1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_cfgnode.cpp.incl"
  31 
  32 //=============================================================================
  33 //------------------------------Value------------------------------------------
  34 // Compute the type of the RegionNode.
  35 const Type *RegionNode::Value( PhaseTransform *phase ) const {
  36   for( uint i=1; i<req(); ++i ) {       // For all paths in
  37     Node *n = in(i);            // Get Control source
  38     if( !n ) continue;          // Missing inputs are TOP
  39     if( phase->type(n) == Type::CONTROL )
  40       return Type::CONTROL;
  41   }
  42   return Type::TOP;             // All paths dead?  Then so are we
  43 }
  44 
  45 //------------------------------Identity---------------------------------------
  46 // Check for Region being Identity.
  47 Node *RegionNode::Identity( PhaseTransform *phase ) {
  48   // Cannot have Region be an identity, even if it has only 1 input.
  49   // Phi users cannot have their Region input folded away for them,
  50   // since they need to select the proper data input
  51   return this;
  52 }
  53 
  54 //------------------------------merge_region-----------------------------------
  55 // If a Region flows into a Region, merge into one big happy merge.  This is
  56 // hard to do if there is stuff that has to happen
  57 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  58   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  59     return NULL;
  60   Node *progress = NULL;        // Progress flag
  61   PhaseIterGVN *igvn = phase->is_IterGVN();
  62 
  63   uint rreq = region->req();
  64   for( uint i = 1; i < rreq; i++ ) {
  65     Node *r = region->in(i);
  66     if( r && r->Opcode() == Op_Region && // Found a region?
  67         r->in(0) == r &&        // Not already collapsed?
  68         r != region &&          // Avoid stupid situations
  69         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  70       assert(!r->as_Region()->has_phi(), "no phi users");
  71       if( !progress ) {         // No progress
  72         if (region->has_phi()) {
  73           return NULL;        // Only flatten if no Phi users
  74           // igvn->hash_delete( phi );
  75         }
  76         igvn->hash_delete( region );
  77         progress = region;      // Making progress
  78       }
  79       igvn->hash_delete( r );
  80 
  81       // Append inputs to 'r' onto 'region'
  82       for( uint j = 1; j < r->req(); j++ ) {
  83         // Move an input from 'r' to 'region'
  84         region->add_req(r->in(j));
  85         r->set_req(j, phase->C->top());
  86         // Update phis of 'region'
  87         //for( uint k = 0; k < max; k++ ) {
  88         //  Node *phi = region->out(k);
  89         //  if( phi->is_Phi() ) {
  90         //    phi->add_req(phi->in(i));
  91         //  }
  92         //}
  93 
  94         rreq++;                 // One more input to Region
  95       } // Found a region to merge into Region
  96       // Clobber pointer to the now dead 'r'
  97       region->set_req(i, phase->C->top());
  98     }
  99   }
 100 
 101   return progress;
 102 }
 103 
 104 
 105 
 106 //--------------------------------has_phi--------------------------------------
 107 // Helper function: Return any PhiNode that uses this region or NULL
 108 PhiNode* RegionNode::has_phi() const {
 109   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 110     Node* phi = fast_out(i);
 111     if (phi->is_Phi()) {   // Check for Phi users
 112       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 113       return phi->as_Phi();  // this one is good enough
 114     }
 115   }
 116 
 117   return NULL;
 118 }
 119 
 120 
 121 //-----------------------------has_unique_phi----------------------------------
 122 // Helper function: Return the only PhiNode that uses this region or NULL
 123 PhiNode* RegionNode::has_unique_phi() const {
 124   // Check that only one use is a Phi
 125   PhiNode* only_phi = NULL;
 126   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 127     Node* phi = fast_out(i);
 128     if (phi->is_Phi()) {   // Check for Phi users
 129       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 130       if (only_phi == NULL) {
 131         only_phi = phi->as_Phi();
 132       } else {
 133         return NULL;  // multiple phis
 134       }
 135     }
 136   }
 137 
 138   return only_phi;
 139 }
 140 
 141 
 142 //------------------------------check_phi_clipping-----------------------------
 143 // Helper function for RegionNode's identification of FP clipping
 144 // Check inputs to the Phi
 145 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 146   min     = NULL;
 147   max     = NULL;
 148   val     = NULL;
 149   min_idx = 0;
 150   max_idx = 0;
 151   val_idx = 0;
 152   uint  phi_max = phi->req();
 153   if( phi_max == 4 ) {
 154     for( uint j = 1; j < phi_max; ++j ) {
 155       Node *n = phi->in(j);
 156       int opcode = n->Opcode();
 157       switch( opcode ) {
 158       case Op_ConI:
 159         {
 160           if( min == NULL ) {
 161             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 162             min_idx = j;
 163           } else {
 164             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 165             max_idx = j;
 166             if( min->get_int() > max->get_int() ) {
 167               // Swap min and max
 168               ConNode *temp;
 169               uint     temp_idx;
 170               temp     = min;     min     = max;     max     = temp;
 171               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 172             }
 173           }
 174         }
 175         break;
 176       default:
 177         {
 178           val = n;
 179           val_idx = j;
 180         }
 181         break;
 182       }
 183     }
 184   }
 185   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 186 }
 187 
 188 
 189 //------------------------------check_if_clipping------------------------------
 190 // Helper function for RegionNode's identification of FP clipping
 191 // Check that inputs to Region come from two IfNodes,
 192 //
 193 //            If
 194 //      False    True
 195 //       If        |
 196 //  False  True    |
 197 //    |      |     |
 198 //  RegionNode_inputs
 199 //
 200 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 201   top_if = NULL;
 202   bot_if = NULL;
 203 
 204   // Check control structure above RegionNode for (if  ( if  ) )
 205   Node *in1 = region->in(1);
 206   Node *in2 = region->in(2);
 207   Node *in3 = region->in(3);
 208   // Check that all inputs are projections
 209   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 210     Node *in10 = in1->in(0);
 211     Node *in20 = in2->in(0);
 212     Node *in30 = in3->in(0);
 213     // Check that #1 and #2 are ifTrue and ifFalse from same If
 214     if( in10 != NULL && in10->is_If() &&
 215         in20 != NULL && in20->is_If() &&
 216         in30 != NULL && in30->is_If() && in10 == in20 &&
 217         (in1->Opcode() != in2->Opcode()) ) {
 218       Node  *in100 = in10->in(0);
 219       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 220       // Check that control for in10 comes from other branch of IF from in3
 221       if( in1000 != NULL && in1000->is_If() &&
 222           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 223         // Control pattern checks
 224         top_if = (IfNode*)in1000;
 225         bot_if = (IfNode*)in10;
 226       }
 227     }
 228   }
 229 
 230   return (top_if != NULL);
 231 }
 232 
 233 
 234 //------------------------------check_convf2i_clipping-------------------------
 235 // Helper function for RegionNode's identification of FP clipping
 236 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 237 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 238   convf2i = NULL;
 239 
 240   // Check for the RShiftNode
 241   Node *rshift = phi->in(idx);
 242   assert( rshift, "Previous checks ensure phi input is present");
 243   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 244 
 245   // Check for the LShiftNode
 246   Node *lshift = rshift->in(1);
 247   assert( lshift, "Previous checks ensure phi input is present");
 248   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 249 
 250   // Check for the ConvF2INode
 251   Node *conv = lshift->in(1);
 252   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 253 
 254   // Check that shift amounts are only to get sign bits set after F2I
 255   jint max_cutoff     = max->get_int();
 256   jint min_cutoff     = min->get_int();
 257   jint left_shift     = lshift->in(2)->get_int();
 258   jint right_shift    = rshift->in(2)->get_int();
 259   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 260   if( left_shift != right_shift ||
 261       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 262       max_post_shift < max_cutoff ||
 263       max_post_shift < -min_cutoff ) {
 264     // Shifts are necessary but current transformation eliminates them
 265     return false;
 266   }
 267 
 268   // OK to return the result of ConvF2I without shifting
 269   convf2i = (ConvF2INode*)conv;
 270   return true;
 271 }
 272 
 273 
 274 //------------------------------check_compare_clipping-------------------------
 275 // Helper function for RegionNode's identification of FP clipping
 276 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 277   Node *i1 = iff->in(1);
 278   if ( !i1->is_Bool() ) { return false; }
 279   BoolNode *bool1 = i1->as_Bool();
 280   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 281   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 282   const Node *cmpF = bool1->in(1);
 283   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 284   // Test that the float value being compared against
 285   // is equivalent to the int value used as a limit
 286   Node *nodef = cmpF->in(2);
 287   if( nodef->Opcode() != Op_ConF ) { return false; }
 288   jfloat conf = nodef->getf();
 289   jint   coni = limit->get_int();
 290   if( ((int)conf) != coni )        { return false; }
 291   input = cmpF->in(1);
 292   return true;
 293 }
 294 
 295 //------------------------------is_unreachable_region--------------------------
 296 // Find if the Region node is reachable from the root.
 297 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 298   assert(req() == 2, "");
 299 
 300   // First, cut the simple case of fallthrough region when NONE of
 301   // region's phis references itself directly or through a data node.
