->is_in_reserved(o), "should be in reserved");
1483   }
1484 }
1485 template <class T> void assert_nothing(T *p) {}
1486 
1487 #else
1488 template <class T> void assert_is_in(T *p) {}
1489 template <class T> void assert_is_in_closed_subset(T *p) {}
1490 template <class T> void assert_is_in_reserved(T *p) {}
1491 template <class T> void assert_nothing(T *p) {}
1492 #endif // ASSERT
1493 
1494 //
1495 // Macros that iterate over areas of oops which are specialized on type of
1496 // oop pointer either narrow or wide, depending on UseCompressedOops
1497 //
1498 // Parameters are:
1499 //   T         - type of oop to point to (either oop or narrowOop)
1500 //   start_p   - starting pointer for region to iterate over
1501 //   count     - number of oops or narrowOops to iterate over
1502 //   do_oop    - action to perform on each oop (it's arbitrary C code which
1503 //               makes it more efficient to put in a macro rather than making
1504 //               it a template function)
1505 //   assert_fn - assert function which is template function because performance
1506 //               doesn't matter when enabled.
1507 #define InstanceKlass_SPECIALIZED_OOP_ITERATE( \
1508   T, start_p, count, do_oop,                \
1509   assert_fn)                                \
1510 {                                           \
1511   T* p         = (T*)(start_p);             \
1512   T* const end = p + (count);               \
1513   while (p < end) {                         \
1514     (assert_fn)(p);                         \
1515     do_oop;                                 \
1516     ++p;                                    \
1517   }                                         \
1518 }
1519 
1520 #define InstanceKlass_SPECIALIZED_OOP_REVERSE_ITERATE( \
1521   T, start_p, count, do_oop,                \
1522   assert_fn)                                \
1523 {                                           \
1524   T* const start = (T*)(start_p);           \
1525   T*       p     = start + (count);         \
1526   while (start < p) {                       \
1527     --p;                                    \
1528     (assert_fn)(p);                         \
1529     do_oop;                                 \
1530   }                                         \
1531 }
1532 
1533 #define InstanceKlass_SPECIALIZED_BOUNDED_OOP_ITERATE( \
1534   T, start_p, count, low, high,             \
1535   do_oop, assert_fn)                        \
1536 {                                           \
1537   T* const l = (T*)(low);                   \
1538   T* const h = (T*)(high);                  \
1539   assert(mask_bits((intptr_t)l, sizeof(T)-1) == 0 && \
1540          mask_bits((intptr_t)h, sizeof(T)-1) == 0,   \
1541          "bounded region must be properly aligned"); \
1542   T* p       = (T*)(start_p);               \
1543   T* end     = p + (count);                 \
1544   if (p < l) p = l;                         \
1545   if (end > h) end = h;                     \
1546   while (p < end) {                         \
1547     (assert_fn)(p);                         \
1548     do_oop;                                 \
1549     ++p;                                    \
1550   }                                         \
1551 }
1552 
1553 
1554 // The following macros call specialized macros, passing either oop or
1555 // narrowOop as the specialization type.  These test the UseCompressedOops
1556 // flag.
1557 #define InstanceKlass_OOP_ITERATE(start_p, count,    \
1558                                   do_oop, assert_fn) \
1559 {                                                    \
1560   if (UseCompressedOops) {                           \
1561     InstanceKlass_SPECIALIZED_OOP_ITERATE(narrowOop, \
1562       start_p, count,                                \
1563       do_oop, assert_fn)                             \
1564   } else {                                           \
1565     InstanceKlass_SPECIALIZED_OOP_ITERATE(oop,       \
1566       start_p, count,                                \
1567       do_oop, assert_fn)                             \
1568   }                                                  \
1569 }
1570 
1571 #define InstanceKlass_BOUNDED_OOP_ITERATE(start_p, count, low, high,    \
1572                                           do_oop, assert_fn) \
1573 {                                                            \
1574   if (UseCompressedOops) {                                   \
1575     InstanceKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \
1576       start_p, count,                                        \
1577       low, high,                                             \
1578       do_oop, assert_fn)                                     \
1579   } else {                                                   \
1580     InstanceKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop,       \
1581       start_p, count,                                        \
1582       low, high,                                             \
1583       do_oop, assert_fn)                                     \
1584   }                                                          \
1585 }
1586 
1587 #define InstanceKlass_OOP_MAP_ITERATE(obj, do_oop, assert_fn)            \
1588 {                                                                        \
1589   /* Compute oopmap block range. The common case                         \
1590      is nonstatic_oop_map_size == 1. */                                  \
1591   OopMapBlock* map           = start_of_nonstatic_oop_maps();            \
1592   OopMapBlock* const end_map = map + nonstatic_oop_map_count();          \
1593   if (UseCompressedOops) {                                               \
1594     while (map < end_map) {                                              \
1595       InstanceKlass_SPECIALIZED_OOP_ITERATE(narrowOop,                   \
1596         obj->obj_field_addr<narrowOop>(map->offset()), map->count(),     \
1597         do_oop, assert_fn)                                               \
1598       ++map;                                                             \
1599     }                                                                    \
1600   } else {                                                               \
1601     while (map < end_map) {                                              \
1602       InstanceKlass_SPECIALIZED_OOP_ITERATE(oop,                         \
1603         obj->obj_field_addr<oop>(map->offset()), map->count(),           \
1604         do_oop, assert_fn)                                               \
1605       ++map;                                                             \
1606     }                                                                    \
1607   }                                                                      \
1608 }
1609 
1610 #define InstanceKlass_OOP_MAP_REVERSE_ITERATE(obj, do_oop, assert_fn)    \
1611 {                                                                        \
1612   OopMapBlock* const start_map = start_of_nonstatic_oop_maps();          \
1613   OopMapBlock* map             = start_map + nonstatic_oop_map_count();  \
1614   if (UseCompressedOops) {                                               \
1615     while (start_map < map) {                                            \
1616       --map;                                                             \
1617       InstanceKlass_SPECIALIZED_OOP_REVERSE_ITERATE(narrowOop,           \
1618         obj->obj_field_addr<narrowOop>(map->offset()), map->count(),     \
1619         do_oop, assert_fn)                                               \
1620     }                                                                    \
1621   } else {                                                               \
1622     while (start_map < map) {                                            \
1623       --map;                                                             \
1624       InstanceKlass_SPECIALIZED_OOP_REVERSE_ITERATE(oop,                 \
1625         obj->obj_field_addr<oop>(map->offset()), map->count(),           \
1626         do_oop, assert_fn)                                               \
1627     }                                                                    \
1628   }                                                                      \
1629 }
1630 
1631 #define InstanceKlass_BOUNDED_OOP_MAP_ITERATE(obj, low, high, do_oop,    \
1632                                               assert_fn)                 \
1633 {                                                                        \
1634   /* Compute oopmap block range. The common case is                      \
1635      nonstatic_oop_map_size == 1, so we accept the                       \
1636      usually non-existent extra overhead of examining                    \
1637      all the maps. */                                                    \
1638   OopMapBlock* map           = start_of_nonstatic_oop_maps();            \
1639   OopMapBlock* const end_map = map + nonstatic_oop_map_count();          \
1640   if (UseCompressedOops) {                                               \
1641     while (map < end_map) {                                              \
1642       InstanceKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop,           \
1643         obj->obj_field_addr<narrowOop>(map->offset()), map->count(),     \
1644         low, high,                                                       \
1645         do_oop, assert_fn)                                               \
1646       ++map;                                                             \
1647     }                                                                    \
