1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/methodOop.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 
  36 // The MethodData object collects counts and other profile information
  37 // during zeroth-tier (interpretive) and first-tier execution.
  38 // The profile is used later by compilation heuristics.  Some heuristics
  39 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  40 // optimization often has a down-side, a corner case that it handles
  41 // poorly, but which is thought to be rare.  The profile provides
  42 // evidence of this rarity for a given method or even BCI.  It allows
  43 // the compiler to back out of the optimization at places where it
  44 // has historically been a poor choice.  Other heuristics try to use
  45 // specific information gathered about types observed at a given site.
  46 //
  47 // All data in the profile is approximate.  It is expected to be accurate
  48 // on the whole, but the system expects occasional inaccuraces, due to
  49 // counter overflow, multiprocessor races during data collection, space
  50 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  51 // optimization quality but will not affect correctness.  Also, each MDO
  52 // is marked with its birth-date ("creation_mileage") which can be used
  53 // to assess the quality ("maturity") of its data.
  54 //
  55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  56 // state.  Also, certain recorded per-BCI events are given one-bit counters
  57 // which overflow to a saturated state which applied to all counters at
  58 // that BCI.  In other words, there is a small lattice which approximates
  59 // the ideal of an infinite-precision counter for each event at each BCI,
  60 // and the lattice quickly "bottoms out" in a state where all counters
  61 // are taken to be indefinitely large.
  62 //
  63 // The reader will find many data races in profile gathering code, starting
  64 // with invocation counter incrementation.  None of these races harm correct
  65 // execution of the compiled code.
  66 
  67 // forward decl
  68 class ProfileData;
  69 
  70 // DataLayout
  71 //
  72 // Overlay for generic profiling data.
  73 class DataLayout VALUE_OBJ_CLASS_SPEC {
  74 private:
  75   // Every data layout begins with a header.  This header
  76   // contains a tag, which is used to indicate the size/layout
  77   // of the data, 4 bits of flags, which can be used in any way,
  78   // 4 bits of trap history (none/one reason/many reasons),
  79   // and a bci, which is used to tie this piece of data to a
  80   // specific bci in the bytecodes.
  81   union {
  82     intptr_t _bits;
  83     struct {
  84       u1 _tag;
  85       u1 _flags;
  86       u2 _bci;
  87     } _struct;
  88   } _header;
  89 
  90   // The data layout has an arbitrary number of cells, each sized
  91   // to accomodate a pointer or an integer.
  92   intptr_t _cells[1];
  93 
  94   // Some types of data layouts need a length field.
  95   static bool needs_array_len(u1 tag);
  96 
  97 public:
  98   enum {
  99     counter_increment = 1
 100   };
 101 
 102   enum {
 103     cell_size = sizeof(intptr_t)
 104   };
 105 
 106   // Tag values
 107   enum {
 108     no_tag,
 109     bit_data_tag,
 110     counter_data_tag,
 111     jump_data_tag,
 112     receiver_type_data_tag,
 113     virtual_call_data_tag,
 114     ret_data_tag,
 115     branch_data_tag,
 116     multi_branch_data_tag,
 117     arg_info_data_tag
 118   };
 119 
 120   enum {
 121     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 122     // The trap state breaks down further as [recompile:1 | reason:3].
 123     // This further breakdown is defined in deoptimization.cpp.
 124     // See Deoptimization::trap_state_reason for an assert that
 125     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 126     //
 127     // The trap_state is collected only if ProfileTraps is true.
 128     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 129     trap_shift = BitsPerByte - trap_bits,
 130     trap_mask = right_n_bits(trap_bits),
 131     trap_mask_in_place = (trap_mask << trap_shift),
 132     flag_limit = trap_shift,
 133     flag_mask = right_n_bits(flag_limit),
 134     first_flag = 0
 135   };
 136 
 137   // Size computation
 138   static int header_size_in_bytes() {
 139     return cell_size;
 140   }
 141   static int header_size_in_cells() {
 142     return 1;
 143   }
 144 
 145   static int compute_size_in_bytes(int cell_count) {
 146     return header_size_in_bytes() + cell_count * cell_size;
 147   }
 148 
 149   // Initialization
 150   void initialize(u1 tag, u2 bci, int cell_count);
 151 
 152   // Accessors
 153   u1 tag() {
 154     return _header._struct._tag;
 155   }
 156 
 157   // Return a few bits of trap state.  Range is [0..trap_mask].
 158   // The state tells if traps with zero, one, or many reasons have occurred.
 159   // It also tells whether zero or many recompilations have occurred.
 160   // The associated trap histogram in the MDO itself tells whether
 161   // traps are common or not.  If a BCI shows that a trap X has
 162   // occurred, and the MDO shows N occurrences of X, we make the
 163   // simplifying assumption that all N occurrences can be blamed
 164   // on that BCI.
 165   int trap_state() {
 166     return ((_header._struct._flags >> trap_shift) & trap_mask);
 167   }
 168 
 169   void set_trap_state(int new_state) {
 170     assert(ProfileTraps, "used only under +ProfileTraps");
 171     uint old_flags = (_header._struct._flags & flag_mask);
 172     _header._struct._flags = (new_state << trap_shift) | old_flags;
 173   }
 174 
 175   u1 flags() {
 176     return _header._struct._flags;
 177   }
 178 
 179   u2 bci() {
 180     return _header._struct._bci;
 181   }
 182 
 183   void set_header(intptr_t value) {
 184     _header._bits = value;
 185   }
 186   void release_set_header(intptr_t value) {
 187     OrderAccess::release_store_ptr(&_header._bits, value);
 188   }
 189   intptr_t header() {
 190     return _header._bits;
 191   }
 192   void set_cell_at(int index, intptr_t value) {
 193     _cells[index] = value;
 194   }
 195   void release_set_cell_at(int index, intptr_t value) {
 196     OrderAccess::release_store_ptr(&_cells[index], value);
 197   }
 198   intptr_t cell_at(int index) {
 199     return _cells[index];
 200   }
 201   intptr_t* adr_cell_at(int index) {
 202     return &_cells[index];
 203   }
 204   oop* adr_oop_at(int index) {
 205     return (oop*)&(_cells[index]);
 206   }
 207 
 208   void set_flag_at(int flag_number) {
 209     assert(flag_number < flag_limit, "oob");
 210     _header._struct._flags |= (0x1 << flag_number);
 211   }
 212   bool flag_at(int flag_number) {
 213     assert(flag_number < flag_limit, "oob");
 214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 215   }
 216 
 217   // Low-level support for code generation.