 302   uint max = outcnt();
 303   uint i;
 304   for (i = 0; i < max; i++) {
 305     Node* phi = raw_out(i);
 306     if (phi != NULL && phi->is_Phi()) {
 307       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 308       if (phi->outcnt() == 0)
 309         continue; // Safe case - no loops
 310       if (phi->outcnt() == 1) {
 311         Node* u = phi->raw_out(0);
 312         // Skip if only one use is an other Phi or Call or Uncommon trap.
 313         // It is safe to consider this case as fallthrough.
 314         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 315           continue;
 316       }
 317       // Check when phi references itself directly or through an other node.
 318       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 319         break; // Found possible unsafe data loop.
 320     }
 321   }
 322   if (i >= max)
 323     return false; // An unsafe case was NOT found - don't need graph walk.
 324 
 325   // Unsafe case - check if the Region node is reachable from root.
 326   ResourceMark rm;
 327 
 328   Arena *a = Thread::current()->resource_area();
 329   Node_List nstack(a);
 330   VectorSet visited(a);
 331 
 332   // Mark all control nodes reachable from root outputs
 333   Node *n = (Node*)phase->C->root();
 334   nstack.push(n);
 335   visited.set(n->_idx);
 336   while (nstack.size() != 0) {
 337     n = nstack.pop();
 338     uint max = n->outcnt();
 339     for (uint i = 0; i < max; i++) {
 340       Node* m = n->raw_out(i);
 341       if (m != NULL && m->is_CFG()) {
 342         if (phase->eqv(m, this)) {
 343           return false; // We reached the Region node - it is not dead.
 344         }
 345         if (!visited.test_set(m->_idx))
 346           nstack.push(m);
 347       }
 348     }
 349   }
 350 
 351   return true; // The Region node is unreachable - it is dead.
 352 }
 353 
 354 //------------------------------Ideal------------------------------------------
 355 // Return a node which is more "ideal" than the current node.  Must preserve
 356 // the CFG, but we can still strip out dead paths.
 357 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 358   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 359   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 360 
 361   // Check for RegionNode with no Phi users and both inputs come from either
 362   // arm of the same IF.  If found, then the control-flow split is useless.
 363   bool has_phis = false;
 364   if (can_reshape) {            // Need DU info to check for Phi users
 365     has_phis = (has_phi() != NULL);       // Cache result
 366     if (!has_phis) {            // No Phi users?  Nothing merging?
 367       for (uint i = 1; i < req()-1; i++) {
 368         Node *if1 = in(i);
 369         if( !if1 ) continue;
 370         Node *iff = if1->in(0);
 371         if( !iff || !iff->is_If() ) continue;
 372         for( uint j=i+1; j<req(); j++ ) {
 373           if( in(j) && in(j)->in(0) == iff &&
 374               if1->Opcode() != in(j)->Opcode() ) {
 375             // Add the IF Projections to the worklist. They (and the IF itself)
 376             // will be eliminated if dead.
 377             phase->is_IterGVN()->add_users_to_worklist(iff);
 378             set_req(i, iff->in(0));// Skip around the useless IF diamond
 379             set_req(j, NULL);
 380             return this;      // Record progress
 381           }
 382         }
 383       }
 384     }
 385   }
 386 
 387   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 388   // degrades to a copy.
 389   bool add_to_worklist = false;
 390   int cnt = 0;                  // Count of values merging
 391   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 392   int del_it = 0;               // The last input path we delete
 393   // For all inputs...
 394   for( uint i=1; i<req(); ++i ){// For all paths in
 395     Node *n = in(i);            // Get the input
 396     if( n != NULL ) {
 397       // Remove useless control copy inputs
 398       if( n->is_Region() && n->as_Region()->is_copy() ) {
 399         set_req(i, n->nonnull_req());
 400         i--;
 401         continue;
 402       }
 403       if( n->is_Proj() ) {      // Remove useless rethrows
 404         Node *call = n->in(0);
 405         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 406           set_req(i, call->in(0));
 407           i--;
 408           continue;
 409         }
 410       }
 411       if( phase->type(n) == Type::TOP ) {
 412         set_req(i, NULL);       // Ignore TOP inputs
 413         i--;
 414         continue;
 415       }
 416       cnt++;                    // One more value merging
 417 
 418     } else if (can_reshape) {   // Else found dead path with DU info
 419       PhaseIterGVN *igvn = phase->is_IterGVN();
 420       del_req(i);               // Yank path from self
 421       del_it = i;
 422       uint max = outcnt();
 423       DUIterator j;
 424       bool progress = true;
 425       while(progress) {         // Need to establish property over all users
 426         progress = false;
 427         for (j = outs(); has_out(j); j++) {
 428           Node *n = out(j);
 429           if( n->req() != req() && n->is_Phi() ) {
 430             assert( n->in(0) == this, "" );
 431             igvn->hash_delete(n); // Yank from hash before hacking edges
 432             n->set_req_X(i,NULL,igvn);// Correct DU info
 433             n->del_req(i);        // Yank path from Phis
 434             if( max != outcnt() ) {
 435               progress = true;
 436               j = refresh_out_pos(j);
 437               max = outcnt();
 438             }
 439           }
 440         }
 441       }
 442       add_to_worklist = true;
 443       i--;
 444     }
 445   }
 446 
 447   if (can_reshape && cnt == 1) {
 448     // Is it dead loop?
 449     // If it is LoopNopde it had 2 (+1 itself) inputs and
 450     // one of them was cut. The loop is dead if it was EntryContol.
 451     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
 452     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
 453        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 454       // Yes,  the region will be removed during the next step below.
 455       // Cut the backedge input and remove phis since no data paths left.
 456       // We don't cut outputs to other nodes here since we need to put them
 457       // on the worklist.
 458       del_req(1);
 459       cnt = 0;
 460       assert( req() == 1, "no more inputs expected" );
 461       uint max = outcnt();
 462       bool progress = true;
 463       Node *top = phase->C->top();
 464       PhaseIterGVN *igvn = phase->is_IterGVN();
 465       DUIterator j;
 466       while(progress) {
 467         progress = false;
 468         for (j = outs(); has_out(j); j++) {
 469           Node *n = out(j);
 470           if( n->is_Phi() ) {
 471             assert( igvn->eqv(n->in(0), this), "" );
 472             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 473             // Break dead loop data path.
 474             // Eagerly replace phis with top to avoid phis copies generation.
 475             igvn->replace_node(n, top);
 476             if( max != outcnt() ) {
 477               progress = true;
 478               j = refresh_out_pos(j);
 479               max = outcnt();
 480             }
 481           }
 482         }
 483       }
 484       add_to_worklist = true;
 485     }
 486   }
 487   if (add_to_worklist) {
 488     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 489   }
 490 
 491   if( cnt <= 1 ) {              // Only 1 path in?
 492     set_req(0, NULL);           // Null control input for region copy
 493     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 494       // No inputs or all inputs are NULL.
 495       return NULL;
 496     } else if (can_reshape) {   // Optimization phase - remove the node
 497       PhaseIterGVN *igvn = phase->is_IterGVN();
 498       Node *parent_ctrl;
 499       if( cnt == 0 ) {
 500         assert( req() == 1, "no inputs expected" );
 501         // During IGVN phase such region will be subsumed by TOP node
 502         // so region's phis will have TOP as control node.
 503         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 504         // Also set other user's input to top.
 505         parent_ctrl = phase->C->top();
 506       } else {
 507         // The fallthrough case since we already checked dead loops above.
 508         parent_ctrl = in(1);
 509         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 510         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 511       }
 512       if (!add_to_worklist)
 513         igvn->add_users_to_worklist(this); // Check for further allowed opts
 514       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 515         Node* n = last_out(i);
 516         igvn->hash_delete(n); // Remove from worklist before modifying edges
 517         if( n->is_Phi() ) {   // Collapse all Phis
 518           // Eagerly replace phis to avoid copies generation.
 519           Node* in;
 520           if( cnt == 0 ) {
 521             assert( n->req() == 1, "No data inputs expected" );
 522             in = parent_ctrl; // replaced by top
 523           } else {
 524             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 525             in = n->in(1);               // replaced by unique input
 526             if( n->as_Phi()->is_unsafe_data_reference(in) )
 527               in = phase->C->top();      // replaced by top
 528           }
 529           igvn->replace_node(n, in);
 530         }
 531         else if( n->is_Region() ) { // Update all incoming edges
 532           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 533           uint uses_found = 0;
 534           for( uint k=1; k < n->req(); k++ ) {
 535             if( n->in(k) == this ) {
 536               n->set_req(k, parent_ctrl);
 537               uses_found++;
 538             }
 539           }
 540           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 541             i -= (uses_found - 1);
 542           }
 543         }
 544         else {
 545           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 546           n->set_req(0, parent_ctrl);
 547         }
 548 #ifdef ASSERT
 549         for( uint k=0; k < n->req(); k++ ) {
 550           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 551         }
 552 #endif
 553       }
 554       // Remove the RegionNode itself from DefUse info
 555       igvn->remove_dead_node(this);
 556       return NULL;
 557     }
 558     return this;                // Record progress
 559   }
 560 
 561 
 562   // If a Region flows into a Region, merge into one big happy merge.