1648   } else {                                                               \
1649     while (map < end_map) {                                              \
1650       InstanceKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop,                 \
1651         obj->obj_field_addr<oop>(map->offset()), map->count(),           \
1652         low, high,                                                       \
1653         do_oop, assert_fn)                                               \
1654       ++map;                                                             \
1655     }                                                                    \
1656   }                                                                      \
1657 }
1658 
1659 void instanceKlass::follow_static_fields() {
1660   InstanceKlass_OOP_ITERATE( \
1661     start_of_static_fields(), static_oop_field_size(), \
1662     MarkSweep::mark_and_push(p), \
1663     assert_is_in_closed_subset)
1664 }
1665 
1666 #ifndef SERIALGC
1667 void instanceKlass::follow_static_fields(ParCompactionManager* cm) {
1668   InstanceKlass_OOP_ITERATE( \
1669     start_of_static_fields(), static_oop_field_size(), \
1670     PSParallelCompact::mark_and_push(cm, p), \
1671     assert_is_in)
1672 }
1673 #endif // SERIALGC
1674 
1675 void instanceKlass::adjust_static_fields() {
1676   InstanceKlass_OOP_ITERATE( \
1677     start_of_static_fields(), static_oop_field_size(), \
1678     MarkSweep::adjust_pointer(p), \
1679     assert_nothing)
1680 }
1681 
1682 #ifndef SERIALGC
1683 void instanceKlass::update_static_fields() {
1684   InstanceKlass_OOP_ITERATE( \
1685     start_of_static_fields(), static_oop_field_size(), \
1686     PSParallelCompact::adjust_pointer(p), \
1687     assert_nothing)
1688 }
1689 
1690 void instanceKlass::update_static_fields(HeapWord* beg_addr, HeapWord* end_addr) {
1691   InstanceKlass_BOUNDED_OOP_ITERATE( \
1692     start_of_static_fields(), static_oop_field_size(), \
1693     beg_addr, end_addr, \
1694     PSParallelCompact::adjust_pointer(p), \
1695     assert_nothing )
1696 }
1697 #endif // SERIALGC
1698 
1699 void instanceKlass::oop_follow_contents(oop obj) {
1700   assert(obj != NULL, "can't follow the content of NULL object");
1701   obj->follow_header();
1702   InstanceKlass_OOP_MAP_ITERATE( \
1703     obj, \
1704     MarkSweep::mark_and_push(p), \
1705     assert_is_in_closed_subset)
1706 }
1707 
1708 #ifndef SERIALGC
1709 void instanceKlass::oop_follow_contents(ParCompactionManager* cm,
1710                                         oop obj) {
1711   assert(obj != NULL, "can't follow the content of NULL object");
1712   obj->follow_header(cm);
1713   InstanceKlass_OOP_MAP_ITERATE( \
1714     obj, \
1715     PSParallelCompact::mark_and_push(cm, p), \
1716     assert_is_in)
1717 }
1718 #endif // SERIALGC
1719 
1720 // closure's do_header() method dicates whether the given closure should be
1721 // applied to the klass ptr in the object header.
1722 
1723 #define InstanceKlass_OOP_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)        \
1724                                                                              \
1725 int instanceKlass::oop_oop_iterate##nv_suffix(oop obj, OopClosureType* closure) { \
1726   SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::ik);\
1727   /* header */                                                          \
1728   if (closure->do_header()) {                                           \
1729     obj->oop_iterate_header(closure);                                   \
1730   }                                                                     \
1731   InstanceKlass_OOP_MAP_ITERATE(                                        \
1732     obj,                                                                \
1733     SpecializationStats::                                               \
1734       record_do_oop_call##nv_suffix(SpecializationStats::ik);           \
1735     (closure)->do_oop##nv_suffix(p),                                    \
1736     assert_is_in_closed_subset)                                         \
1737   return size_helper();                                                 \
1738 }
1739 
1740 #ifndef SERIALGC
1741 #define InstanceKlass_OOP_OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) \
1742                                                                                 \
1743 int instanceKlass::oop_oop_iterate_backwards##nv_suffix(oop obj,                \
1744                                               OopClosureType* closure) {        \
1745   SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::ik); \
1746   /* header */                                                                  \
1747   if (closure->do_header()) {                                                   \
1748     obj->oop_iterate_header(closure);                                           \
1749   }                                                                             \
1750   /* instance variables */                                                      \
1751   InstanceKlass_OOP_MAP_REVERSE_ITERATE(                                        \
1752     obj,                                                                        \
1753     SpecializationStats::record_do_oop_call##nv_suffix(SpecializationStats::ik);\
1754     (closure)->do_oop##nv_suffix(p),                                            \
1755     assert_is_in_closed_subset)                                                 \
1756    return size_helper();                                                        \
1757 }
1758 #endif // !SERIALGC
1759 
1760 #define InstanceKlass_OOP_OOP_ITERATE_DEFN_m(OopClosureType, nv_suffix) \
1761                                                                         \
1762 int instanceKlass::oop_oop_iterate##nv_suffix##_m(oop obj,              \
1763                                                   OopClosureType* closure, \
1764                                                   MemRegion mr) {          \
1765   SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::ik);\
1766   if (closure->do_header()) {                                            \
1767     obj->oop_iterate_header(closure, mr);                                \
1768   }                                                                      \
1769   InstanceKlass_BOUNDED_OOP_MAP_ITERATE(                                 \
1770     obj, mr.start(), mr.end(),                                           \
1771     (closure)->do_oop##nv_suffix(p),                                     \
1772     assert_is_in_closed_subset)                                          \
1773   return size_helper();                                                  \
1774 }
1775 
1776 ALL_OOP_OOP_ITERATE_CLOSURES_1(InstanceKlass_OOP_OOP_ITERATE_DEFN)
1777 ALL_OOP_OOP_ITERATE_CLOSURES_2(InstanceKlass_OOP_OOP_ITERATE_DEFN)
1778 ALL_OOP_OOP_ITERATE_CLOSURES_1(InstanceKlass_OOP_OOP_ITERATE_DEFN_m)
1779 ALL_OOP_OOP_ITERATE_CLOSURES_2(InstanceKlass_OOP_OOP_ITERATE_DEFN_m)
1780 #ifndef SERIALGC
1781 ALL_OOP_OOP_ITERATE_CLOSURES_1(InstanceKlass_OOP_OOP_ITERATE_BACKWARDS_DEFN)
1782 ALL_OOP_OOP_ITERATE_CLOSURES_2(InstanceKlass_OOP_OOP_ITERATE_BACKWARDS_DEFN)
1783 #endif // !SERIALGC
1784 
1785 void instanceKlass::iterate_static_fields(OopClosure* closure) {
1786     InstanceKlass_OOP_ITERATE( \
1787       start_of_static_fields(), static_oop_field_size(), \
1788       closure->do_oop(p), \
1789       assert_is_in_reserved)
1790 }
1791 
1792 void instanceKlass::iterate_static_fields(OopClosure* closure,
1793                                           MemRegion mr) {
1794   InstanceKlass_BOUNDED_OOP_ITERATE( \
1795     start_of_static_fields(), static_oop_field_size(), \
1796     mr.start(), mr.end(), \
1797     (closure)->do_oop_v(p), \
1798     assert_is_in_closed_subset)
1799 }
1800 
1801 int instanceKlass::oop_adjust_pointers(oop obj) {
1802   int size = size_helper();
1803   InstanceKlass_OOP_MAP_ITERATE( \
1804     obj, \
1805     MarkSweep::adjust_pointer(p), \
1806     assert_is_in)
1807   obj->adjust_header();
1808   return size;
1809 }
1810 
1811 #ifndef SERIALGC
1812 void instanceKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
1813   InstanceKlass_OOP_MAP_REVERSE_ITERATE( \
1814     obj, \
1815     if (PSScavenge::should_scavenge(p)) { \
1816       pm->claim_or_forward_depth(p); \
1817     }, \
1818     assert_nothing )
1819 }
1820 
1821 int instanceKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
1822   InstanceKlass_OOP_MAP_ITERATE( \
1823     obj, \
1824     PSParallelCompact::adjust_pointer(p), \
1825     assert_nothing)
1826   return size_helper();
1827 }
1828 
1829 int instanceKlass::oop_update_pointers(ParCompactionManager* cm, oop obj,
1830                                        HeapWord* beg_addr, HeapWord* end_addr) {
1831   InstanceKlass_BOUNDED_OOP_MAP_ITERATE( \
1832     obj, beg_addr, end_addr, \
1833     PSParallelCompact::adjust_pointer(p), \
1834     assert_nothing)
1835   return size_helper();
1836 }
1837 
1838 void instanceKlass::push_static_fields(PSPromotionManager* pm) {
1839   InstanceKlass_OOP_ITERATE( \
1840     start_of_static_fields(), static_oop_field_size(), \
1841     if (PSScavenge::should_scavenge(p)) { \
1842       pm->claim_or_forward_depth(p); \
1843     }, \
1844     assert_nothing )
1845 }
1846 
1847 void instanceKlass::copy_static_fields(ParCompactionManager* cm) {
1848   InstanceKlass_OOP_ITERATE( \
1849     start_of_static_fields(), static_oop_field_size(), \
1850     PSParallelCompact::adjust_pointer(p), \
1851     assert_is_in)
1852 }
1853 #endif // SERIALGC
1854 
1855 // This klass is alive but the implementor link is not followed/updated.