 218   static ByteSize header_offset() {
 219     return byte_offset_of(DataLayout, _header);
 220   }
 221   static ByteSize tag_offset() {
 222     return byte_offset_of(DataLayout, _header._struct._tag);
 223   }
 224   static ByteSize flags_offset() {
 225     return byte_offset_of(DataLayout, _header._struct._flags);
 226   }
 227   static ByteSize bci_offset() {
 228     return byte_offset_of(DataLayout, _header._struct._bci);
 229   }
 230   static ByteSize cell_offset(int index) {
 231     return byte_offset_of(DataLayout, _cells[index]);
 232   }
 233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 234   static int flag_number_to_byte_constant(int flag_number) {
 235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 236     DataLayout temp; temp.set_header(0);
 237     temp.set_flag_at(flag_number);
 238     return temp._header._struct._flags;
 239   }
 240   // Return a value which, when or-ed as a word into _header, sets the flag.
 241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 242     DataLayout temp; temp.set_header(0);
 243     temp._header._struct._flags = byte_constant;
 244     return temp._header._bits;
 245   }
 246 
 247   // GC support
 248   ProfileData* data_in();
 249   void follow_weak_refs(BoolObjectClosure* cl);
 250 };
 251 
 252 
 253 // ProfileData class hierarchy
 254 class ProfileData;
 255 class   BitData;
 256 class     CounterData;
 257 class       ReceiverTypeData;
 258 class         VirtualCallData;
 259 class       RetData;
 260 class   JumpData;
 261 class     BranchData;
 262 class   ArrayData;
 263 class     MultiBranchData;
 264 class     ArgInfoData;
 265 
 266 
 267 // ProfileData
 268 //
 269 // A ProfileData object is created to refer to a section of profiling
 270 // data in a structured way.
 271 class ProfileData : public ResourceObj {
 272 private:
 273 #ifndef PRODUCT
 274   enum {
 275     tab_width_one = 16,
 276     tab_width_two = 36
 277   };
 278 #endif // !PRODUCT
 279 
 280   // This is a pointer to a section of profiling data.
 281   DataLayout* _data;
 282 
 283 protected:
 284   DataLayout* data() { return _data; }
 285 
 286   enum {
 287     cell_size = DataLayout::cell_size
 288   };
 289 
 290 public:
 291   // How many cells are in this?
 292   virtual int cell_count() {
 293     ShouldNotReachHere();
 294     return -1;
 295   }
 296 
 297   // Return the size of this data.
 298   int size_in_bytes() {
 299     return DataLayout::compute_size_in_bytes(cell_count());
 300   }
 301 
 302 protected:
 303   // Low-level accessors for underlying data
 304   void set_intptr_at(int index, intptr_t value) {
 305     assert(0 <= index && index < cell_count(), "oob");
 306     data()->set_cell_at(index, value);
 307   }
 308   void release_set_intptr_at(int index, intptr_t value) {
 309     assert(0 <= index && index < cell_count(), "oob");
 310     data()->release_set_cell_at(index, value);
 311   }
 312   intptr_t intptr_at(int index) {
 313     assert(0 <= index && index < cell_count(), "oob");
 314     return data()->cell_at(index);
 315   }
 316   void set_uint_at(int index, uint value) {
 317     set_intptr_at(index, (intptr_t) value);
 318   }
 319   void release_set_uint_at(int index, uint value) {
 320     release_set_intptr_at(index, (intptr_t) value);
 321   }
 322   uint uint_at(int index) {
 323     return (uint)intptr_at(index);
 324   }
 325   void set_int_at(int index, int value) {
 326     set_intptr_at(index, (intptr_t) value);
 327   }
 328   void release_set_int_at(int index, int value) {
 329     release_set_intptr_at(index, (intptr_t) value);
 330   }
 331   int int_at(int index) {
 332     return (int)intptr_at(index);
 333   }
 334   int int_at_unchecked(int index) {
 335     return (int)data()->cell_at(index);
 336   }
 337   void set_oop_at(int index, oop value) {
 338     set_intptr_at(index, (intptr_t) value);
 339   }
 340   oop oop_at(int index) {
 341     return (oop)intptr_at(index);
 342   }
 343   oop* adr_oop_at(int index) {
 344     assert(0 <= index && index < cell_count(), "oob");
 345     return data()->adr_oop_at(index);
 346   }
 347 
 348   void set_flag_at(int flag_number) {
 349     data()->set_flag_at(flag_number);
 350   }
 351   bool flag_at(int flag_number) {
 352     return data()->flag_at(flag_number);
 353   }
 354 
 355   // two convenient imports for use by subclasses:
 356   static ByteSize cell_offset(int index) {
 357     return DataLayout::cell_offset(index);
 358   }
 359   static int flag_number_to_byte_constant(int flag_number) {
 360     return DataLayout::flag_number_to_byte_constant(flag_number);
 361   }
 362 
 363   ProfileData(DataLayout* data) {
 364     _data = data;
 365   }
 366 
 367 public:
 368   // Constructor for invalid ProfileData.