 563   if (can_reshape) {
 564     Node *m = merge_region(this, phase);
 565     if (m != NULL)  return m;
 566   }
 567 
 568   // Check if this region is the root of a clipping idiom on floats
 569   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 570     // Check that only one use is a Phi and that it simplifies to two constants +
 571     PhiNode* phi = has_unique_phi();
 572     if (phi != NULL) {          // One Phi user
 573       // Check inputs to the Phi
 574       ConNode *min;
 575       ConNode *max;
 576       Node    *val;
 577       uint     min_idx;
 578       uint     max_idx;
 579       uint     val_idx;
 580       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 581         IfNode *top_if;
 582         IfNode *bot_if;
 583         if( check_if_clipping( this, bot_if, top_if ) ) {
 584           // Control pattern checks, now verify compares
 585           Node   *top_in = NULL;   // value being compared against
 586           Node   *bot_in = NULL;
 587           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 588               check_compare_clipping( false, top_if, max, top_in ) ) {
 589             if( bot_in == top_in ) {
 590               PhaseIterGVN *gvn = phase->is_IterGVN();
 591               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 592               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 593 
 594               // Check for the ConvF2INode
 595               ConvF2INode *convf2i;
 596               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 597                 convf2i->in(1) == bot_in ) {
 598                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 599                 // max test
 600                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
 601                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
 602                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 603                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 604                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 605                 // min test
 606                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
 607                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
 608                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 609                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 610                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 611                 // update input edges to region node
 612                 set_req_X( min_idx, if_min, gvn );
 613                 set_req_X( max_idx, if_max, gvn );
 614                 set_req_X( val_idx, ifF,    gvn );
 615                 // remove unnecessary 'LShiftI; RShiftI' idiom
 616                 gvn->hash_delete(phi);
 617                 phi->set_req_X( val_idx, convf2i, gvn );
 618                 gvn->hash_find_insert(phi);
 619                 // Return transformed region node
 620                 return this;
 621               }
 622             }
 623           }
 624         }
 625       }
 626     }
 627   }
 628 
 629   return NULL;
 630 }
 631 
 632 
 633 
 634 const RegMask &RegionNode::out_RegMask() const {
 635   return RegMask::Empty;
 636 }
 637 
 638 // Find the one non-null required input.  RegionNode only
 639 Node *Node::nonnull_req() const {
 640   assert( is_Region(), "" );
 641   for( uint i = 1; i < _cnt; i++ )
 642     if( in(i) )
 643       return in(i);
 644   ShouldNotReachHere();
 645   return NULL;
 646 }
 647 
 648 
 649 //=============================================================================
 650 // note that these functions assume that the _adr_type field is flattened
 651 uint PhiNode::hash() const {
 652   const Type* at = _adr_type;
 653   return TypeNode::hash() + (at ? at->hash() : 0);
 654 }
 655 uint PhiNode::cmp( const Node &n ) const {
 656   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 657 }
 658 static inline
 659 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 660   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 661   return Compile::current()->alias_type(at)->adr_type();
 662 }
 663 
 664 //----------------------------make---------------------------------------------
 665 // create a new phi with edges matching r and set (initially) to x
 666 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 667   uint preds = r->req();   // Number of predecessor paths
 668   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 669   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
 670   for (uint j = 1; j < preds; j++) {
 671     // Fill in all inputs, except those which the region does not yet have
 672     if (r->in(j) != NULL)
 673       p->init_req(j, x);
 674   }
 675   return p;
 676 }
 677 PhiNode* PhiNode::make(Node* r, Node* x) {
 678   const Type*    t  = x->bottom_type();
 679   const TypePtr* at = NULL;
 680   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 681   return make(r, x, t, at);
 682 }
 683 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 684   const Type*    t  = x->bottom_type();
 685   const TypePtr* at = NULL;
 686   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 687   return new (Compile::current(), r->req()) PhiNode(r, t, at);
 688 }
 689 
 690 
 691 //------------------------slice_memory-----------------------------------------
 692 // create a new phi with narrowed memory type
 693 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 694   PhiNode* mem = (PhiNode*) clone();
 695   *(const TypePtr**)&mem->_adr_type = adr_type;
 696   // convert self-loops, or else we get a bad graph
 697   for (uint i = 1; i < req(); i++) {
 698     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 699   }
 700   mem->verify_adr_type();
 701   return mem;
 702 }
 703 
 704 //------------------------split_out_instance-----------------------------------
 705 // Split out an instance type from a bottom phi.
 706 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 707   const TypeOopPtr *t_oop = at->isa_oopptr();
 708   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 709   const TypePtr *t = adr_type();
 710   assert(type() == Type::MEMORY &&
 711          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 712           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 713           t->is_oopptr()->cast_to_exactness(true)
 714            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 715            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 716          "bottom or raw memory required");
 717 
 718   // Check if an appropriate node already exists.
 719   Node *region = in(0);
 720   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 721     Node* use = region->fast_out(k);
 722     if( use->is_Phi()) {
 723       PhiNode *phi2 = use->as_Phi();
 724       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 725         return phi2;
 726       }
 727     }
 728   }
 729   Compile *C = igvn->C;
 730   Arena *a = Thread::current()->resource_area();
 731   Node_Array node_map = new Node_Array(a);
 732   Node_Stack stack(a, C->unique() >> 4);
 733   PhiNode *nphi = slice_memory(at);
 734   igvn->register_new_node_with_optimizer( nphi );
 735   node_map.map(_idx, nphi);
 736   stack.push((Node *)this, 1);
 737   while(!stack.is_empty()) {
 738     PhiNode *ophi = stack.node()->as_Phi();
 739     uint i = stack.index();
 740     assert(i >= 1, "not control edge");
 741     stack.pop();
 742     nphi = node_map[ophi->_idx]->as_Phi();
 743     for (; i < ophi->req(); i++) {
 744       Node *in = ophi->in(i);
 745       if (in == NULL || igvn->type(in) == Type::TOP)
 746         continue;
 747       Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
 748       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 749       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 750         opt = node_map[optphi->_idx];
 751         if (opt == NULL) {
 752           stack.push(ophi, i);
 753           nphi = optphi->slice_memory(at);
 754           igvn->register_new_node_with_optimizer( nphi );
 755           node_map.map(optphi->_idx, nphi);
 756           ophi = optphi;
 757           i = 0; // will get incremented at top of loop
 758           continue;
 759         }
 760       }
 761       nphi->set_req(i, opt);
 762     }
 763   }
 764   return nphi;
 765 }
 766 
 767 //------------------------verify_adr_type--------------------------------------
 768 #ifdef ASSERT
 769 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 770   if (visited.test_set(_idx))  return;  //already visited
 771 
 772   // recheck constructor invariants:
 773   verify_adr_type(false);
 774 
 775   // recheck local phi/phi consistency:
 776   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 777          "adr_type must be consistent across phi nest");
 778 
 779   // walk around
 780   for (uint i = 1; i < req(); i++) {
 781     Node* n = in(i);
 782     if (n == NULL)  continue;
 783     const Node* np = in(i);
 784     if (np->is_Phi()) {
 785       np->as_Phi()->verify_adr_type(visited, at);
 786     } else if (n->bottom_type() == Type::TOP
 787                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 788       // ignore top inputs
 789     } else {
 790       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 791       // recheck phi/non-phi consistency at leaves:
 792       assert((nat != NULL) == (at != NULL), "");
 793       assert(nat == at || nat == TypePtr::BOTTOM,
 794              "adr_type must be consistent at leaves of phi nest");
 795     }
 796   }
 797 }
 798 
 799 // Verify a whole nest of phis rooted at this one.
 800 void PhiNode::verify_adr_type(bool recursive) const {
 801   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 802   if (Node::in_dump())      return;  // muzzle asserts when printing
 803 
 804   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 805 
 806   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 807 
 808   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 809          "Phi::adr_type must be pre-normalized");
 810 
 811   if (recursive) {
 812     VectorSet visited(Thread::current()->resource_area());
 813     verify_adr_type(visited, _adr_type);
 814   }
 815 }
 816 #endif
 817 
 818 
 819 //------------------------------Value------------------------------------------
 820 // Compute the type of the PhiNode
 821 const Type *PhiNode::Value( PhaseTransform *phase ) const {
 822   Node *r = in(0);              // RegionNode
 823   if( !r )                      // Copy or dead
 824     return in(1) ? phase->type(in(1)) : Type::TOP;
 825 
 826   // Note: During parsing, phis are often transformed before their regions.
 827   // This means we have to use type_or_null to defend against untyped regions.
 828   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 829     return Type::TOP;
 830 
 831   // Check for trip-counted loop.  If so, be smarter.
 832   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 833   if( l && l->can_be_counted_loop(phase) &&
 834       ((const Node*)l->phi() == this) ) { // Trip counted loop!
 835     // protect against init_trip() or limit() returning NULL
 836     const Node *init   = l->init_trip();
 837     const Node *limit  = l->limit();
 838     if( init != NULL && limit != NULL && l->stride_is_con() ) {
 839       const TypeInt *lo = init ->bottom_type()->isa_int();
 840       const TypeInt *hi = limit->bottom_type()->isa_int();
 841       if( lo && hi ) {            // Dying loops might have TOP here
 842         int stride = l->stride_con();
 843         if( stride < 0 ) {          // Down-counter loop
 844           const TypeInt *tmp = lo; lo = hi; hi = tmp;
 845           stride = -stride;
 846         }
 847         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
 848           return TypeInt::make(lo->_lo,hi->_hi,3);
 849       }
 850     }
 851   }
 852 
 853   // Until we have harmony between classes and interfaces in the type
 854   // lattice, we must tread carefully around phis which implicitly
 855   // convert the one to the other.