1856 // Subklass and sibling links are handled by Klass::follow_weak_klass_links
1857 
1858 void instanceKlass::follow_weak_klass_links(
1859   BoolObjectClosure* is_alive, OopClosure* keep_alive) {
1860   assert(is_alive->do_object_b(as_klassOop()), "this oop should be live");
1861   if (ClassUnloading) {
1862     for (int i = 0; i < implementors_limit; i++) {
1863       klassOop impl = _implementors[i];
1864       if (impl == NULL)  break;  // no more in the list
1865       if (!is_alive->do_object_b(impl)) {
1866         // remove this guy from the list by overwriting him with the tail
1867         int lasti = --_nof_implementors;
1868         assert(lasti >= i && lasti < implementors_limit, "just checking");
1869         _implementors[i] = _implementors[lasti];
1870         _implementors[lasti] = NULL;
1871         --i; // rerun the loop at this index
1872       }
1873     }
1874   } else {
1875     for (int i = 0; i < implementors_limit; i++) {
1876       keep_alive->do_oop(&adr_implementors()[i]);
1877     }
1878   }
1879   Klass::follow_weak_klass_links(is_alive, keep_alive);
1880 }
1881 
1882 void instanceKlass::remove_unshareable_info() {
1883   Klass::remove_unshareable_info();
1884   init_implementor();
1885 }
1886 
1887 static void clear_all_breakpoints(methodOop m) {
1888   m->clear_all_breakpoints();
1889 }
1890 
1891 void instanceKlass::release_C_heap_structures() {
1892   // Deallocate oop map cache
1893   if (_oop_map_cache != NULL) {
1894     delete _oop_map_cache;
1895     _oop_map_cache = NULL;
1896   }
1897 
1898   // Deallocate JNI identifiers for jfieldIDs
1899   JNIid::deallocate(jni_ids());
1900   set_jni_ids(NULL);
1901 
1902   jmethodID* jmeths = methods_jmethod_ids_acquire();
1903   if (jmeths != (jmethodID*)NULL) {
1904     release_set_methods_jmethod_ids(NULL);
1905     FreeHeap(jmeths);
1906   }
1907 
1908   int* indices = methods_cached_itable_indices_acquire();
1909   if (indices != (int*)NULL) {
1910     release_set_methods_cached_itable_indices(NULL);
1911     FreeHeap(indices);
1912   }
1913 
1914   // release dependencies
1915   nmethodBucket* b = _dependencies;
1916   _dependencies = NULL;
1917   while (b != NULL) {
1918     nmethodBucket* next = b->next();
1919     delete b;
1920     b = next;
1921   }
1922 
1923   // Deallocate breakpoint records
1924   if (breakpoints() != 0x0) {
1925     methods_do(clear_all_breakpoints);
1926     assert(breakpoints() == 0x0, "should have cleared breakpoints");
1927   }
1928 
1929   // deallocate information about previous versions
1930   if (_previous_versions != NULL) {
1931     for (int i = _previous_versions->length() - 1; i >= 0; i--) {
1932       PreviousVersionNode * pv_node = _previous_versions->at(i);
1933       delete pv_node;
1934     }
1935     delete _previous_versions;
1936     _previous_versions = NULL;
1937   }
1938 
1939   // deallocate the cached class file
1940   if (_cached_class_file_bytes != NULL) {
1941     os::free(_cached_class_file_bytes);
1942     _cached_class_file_bytes = NULL;
1943     _cached_class_file_len = 0;
1944   }
1945 }
1946 
1947 const char* instanceKlass::signature_name() const {
1948   const char* src = (const char*) (name()->as_C_string());
1949   const int src_length = (int)strlen(src);
1950   char* dest = NEW_RESOURCE_ARRAY(char, src_length + 3);
1951   int src_index = 0;
1952   int dest_index = 0;
1953   dest[dest_index++] = 'L';
1954   while (src_index < src_length) {
1955     dest[dest_index++] = src[src_index++];
1956   }
1957   dest[dest_index++] = ';';
1958   dest[dest_index] = '\0';
1959   return dest;
1960 }
1961 
1962 // different verisons of is_same_class_package
1963 bool instanceKlass::is_same_class_package(klassOop class2) {
1964   klassOop class1 = as_klassOop();
1965   oop classloader1 = instanceKlass::cast(class1)->class_loader();
1966   symbolOop classname1 = Klass::cast(class1)->name();
1967 
1968   if (Klass::cast(class2)->oop_is_objArray()) {
1969     class2 = objArrayKlass::cast(class2)->bottom_klass();
1970   }
1971   oop classloader2;
1972   if (Klass::cast(class2)->oop_is_instance()) {
1973     classloader2 = instanceKlass::cast(class2)->class_loader();
1974   } else {
1975     assert(Klass::cast(class2)->oop_is_typeArray(), "should be type array");
1976     classloader2 = NULL;
1977   }
1978   symbolOop classname2 = Klass::cast(class2)->name();
1979 
1980   return instanceKlass::is_same_class_package(classloader1, classname1,
1981                                               classloader2, classname2);
1982 }
1983 
1984 bool instanceKlass::is_same_class_package(oop classloader2, symbolOop classname2) {
1985   klassOop class1 = as_klassOop();
1986   oop classloader1 = instanceKlass::cast(class1)->class_loader();
1987   symbolOop classname1 = Klass::cast(class1)->name();
1988 
1989   return instanceKlass::is_same_class_package(classloader1, classname1,
1990                                               classloader2, classname2);
1991 }
1992 
1993 // return true if two classes are in the same package, classloader
1994 // and classname information is enough to determine a class's package
1995 bool instanceKlass::is_same_class_package(oop class_loader1, symbolOop class_name1,
1996                                           oop class_loader2, symbolOop class_name2) {
1997   if (class_loader1 != class_loader2) {
1998     return false;
1999   } else if (class_name1 == class_name2) {
2000     return true;                // skip painful bytewise comparison
2001   } else {
2002     ResourceMark rm;
2003 
2004     // The symbolOop's are in UTF8 encoding. Since we only need to check explicitly
2005     // for ASCII characters ('/', 'L', '['), we can keep them in UTF8 encoding.
2006     // Otherwise, we just compare jbyte values between the strings.
2007     jbyte *name1 = class_name1->base();
2008     jbyte *name2 = class_name2->base();
2009 
2010     jbyte *last_slash1 = UTF8::strrchr(name1, class_name1->utf8_length(), '/');
2011     jbyte *last_slash2 = UTF8::strrchr(name2, class_name2->utf8_length(), '/');
2012 
2013     if ((last_slash1 == NULL) || (last_slash2 == NULL)) {
2014       // One of the two doesn't have a package.  Only return true
2015       // if the other one also doesn't have a package.