 369   ProfileData();
 370 
 371   u2 bci() {
 372     return data()->bci();
 373   }
 374 
 375   address dp() {
 376     return (address)_data;
 377   }
 378 
 379   int trap_state() {
 380     return data()->trap_state();
 381   }
 382   void set_trap_state(int new_state) {
 383     data()->set_trap_state(new_state);
 384   }
 385 
 386   // Type checking
 387   virtual bool is_BitData()         { return false; }
 388   virtual bool is_CounterData()     { return false; }
 389   virtual bool is_JumpData()        { return false; }
 390   virtual bool is_ReceiverTypeData(){ return false; }
 391   virtual bool is_VirtualCallData() { return false; }
 392   virtual bool is_RetData()         { return false; }
 393   virtual bool is_BranchData()      { return false; }
 394   virtual bool is_ArrayData()       { return false; }
 395   virtual bool is_MultiBranchData() { return false; }
 396   virtual bool is_ArgInfoData()     { return false; }
 397 
 398 
 399   BitData* as_BitData() {
 400     assert(is_BitData(), "wrong type");
 401     return is_BitData()         ? (BitData*)        this : NULL;
 402   }
 403   CounterData* as_CounterData() {
 404     assert(is_CounterData(), "wrong type");
 405     return is_CounterData()     ? (CounterData*)    this : NULL;
 406   }
 407   JumpData* as_JumpData() {
 408     assert(is_JumpData(), "wrong type");
 409     return is_JumpData()        ? (JumpData*)       this : NULL;
 410   }
 411   ReceiverTypeData* as_ReceiverTypeData() {
 412     assert(is_ReceiverTypeData(), "wrong type");
 413     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 414   }
 415   VirtualCallData* as_VirtualCallData() {
 416     assert(is_VirtualCallData(), "wrong type");
 417     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 418   }
 419   RetData* as_RetData() {
 420     assert(is_RetData(), "wrong type");
 421     return is_RetData()         ? (RetData*)        this : NULL;
 422   }
 423   BranchData* as_BranchData() {
 424     assert(is_BranchData(), "wrong type");
 425     return is_BranchData()      ? (BranchData*)     this : NULL;
 426   }
 427   ArrayData* as_ArrayData() {
 428     assert(is_ArrayData(), "wrong type");
 429     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 430   }
 431   MultiBranchData* as_MultiBranchData() {
 432     assert(is_MultiBranchData(), "wrong type");
 433     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 434   }
 435   ArgInfoData* as_ArgInfoData() {
 436     assert(is_ArgInfoData(), "wrong type");
 437     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 438   }
 439 
 440 
 441   // Subclass specific initialization
 442   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
 443 
 444   // GC support
 445   virtual void follow_contents() {}
 446   virtual void oop_iterate(OopClosure* blk) {}
 447   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
 448   virtual void adjust_pointers() {}
 449   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
 450 
 451 #ifndef SERIALGC
 452   // Parallel old support
 453   virtual void follow_contents(ParCompactionManager* cm) {}
 454   virtual void update_pointers() {}
 455   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
 456 #endif // SERIALGC
 457 
 458   // CI translation: ProfileData can represent both MethodDataOop data
 459   // as well as CIMethodData data. This function is provided for translating
 460   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 461   // most ProfileData don't require any translation, so we provide the null
 462   // translation here, and the required translators are in the ci subclasses.
 463   virtual void translate_from(ProfileData* data) {}
 464 
 465   virtual void print_data_on(outputStream* st) {
 466     ShouldNotReachHere();
 467   }
 468 
 469 #ifndef PRODUCT
 470   void print_shared(outputStream* st, const char* name);
 471   void tab(outputStream* st);
 472 #endif
 473 };
 474 
 475 // BitData
 476 //
 477 // A BitData holds a flag or two in its header.
 478 class BitData : public ProfileData {
 479 protected:
 480   enum {
 481     // null_seen:
 482     //  saw a null operand (cast/aastore/instanceof)
 483     null_seen_flag              = DataLayout::first_flag + 0
 484   };
 485   enum { bit_cell_count = 0 };  // no additional data fields needed.
 486 public:
 487   BitData(DataLayout* layout) : ProfileData(layout) {
 488   }
 489 
 490   virtual bool is_BitData() { return true; }
 491 
 492   static int static_cell_count() {
 493     return bit_cell_count;
 494   }
 495 
 496   virtual int cell_count() {
 497     return static_cell_count();
 498   }
 499 
 500   // Accessor
 501 
 502   // The null_seen flag bit is specially known to the interpreter.
 503   // Consulting it allows the compiler to avoid setting up null_check traps.
 504   bool null_seen()     { return flag_at(null_seen_flag); }
 505   void set_null_seen()    { set_flag_at(null_seen_flag); }
 506 
 507 
 508   // Code generation support
 509   static int null_seen_byte_constant() {
 510     return flag_number_to_byte_constant(null_seen_flag);
 511   }
 512 
 513   static ByteSize bit_data_size() {
 514     return cell_offset(bit_cell_count);
 515   }
 516 
 517 #ifndef PRODUCT
 518   void print_data_on(outputStream* st);
 519 #endif
 520 };
 521 
 522 // CounterData
 523 //
 524 // A CounterData corresponds to a simple counter.
 525 class CounterData : public BitData {
 526 protected:
 527   enum {
 528     count_off,
 529     counter_cell_count
 530   };
 531 public:
 532   CounterData(DataLayout* layout) : BitData(layout) {}
 533 
 534   virtual bool is_CounterData() { return true; }
 535 
 536   static int static_cell_count() {
 537     return counter_cell_count;
 538   }
 539 
 540   virtual int cell_count() {
 541     return static_cell_count();
 542   }
 543 
 544   // Direct accessor
 545   uint count() {
 546     return uint_at(count_off);
 547   }
 548 
 549   // Code generation support
 550   static ByteSize count_offset() {
 551     return cell_offset(count_off);
 552   }
 553   static ByteSize counter_data_size() {
 554     return cell_offset(counter_cell_count);
 555   }
 556 
 557   void set_count(uint count) {
 558     set_uint_at(count_off, count);
 559   }
 560 
 561 #ifndef PRODUCT
 562   void print_data_on(outputStream* st);
 563 #endif
 564 };
 565 
 566 // JumpData
 567 //
 568 // A JumpData is used to access profiling information for a direct
 569 // branch.  It is a counter, used for counting the number of branches,
 570 // plus a data displacement, used for realigning the data pointer to
 571 // the corresponding target bci.