 856   const TypePtr* ttp = _type->make_ptr();
 857   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 858   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 859   bool is_intf = false;
 860   if (ttip != NULL) {
 861     ciKlass* k = ttip->klass();
 862     if (k->is_loaded() && k->is_interface())
 863       is_intf = true;
 864   }
 865   if (ttkp != NULL) {
 866     ciKlass* k = ttkp->klass();
 867     if (k->is_loaded() && k->is_interface())
 868       is_intf = true;
 869   }
 870 
 871   // Default case: merge all inputs
 872   const Type *t = Type::TOP;        // Merged type starting value
 873   for (uint i = 1; i < req(); ++i) {// For all paths in
 874     // Reachable control path?
 875     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 876       const Type* ti = phase->type(in(i));
 877       // We assume that each input of an interface-valued Phi is a true
 878       // subtype of that interface.  This might not be true of the meet
 879       // of all the input types.  The lattice is not distributive in
 880       // such cases.  Ward off asserts in type.cpp by refusing to do
 881       // meets between interfaces and proper classes.
 882       const TypePtr* tip = ti->make_ptr();
 883       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 884       if (tiip) {
 885         bool ti_is_intf = false;
 886         ciKlass* k = tiip->klass();
 887         if (k->is_loaded() && k->is_interface())
 888           ti_is_intf = true;
 889         if (is_intf != ti_is_intf)
 890           { t = _type; break; }
 891       }
 892       t = t->meet(ti);
 893     }
 894   }
 895 
 896   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 897   // That is, we expect that "t->higher_equal(_type)" holds true.
 898   // There are various exceptions:
 899   // - Inputs which are phis might in fact be widened unnecessarily.
 900   //   For example, an input might be a widened int while the phi is a short.
 901   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 902   //   and postCCP has removed the cast which encodes the result of the check.
 903   // - The type of this phi is an interface, and the inputs are classes.
 904   // - Value calls on inputs might produce fuzzy results.
 905   //   (Occurrences of this case suggest improvements to Value methods.)
 906   //
 907   // It is not possible to see Type::BOTTOM values as phi inputs,
 908   // because the ciTypeFlow pre-pass produces verifier-quality types.
 909   const Type* ft = t->filter(_type);  // Worst case type
 910 
 911 #ifdef ASSERT
 912   // The following logic has been moved into TypeOopPtr::filter.
 913   const Type* jt = t->join(_type);
 914   if( jt->empty() ) {           // Emptied out???
 915 
 916     // Check for evil case of 't' being a class and '_type' expecting an
 917     // interface.  This can happen because the bytecodes do not contain
 918     // enough type info to distinguish a Java-level interface variable
 919     // from a Java-level object variable.  If we meet 2 classes which
 920     // both implement interface I, but their meet is at 'j/l/O' which
 921     // doesn't implement I, we have no way to tell if the result should
 922     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 923     // into a Phi which "knows" it's an Interface type we'll have to
 924     // uplift the type.
 925     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
 926       { assert(ft == _type, ""); } // Uplift to interface
 927     else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
 928       { assert(ft == _type, ""); } // Uplift to interface
 929     // Otherwise it's something stupid like non-overlapping int ranges
 930     // found on dying counted loops.
 931     else
 932       { assert(ft == Type::TOP, ""); } // Canonical empty value
 933   }
 934 
 935   else {
 936 
 937     // If we have an interface-typed Phi and we narrow to a class type, the join
 938     // should report back the class.  However, if we have a J/L/Object
 939     // class-typed Phi and an interface flows in, it's possible that the meet &
 940     // join report an interface back out.  This isn't possible but happens
 941     // because the type system doesn't interact well with interfaces.
 942     const TypePtr *jtp = jt->make_ptr();
 943     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
 944     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
 945     if( jtip && ttip ) {
 946       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
 947           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
 948         // Happens in a CTW of rt.jar, 320-341, no extra flags
 949         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
 950                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
 951         jt = ft;
 952       }
 953     }
 954     if( jtkp && ttkp ) {
 955       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
 956           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
 957           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
 958         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
 959                ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
 960         jt = ft;
 961       }
 962     }
 963     if (jt != ft && jt->base() == ft->base()) {
 964       if (jt->isa_int() &&
 965           jt->is_int()->_lo == ft->is_int()->_lo &&
 966           jt->is_int()->_hi == ft->is_int()->_hi)
 967         jt = ft;
 968       if (jt->isa_long() &&
 969           jt->is_long()->_lo == ft->is_long()->_lo &&
 970           jt->is_long()->_hi == ft->is_long()->_hi)
 971         jt = ft;
 972     }
 973     if (jt != ft) {
 974       tty->print("merge type:  "); t->dump(); tty->cr();
 975       tty->print("kill type:   "); _type->dump(); tty->cr();
 976       tty->print("join type:   "); jt->dump(); tty->cr();
 977       tty->print("filter type: "); ft->dump(); tty->cr();
 978     }
 979     assert(jt == ft, "");
 980   }
 981 #endif //ASSERT
 982 
 983   // Deal with conversion problems found in data loops.
 984   ft = phase->saturate(ft, phase->type_or_null(this), _type);
 985 
 986   return ft;
 987 }
 988 
 989 
 990 //------------------------------is_diamond_phi---------------------------------
 991 // Does this Phi represent a simple well-shaped diamond merge?  Return the
 992 // index of the true path or 0 otherwise.
 993 int PhiNode::is_diamond_phi() const {
 994   // Check for a 2-path merge
 995   Node *region = in(0);
 996   if( !region ) return 0;
 997   if( region->req() != 3 ) return 0;
 998   if(         req() != 3 ) return 0;
 999   // Check that both paths come from the same If
1000   Node *ifp1 = region->in(1);
1001   Node *ifp2 = region->in(2);
1002   if( !ifp1 || !ifp2 ) return 0;
1003   Node *iff = ifp1->in(0);
1004   if( !iff || !iff->is_If() ) return 0;
1005   if( iff != ifp2->in(0) ) return 0;
1006   // Check for a proper bool/cmp
1007   const Node *b = iff->in(1);
1008   if( !b->is_Bool() ) return 0;
1009   const Node *cmp = b->in(1);
1010   if( !cmp->is_Cmp() ) return 0;
1011 
1012   // Check for branching opposite expected
1013   if( ifp2->Opcode() == Op_IfTrue ) {
1014     assert( ifp1->Opcode() == Op_IfFalse, "" );
1015     return 2;
1016   } else {
1017     assert( ifp1->Opcode() == Op_IfTrue, "" );
1018     return 1;
1019   }
1020 }
1021 
1022 //----------------------------check_cmove_id-----------------------------------
1023 // Check for CMove'ing a constant after comparing against the constant.
1024 // Happens all the time now, since if we compare equality vs a constant in
1025 // the parser, we "know" the variable is constant on one path and we force
1026 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1027 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1028 // general in that we don't need constants.  Since CMove's are only inserted
1029 // in very special circumstances, we do it here on generic Phi's.
1030 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1031   assert(true_path !=0, "only diamond shape graph expected");
1032 
1033   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1034   // phi->region->if_proj->ifnode->bool->cmp
1035   Node*     region = in(0);
1036   Node*     iff    = region->in(1)->in(0);
1037   BoolNode* b      = iff->in(1)->as_Bool();
1038   Node*     cmp    = b->in(1);
1039   Node*     tval   = in(true_path);
1040   Node*     fval   = in(3-true_path);
1041   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1042   if (id == NULL)
1043     return NULL;
1044 
1045   // Either value might be a cast that depends on a branch of 'iff'.
1046   // Since the 'id' value will float free of the diamond, either
1047   // decast or return failure.
1048   Node* ctl = id->in(0);
1049   if (ctl != NULL && ctl->in(0) == iff) {
1050     if (id->is_ConstraintCast()) {
1051       return id->in(1);
1052     } else {
1053       // Don't know how to disentangle this value.
1054       return NULL;
1055     }
1056   }
1057 
1058   return id;
1059 }
1060 
1061 //------------------------------Identity---------------------------------------
1062 // Check for Region being Identity.
1063 Node *PhiNode::Identity( PhaseTransform *phase ) {
1064   // Check for no merging going on
1065   // (There used to be special-case code here when this->region->is_Loop.
1066   // It would check for a tributary phi on the backedge that the main phi
1067   // trivially, perhaps with a single cast.  The unique_input method
1068   // does all this and more, by reducing such tributaries to 'this'.)
1069   Node* uin = unique_input(phase);
1070   if (uin != NULL) {
1071     return uin;
1072   }
1073 
1074   int true_path = is_diamond_phi();
1075   if (true_path != 0) {
1076     Node* id = is_cmove_id(phase, true_path);
1077     if (id != NULL)  return id;
1078   }
1079 
1080   return this;                     // No identity
1081 }
1082 
1083 //-----------------------------unique_input------------------------------------
1084 // Find the unique value, discounting top, self-loops, and casts.
1085 // Return top if there are no inputs, and self if there are multiple.