2016       return last_slash1 == last_slash2;
2017     } else {
2018       // Skip over '['s
2019       if (*name1 == '[') {
2020         do {
2021           name1++;
2022         } while (*name1 == '[');
2023         if (*name1 != 'L') {
2024           // Something is terribly wrong.  Shouldn't be here.
2025           return false;
2026         }
2027       }
2028       if (*name2 == '[') {
2029         do {
2030           name2++;
2031         } while (*name2 == '[');
2032         if (*name2 != 'L') {
2033           // Something is terribly wrong.  Shouldn't be here.
2034           return false;
2035         }
2036       }
2037 
2038       // Check that package part is identical
2039       int length1 = last_slash1 - name1;
2040       int length2 = last_slash2 - name2;
2041 
2042       return UTF8::equal(name1, length1, name2, length2);
2043     }
2044   }
2045 }
2046 
2047 // Returns true iff super_method can be overridden by a method in targetclassname
2048 // See JSL 3rd edition 8.4.6.1
2049 // Assumes name-signature match
2050 // "this" is instanceKlass of super_method which must exist
2051 // note that the instanceKlass of the method in the targetclassname has not always been created yet
2052 bool instanceKlass::is_override(methodHandle super_method, Handle targetclassloader, symbolHandle targetclassname, TRAPS) {
2053    // Private methods can not be overridden
2054    if (super_method->is_private()) {
2055      return false;
2056    }
2057    // If super method is accessible, then override
2058    if ((super_method->is_protected()) ||
2059        (super_method->is_public())) {
2060      return true;
2061    }
2062    // Package-private methods are not inherited outside of package
2063    assert(super_method->is_package_private(), "must be package private");
2064    return(is_same_class_package(targetclassloader(), targetclassname()));
2065 }
2066 
2067 /* defined for now in jvm.cpp, for historical reasons *--
2068 klassOop instanceKlass::compute_enclosing_class_impl(instanceKlassHandle self,
2069                                                      symbolOop& simple_name_result, TRAPS) {
2070   ...
2071 }
2072 */
2073 
2074 // tell if two classes have the same enclosing class (at package level)
2075 bool instanceKlass::is_same_package_member_impl(instanceKlassHandle class1,
2076                                                 klassOop class2_oop, TRAPS) {
2077   if (class2_oop == class1->as_klassOop())          return true;
2078   if (!Klass::cast(class2_oop)->oop_is_instance())  return false;
2079   instanceKlassHandle class2(THREAD, class2_oop);
2080 
2081   // must be in same package before we try anything else
2082   if (!class1->is_same_class_package(class2->class_loader(), class2->name()))
2083     return false;
2084 
2085   // As long as there is an outer1.getEnclosingClass,
2086   // shift the search outward.
2087   instanceKlassHandle outer1 = class1;
2088   for (;;) {
2089     // As we walk along, look for equalities between outer1 and class2.
2090     // Eventually, the walks will terminate as outer1 stops
2091     // at the top-level class around the original class.
2092     bool ignore_inner_is_member;
2093     klassOop next = outer1->compute_enclosing_class(&ignore_inner_is_member,
2094                                                     CHECK_false);
2095     if (next == NULL)  break;
2096     if (next == class2())  return true;
2097     outer1 = instanceKlassHandle(THREAD, next);
2098   }
2099 
2100   // Now do the same for class2.
2101   instanceKlassHandle outer2 = class2;
2102   for (;;) {
2103     bool ignore_inner_is_member;
2104     klassOop next = outer2->compute_enclosing_class(&ignore_inner_is_member,
2105                                                     CHECK_false);
2106     if (next == NULL)  break;
2107     // Might as well check the new outer against all available values.
2108     if (next == class1())  return true;
2109     if (next == outer1())  return true;
2110     outer2 = instanceKlassHandle(THREAD, next);
2111   }
2112 
2113   // If by this point we have not found an equality between the
2114   // two classes, we know they are in separate package members.
2115   return false;
2116 }
2117 
2118 
2119 jint instanceKlass::compute_modifier_flags(TRAPS) const {
2120   klassOop k = as_klassOop();
2121   jint access = access_flags().as_int();
2122 
2123   // But check if it happens to be member class.
2124   typeArrayOop inner_class_list = inner_classes();
2125   int length = (inner_class_list == NULL) ? 0 : inner_class_list->length();
2126   assert (length % instanceKlass::inner_class_next_offset == 0, "just checking");
2127   if (length > 0) {
2128     typeArrayHandle inner_class_list_h(THREAD, inner_class_list);
2129     instanceKlassHandle ik(THREAD, k);
2130     for (int i = 0; i < length; i += instanceKlass::inner_class_next_offset) {
2131       int ioff = inner_class_list_h->ushort_at(
2132                       i + instanceKlass::inner_class_inner_class_info_offset);
2133 
2134       // Inner class attribute can be zero, skip it.
2135       // Strange but true:  JVM spec. allows null inner class refs.
2136       if (ioff == 0) continue;
2137 
2138       // only look at classes that are already loaded
2139       // since we are looking for the flags for our self.
2140       symbolOop inner_name = ik->constants()->klass_name_at(ioff);
2141       if ((ik->name() == inner_name)) {
2142         // This is really a member class.
2143         access = inner_class_list_h->ushort_at(i + instanceKlass::inner_class_access_flags_offset);
2144         break;
2145       }
2146     }
2147   }
2148   // Remember to strip ACC_SUPER bit
2149   return (access & (~JVM_ACC_SUPER)) & JVM_ACC_WRITTEN_FLAGS;
2150 }
2151 
2152 jint instanceKlass::jvmti_class_status() const {
2153   jint result = 0;
2154 
2155   if (is_linked()) {
2156     result |= JVMTI_CLASS_STATUS_VERIFIED | JVMTI_CLASS_STATUS_PREPARED;
2157   }
2158 
2159   if (is_initialized()) {
2160     assert(is_linked(), "Class status is not consistent");
2161     result |= JVMTI_CLASS_STATUS_INITIALIZED;
2162   }
2163   if (is_in_error_state()) {
2164     result |= JVMTI_CLASS_STATUS_ERROR;
2165   }
2166   return result;
2167 }
2168 
2169 methodOop instanceKlass::method_at_itable(klassOop holder, int index, TRAPS) {
2170   itableOffsetEntry* ioe = (itableOffsetEntry*)start_of_itable();
2171   int method_table_offset_in_words = ioe->offset()/wordSize;
2172   int nof_interfaces = (method_table_offset_in_words - itable_offset_in_words())
2173                        / itableOffsetEntry::size();
2174 
2175   for (int cnt = 0 ; ; cnt ++, ioe ++) {
2176     // If the interface isn't implemented by the receiver class,
2177     // the VM should throw IncompatibleClassChangeError.
2178     if (cnt >= nof_interfaces) {
2179       THROW_OOP_0(vmSymbols::java_lang_IncompatibleClassChangeError());
2180     }
2181 
2182     klassOop ik = ioe->interface_klass();
2183     if (ik == holder) break;
2184   }
2185 
2186   itableMethodEntry* ime = ioe->first_method_entry(as_klassOop());
2187   methodOop m = ime[index].method();
2188   if (m == NULL) {
2189     THROW_OOP_0(vmSymbols::java_lang_AbstractMethodError());
2190   }
2191   return m;
2192 }
2193 
2194 // On-stack replacement stuff
2195 void instanceKlass::add_osr_nmethod(nmethod* n) {
2196   // only one compilation can be active
2197   NEEDS_CLEANUP
2198   // This is a short non-blocking critical region, so the no safepoint check is ok.
2199   OsrList_lock->lock_without_safepoint_check();
2200   assert(n->is_osr_method(), "wrong kind of nmethod");
2201   n->set_osr_link(osr_nmethods_head());
2202   set_osr_nmethods_head(n);
2203   // Raise the highest osr level if necessary
2204   if (TieredCompilation) {
2205     methodOop m = n->method();
2206     m->set_highest_osr_comp_level(MAX2(m->highest_osr_comp_level(), n->comp_level()));
2207   }
2208   // Remember to unlock again
2209   OsrList_lock->unlock();
2210 
2211   // Get rid of the osr methods for the same bci that have lower levels.