 572 class JumpData : public ProfileData {
 573 protected:
 574   enum {
 575     taken_off_set,
 576     displacement_off_set,
 577     jump_cell_count
 578   };
 579 
 580   void set_displacement(int displacement) {
 581     set_int_at(displacement_off_set, displacement);
 582   }
 583 
 584 public:
 585   JumpData(DataLayout* layout) : ProfileData(layout) {
 586     assert(layout->tag() == DataLayout::jump_data_tag ||
 587       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 588   }
 589 
 590   virtual bool is_JumpData() { return true; }
 591 
 592   static int static_cell_count() {
 593     return jump_cell_count;
 594   }
 595 
 596   virtual int cell_count() {
 597     return static_cell_count();
 598   }
 599 
 600   // Direct accessor
 601   uint taken() {
 602     return uint_at(taken_off_set);
 603   }
 604   // Saturating counter
 605   uint inc_taken() {
 606     uint cnt = taken() + 1;
 607     // Did we wrap? Will compiler screw us??
 608     if (cnt == 0) cnt--;
 609     set_uint_at(taken_off_set, cnt);
 610     return cnt;
 611   }
 612 
 613   int displacement() {
 614     return int_at(displacement_off_set);
 615   }
 616 
 617   // Code generation support
 618   static ByteSize taken_offset() {
 619     return cell_offset(taken_off_set);
 620   }
 621 
 622   static ByteSize displacement_offset() {
 623     return cell_offset(displacement_off_set);
 624   }
 625 
 626   // Specific initialization.
 627   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 628 
 629 #ifndef PRODUCT
 630   void print_data_on(outputStream* st);
 631 #endif
 632 };
 633 
 634 // ReceiverTypeData
 635 //
 636 // A ReceiverTypeData is used to access profiling information about a
 637 // dynamic type check.  It consists of a counter which counts the total times
 638 // that the check is reached, and a series of (klassOop, count) pairs
 639 // which are used to store a type profile for the receiver of the check.
 640 class ReceiverTypeData : public CounterData {
 641 protected:
 642   enum {
 643     receiver0_offset = counter_cell_count,
 644     count0_offset,
 645     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
 646   };
 647 
 648 public:
 649   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
 650     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
 651            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 652   }
 653 
 654   virtual bool is_ReceiverTypeData() { return true; }
 655 
 656   static int static_cell_count() {
 657     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
 658   }
 659 
 660   virtual int cell_count() {
 661     return static_cell_count();
 662   }
 663 
 664   // Direct accessors
 665   static uint row_limit() {
 666     return TypeProfileWidth;
 667   }
 668   static int receiver_cell_index(uint row) {
 669     return receiver0_offset + row * receiver_type_row_cell_count;
 670   }
 671   static int receiver_count_cell_index(uint row) {
 672     return count0_offset + row * receiver_type_row_cell_count;
 673   }
 674 
 675   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
 676   // gc; it does not assert the receiver is a klass.  During compaction of the
 677   // perm gen, the klass may already have moved, so the is_klass() predicate
 678   // would fail.  The 'normal' version should be used whenever possible.
 679   klassOop receiver_unchecked(uint row) {
 680     assert(row < row_limit(), "oob");
 681     oop recv = oop_at(receiver_cell_index(row));
 682     return (klassOop)recv;
 683   }
 684 
 685   klassOop receiver(uint row) {
 686     klassOop recv = receiver_unchecked(row);
 687     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
 688     return recv;
 689   }
 690 
 691   void set_receiver(uint row, oop p) {
 692     assert((uint)row < row_limit(), "oob");
 693     set_oop_at(receiver_cell_index(row), p);
 694   }
 695 
 696   uint receiver_count(uint row) {
 697     assert(row < row_limit(), "oob");
 698     return uint_at(receiver_count_cell_index(row));
 699   }
 700 
 701   void set_receiver_count(uint row, uint count) {
 702     assert(row < row_limit(), "oob");
 703     set_uint_at(receiver_count_cell_index(row), count);
 704   }
 705 
 706   void clear_row(uint row) {
 707     assert(row < row_limit(), "oob");
 708     // Clear total count - indicator of polymorphic call site.
 709     // The site may look like as monomorphic after that but
 710     // it allow to have more accurate profiling information because
 711     // there was execution phase change since klasses were unloaded.
 712     // If the site is still polymorphic then MDO will be updated
 713     // to reflect it. But it could be the case that the site becomes
 714     // only bimorphic. Then keeping total count not 0 will be wrong.
 715     // Even if we use monomorphic (when it is not) for compilation
 716     // we will only have trap, deoptimization and recompile again
 717     // with updated MDO after executing method in Interpreter.
 718     // An additional receiver will be recorded in the cleaned row
 719     // during next call execution.
 720     //
 721     // Note: our profiling logic works with empty rows in any slot.
 722     // We do sorting a profiling info (ciCallProfile) for compilation.
 723     //
 724     set_count(0);
 725     set_receiver(row, NULL);
 726     set_receiver_count(row, 0);
 727   }
 728 
 729   // Code generation support
 730   static ByteSize receiver_offset(uint row) {
 731     return cell_offset(receiver_cell_index(row));
 732   }
 733   static ByteSize receiver_count_offset(uint row) {
 734     return cell_offset(receiver_count_cell_index(row));
 735   }
 736   static ByteSize receiver_type_data_size() {
 737     return cell_offset(static_cell_count());
 738   }
 739 
 740   // GC support
 741   virtual void follow_contents();
 742   virtual void oop_iterate(OopClosure* blk);
 743   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
 744   virtual void adjust_pointers();
 745   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
 746 
 747 #ifndef SERIALGC
 748   // Parallel old support
 749   virtual void follow_contents(ParCompactionManager* cm);
 750   virtual void update_pointers();
 751   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
 752 #endif // SERIALGC
 753 
 754   oop* adr_receiver(uint row) {
 755     return adr_oop_at(receiver_cell_index(row));
 756   }
 757 
 758 #ifndef PRODUCT
 759   void print_receiver_data_on(outputStream* st);
 760   void print_data_on(outputStream* st);
 761 #endif
 762 };
 763 
 764 // VirtualCallData
 765 //
 766 // A VirtualCallData is used to access profiling information about a
 767 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
 768 class VirtualCallData : public ReceiverTypeData {
 769 public:
 770   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
 771     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 772   }
 773 
 774   virtual bool is_VirtualCallData() { return true; }
 775 
 776   static int static_cell_count() {
 777     // At this point we could add more profile state, e.g., for arguments.