1086 Node* PhiNode::unique_input(PhaseTransform* phase) {
1087   //  1) One unique direct input, or
1088   //  2) some of the inputs have an intervening ConstraintCast and
1089   //     the type of input is the same or sharper (more specific)
1090   //     than the phi's type.
1091   //  3) an input is a self loop
1092   //
1093   //  1) input   or   2) input     or   3) input __
1094   //     /   \           /   \               \  /  \
1095   //     \   /          |    cast             phi  cast
1096   //      phi            \   /               /  \  /
1097   //                      phi               /    --
1098 
1099   Node* r = in(0);                      // RegionNode
1100   if (r == NULL)  return in(1);         // Already degraded to a Copy
1101   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1102   Node* direct_input   = NULL; // The unique direct input
1103 
1104   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1105     Node* rc = r->in(i);
1106     if (rc == NULL || phase->type(rc) == Type::TOP)
1107       continue;                 // ignore unreachable control path
1108     Node* n = in(i);
1109     if (n == NULL)
1110       continue;
1111     Node* un = n->uncast();
1112     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1113       continue; // ignore if top, or in(i) and "this" are in a data cycle
1114     }
1115     // Check for a unique uncasted input
1116     if (uncasted_input == NULL) {
1117       uncasted_input = un;
1118     } else if (uncasted_input != un) {
1119       uncasted_input = NodeSentinel; // no unique uncasted input
1120     }
1121     // Check for a unique direct input
1122     if (direct_input == NULL) {
1123       direct_input = n;
1124     } else if (direct_input != n) {
1125       direct_input = NodeSentinel; // no unique direct input
1126     }
1127   }
1128   if (direct_input == NULL) {
1129     return phase->C->top();        // no inputs
1130   }
1131   assert(uncasted_input != NULL,"");
1132 
1133   if (direct_input != NodeSentinel) {
1134     return direct_input;           // one unique direct input
1135   }
1136   if (uncasted_input != NodeSentinel &&
1137       phase->type(uncasted_input)->higher_equal(type())) {
1138     return uncasted_input;         // one unique uncasted input
1139   }
1140 
1141   // Nothing.
1142   return NULL;
1143 }
1144 
1145 //------------------------------is_x2logic-------------------------------------
1146 // Check for simple convert-to-boolean pattern
1147 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1148 // Convert Phi to an ConvIB.
1149 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1150   assert(true_path !=0, "only diamond shape graph expected");
1151   // Convert the true/false index into an expected 0/1 return.
1152   // Map 2->0 and 1->1.
1153   int flipped = 2-true_path;
1154 
1155   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1156   // phi->region->if_proj->ifnode->bool->cmp
1157   Node *region = phi->in(0);
1158   Node *iff = region->in(1)->in(0);
1159   BoolNode *b = (BoolNode*)iff->in(1);
1160   const CmpNode *cmp = (CmpNode*)b->in(1);
1161 
1162   Node *zero = phi->in(1);
1163   Node *one  = phi->in(2);
1164   const Type *tzero = phase->type( zero );
1165   const Type *tone  = phase->type( one  );
1166 
1167   // Check for compare vs 0
1168   const Type *tcmp = phase->type(cmp->in(2));
1169   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1170     // Allow cmp-vs-1 if the other input is bounded by 0-1
1171     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1172       return NULL;
1173     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1174   }
1175 
1176   // Check for setting zero/one opposite expected
1177   if( tzero == TypeInt::ZERO ) {
1178     if( tone == TypeInt::ONE ) {
1179     } else return NULL;
1180   } else if( tzero == TypeInt::ONE ) {
1181     if( tone == TypeInt::ZERO ) {
1182       flipped = 1-flipped;
1183     } else return NULL;
1184   } else return NULL;
1185 
1186   // Check for boolean test backwards
1187   if( b->_test._test == BoolTest::ne ) {
1188   } else if( b->_test._test == BoolTest::eq ) {
1189     flipped = 1-flipped;
1190   } else return NULL;
1191 
1192   // Build int->bool conversion
1193   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
1194   if( flipped )
1195     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
1196 
1197   return n;
1198 }
1199 
1200 //------------------------------is_cond_add------------------------------------
1201 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1202 // To be profitable the control flow has to disappear; there can be no other
1203 // values merging here.  We replace the test-and-branch with:
1204 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1205 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1206 // Then convert Y to 0-or-Y and finally add.
1207 // This is a key transform for SpecJava _201_compress.
1208 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1209   assert(true_path !=0, "only diamond shape graph expected");
1210 
1211   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1212   // phi->region->if_proj->ifnode->bool->cmp
1213   RegionNode *region = (RegionNode*)phi->in(0);
1214   Node *iff = region->in(1)->in(0);
1215   BoolNode* b = iff->in(1)->as_Bool();
1216   const CmpNode *cmp = (CmpNode*)b->in(1);
1217 
1218   // Make sure only merging this one phi here
1219   if (region->has_unique_phi() != phi)  return NULL;
1220 
1221   // Make sure each arm of the diamond has exactly one output, which we assume
1222   // is the region.  Otherwise, the control flow won't disappear.
1223   if (region->in(1)->outcnt() != 1) return NULL;
1224   if (region->in(2)->outcnt() != 1) return NULL;
1225 
1226   // Check for "(P < Q)" of type signed int
1227   if (b->_test._test != BoolTest::lt)  return NULL;
1228   if (cmp->Opcode() != Op_CmpI)        return NULL;
1229 
1230   Node *p = cmp->in(1);
1231   Node *q = cmp->in(2);
1232   Node *n1 = phi->in(  true_path);
1233   Node *n2 = phi->in(3-true_path);
1234 
1235   int op = n1->Opcode();
1236   if( op != Op_AddI           // Need zero as additive identity
1237       /*&&op != Op_SubI &&
1238       op != Op_AddP &&
1239       op != Op_XorI &&
1240       op != Op_OrI*/ )
1241     return NULL;
1242 
1243   Node *x = n2;
1244   Node *y = n1->in(1);
1245   if( n2 == n1->in(1) ) {
1246     y = n1->in(2);
1247   } else if( n2 == n1->in(1) ) {
1248   } else return NULL;
1249 
1250   // Not so profitable if compare and add are constants
1251   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1252     return NULL;
1253 
1254   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
1255   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
1256   return new (phase->C, 3) AddINode(j_and,x);
1257 }
1258 
1259 //------------------------------is_absolute------------------------------------
1260 // Check for absolute value.
1261 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1262   assert(true_path !=0, "only diamond shape graph expected");
1263 
1264   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1265   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1266 
1267   // ABS ends with the merge of 2 control flow paths.
1268   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1269   int false_path = 3 - true_path;
1270 
1271   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1272   // phi->region->if_proj->ifnode->bool->cmp
1273   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1274 
1275   // Check bool sense
1276   switch( bol->_test._test ) {
1277   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1278   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1279   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1280   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1281   default:           return NULL;                              break;
1282   }
1283 
1284   // Test is next
1285   Node *cmp = bol->in(1);
1286   const Type *tzero = NULL;
1287   switch( cmp->Opcode() ) {
1288   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1289   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1290   default: return NULL;
1291   }
1292 
1293   // Find zero input of compare; the other input is being abs'd
1294   Node *x = NULL;
1295   bool flip = false;
1296   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1297     x = cmp->in(3 - cmp_zero_idx);
1298   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1299     // The test is inverted, we should invert the result...
1300     x = cmp->in(cmp_zero_idx);
1301     flip = true;
1302   } else {
1303     return NULL;
1304   }
1305 
1306   // Next get the 2 pieces being selected, one is the original value
1307   // and the other is the negated value.
1308   if( phi_root->in(phi_x_idx) != x ) return NULL;
1309 
1310   // Check other phi input for subtract node
1311   Node *sub = phi_root->in(3 - phi_x_idx);
1312 
1313   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1314   if( tzero == TypeF::ZERO ) {
1315     if( sub->Opcode() != Op_SubF ||
1316         sub->in(2) != x ||
1317         phase->type(sub->in(1)) != tzero ) return NULL;
1318     x = new (phase->C, 2) AbsFNode(x);
1319     if (flip) {
1320       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
1321     }
1322   } else {
1323     if( sub->Opcode() != Op_SubD ||
1324         sub->in(2) != x ||
1325         phase->type(sub->in(1)) != tzero ) return NULL;
1326     x = new (phase->C, 2) AbsDNode(x);
1327     if (flip) {
1328       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
1329     }
1330   }
1331 
1332   return x;
1333 }
1334 
1335 //------------------------------split_once-------------------------------------
1336 // Helper for split_flow_path
1337 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1338   igvn->hash_delete(n);         // Remove from hash before hacking edges
1339 
1340   uint j = 1;
1341   for( uint i = phi->req()-1; i > 0; i-- ) {
1342     if( phi->in(i) == val ) {   // Found a path with val?
1343       // Add to NEW Region/Phi, no DU info
1344       newn->set_req( j++, n->in(i) );
1345       // Remove from OLD Region/Phi
1346       n->del_req(i);
1347     }
1348   }
1349 
1350   // Register the new node but do not transform it.  Cannot transform until the
1351   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1352   igvn->register_new_node_with_optimizer( newn );
1353   // Now I can point to the new node.