2212   if (TieredCompilation) {
2213     for (int l = CompLevel_limited_profile; l < n->comp_level(); l++) {
2214       nmethod *inv = lookup_osr_nmethod(n->method(), n->osr_entry_bci(), l, true);
2215       if (inv != NULL && inv->is_in_use()) {
2216         inv->make_not_entrant();
2217       }
2218     }
2219   }
2220 }
2221 
2222 
2223 void instanceKlass::remove_osr_nmethod(nmethod* n) {
2224   // This is a short non-blocking critical region, so the no safepoint check is ok.
2225   OsrList_lock->lock_without_safepoint_check();
2226   assert(n->is_osr_method(), "wrong kind of nmethod");
2227   nmethod* last = NULL;
2228   nmethod* cur  = osr_nmethods_head();
2229   int max_level = CompLevel_none;  // Find the max comp level excluding n
2230   methodOop m = n->method();
2231   // Search for match
2232   while(cur != NULL && cur != n) {
2233     if (TieredCompilation) {
2234       // Find max level before n
2235       max_level = MAX2(max_level, cur->comp_level());
2236     }
2237     last = cur;
2238     cur = cur->osr_link();
2239   }
2240   nmethod* next = NULL;
2241   if (cur == n) {
2242     next = cur->osr_link();
2243     if (last == NULL) {
2244       // Remove first element
2245       set_osr_nmethods_head(next);
2246     } else {
2247       last->set_osr_link(next);
2248     }
2249   }
2250   n->set_osr_link(NULL);
2251   if (TieredCompilation) {
2252     cur = next;
2253     while (cur != NULL) {
2254       // Find max level after n
2255       max_level = MAX2(max_level, cur->comp_level());
2256       cur = cur->osr_link();
2257     }
2258     m->set_highest_osr_comp_level(max_level);
2259   }
2260   // Remember to unlock again
2261   OsrList_lock->unlock();
2262 }
2263 
2264 nmethod* instanceKlass::lookup_osr_nmethod(const methodOop m, int bci, int comp_level, bool match_level) const {
2265   // This is a short non-blocking critical region, so the no safepoint check is ok.
2266   OsrList_lock->lock_without_safepoint_check();
2267   nmethod* osr = osr_nmethods_head();
2268   nmethod* best = NULL;
2269   while (osr != NULL) {
2270     assert(osr->is_osr_method(), "wrong kind of nmethod found in chain");
2271     // There can be a time when a c1 osr method exists but we are waiting
2272     // for a c2 version. When c2 completes its osr nmethod we will trash
2273     // the c1 version and only be able to find the c2 version. However
2274     // while we overflow in the c1 code at back branches we don't want to
2275     // try and switch to the same code as we are already running
2276 
2277     if (osr->method() == m &&
2278         (bci == InvocationEntryBci || osr->osr_entry_bci() == bci)) {
2279       if (match_level) {
2280         if (osr->comp_level() == comp_level) {
2281           // Found a match - return it.
2282           OsrList_lock->unlock();
2283           return osr;
2284         }
2285       } else {
2286         if (best == NULL || (osr->comp_level() > best->comp_level())) {
2287           if (osr->comp_level() == CompLevel_highest_tier) {
2288             // Found the best possible - return it.
2289             OsrList_lock->unlock();
2290             return osr;
2291           }
2292           best = osr;
2293         }
2294       }
2295     }
2296     osr = osr->osr_link();
2297   }
2298   OsrList_lock->unlock();
2299   if (best != NULL && best->comp_level() >= comp_level && match_level == false) {
2300     return best;
2301   }
2302   return NULL;
2303 }
2304 
2305 // -----------------------------------------------------------------------------------------------------
2306 #ifndef PRODUCT
2307 
2308 // Printing
2309 
2310 #define BULLET  " - "
2311 
2312 void FieldPrinter::do_field(fieldDescriptor* fd) {
2313   _st->print(BULLET);
2314    if (fd->is_static() || (_obj == NULL)) {
2315      fd->print_on(_st);
2316      _st->cr();
2317    } else {
2318      fd->print_on_for(_st, _obj);
2319      _st->cr();
2320    }
2321 }
2322 
2323 
2324 void instanceKlass::oop_print_on(oop obj, outputStream* st) {
2325   Klass::oop_print_on(obj, st);
2326 
2327   if (as_klassOop() == SystemDictionary::String_klass()) {
2328     typeArrayOop value  = java_lang_String::value(obj);
2329     juint        offset = java_lang_String::offset(obj);
2330     juint        length = java_lang_String::length(obj);
2331     if (value != NULL &&
2332         value->is_typeArray() &&
2333         offset          <= (juint) value->length() &&
2334         offset + length <= (juint) value->length()) {
2335       st->print(BULLET"string: ");
2336       Handle h_obj(obj);
2337       java_lang_String::print(h_obj, st);
2338       st->cr();
2339       if (!WizardMode)  return;  // that is enough
2340     }
2341   }
2342 
2343   st->print_cr(BULLET"---- fields (total size %d words):", oop_size(obj));
2344   FieldPrinter print_nonstatic_field(st, obj);
2345   do_nonstatic_fields(&print_nonstatic_field);
2346 
2347   if (as_klassOop() == SystemDictionary::Class_klass()) {
2348     st->print(BULLET"signature: ");
2349     java_lang_Class::print_signature(obj, st);
2350     st->cr();
2351     klassOop mirrored_klass = java_lang_Class::as_klassOop(obj);
2352     st->print(BULLET"fake entry for mirror: ");
2353     mirrored_klass->print_value_on(st);
2354     st->cr();
2355     st->print(BULLET"fake entry resolved_constructor: ");
2356     methodOop ctor = java_lang_Class::resolved_constructor(obj);
2357     ctor->print_value_on(st);
2358     klassOop array_klass = java_lang_Class::array_klass(obj);
2359     st->cr();
2360     st->print(BULLET"fake entry for array: ");
2361     array_klass->print_value_on(st);
2362     st->cr();
2363   } else if (as_klassOop() == SystemDictionary::MethodType_klass()) {
2364     st->print(BULLET"signature: ");
2365     java_dyn_MethodType::print_signature(obj, st);
2366     st->cr();
2367   }
2368 }
2369 
2370 #endif //PRODUCT
2371 
2372 void instanceKlass::oop_print_value_on(oop obj, outputStream* st) {
2373   st->print("a ");
2374   name()->print_value_on(st);
2375   obj->print_address_on(st);
2376   if (as_klassOop() == SystemDictionary::String_klass()
2377       && java_lang_String::value(obj) != NULL) {
2378     ResourceMark rm;
2379     int len = java_lang_String::length(obj);
2380     int plen = (len < 24 ? len : 12);
2381     char* str = java_lang_String::as_utf8_string(obj, 0, plen);
2382     st->print(" = \"%s\"", str);
2383     if (len > plen)
2384       st->print("...[%d]", len);
2385   } else if (as_klassOop() == SystemDictionary::Class_klass()) {
2386     klassOop k = java_lang_Class::as_klassOop(obj);
2387     st->print(" = ");
2388     if (k != NULL) {
2389       k->print_value_on(st);
2390     } else {
2391       const char* tname = type2name(java_lang_Class::primitive_type(obj));
2392       st->print("%s", tname ? tname : "type?");
2393     }
2394   } else if (as_klassOop() == SystemDictionary::MethodType_klass()) {
2395     st->print(" = ");
2396     java_dyn_MethodType::print_signature(obj, st);
2397   } else if (java_lang_boxing_object::is_instance(obj)) {
2398     st->print(" = ");
2399     java_lang_boxing_object::print(obj, st);
2400   }
2401 }
2402 
2403 const char* instanceKlass::internal_name() const {
2404   return external_name();
2405 }
2406 
2407 // Verification
2408 
2409 class VerifyFieldClosure: public OopClosure {
2410  protected:
2411   template <class T> void do_oop_work(T* p) {
2412     guarantee(Universe::heap()->is_in_closed_subset(p), "should be in heap");
2413     oop obj = oopDesc::load_decode_heap_oop(p);
2414     if (!obj->is_oop_or_null()) {
2415       tty->print_cr("Failed: " PTR_FORMAT " -> " PTR_FORMAT, p, (address)obj);
2416       Universe::print();
2417       guarantee(false, "boom");
2418     }
2419   }
2420  public:
2421   virtual void do_oop(oop* p)       { VerifyFieldClosure::do_oop_work(p); }
2422   virtual void do_oop(narrowOop* p) { VerifyFieldClosure::do_oop_work(p); }
2423 };
2424 
2425 void instanceKlass::oop_verify_on(oop obj, outputStream* st) {
2426   Klass::oop_verify_on(obj, st);
2427   VerifyFieldClosure blk;
2428   oop_oop_iterate(obj, &blk);
2429 }
2430 
2431 #ifndef PRODUCT
2432 
2433 void instanceKlass::verify_class_klass_nonstatic_oop_maps(klassOop k) {
2434   // This verification code is disabled.  JDK_Version::is_gte_jdk14x_version()
2435   // cannot be called since this function is called before the VM is
2436   // able to determine what JDK version is running with.