 778     // But for now it's the same size as the base record type.
 779     return ReceiverTypeData::static_cell_count();
 780   }
 781 
 782   virtual int cell_count() {
 783     return static_cell_count();
 784   }
 785 
 786   // Direct accessors
 787   static ByteSize virtual_call_data_size() {
 788     return cell_offset(static_cell_count());
 789   }
 790 
 791 #ifndef PRODUCT
 792   void print_data_on(outputStream* st);
 793 #endif
 794 };
 795 
 796 // RetData
 797 //
 798 // A RetData is used to access profiling information for a ret bytecode.
 799 // It is composed of a count of the number of times that the ret has
 800 // been executed, followed by a series of triples of the form
 801 // (bci, count, di) which count the number of times that some bci was the
 802 // target of the ret and cache a corresponding data displacement.
 803 class RetData : public CounterData {
 804 protected:
 805   enum {
 806     bci0_offset = counter_cell_count,
 807     count0_offset,
 808     displacement0_offset,
 809     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
 810   };
 811 
 812   void set_bci(uint row, int bci) {
 813     assert((uint)row < row_limit(), "oob");
 814     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 815   }
 816   void release_set_bci(uint row, int bci) {
 817     assert((uint)row < row_limit(), "oob");
 818     // 'release' when setting the bci acts as a valid flag for other
 819     // threads wrt bci_count and bci_displacement.
 820     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 821   }
 822   void set_bci_count(uint row, uint count) {
 823     assert((uint)row < row_limit(), "oob");
 824     set_uint_at(count0_offset + row * ret_row_cell_count, count);
 825   }
 826   void set_bci_displacement(uint row, int disp) {
 827     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
 828   }
 829 
 830 public:
 831   RetData(DataLayout* layout) : CounterData(layout) {
 832     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
 833   }
 834 
 835   virtual bool is_RetData() { return true; }
 836 
 837   enum {
 838     no_bci = -1 // value of bci when bci1/2 are not in use.
 839   };
 840 
 841   static int static_cell_count() {
 842     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
 843   }
 844 
 845   virtual int cell_count() {
 846     return static_cell_count();
 847   }
 848 
 849   static uint row_limit() {
 850     return BciProfileWidth;
 851   }
 852   static int bci_cell_index(uint row) {
 853     return bci0_offset + row * ret_row_cell_count;
 854   }
 855   static int bci_count_cell_index(uint row) {
 856     return count0_offset + row * ret_row_cell_count;
 857   }
 858   static int bci_displacement_cell_index(uint row) {
 859     return displacement0_offset + row * ret_row_cell_count;
 860   }
 861 
 862   // Direct accessors
 863   int bci(uint row) {
 864     return int_at(bci_cell_index(row));
 865   }
 866   uint bci_count(uint row) {
 867     return uint_at(bci_count_cell_index(row));
 868   }
 869   int bci_displacement(uint row) {
 870     return int_at(bci_displacement_cell_index(row));
 871   }
 872 
 873   // Interpreter Runtime support
 874   address fixup_ret(int return_bci, methodDataHandle mdo);
 875 
 876   // Code generation support
 877   static ByteSize bci_offset(uint row) {
 878     return cell_offset(bci_cell_index(row));
 879   }
 880   static ByteSize bci_count_offset(uint row) {
 881     return cell_offset(bci_count_cell_index(row));
 882   }
 883   static ByteSize bci_displacement_offset(uint row) {
 884     return cell_offset(bci_displacement_cell_index(row));
 885   }
 886 
 887   // Specific initialization.
 888   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 889 
 890 #ifndef PRODUCT
 891   void print_data_on(outputStream* st);
 892 #endif
 893 };
 894 
 895 // BranchData
 896 //
 897 // A BranchData is used to access profiling data for a two-way branch.
 898 // It consists of taken and not_taken counts as well as a data displacement
 899 // for the taken case.
 900 class BranchData : public JumpData {
 901 protected:
 902   enum {
 903     not_taken_off_set = jump_cell_count,
 904     branch_cell_count
 905   };
 906 
 907   void set_displacement(int displacement) {
 908     set_int_at(displacement_off_set, displacement);
 909   }
 910 
 911 public:
 912   BranchData(DataLayout* layout) : JumpData(layout) {
 913     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
 914   }
 915 
 916   virtual bool is_BranchData() { return true; }
 917 
 918   static int static_cell_count() {
 919     return branch_cell_count;
 920   }
 921 
 922   virtual int cell_count() {
 923     return static_cell_count();
 924   }
 925 
 926   // Direct accessor
 927   uint not_taken() {
 928     return uint_at(not_taken_off_set);
 929   }
 930 
 931   uint inc_not_taken() {
 932     uint cnt = not_taken() + 1;
 933     // Did we wrap? Will compiler screw us??
 934     if (cnt == 0) cnt--;
 935     set_uint_at(not_taken_off_set, cnt);
 936     return cnt;
 937   }
 938 
 939   // Code generation support
 940   static ByteSize not_taken_offset() {
 941     return cell_offset(not_taken_off_set);
 942   }
 943   static ByteSize branch_data_size() {
 944     return cell_offset(branch_cell_count);
 945   }
 946 
 947   // Specific initialization.
 948   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 949 
 950 #ifndef PRODUCT
 951   void print_data_on(outputStream* st);
 952 #endif
 953 };
 954 
 955 // ArrayData
 956 //
 957 // A ArrayData is a base class for accessing profiling data which does
 958 // not have a statically known size.  It consists of an array length
 959 // and an array start.