1354   n->add_req(newn);
1355   igvn->_worklist.push(n);
1356 }
1357 
1358 //------------------------------split_flow_path--------------------------------
1359 // Check for merging identical values and split flow paths
1360 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1361   BasicType bt = phi->type()->basic_type();
1362   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1363     return NULL;                // Bail out on funny non-value stuff
1364   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1365     return NULL;                // third unequal input to be worth doing
1366 
1367   // Scan for a constant
1368   uint i;
1369   for( i = 1; i < phi->req()-1; i++ ) {
1370     Node *n = phi->in(i);
1371     if( !n ) return NULL;
1372     if( phase->type(n) == Type::TOP ) return NULL;
1373     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
1374       break;
1375   }
1376   if( i >= phi->req() )         // Only split for constants
1377     return NULL;
1378 
1379   Node *val = phi->in(i);       // Constant to split for
1380   uint hit = 0;                 // Number of times it occurs
1381 
1382   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1383     Node *n = phi->in(i);
1384     if( !n ) return NULL;
1385     if( phase->type(n) == Type::TOP ) return NULL;
1386     if( phi->in(i) == val )
1387       hit++;
1388   }
1389 
1390   if( hit <= 1 ||               // Make sure we find 2 or more
1391       hit == phi->req()-1 )     // and not ALL the same value
1392     return NULL;
1393 
1394   // Now start splitting out the flow paths that merge the same value.
1395   // Split first the RegionNode.
1396   PhaseIterGVN *igvn = phase->is_IterGVN();
1397   Node *r = phi->region();
1398   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
1399   split_once(igvn, phi, val, r, newr);
1400 
1401   // Now split all other Phis than this one
1402   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1403     Node* phi2 = r->fast_out(k);
1404     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1405       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1406       split_once(igvn, phi, val, phi2, newphi);
1407     }
1408   }
1409 
1410   // Clean up this guy
1411   igvn->hash_delete(phi);
1412   for( i = phi->req()-1; i > 0; i-- ) {
1413     if( phi->in(i) == val ) {
1414       phi->del_req(i);
1415     }
1416   }
1417   phi->add_req(val);
1418 
1419   return phi;
1420 }
1421 
1422 //=============================================================================
1423 //------------------------------simple_data_loop_check-------------------------
1424 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1425 //  Returns:
1426 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1427 // Safe       - safe case when the phi and it's inputs reference only safe data
1428 //              nodes;
1429 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1430 //              is no reference back to the phi - need a graph walk
1431 //              to determine if it is in a loop;
1432 // UnsafeLoop - unsafe case when the phi references itself directly or through
1433 //              unsafe data node.
1434 //  Note: a safe data node is a node which could/never reference itself during
1435 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1436 //  I mark Phi nodes as safe node not only because they can reference itself
1437 //  but also to prevent mistaking the fallthrough case inside an outer loop
1438 //  as dead loop when the phi references itselfs through an other phi.
1439 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1440   // It is unsafe loop if the phi node references itself directly.
1441   if (in == (Node*)this)
1442     return UnsafeLoop; // Unsafe loop
1443   // Unsafe loop if the phi node references itself through an unsafe data node.
1444   // Exclude cases with null inputs or data nodes which could reference
1445   // itself (safe for dead loops).
1446   if (in != NULL && !in->is_dead_loop_safe()) {
1447     // Check inputs of phi's inputs also.
1448     // It is much less expensive then full graph walk.
1449     uint cnt = in->req();
1450     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1451     for (; i < cnt; ++i) {
1452       Node* m = in->in(i);
1453       if (m == (Node*)this)
1454         return UnsafeLoop; // Unsafe loop
1455       if (m != NULL && !m->is_dead_loop_safe()) {
1456         // Check the most common case (about 30% of all cases):
1457         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1458         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1459         if (m1 == (Node*)this)
1460           return UnsafeLoop; // Unsafe loop
1461         if (m1 != NULL && m1 == m->in(2) &&
1462             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1463           continue; // Safe case
1464         }
1465         // The phi references an unsafe node - need full analysis.
1466         return Unsafe;
1467       }
1468     }
1469   }
1470   return Safe; // Safe case - we can optimize the phi node.
1471 }
1472 
1473 //------------------------------is_unsafe_data_reference-----------------------
1474 // If phi can be reached through the data input - it is data loop.
1475 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1476   assert(req() > 1, "");
1477   // First, check simple cases when phi references itself directly or
1478   // through an other node.
1479   LoopSafety safety = simple_data_loop_check(in);
1480   if (safety == UnsafeLoop)
1481     return true;  // phi references itself - unsafe loop
1482   else if (safety == Safe)
1483     return false; // Safe case - phi could be replaced with the unique input.
1484 
1485   // Unsafe case when we should go through data graph to determine
1486   // if the phi references itself.
1487 
1488   ResourceMark rm;
1489 
1490   Arena *a = Thread::current()->resource_area();
1491   Node_List nstack(a);
1492   VectorSet visited(a);
1493 
1494   nstack.push(in); // Start with unique input.
1495   visited.set(in->_idx);
1496   while (nstack.size() != 0) {
1497     Node* n = nstack.pop();
1498     uint cnt = n->req();
1499     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1500     for (; i < cnt; i++) {
1501       Node* m = n->in(i);
1502       if (m == (Node*)this) {
1503         return true;    // Data loop
1504       }
1505       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1506         if (!visited.test_set(m->_idx))
1507           nstack.push(m);
1508       }
1509     }
1510   }
1511   return false; // The phi is not reachable from its inputs
1512 }
1513 
1514 
1515 //------------------------------Ideal------------------------------------------
1516 // Return a node which is more "ideal" than the current node.  Must preserve
1517 // the CFG, but we can still strip out dead paths.
1518 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1519   // The next should never happen after 6297035 fix.
1520   if( is_copy() )               // Already degraded to a Copy ?
1521     return NULL;                // No change
1522 
1523   Node *r = in(0);              // RegionNode
1524   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1525 
1526   // Note: During parsing, phis are often transformed before their regions.
1527   // This means we have to use type_or_null to defend against untyped regions.
1528   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1529     return NULL;                // No change
1530 
1531   Node *top = phase->C->top();
1532   bool new_phi = (outcnt() == 0); // transforming new Phi
1533   assert(!can_reshape || !new_phi, "for igvn new phi should be hooked");
1534 
1535   // The are 2 situations when only one valid phi's input is left
1536   // (in addition to Region input).
1537   // One: region is not loop - replace phi with this input.
1538   // Two: region is loop - replace phi with top since this data path is dead
1539   //                       and we need to break the dead data loop.
1540   Node* progress = NULL;        // Record if any progress made
1541   for( uint j = 1; j < req(); ++j ){ // For all paths in
1542     // Check unreachable control paths
1543     Node* rc = r->in(j);
1544     Node* n = in(j);            // Get the input
1545     if (rc == NULL || phase->type(rc) == Type::TOP) {
1546       if (n != top) {           // Not already top?
1547         set_req(j, top);        // Nuke it down
1548         progress = this;        // Record progress
1549       }
1550     }
1551   }
1552 
1553   if (can_reshape && outcnt() == 0) {
1554     // set_req() above may kill outputs if Phi is referenced
1555     // only by itself on the dead (top) control path.
1556     return top;
1557   }
1558 
1559   Node* uin = unique_input(phase);
1560   if (uin == top) {             // Simplest case: no alive inputs.
1561     if (can_reshape)            // IGVN transformation
1562       return top;
1563     else
1564       return NULL;              // Identity will return TOP
1565   } else if (uin != NULL) {
1566     // Only one not-NULL unique input path is left.
1567     // Determine if this input is backedge of a loop.
1568     // (Skip new phis which have no uses and dead regions).
1569     if( outcnt() > 0 && r->in(0) != NULL ) {
1570       // First, take the short cut when we know it is a loop and
1571       // the EntryControl data path is dead.
1572       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
1573       // Then, check if there is a data loop when phi references itself directly
1574       // or through other data nodes.
1575       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
1576          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
1577         // Break this data loop to avoid creation of a dead loop.
1578         if (can_reshape) {
1579           return top;
1580         } else {
1581           // We can't return top if we are in Parse phase - cut inputs only
1582           // let Identity to handle the case.
1583           replace_edge(uin, top);
1584           return NULL;
1585         }
1586       }
1587     }
1588 
1589     // One unique input.
1590     debug_only(Node* ident = Identity(phase));
1591     // The unique input must eventually be detected by the Identity call.
1592 #ifdef ASSERT
1593     if (ident != uin && !ident->is_top()) {
1594       // print this output before failing assert
1595       r->dump(3);
1596       this->dump(3);
1597       ident->dump();
1598       uin->dump();
1599     }
1600 #endif
1601     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1602     return NULL;
1603   }
1604 
1605 
1606   Node* opt = NULL;
1607   int true_path = is_diamond_phi();
1608   if( true_path != 0 ) {
1609     // Check for CMove'ing identity. If it would be unsafe,
1610     // handle it here. In the safe case, let Identity handle it.
1611     Node* unsafe_id = is_cmove_id(phase, true_path);
1612     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1613       opt = unsafe_id;
1614 
1615     // Check for simple convert-to-boolean pattern
1616     if( opt == NULL )
1617       opt = is_x2logic(phase, this, true_path);
1618 
1619     // Check for absolute value
1620     if( opt == NULL )
1621       opt = is_absolute(phase, this, true_path);
1622 
1623     // Check for conditional add
1624     if( opt == NULL && can_reshape )
1625       opt = is_cond_add(phase, this, true_path);
1626 
1627     // These 4 optimizations could subsume the phi:
1628     // have to check for a dead data loop creation.