2437   // The check below always is false since 1.4.
2438   return;
2439 
2440   // This verification code temporarily disabled for the 1.4
2441   // reflection implementation since java.lang.Class now has
2442   // Java-level instance fields. Should rewrite this to handle this
2443   // case.
2444   if (!(JDK_Version::is_gte_jdk14x_version() && UseNewReflection)) {
2445     // Verify that java.lang.Class instances have a fake oop field added.
2446     instanceKlass* ik = instanceKlass::cast(k);
2447 
2448     // Check that we have the right class
2449     static bool first_time = true;
2450     guarantee(k == SystemDictionary::Class_klass() && first_time, "Invalid verify of maps");
2451     first_time = false;
2452     const int extra = java_lang_Class::number_of_fake_oop_fields;
2453     guarantee(ik->nonstatic_field_size() == extra, "just checking");
2454     guarantee(ik->nonstatic_oop_map_count() == 1, "just checking");
2455     guarantee(ik->size_helper() == align_object_size(instanceOopDesc::header_size() + extra), "just checking");
2456 
2457     // Check that the map is (2,extra)
2458     int offset = java_lang_Class::klass_offset;
2459 
2460     OopMapBlock* map = ik->start_of_nonstatic_oop_maps();
2461     guarantee(map->offset() == offset && map->count() == (unsigned int) extra,
2462               "sanity");
2463   }
2464 }
2465 
2466 #endif // ndef PRODUCT
2467 
2468 // JNIid class for jfieldIDs only
2469 // Note to reviewers:
2470 // These JNI functions are just moved over to column 1 and not changed
2471 // in the compressed oops workspace.
2472 JNIid::JNIid(klassOop holder, int offset, JNIid* next) {
2473   _holder = holder;
2474   _offset = offset;
2475   _next = next;
2476   debug_only(_is_static_field_id = false;)
2477 }
2478 
2479 
2480 JNIid* JNIid::find(int offset) {
2481   JNIid* current = this;
2482   while (current != NULL) {
2483     if (current->offset() == offset) return current;
2484     current = current->next();
2485   }
2486   return NULL;
2487 }
2488 
2489 void JNIid::oops_do(OopClosure* f) {
2490   for (JNIid* cur = this; cur != NULL; cur = cur->next()) {
2491     f->do_oop(cur->holder_addr());
2492   }
2493 }
2494 
2495 void JNIid::deallocate(JNIid* current) {
2496   while (current != NULL) {
2497     JNIid* next = current->next();
2498     delete current;
2499     current = next;
2500   }
2501 }
2502 
2503 
2504 void JNIid::verify(klassOop holder) {
2505   int first_field_offset  = instanceKlass::cast(holder)->offset_of_static_fields();
2506   int end_field_offset;
2507   end_field_offset = first_field_offset + (instanceKlass::cast(holder)->static_field_size() * wordSize);
2508 
2509   JNIid* current = this;
2510   while (current != NULL) {
2511     guarantee(current->holder() == holder, "Invalid klass in JNIid");
2512 #ifdef ASSERT
2513     int o = current->offset();
2514     if (current->is_static_field_id()) {
2515       guarantee(o >= first_field_offset  && o < end_field_offset,  "Invalid static field offset in JNIid");
2516     }
2517 #endif
2518     current = current->next();
2519   }
2520 }
2521 
2522 
2523 #ifdef ASSERT
2524 void instanceKlass::set_init_state(ClassState state) {
2525   bool good_state = as_klassOop()->is_shared() ? (_init_state <= state)
2526                                                : (_init_state < state);
2527   assert(good_state || state == allocated, "illegal state transition");
2528   _init_state = state;
2529 }
2530 #endif
2531 
2532 
2533 // RedefineClasses() support for previous versions:
2534 
2535 // Add an information node that contains weak references to the
2536 // interesting parts of the previous version of the_class.
2537 // This is also where we clean out any unused weak references.
2538 // Note that while we delete nodes from the _previous_versions
2539 // array, we never delete the array itself until the klass is
2540 // unloaded. The has_been_redefined() query depends on that fact.
2541 //
2542 void instanceKlass::add_previous_version(instanceKlassHandle ikh,
2543        BitMap* emcp_methods, int emcp_method_count) {
2544   assert(Thread::current()->is_VM_thread(),
2545          "only VMThread can add previous versions");
2546 
2547   if (_previous_versions == NULL) {
2548     // This is the first previous version so make some space.
2549     // Start with 2 elements under the assumption that the class
2550     // won't be redefined much.
2551     _previous_versions =  new (ResourceObj::C_HEAP)
2552                             GrowableArray<PreviousVersionNode *>(2, true);
2553   }
2554 
2555   // RC_TRACE macro has an embedded ResourceMark
2556   RC_TRACE(0x00000100, ("adding previous version ref for %s @%d, EMCP_cnt=%d",
2557     ikh->external_name(), _previous_versions->length(), emcp_method_count));
2558   constantPoolHandle cp_h(ikh->constants());
2559   jobject cp_ref;
2560   if (cp_h->is_shared()) {
2561     // a shared ConstantPool requires a regular reference; a weak
2562     // reference would be collectible
2563     cp_ref = JNIHandles::make_global(cp_h);
2564   } else {
2565     cp_ref = JNIHandles::make_weak_global(cp_h);
2566   }
2567   PreviousVersionNode * pv_node = NULL;
2568   objArrayOop old_methods = ikh->methods();
2569 
2570   if (emcp_method_count == 0) {
2571     // non-shared ConstantPool gets a weak reference
2572     pv_node = new PreviousVersionNode(cp_ref, !cp_h->is_shared(), NULL);
2573     RC_TRACE(0x00000400,
2574       ("add: all methods are obsolete; flushing any EMCP weak refs"));
2575   } else {
2576     int local_count = 0;
2577     GrowableArray<jweak>* method_refs = new (ResourceObj::C_HEAP)
2578       GrowableArray<jweak>(emcp_method_count, true);
2579     for (int i = 0; i < old_methods->length(); i++) {
2580       if (emcp_methods->at(i)) {
2581         // this old method is EMCP so save a weak ref
2582         methodOop old_method = (methodOop) old_methods->obj_at(i);
2583         methodHandle old_method_h(old_method);
2584         jweak method_ref = JNIHandles::make_weak_global(old_method_h);
2585         method_refs->append(method_ref);
2586         if (++local_count >= emcp_method_count) {
2587           // no more EMCP methods so bail out now
2588           break;
2589         }
2590       }
2591     }
2592     // non-shared ConstantPool gets a weak reference
2593     pv_node = new PreviousVersionNode(cp_ref, !cp_h->is_shared(), method_refs);
2594   }
2595 
2596   _previous_versions->append(pv_node);
2597 
2598   // Using weak references allows the interesting parts of previous
2599   // classes to be GC'ed when they are no longer needed. Since the
2600   // caller is the VMThread and we are at a safepoint, this is a good
2601   // time to clear out unused weak references.