 960 class ArrayData : public ProfileData {
 961 protected:
 962   friend class DataLayout;
 963 
 964   enum {
 965     array_len_off_set,
 966     array_start_off_set
 967   };
 968 
 969   uint array_uint_at(int index) {
 970     int aindex = index + array_start_off_set;
 971     return uint_at(aindex);
 972   }
 973   int array_int_at(int index) {
 974     int aindex = index + array_start_off_set;
 975     return int_at(aindex);
 976   }
 977   oop array_oop_at(int index) {
 978     int aindex = index + array_start_off_set;
 979     return oop_at(aindex);
 980   }
 981   void array_set_int_at(int index, int value) {
 982     int aindex = index + array_start_off_set;
 983     set_int_at(aindex, value);
 984   }
 985 
 986   // Code generation support for subclasses.
 987   static ByteSize array_element_offset(int index) {
 988     return cell_offset(array_start_off_set + index);
 989   }
 990 
 991 public:
 992   ArrayData(DataLayout* layout) : ProfileData(layout) {}
 993 
 994   virtual bool is_ArrayData() { return true; }
 995 
 996   static int static_cell_count() {
 997     return -1;
 998   }
 999 
1000   int array_len() {
1001     return int_at_unchecked(array_len_off_set);
1002   }
1003 
1004   virtual int cell_count() {
1005     return array_len() + 1;
1006   }
1007 
1008   // Code generation support
1009   static ByteSize array_len_offset() {
1010     return cell_offset(array_len_off_set);
1011   }
1012   static ByteSize array_start_offset() {
1013     return cell_offset(array_start_off_set);
1014   }
1015 };
1016 
1017 // MultiBranchData
1018 //
1019 // A MultiBranchData is used to access profiling information for
1020 // a multi-way branch (*switch bytecodes).  It consists of a series
1021 // of (count, displacement) pairs, which count the number of times each
1022 // case was taken and specify the data displacment for each branch target.
1023 class MultiBranchData : public ArrayData {
1024 protected:
1025   enum {
1026     default_count_off_set,
1027     default_disaplacement_off_set,
1028     case_array_start
1029   };
1030   enum {
1031     relative_count_off_set,
1032     relative_displacement_off_set,
1033     per_case_cell_count
1034   };
1035 
1036   void set_default_displacement(int displacement) {
1037     array_set_int_at(default_disaplacement_off_set, displacement);
1038   }
1039   void set_displacement_at(int index, int displacement) {
1040     array_set_int_at(case_array_start +
1041                      index * per_case_cell_count +
1042                      relative_displacement_off_set,
1043                      displacement);
1044   }
1045 
1046 public:
1047   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1048     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1049   }
1050 
1051   virtual bool is_MultiBranchData() { return true; }
1052 
1053   static int compute_cell_count(BytecodeStream* stream);
1054 
1055   int number_of_cases() {
1056     int alen = array_len() - 2; // get rid of default case here.
1057     assert(alen % per_case_cell_count == 0, "must be even");
1058     return (alen / per_case_cell_count);
1059   }
1060 
1061   uint default_count() {
1062     return array_uint_at(default_count_off_set);
1063   }
1064   int default_displacement() {
1065     return array_int_at(default_disaplacement_off_set);
1066   }
1067 
1068   uint count_at(int index) {
1069     return array_uint_at(case_array_start +
1070                          index * per_case_cell_count +
1071                          relative_count_off_set);
1072   }
1073   int displacement_at(int index) {
1074     return array_int_at(case_array_start +
1075                         index * per_case_cell_count +
1076                         relative_displacement_off_set);
1077   }
1078 
1079   // Code generation support
1080   static ByteSize default_count_offset() {
1081     return array_element_offset(default_count_off_set);
1082   }
1083   static ByteSize default_displacement_offset() {
1084     return array_element_offset(default_disaplacement_off_set);
1085   }
1086   static ByteSize case_count_offset(int index) {
1087     return case_array_offset() +
1088            (per_case_size() * index) +
1089            relative_count_offset();
1090   }
1091   static ByteSize case_array_offset() {
1092     return array_element_offset(case_array_start);
1093   }
1094   static ByteSize per_case_size() {
1095     return in_ByteSize(per_case_cell_count) * cell_size;
1096   }
1097   static ByteSize relative_count_offset() {
1098     return in_ByteSize(relative_count_off_set) * cell_size;
1099   }
1100   static ByteSize relative_displacement_offset() {
1101     return in_ByteSize(relative_displacement_off_set) * cell_size;
1102   }
1103 
1104   // Specific initialization.
1105   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
1106 
1107 #ifndef PRODUCT
1108   void print_data_on(outputStream* st);
1109 #endif
1110 };
1111 
1112 class ArgInfoData : public ArrayData {
1113 
1114 public:
1115   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1116     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1117   }
1118 
1119   virtual bool is_ArgInfoData() { return true; }
1120 
1121 
1122   int number_of_args() {
1123     return array_len();
1124   }
1125 
1126   uint arg_modified(int arg) {
1127     return array_uint_at(arg);
1128   }
1129 
1130   void set_arg_modified(int arg, uint val) {
1131     array_set_int_at(arg, val);
1132   }
1133 
1134 #ifndef PRODUCT
1135   void print_data_on(outputStream* st);
1136 #endif
1137 };
1138 
1139 // methodDataOop
1140 //
1141 // A methodDataOop holds information which has been collected about
1142 // a method.  Its layout looks like this:
1143 //
1144 // -----------------------------
1145 // | header                    |
1146 // | klass                     |
1147 // -----------------------------
1148 // | method                    |
1149 // | size of the methodDataOop |
1150 // -----------------------------
1151 // | Data entries...           |
1152 // |   (variable size)         |
1153 // |                           |
1154 // .                           .
1155 // .                           .
1156 // .                           .