1629     if( opt != NULL ) {
1630       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1631         // Found dead loop.
1632         if( can_reshape )
1633           return top;
1634         // We can't return top if we are in Parse phase - cut inputs only
1635         // to stop further optimizations for this phi. Identity will return TOP.
1636         assert(req() == 3, "only diamond merge phi here");
1637         set_req(1, top);
1638         set_req(2, top);
1639         return NULL;
1640       } else {
1641         return opt;
1642       }
1643     }
1644   }
1645 
1646   // Check for merging identical values and split flow paths
1647   if (can_reshape) {
1648     opt = split_flow_path(phase, this);
1649     // This optimization only modifies phi - don't need to check for dead loop.
1650     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1651     if (opt != NULL)  return opt;
1652   }
1653 
1654   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1655     // Try to undo Phi of AddP:
1656     // (Phi (AddP base base y) (AddP base2 base2 y))
1657     // becomes:
1658     // newbase := (Phi base base2)
1659     // (AddP newbase newbase y)
1660     //
1661     // This occurs as a result of unsuccessful split_thru_phi and
1662     // interferes with taking advantage of addressing modes. See the
1663     // clone_shift_expressions code in matcher.cpp
1664     Node* addp = in(1);
1665     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1666     Node* y = addp->in(AddPNode::Offset);
1667     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1668       // make sure that all the inputs are similar to the first one,
1669       // i.e. AddP with base == address and same offset as first AddP
1670       bool doit = true;
1671       for (uint i = 2; i < req(); i++) {
1672         if (in(i) == NULL ||
1673             in(i)->Opcode() != Op_AddP ||
1674             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1675             in(i)->in(AddPNode::Offset) != y) {
1676           doit = false;
1677           break;
1678         }
1679         // Accumulate type for resulting Phi
1680         type = type->meet(in(i)->in(AddPNode::Base)->bottom_type());
1681       }
1682       Node* base = NULL;
1683       if (doit) {
1684         // Check for neighboring AddP nodes in a tree.
1685         // If they have a base, use that it.
1686         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1687           Node* u = this->fast_out(k);
1688           if (u->is_AddP()) {
1689             Node* base2 = u->in(AddPNode::Base);
1690             if (base2 != NULL && !base2->is_top()) {
1691               if (base == NULL)
1692                 base = base2;
1693               else if (base != base2)
1694                 { doit = false; break; }
1695             }
1696           }
1697         }
1698       }
1699       if (doit) {
1700         if (base == NULL) {
1701           base = new (phase->C, in(0)->req()) PhiNode(in(0), type, NULL);
1702           for (uint i = 1; i < req(); i++) {
1703             base->init_req(i, in(i)->in(AddPNode::Base));
1704           }
1705           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1706         }
1707         return new (phase->C, 4) AddPNode(base, base, y);
1708       }
1709     }
1710   }
1711 
1712   // Split phis through memory merges, so that the memory merges will go away.
1713   // Piggy-back this transformation on the search for a unique input....
1714   // It will be as if the merged memory is the unique value of the phi.
1715   // (Do not attempt this optimization unless parsing is complete.
1716   // It would make the parser's memory-merge logic sick.)
1717   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1718   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1719     // see if this phi should be sliced
1720     uint merge_width = 0;
1721     bool saw_self = false;
1722     for( uint i=1; i<req(); ++i ) {// For all paths in
1723       Node *ii = in(i);
1724       if (ii->is_MergeMem()) {
1725         MergeMemNode* n = ii->as_MergeMem();
1726         merge_width = MAX2(merge_width, n->req());
1727         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1728       }
1729     }
1730 
1731     // This restriction is temporarily necessary to ensure termination:
1732     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1733 
1734     if (merge_width > Compile::AliasIdxRaw) {
1735       // found at least one non-empty MergeMem
1736       const TypePtr* at = adr_type();
1737       if (at != TypePtr::BOTTOM) {
1738         // Patch the existing phi to select an input from the merge:
1739         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1740         //     Phi:AT1(...m1...)
1741         int alias_idx = phase->C->get_alias_index(at);
1742         for (uint i=1; i<req(); ++i) {
1743           Node *ii = in(i);
1744           if (ii->is_MergeMem()) {
1745             MergeMemNode* n = ii->as_MergeMem();
1746             // compress paths and change unreachable cycles to TOP
1747             // If not, we can update the input infinitely along a MergeMem cycle
1748             // Equivalent code is in MemNode::Ideal_common
1749             Node *m  = phase->transform(n);
1750             if (outcnt() == 0) {  // Above transform() may kill us!
1751               return top;
1752             }
1753             // If transformed to a MergeMem, get the desired slice
1754             // Otherwise the returned node represents memory for every slice
1755             Node *new_mem = (m->is_MergeMem()) ?
1756                              m->as_MergeMem()->memory_at(alias_idx) : m;
1757             // Update input if it is progress over what we have now
1758             if (new_mem != ii) {
1759               set_req(i, new_mem);
1760               progress = this;
1761             }
1762           }
1763         }
1764       } else {
1765         // We know that at least one MergeMem->base_memory() == this
1766         // (saw_self == true). If all other inputs also references this phi
1767         // (directly or through data nodes) - it is dead loop.
1768         bool saw_safe_input = false;
1769         for (uint j = 1; j < req(); ++j) {
1770           Node *n = in(j);
1771           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1772             continue;              // skip known cases
1773           if (!is_unsafe_data_reference(n)) {
1774             saw_safe_input = true; // found safe input
1775             break;
1776           }
1777         }
1778         if (!saw_safe_input)
1779           return top; // all inputs reference back to this phi - dead loop
1780 
1781         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1782         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1783         PhaseIterGVN *igvn = phase->is_IterGVN();
1784         Node* hook = new (phase->C, 1) Node(1);
1785         PhiNode* new_base = (PhiNode*) clone();
1786         // Must eagerly register phis, since they participate in loops.
1787         if (igvn) {
1788           igvn->register_new_node_with_optimizer(new_base);
1789           hook->add_req(new_base);
1790         }
1791         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1792         for (uint i = 1; i < req(); ++i) {
1793           Node *ii = in(i);
1794           if (ii->is_MergeMem()) {
1795             MergeMemNode* n = ii->as_MergeMem();
1796             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1797               // If we have not seen this slice yet, make a phi for it.
1798               bool made_new_phi = false;
1799               if (mms.is_empty()) {
1800                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1801                 made_new_phi = true;
1802                 if (igvn) {
1803                   igvn->register_new_node_with_optimizer(new_phi);
1804                   hook->add_req(new_phi);
1805                 }
1806                 mms.set_memory(new_phi);
1807               }
1808               Node* phi = mms.memory();
1809               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1810               phi->set_req(i, mms.memory2());
1811             }
1812           }
1813         }
1814         // Distribute all self-loops.
1815         { // (Extra braces to hide mms.)
1816           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1817             Node* phi = mms.memory();
1818             for (uint i = 1; i < req(); ++i) {
1819               if (phi->in(i) == this)  phi->set_req(i, phi);
1820             }
1821           }
1822         }
1823         // now transform the new nodes, and return the mergemem
1824         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1825           Node* phi = mms.memory();
1826           mms.set_memory(phase->transform(phi));
1827         }
1828         if (igvn) { // Unhook.
1829           igvn->hash_delete(hook);
1830           for (uint i = 1; i < hook->req(); i++) {
1831             hook->set_req(i, NULL);
1832           }
1833         }
1834         // Replace self with the result.
1835         return result;
1836       }
1837     }
1838     //
1839     // Other optimizations on the memory chain
1840     //
1841     const TypePtr* at = adr_type();
1842     for( uint i=1; i<req(); ++i ) {// For all paths in
1843       Node *ii = in(i);
1844       Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
1845       if (ii != new_in ) {
1846         set_req(i, new_in);
1847         progress = this;
1848       }
1849     }
1850   }
1851 
1852 #ifdef _LP64
1853   // Push DecodeN down through phi.
1854   // The rest of phi graph will transform by split EncodeP node though phis up.
1855   if (UseCompressedOops && can_reshape && progress == NULL) {
1856     bool may_push = true;
1857     bool has_decodeN = false;
1858     for (uint i=1; i<req(); ++i) {// For all paths in
1859       Node *ii = in(i);
1860       if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
1861         // Do optimization if a non dead path exist.
1862         if (ii->in(1)->bottom_type() != Type::TOP) {
1863           has_decodeN = true;
1864         }
1865       } else if (!ii->is_Phi()) {
1866         may_push = false;
1867       }
1868     }
1869 
1870     if (has_decodeN && may_push) {
1871       PhaseIterGVN *igvn = phase->is_IterGVN();
1872       // Make narrow type for new phi.