2602 
2603   RC_TRACE(0x00000400, ("add: previous version length=%d",
2604     _previous_versions->length()));
2605 
2606   // skip the last entry since we just added it
2607   for (int i = _previous_versions->length() - 2; i >= 0; i--) {
2608     // check the previous versions array for a GC'ed weak refs
2609     pv_node = _previous_versions->at(i);
2610     cp_ref = pv_node->prev_constant_pool();
2611     assert(cp_ref != NULL, "cp ref was unexpectedly cleared");
2612     if (cp_ref == NULL) {
2613       delete pv_node;
2614       _previous_versions->remove_at(i);
2615       // Since we are traversing the array backwards, we don't have to
2616       // do anything special with the index.
2617       continue;  // robustness
2618     }
2619 
2620     constantPoolOop cp = (constantPoolOop)JNIHandles::resolve(cp_ref);
2621     if (cp == NULL) {
2622       // this entry has been GC'ed so remove it
2623       delete pv_node;
2624       _previous_versions->remove_at(i);
2625       // Since we are traversing the array backwards, we don't have to
2626       // do anything special with the index.
2627       continue;
2628     } else {
2629       RC_TRACE(0x00000400, ("add: previous version @%d is alive", i));
2630     }
2631 
2632     GrowableArray<jweak>* method_refs = pv_node->prev_EMCP_methods();
2633     if (method_refs != NULL) {
2634       RC_TRACE(0x00000400, ("add: previous methods length=%d",
2635         method_refs->length()));
2636       for (int j = method_refs->length() - 1; j >= 0; j--) {
2637         jweak method_ref = method_refs->at(j);
2638         assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
2639         if (method_ref == NULL) {
2640           method_refs->remove_at(j);
2641           // Since we are traversing the array backwards, we don't have to
2642           // do anything special with the index.
2643           continue;  // robustness
2644         }
2645 
2646         methodOop method = (methodOop)JNIHandles::resolve(method_ref);
2647         if (method == NULL || emcp_method_count == 0) {
2648           // This method entry has been GC'ed or the current
2649           // RedefineClasses() call has made all methods obsolete
2650           // so remove it.
2651           JNIHandles::destroy_weak_global(method_ref);
2652           method_refs->remove_at(j);
2653         } else {
2654           // RC_TRACE macro has an embedded ResourceMark
2655           RC_TRACE(0x00000400,
2656             ("add: %s(%s): previous method @%d in version @%d is alive",
2657             method->name()->as_C_string(), method->signature()->as_C_string(),
2658             j, i));
2659         }
2660       }
2661     }
2662   }
2663 
2664   int obsolete_method_count = old_methods->length() - emcp_method_count;
2665 
2666   if (emcp_method_count != 0 && obsolete_method_count != 0 &&
2667       _previous_versions->length() > 1) {
2668     // We have a mix of obsolete and EMCP methods. If there is more
2669     // than the previous version that we just added, then we have to
2670     // clear out any matching EMCP method entries the hard way.
2671     int local_count = 0;
2672     for (int i = 0; i < old_methods->length(); i++) {
2673       if (!emcp_methods->at(i)) {
2674         // only obsolete methods are interesting
2675         methodOop old_method = (methodOop) old_methods->obj_at(i);
2676         symbolOop m_name = old_method->name();
2677         symbolOop m_signature = old_method->signature();
2678 
2679         // skip the last entry since we just added it
2680         for (int j = _previous_versions->length() - 2; j >= 0; j--) {
2681           // check the previous versions array for a GC'ed weak refs
2682           pv_node = _previous_versions->at(j);
2683           cp_ref = pv_node->prev_constant_pool();
2684           assert(cp_ref != NULL, "cp ref was unexpectedly cleared");
2685           if (cp_ref == NULL) {
2686             delete pv_node;
2687             _previous_versions->remove_at(j);
2688             // Since we are traversing the array backwards, we don't have to
2689             // do anything special with the index.
2690             continue;  // robustness
2691           }
2692 
2693           constantPoolOop cp = (constantPoolOop)JNIHandles::resolve(cp_ref);
2694           if (cp == NULL) {
2695             // this entry has been GC'ed so remove it
2696             delete pv_node;
2697             _previous_versions->remove_at(j);
2698             // Since we are traversing the array backwards, we don't have to
2699             // do anything special with the index.
2700             continue;
2701           }
2702 
2703           GrowableArray<jweak>* method_refs = pv_node->prev_EMCP_methods();
2704           if (method_refs == NULL) {
2705             // We have run into a PreviousVersion generation where
2706             // all methods were made obsolete during that generation's
2707             // RedefineClasses() operation. At the time of that
2708             // operation, all EMCP methods were flushed so we don't
2709             // have to go back any further.
2710             //
2711             // A NULL method_refs is different than an empty method_refs.
2712             // We cannot infer any optimizations about older generations
2713             // from an empty method_refs for the current generation.
2714             break;
2715           }
2716 
2717           for (int k = method_refs->length() - 1; k >= 0; k--) {
2718             jweak method_ref = method_refs->at(k);
2719             assert(method_ref != NULL,
2720               "weak method ref was unexpectedly cleared");
2721             if (method_ref == NULL) {
2722               method_refs->remove_at(k);
2723               // Since we are traversing the array backwards, we don't
2724               // have to do anything special with the index.
2725               continue;  // robustness
2726             }
2727 
2728             methodOop method = (methodOop)JNIHandles::resolve(method_ref);
2729             if (method == NULL) {
2730               // this method entry has been GC'ed so skip it
2731               JNIHandles::destroy_weak_global(method_ref);
2732               method_refs->remove_at(k);
2733               continue;
2734             }
2735 
2736             if (method->name() == m_name &&
2737                 method->signature() == m_signature) {
2738               // The current RedefineClasses() call has made all EMCP
2739               // versions of this method obsolete so mark it as obsolete
2740               // and remove the weak ref.
2741               RC_TRACE(0x00000400,
2742                 ("add: %s(%s): flush obsolete method @%d in version @%d",
2743                 m_name->as_C_string(), m_signature->as_C_string(), k, j));
2744 
2745               method->set_is_obsolete();
2746               JNIHandles::destroy_weak_global(method_ref);
2747               method_refs->remove_at(k);
2748               break;
2749             }
2750           }
2751 
2752           // The previous loop may not find a matching EMCP method, but
2753           // that doesn't mean that we can optimize and not go any
2754           // further back in the PreviousVersion generations. The EMCP
2755           // method for this generation could have already been GC'ed,
2756           // but there still may be an older EMCP method that has not
2757           // been GC'ed.
2758         }
2759 
2760         if (++local_count >= obsolete_method_count) {
2761           // no more obsolete methods so bail out now
2762           break;
2763         }
2764       }
2765     }
2766   }
2767 } // end add_previous_version()
2768 
2769 
2770 // Determine if instanceKlass has a previous version.
2771 bool instanceKlass::has_previous_version() const {
2772   if (_previous_versions == NULL) {
2773     // no previous versions array so answer is easy
2774     return false;
2775   }
2776 
2777   for (int i = _previous_versions->length() - 1; i >= 0; i--) {
2778     // Check the previous versions array for an info node that hasn't
2779     // been GC'ed
2780     PreviousVersionNode * pv_node = _previous_versions->at(i);
2781 
2782     jobject cp_ref = pv_node->prev_constant_pool();
2783     assert(cp_ref != NULL, "cp reference was unexpectedly cleared");
2784     if (cp_ref == NULL) {
2785       continue;  // robustness
2786     }
2787 
2788     constantPoolOop cp = (constantPoolOop)JNIHandles::resolve(cp_ref);
2789     if (cp != NULL) {
2790       // we have at least one previous version
2791       return true;
2792     }
2793 
2794     // We don't have to check the method refs. If the constant pool has
2795     // been GC'ed then so have the methods.