1157 // |                           |
1158 // -----------------------------
1159 //
1160 // The data entry area is a heterogeneous array of DataLayouts. Each
1161 // DataLayout in the array corresponds to a specific bytecode in the
1162 // method.  The entries in the array are sorted by the corresponding
1163 // bytecode.  Access to the data is via resource-allocated ProfileData,
1164 // which point to the underlying blocks of DataLayout structures.
1165 //
1166 // During interpretation, if profiling in enabled, the interpreter
1167 // maintains a method data pointer (mdp), which points at the entry
1168 // in the array corresponding to the current bci.  In the course of
1169 // intepretation, when a bytecode is encountered that has profile data
1170 // associated with it, the entry pointed to by mdp is updated, then the
1171 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1172 // is NULL to begin with, the interpreter assumes that the current method
1173 // is not (yet) being profiled.
1174 //
1175 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
1176 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1177 // from the base of the data entry array.  A "displacement" is the byte offset
1178 // in certain ProfileData objects that indicate the amount the mdp must be
1179 // adjusted in the event of a change in control flow.
1180 //
1181 
1182 class methodDataOopDesc : public oopDesc {
1183   friend class VMStructs;
1184 private:
1185   friend class ProfileData;
1186 
1187   // Back pointer to the methodOop
1188   methodOop _method;
1189 
1190   // Size of this oop in bytes
1191   int _size;
1192 
1193   // Cached hint for bci_to_dp and bci_to_data
1194   int _hint_di;
1195 
1196   // Whole-method sticky bits and flags
1197 public:
1198   enum {
1199     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
1200     _trap_hist_mask     = max_jubyte,
1201     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1202   }; // Public flag values
1203 private:
1204   uint _nof_decompiles;             // count of all nmethod removals
1205   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1206   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1207   union {
1208     intptr_t _align;
1209     u1 _array[_trap_hist_limit];
1210   } _trap_hist;
1211 
1212   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1213   intx              _eflags;          // flags on escape information
1214   intx              _arg_local;       // bit set of non-escaping arguments
1215   intx              _arg_stack;       // bit set of stack-allocatable arguments
1216   intx              _arg_returned;    // bit set of returned arguments
1217 
1218   int _creation_mileage;              // method mileage at MDO creation
1219 
1220   // How many invocations has this MDO seen?
1221   // These counters are used to determine the exact age of MDO.
1222   // We need those because in tiered a method can be concurrently
1223   // executed at different levels.
1224   InvocationCounter _invocation_counter;
1225   // Same for backedges.
1226   InvocationCounter _backedge_counter;
1227   // Number of loops and blocks is computed when compiling the first
1228   // time with C1. It is used to determine if method is trivial.
1229   short             _num_loops;
1230   short             _num_blocks;
1231   // Highest compile level this method has ever seen.
1232   u1                _highest_comp_level;
1233   // Same for OSR level
1234   u1                _highest_osr_comp_level;
1235   // Does this method contain anything worth profiling?
1236   bool              _would_profile;
1237 
1238   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1239   int _data_size;
1240 
1241   // Beginning of the data entries
1242   intptr_t _data[1];
1243 
1244   // Helper for size computation
1245   static int compute_data_size(BytecodeStream* stream);
1246   static int bytecode_cell_count(Bytecodes::Code code);
1247   enum { no_profile_data = -1, variable_cell_count = -2 };
1248 
1249   // Helper for initialization
1250   DataLayout* data_layout_at(int data_index) {
1251     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1252     return (DataLayout*) (((address)_data) + data_index);
1253   }
1254 
1255   // Initialize an individual data segment.  Returns the size of
1256   // the segment in bytes.
1257   int initialize_data(BytecodeStream* stream, int data_index);
1258 
1259   // Helper for data_at
1260   DataLayout* limit_data_position() {
1261     return (DataLayout*)((address)data_base() + _data_size);
1262   }
1263   bool out_of_bounds(int data_index) {
1264     return data_index >= data_size();
1265   }
1266 
1267   // Give each of the data entries a chance to perform specific
1268   // data initialization.
1269   void post_initialize(BytecodeStream* stream);
1270 
1271   // hint accessors
1272   int      hint_di() const  { return _hint_di; }
1273   void set_hint_di(int di)  {
1274     assert(!out_of_bounds(di), "hint_di out of bounds");
1275     _hint_di = di;
1276   }
1277   ProfileData* data_before(int bci) {
1278     // avoid SEGV on this edge case
1279     if (data_size() == 0)
1280       return NULL;
1281     int hint = hint_di();
1282     if (data_layout_at(hint)->bci() <= bci)
1283       return data_at(hint);
1284     return first_data();
1285   }
1286 
1287   // What is the index of the first data entry?
1288   int first_di() { return 0; }
1289 
1290   // Find or create an extra ProfileData:
1291   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1292 
1293   // return the argument info cell
1294   ArgInfoData *arg_info();
1295 
1296 public:
1297   static int header_size() {
1298     return sizeof(methodDataOopDesc)/wordSize;
1299   }
1300 
1301   // Compute the size of a methodDataOop before it is created.
1302   static int compute_allocation_size_in_bytes(methodHandle method);
1303   static int compute_allocation_size_in_words(methodHandle method);
1304   static int compute_extra_data_count(int data_size, int empty_bc_count);
1305 
1306   // Determine if a given bytecode can have profile information.