1873       const Type* narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
1874       PhiNode* new_phi = new (phase->C, r->req()) PhiNode(r, narrow_t);
1875       uint orig_cnt = req();
1876       for (uint i=1; i<req(); ++i) {// For all paths in
1877         Node *ii = in(i);
1878         Node* new_ii = NULL;
1879         if (ii->is_DecodeN()) {
1880           assert(ii->bottom_type() == bottom_type(), "sanity");
1881           new_ii = ii->in(1);
1882         } else {
1883           assert(ii->is_Phi(), "sanity");
1884           if (ii->as_Phi() == this) {
1885             new_ii = new_phi;
1886           } else {
1887             new_ii = new (phase->C, 2) EncodePNode(ii, narrow_t);
1888             igvn->register_new_node_with_optimizer(new_ii);
1889           }
1890         }
1891         new_phi->set_req(i, new_ii);
1892       }
1893       igvn->register_new_node_with_optimizer(new_phi, this);
1894       progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
1895     }
1896   }
1897 #endif
1898 
1899   return progress;              // Return any progress
1900 }
1901 
1902 //------------------------------is_tripcount-----------------------------------
1903 bool PhiNode::is_tripcount() const {
1904   return (in(0) != NULL && in(0)->is_CountedLoop() &&
1905           in(0)->as_CountedLoop()->phi() == this);
1906 }
1907 
1908 //------------------------------out_RegMask------------------------------------
1909 const RegMask &PhiNode::in_RegMask(uint i) const {
1910   return i ? out_RegMask() : RegMask::Empty;
1911 }
1912 
1913 const RegMask &PhiNode::out_RegMask() const {
1914   uint ideal_reg = Matcher::base2reg[_type->base()];
1915   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
1916   if( ideal_reg == 0 ) return RegMask::Empty;
1917   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
1918 }
1919 
1920 #ifndef PRODUCT
1921 void PhiNode::dump_spec(outputStream *st) const {
1922   TypeNode::dump_spec(st);
1923   if (is_tripcount()) {
1924     st->print(" #tripcount");
1925   }
1926 }
1927 #endif
1928 
1929 
1930 //=============================================================================
1931 const Type *GotoNode::Value( PhaseTransform *phase ) const {
1932   // If the input is reachable, then we are executed.
1933   // If the input is not reachable, then we are not executed.
1934   return phase->type(in(0));
1935 }
1936 
1937 Node *GotoNode::Identity( PhaseTransform *phase ) {
1938   return in(0);                // Simple copy of incoming control
1939 }
1940 
1941 const RegMask &GotoNode::out_RegMask() const {
1942   return RegMask::Empty;
1943 }
1944 
1945 //=============================================================================
1946 const RegMask &JumpNode::out_RegMask() const {
1947   return RegMask::Empty;
1948 }
1949 
1950 //=============================================================================
1951 const RegMask &JProjNode::out_RegMask() const {
1952   return RegMask::Empty;
1953 }
1954 
1955 //=============================================================================
1956 const RegMask &CProjNode::out_RegMask() const {
1957   return RegMask::Empty;
1958 }
1959 
1960 
1961 
1962 //=============================================================================
1963 
1964 uint PCTableNode::hash() const { return Node::hash() + _size; }
1965 uint PCTableNode::cmp( const Node &n ) const
1966 { return _size == ((PCTableNode&)n)._size; }
1967 
1968 const Type *PCTableNode::bottom_type() const {
1969   const Type** f = TypeTuple::fields(_size);
1970   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1971   return TypeTuple::make(_size, f);
1972 }
1973 
1974 //------------------------------Value------------------------------------------
1975 // Compute the type of the PCTableNode.  If reachable it is a tuple of
1976 // Control, otherwise the table targets are not reachable
1977 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
1978   if( phase->type(in(0)) == Type::CONTROL )
1979     return bottom_type();
1980   return Type::TOP;             // All paths dead?  Then so are we
1981 }
1982 
1983 //------------------------------Ideal------------------------------------------
1984 // Return a node which is more "ideal" than the current node.  Strip out
1985 // control copies
1986 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1987   return remove_dead_region(phase, can_reshape) ? this : NULL;
1988 }
1989 
1990 //=============================================================================
1991 uint JumpProjNode::hash() const {
1992   return Node::hash() + _dest_bci;
1993 }
1994 
1995 uint JumpProjNode::cmp( const Node &n ) const {
1996   return ProjNode::cmp(n) &&
1997     _dest_bci == ((JumpProjNode&)n)._dest_bci;
1998 }
1999 
2000 #ifndef PRODUCT
2001 void JumpProjNode::dump_spec(outputStream *st) const {
2002   ProjNode::dump_spec(st);
2003    st->print("@bci %d ",_dest_bci);
2004 }
2005 #endif
2006 
2007 //=============================================================================
2008 //------------------------------Value------------------------------------------
2009 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2010 // have the default "fall_through_index" path.
2011 const Type *CatchNode::Value( PhaseTransform *phase ) const {
2012   // Unreachable?  Then so are all paths from here.
2013   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2014   // First assume all paths are reachable
2015   const Type** f = TypeTuple::fields(_size);
2016   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2017   // Identify cases that will always throw an exception
2018   // () rethrow call
2019   // () virtual or interface call with NULL receiver
2020   // () call is a check cast with incompatible arguments
2021   if( in(1)->is_Proj() ) {
2022     Node *i10 = in(1)->in(0);
2023     if( i10->is_Call() ) {
2024       CallNode *call = i10->as_Call();
2025       // Rethrows always throw exceptions, never return
2026       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2027         f[CatchProjNode::fall_through_index] = Type::TOP;
2028       } else if( call->req() > TypeFunc::Parms ) {
2029         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2030         // Check for null receiver to virtual or interface calls
2031         if( call->is_CallDynamicJava() &&
2032             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2033           f[CatchProjNode::fall_through_index] = Type::TOP;
2034         }
2035       } // End of if not a runtime stub
2036     } // End of if have call above me
2037   } // End of slot 1 is not a projection
2038   return TypeTuple::make(_size, f);
2039 }
2040 
2041 //=============================================================================
2042 uint CatchProjNode::hash() const {
2043   return Node::hash() + _handler_bci;
2044 }
2045 
2046 
2047 uint CatchProjNode::cmp( const Node &n ) const {
2048   return ProjNode::cmp(n) &&
2049     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2050 }
2051 
2052 
2053 //------------------------------Identity---------------------------------------
2054 // If only 1 target is possible, choose it if it is the main control
2055 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
2056   // If my value is control and no other value is, then treat as ID
2057   const TypeTuple *t = phase->type(in(0))->is_tuple();
2058   if (t->field_at(_con) != Type::CONTROL)  return this;
2059   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2060   // also remove any exception table entry.  Thus we must know the call
2061   // feeding the Catch will not really throw an exception.  This is ok for
2062   // the main fall-thru control (happens when we know a call can never throw
2063   // an exception) or for "rethrow", because a further optimization will
2064   // yank the rethrow (happens when we inline a function that can throw an
2065   // exception and the caller has no handler).  Not legal, e.g., for passing
2066   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2067   // These cases MUST throw an exception via the runtime system, so the VM
2068   // will be looking for a table entry.
2069   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2070   CallNode *call;
2071   if (_con != TypeFunc::Control && // Bail out if not the main control.
2072       !(proj->is_Proj() &&      // AND NOT a rethrow
2073         proj->in(0)->is_Call() &&
2074         (call = proj->in(0)->as_Call()) &&
2075         call->entry_point() == OptoRuntime::rethrow_stub()))
2076     return this;
2077 
2078   // Search for any other path being control
2079   for (uint i = 0; i < t->cnt(); i++) {
2080     if (i != _con && t->field_at(i) == Type::CONTROL)
2081       return this;
2082   }
2083   // Only my path is possible; I am identity on control to the jump
2084   return in(0)->in(0);
2085 }
2086 
2087 
2088 #ifndef PRODUCT
2089 void CatchProjNode::dump_spec(outputStream *st) const {
2090   ProjNode::dump_spec(st);
2091   st->print("@bci %d ",_handler_bci);
2092 }
2093 #endif
2094 
2095 //=============================================================================
2096 //------------------------------Identity---------------------------------------
2097 // Check for CreateEx being Identity.
2098 Node *CreateExNode::Identity( PhaseTransform *phase ) {
2099   if( phase->type(in(1)) == Type::TOP ) return in(1);
2100   if( phase->type(in(0)) == Type::TOP ) return in(0);
2101   // We only come from CatchProj, unless the CatchProj goes away.
2102   // If the CatchProj is optimized away, then we just carry the
2103   // exception oop through.
2104   CallNode *call = in(1)->in(0)->as_Call();
2105 
2106   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2107     ? this
2108     : call->in(TypeFunc::Parms);
2109 }
2110 
2111 //=============================================================================
2112 //------------------------------Value------------------------------------------
2113 // Check for being unreachable.
2114 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2115   if (!in(0) || in(0)->is_top()) return Type::TOP;
2116   return bottom_type();
2117 }
2118 
2119 //------------------------------Ideal------------------------------------------
2120 // Check for no longer being part of a loop
2121 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2122   if (can_reshape && !in(0)->is_Loop()) {
2123     // Dead code elimination can sometimes delete this projection so
2124     // if it's not there, there's nothing to do.
2125     Node* fallthru = proj_out(0);
2126     if (fallthru != NULL) {
2127       phase->is_IterGVN()->replace_node(fallthru, in(0));
2128     }
2129     return phase->C->top();
2130   }
2131   return NULL;
2132 }
2133 
2134 #ifndef PRODUCT
2135 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2136   st->print("%s", Name());
2137 }
2138 #endif