2796   }
2797 
2798   // all of the underlying nodes' info has been GC'ed
2799   return false;
2800 } // end has_previous_version()
2801 
2802 methodOop instanceKlass::method_with_idnum(int idnum) {
2803   methodOop m = NULL;
2804   if (idnum < methods()->length()) {
2805     m = (methodOop) methods()->obj_at(idnum);
2806   }
2807   if (m == NULL || m->method_idnum() != idnum) {
2808     for (int index = 0; index < methods()->length(); ++index) {
2809       m = (methodOop) methods()->obj_at(index);
2810       if (m->method_idnum() == idnum) {
2811         return m;
2812       }
2813     }
2814   }
2815   return m;
2816 }
2817 
2818 
2819 // Set the annotation at 'idnum' to 'anno'.
2820 // We don't want to create or extend the array if 'anno' is NULL, since that is the
2821 // default value.  However, if the array exists and is long enough, we must set NULL values.
2822 void instanceKlass::set_methods_annotations_of(int idnum, typeArrayOop anno, objArrayOop* md_p) {
2823   objArrayOop md = *md_p;
2824   if (md != NULL && md->length() > idnum) {
2825     md->obj_at_put(idnum, anno);
2826   } else if (anno != NULL) {
2827     // create the array
2828     int length = MAX2(idnum+1, (int)_idnum_allocated_count);
2829     md = oopFactory::new_system_objArray(length, Thread::current());
2830     if (*md_p != NULL) {
2831       // copy the existing entries
2832       for (int index = 0; index < (*md_p)->length(); index++) {
2833         md->obj_at_put(index, (*md_p)->obj_at(index));
2834       }
2835     }
2836     set_annotations(md, md_p);
2837     md->obj_at_put(idnum, anno);
2838   } // if no array and idnum isn't included there is nothing to do
2839 }
2840 
2841 // Construct a PreviousVersionNode entry for the array hung off
2842 // the instanceKlass.
2843 PreviousVersionNode::PreviousVersionNode(jobject prev_constant_pool,
2844   bool prev_cp_is_weak, GrowableArray<jweak>* prev_EMCP_methods) {
2845 
2846   _prev_constant_pool = prev_constant_pool;
2847   _prev_cp_is_weak = prev_cp_is_weak;
2848   _prev_EMCP_methods = prev_EMCP_methods;
2849 }
2850 
2851 
2852 // Destroy a PreviousVersionNode
2853 PreviousVersionNode::~PreviousVersionNode() {
2854   if (_prev_constant_pool != NULL) {
2855     if (_prev_cp_is_weak) {
2856       JNIHandles::destroy_weak_global(_prev_constant_pool);
2857     } else {
2858       JNIHandles::destroy_global(_prev_constant_pool);
2859     }
2860   }
2861 
2862   if (_prev_EMCP_methods != NULL) {
2863     for (int i = _prev_EMCP_methods->length() - 1; i >= 0; i--) {
2864       jweak method_ref = _prev_EMCP_methods->at(i);
2865       if (method_ref != NULL) {
2866         JNIHandles::destroy_weak_global(method_ref);
2867       }
2868     }
2869     delete _prev_EMCP_methods;
2870   }
2871 }
2872 
2873 
2874 // Construct a PreviousVersionInfo entry
2875 PreviousVersionInfo::PreviousVersionInfo(PreviousVersionNode *pv_node) {
2876   _prev_constant_pool_handle = constantPoolHandle();  // NULL handle
2877   _prev_EMCP_method_handles = NULL;
2878 
2879   jobject cp_ref = pv_node->prev_constant_pool();
2880   assert(cp_ref != NULL, "constant pool ref was unexpectedly cleared");
2881   if (cp_ref == NULL) {
2882     return;  // robustness
2883   }
2884 
2885   constantPoolOop cp = (constantPoolOop)JNIHandles::resolve(cp_ref);
2886   if (cp == NULL) {
2887     // Weak reference has been GC'ed. Since the constant pool has been
2888     // GC'ed, the methods have also been GC'ed.
2889     return;
2890   }
2891 
2892   // make the constantPoolOop safe to return
2893   _prev_constant_pool_handle = constantPoolHandle(cp);
2894 
2895   GrowableArray<jweak>* method_refs = pv_node->prev_EMCP_methods();
2896   if (method_refs == NULL) {
2897     // the instanceKlass did not have any EMCP methods
2898     return;
2899   }
2900 
2901   _prev_EMCP_method_handles = new GrowableArray<methodHandle>(10);
2902 
2903   int n_methods = method_refs->length();
2904   for (int i = 0; i < n_methods; i++) {
2905     jweak method_ref = method_refs->at(i);
2906     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
2907     if (method_ref == NULL) {
2908       continue;  // robustness
2909     }
2910 
2911     methodOop method = (methodOop)JNIHandles::resolve(method_ref);
2912     if (method == NULL) {
2913       // this entry has been GC'ed so skip it
2914       continue;
2915     }
2916 
2917     // make the methodOop safe to return
2918     _prev_EMCP_method_handles->append(methodHandle(method));
2919   }
2920 }
2921 
2922 
2923 // Destroy a PreviousVersionInfo
2924 PreviousVersionInfo::~PreviousVersionInfo() {
2925   // Since _prev_EMCP_method_handles is not C-heap allocated, we
2926   // don't have to delete it.
2927 }
2928 
2929 
2930 // Construct a helper for walking the previous versions array
2931 PreviousVersionWalker::PreviousVersionWalker(instanceKlass *ik) {
2932   _previous_versions = ik->previous_versions();
2933   _current_index = 0;
2934   // _hm needs no initialization
2935   _current_p = NULL;
2936 }
2937 
2938 
2939 // Destroy a PreviousVersionWalker
2940 PreviousVersionWalker::~PreviousVersionWalker() {
2941   // Delete the current info just in case the caller didn't walk to
2942   // the end of the previous versions list. No harm if _current_p is
2943   // already NULL.
2944   delete _current_p;
2945 
2946   // When _hm is destroyed, all the Handles returned in
2947   // PreviousVersionInfo objects will be destroyed.
2948   // Also, after this destructor is finished it will be
2949   // safe to delete the GrowableArray allocated in the
2950   // PreviousVersionInfo objects.
2951 }
2952 
2953 
2954 // Return the interesting information for the next previous version
2955 // of the klass. Returns NULL if there are no more previous versions.
2956 PreviousVersionInfo* PreviousVersionWalker::next_previous_version() {
2957   if (_previous_versions == NULL) {
2958     // no previous versions so nothing to return
2959     return NULL;
2960   }
2961 
2962   delete _current_p;  // cleanup the previous info for the caller
2963   _current_p = NULL;  // reset to NULL so we don't delete same object twice
2964 
2965   int length = _previous_versions->length();
2966 
2967   while (_current_index < length) {
2968     PreviousVersionNode * pv_node = _previous_versions->at(_current_index++);
2969     PreviousVersionInfo * pv_info = new (ResourceObj::C_HEAP)
2970                                           PreviousVersionInfo(pv_node);
2971 
2972     constantPoolHandle cp_h = pv_info->prev_constant_pool_handle();
2973     if (cp_h.is_null()) {
2974       delete pv_info;
2975 
2976       // The underlying node's info has been GC'ed so try the next one.
2977       // We don't have to check the methods. If the constant pool has
2978       // GC'ed then so have the methods.
2979       continue;
2980     }
2981 
2982     // Found a node with non GC'ed info so return it. The caller will
2983     // need to delete pv_info when they are done with it.
2984     _current_p = pv_info;
2985     return pv_info;
2986   }
2987 
2988   // all of the underlying nodes' info has been GC'ed
2989   return NULL;
2990 } // end next_previous_version()