1307   static bool bytecode_has_profile(Bytecodes::Code code) {
1308     return bytecode_cell_count(code) != no_profile_data;
1309   }
1310 
1311   // Perform initialization of a new methodDataOop
1312   void initialize(methodHandle method);
1313 
1314   // My size
1315   int object_size_in_bytes() { return _size; }
1316   int object_size() {
1317     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
1318   }
1319 
1320   int      creation_mileage() const  { return _creation_mileage; }
1321   void set_creation_mileage(int x)   { _creation_mileage = x; }
1322 
1323   int invocation_count() {
1324     if (invocation_counter()->carry()) {
1325       return InvocationCounter::count_limit;
1326     }
1327     return invocation_counter()->count();
1328   }
1329   int backedge_count() {
1330     if (backedge_counter()->carry()) {
1331       return InvocationCounter::count_limit;
1332     }
1333     return backedge_counter()->count();
1334   }
1335 
1336   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1337   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1338 
1339   void set_would_profile(bool p)              { _would_profile = p;    }
1340   bool would_profile() const                  { return _would_profile; }
1341 
1342   int highest_comp_level()                    { return _highest_comp_level;      }
1343   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1344   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
1345   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1346 
1347   int num_loops() const                       { return _num_loops;  }
1348   void set_num_loops(int n)                   { _num_loops = n;     }
1349   int num_blocks() const                      { return _num_blocks; }
1350   void set_num_blocks(int n)                  { _num_blocks = n;    }
1351 
1352   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1353   static int mileage_of(methodOop m);
1354 
1355   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1356   enum EscapeFlag {
1357     estimated    = 1 << 0,
1358     return_local = 1 << 1,
1359     return_allocated = 1 << 2,
1360     allocated_escapes = 1 << 3,
1361     unknown_modified = 1 << 4
1362   };
1363 
1364   intx eflags()                                  { return _eflags; }
1365   intx arg_local()                               { return _arg_local; }
1366   intx arg_stack()                               { return _arg_stack; }
1367   intx arg_returned()                            { return _arg_returned; }
1368   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1369                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1370                                                    return aid->arg_modified(a); }
1371 
1372   void set_eflags(intx v)                        { _eflags = v; }
1373   void set_arg_local(intx v)                     { _arg_local = v; }
1374   void set_arg_stack(intx v)                     { _arg_stack = v; }
1375   void set_arg_returned(intx v)                  { _arg_returned = v; }
1376   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1377                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1378 
1379                                                    aid->set_arg_modified(a, v); }
1380 
1381   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1382 
1383   // Location and size of data area
1384   address data_base() const {
1385     return (address) _data;
1386   }
1387   int data_size() {
1388     return _data_size;
1389   }
1390 
1391   // Accessors
1392   methodOop method() { return _method; }
1393 
1394   // Get the data at an arbitrary (sort of) data index.
1395   ProfileData* data_at(int data_index);
1396 
1397   // Walk through the data in order.
1398   ProfileData* first_data() { return data_at(first_di()); }
1399   ProfileData* next_data(ProfileData* current);
1400   bool is_valid(ProfileData* current) { return current != NULL; }
1401 
1402   // Convert a dp (data pointer) to a di (data index).
1403   int dp_to_di(address dp) {
1404     return dp - ((address)_data);
1405   }
1406 
1407   address di_to_dp(int di) {
1408     return (address)data_layout_at(di);
1409   }
1410 
1411   // bci to di/dp conversion.
1412   address bci_to_dp(int bci);
1413   int bci_to_di(int bci) {
1414     return dp_to_di(bci_to_dp(bci));
1415   }
1416 
1417   // Get the data at an arbitrary bci, or NULL if there is none.
1418   ProfileData* bci_to_data(int bci);
1419 
1420   // Same, but try to create an extra_data record if one is needed:
1421   ProfileData* allocate_bci_to_data(int bci) {
1422     ProfileData* data = bci_to_data(bci);
1423     return (data != NULL) ? data : bci_to_extra_data(bci, true);
1424   }
1425 
1426   // Add a handful of extra data records, for trap tracking.
1427   DataLayout* extra_data_base() { return limit_data_position(); }
1428   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
1429   int extra_data_size() { return (address)extra_data_limit()
1430                                - (address)extra_data_base(); }
1431   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
1432 
1433   // Return (uint)-1 for overflow.
1434   uint trap_count(int reason) const {
1435     assert((uint)reason < _trap_hist_limit, "oob");
1436     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
1437   }
1438   // For loops:
1439   static uint trap_reason_limit() { return _trap_hist_limit; }
1440   static uint trap_count_limit()  { return _trap_hist_mask; }
1441   uint inc_trap_count(int reason) {
1442     // Count another trap, anywhere in this method.
1443     assert(reason >= 0, "must be single trap");
1444     if ((uint)reason < _trap_hist_limit) {
1445       uint cnt1 = 1 + _trap_hist._array[reason];
1446       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
1447         _trap_hist._array[reason] = cnt1;
1448         return cnt1;
1449       } else {
1450         return _trap_hist_mask + (++_nof_overflow_traps);
1451       }
1452     } else {
1453       // Could not represent the count in the histogram.
1454       return (++_nof_overflow_traps);
1455     }
1456   }
1457 
1458   uint overflow_trap_count() const {
1459     return _nof_overflow_traps;
1460   }
1461   uint overflow_recompile_count() const {
1462     return _nof_overflow_recompiles;
1463   }
1464   void inc_overflow_recompile_count() {
1465     _nof_overflow_recompiles += 1;
1466   }
1467   uint decompile_count() const {
1468     return _nof_decompiles;
1469   }
1470   void inc_decompile_count() {
1471     _nof_decompiles += 1;
1472     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
1473       method()->set_not_compilable(CompLevel_full_optimization);
1474     }
1475   }
1476 
1477   // Support for code generation
1478   static ByteSize data_offset() {
1479     return byte_offset_of(methodDataOopDesc, _data[0]);
1480   }
1481 
1482   static ByteSize invocation_counter_offset() {
1483     return byte_offset_of(methodDataOopDesc, _invocation_counter);
1484   }
1485   static ByteSize backedge_counter_offset() {
1486     return byte_offset_of(methodDataOopDesc, _backedge_counter);
1487   }
1488 
1489   // GC support
1490   oop* adr_method() const { return (oop*)&_method; }
1491   bool object_is_parsable() const { return _size != 0; }
1492   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
1493 
1494 #ifndef PRODUCT
1495   // printing support for method data
1496   void print_data_on(outputStream* st);
1497 #endif
1498 
1499   // verification
1500   void verify_data_on(outputStream* st);
1501 };
1502 
1503 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP