1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_coalesce.cpp.incl"
  27 
  28 //=============================================================================
  29 //------------------------------reset_uf_map-----------------------------------
  30 void PhaseChaitin::reset_uf_map( uint maxlrg ) {
  31   _maxlrg = maxlrg;
  32   // Force the Union-Find mapping to be at least this large
  33   _uf_map.extend(_maxlrg,0);
  34   // Initialize it to be the ID mapping.
  35   for( uint i=0; i<_maxlrg; i++ )
  36     _uf_map.map(i,i);
  37 }
  38 
  39 //------------------------------compress_uf_map--------------------------------
  40 // Make all Nodes map directly to their final live range; no need for
  41 // the Union-Find mapping after this call.
  42 void PhaseChaitin::compress_uf_map_for_nodes( ) {
  43   // For all Nodes, compress mapping
  44   uint unique = _names.Size();
  45   for( uint i=0; i<unique; i++ ) {
  46     uint lrg = _names[i];
  47     uint compressed_lrg = Find(lrg);
  48     if( lrg != compressed_lrg )
  49       _names.map(i,compressed_lrg);
  50   }
  51 }
  52 
  53 //------------------------------Find-------------------------------------------
  54 // Straight out of Tarjan's union-find algorithm
  55 uint PhaseChaitin::Find_compress( uint lrg ) {
  56   uint cur = lrg;
  57   uint next = _uf_map[cur];
  58   while( next != cur ) {        // Scan chain of equivalences
  59     assert( next < cur, "always union smaller" );
  60     cur = next;                 // until find a fixed-point
  61     next = _uf_map[cur];
  62   }
  63   // Core of union-find algorithm: update chain of
  64   // equivalences to be equal to the root.
  65   while( lrg != next ) {
  66     uint tmp = _uf_map[lrg];
  67     _uf_map.map(lrg, next);
  68     lrg = tmp;
  69   }
  70   return lrg;
  71 }
  72 
  73 //------------------------------Find-------------------------------------------
  74 // Straight out of Tarjan's union-find algorithm
  75 uint PhaseChaitin::Find_compress( const Node *n ) {
  76   uint lrg = Find_compress(_names[n->_idx]);
  77   _names.map(n->_idx,lrg);
  78   return lrg;
  79 }
  80 
  81 //------------------------------Find_const-------------------------------------
  82 // Like Find above, but no path compress, so bad asymptotic behavior
  83 uint PhaseChaitin::Find_const( uint lrg ) const {
  84   if( !lrg ) return lrg;        // Ignore the zero LRG
  85   // Off the end?  This happens during debugging dumps when you got
  86   // brand new live ranges but have not told the allocator yet.
  87   if( lrg >= _maxlrg ) return lrg;
  88   uint next = _uf_map[lrg];
  89   while( next != lrg ) {        // Scan chain of equivalences
  90     assert( next < lrg, "always union smaller" );
  91     lrg = next;                 // until find a fixed-point
  92     next = _uf_map[lrg];
  93   }
  94   return next;
  95 }
  96 
  97 //------------------------------Find-------------------------------------------
  98 // Like Find above, but no path compress, so bad asymptotic behavior
  99 uint PhaseChaitin::Find_const( const Node *n ) const {
 100   if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump
 101   return Find_const( _names[n->_idx] );
 102 }
 103 
 104 //------------------------------Union------------------------------------------
 105 // union 2 sets together.
 106 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 107   uint src = Find(src_n);
 108   uint dst = Find(dst_n);
 109   assert( src, "" );
 110   assert( dst, "" );
 111   assert( src < _maxlrg, "oob" );
 112   assert( dst < _maxlrg, "oob" );
 113   assert( src < dst, "always union smaller" );
 114   _uf_map.map(dst,src);
 115 }
 116 
 117 //------------------------------new_lrg----------------------------------------
 118 void PhaseChaitin::new_lrg( const Node *x, uint lrg ) {
 119   // Make the Node->LRG mapping
 120   _names.extend(x->_idx,lrg);
 121   // Make the Union-Find mapping an identity function
 122   _uf_map.extend(lrg,lrg);
 123 }
 124 
 125 //------------------------------clone_projs------------------------------------
 126 // After cloning some rematerialized instruction, clone any MachProj's that
 127 // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
 128 // use G3 as an address temp.
 129 int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) {
 130   Block *bcon = _cfg._bbs[con->_idx];
 131   uint cindex = bcon->find_node(con);
 132   Node *con_next = bcon->_nodes[cindex+1];
 133   if( con_next->in(0) != con || con_next->Opcode() != Op_MachProj )
 134     return false;               // No MachProj's follow
 135 
 136   // Copy kills after the cloned constant
 137   Node *kills = con_next->clone();
 138   kills->set_req( 0, copy );
 139   b->_nodes.insert( idx, kills );
 140   _cfg._bbs.map( kills->_idx, b );
 141   new_lrg( kills, maxlrg++ );
 142   return true;
 143 }
 144 
 145 //------------------------------compact----------------------------------------
 146 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 147 void PhaseChaitin::compact() {
 148   // Current the _uf_map contains a series of short chains which are headed
 149   // by a self-cycle.  All the chains run from big numbers to little numbers.
 150   // The Find() call chases the chains & shortens them for the next Find call.
 151   // We are going to change this structure slightly.  Numbers above a moving
 152   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 153   // compacted live range with no further chaining.  There are no chains or
 154   // cycles below 'i', so the Find call no longer works.
 155   uint j=1;
 156   uint i;
 157   for( i=1; i < _maxlrg; i++ ) {
 158     uint lr = _uf_map[i];
 159     // Ignore unallocated live ranges
 160     if( !lr ) continue;
 161     assert( lr <= i, "" );
 162     _uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]);
 163   }
 164   if( false )                  // PrintOptoCompactLiveRanges
 165     printf("Compacted %d LRs from %d\n",i-j,i);
 166   // Now change the Node->LR mapping to reflect the compacted names
 167   uint unique = _names.Size();
 168   for( i=0; i<unique; i++ )
 169     _names.map(i,_uf_map[_names[i]]);
 170 
 171   // Reset the Union-Find mapping
 172   reset_uf_map(j);
 173 
 174 }
 175 
 176 //=============================================================================
 177 //------------------------------Dump-------------------------------------------
 178 #ifndef PRODUCT
 179 void PhaseCoalesce::dump( Node *n ) const {
 180   // Being a const function means I cannot use 'Find'
 181   uint r = _phc.Find(n);
 182   tty->print("L%d/N%d ",r,n->_idx);
 183 }
 184 
 185 //------------------------------dump-------------------------------------------
 186 void PhaseCoalesce::dump() const {
 187   // I know I have a block layout now, so I can print blocks in a loop
 188   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
 189     uint j;
 190     Block *b = _phc._cfg._blocks[i];
 191     // Print a nice block header
 192     tty->print("B%d: ",b->_pre_order);
 193     for( j=1; j<b->num_preds(); j++ )
 194       tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
 195     tty->print("-> ");
 196     for( j=0; j<b->_num_succs; j++ )
 197       tty->print("B%d ",b->_succs[j]->_pre_order);
 198     tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
 199     uint cnt = b->_nodes.size();
 200     for( j=0; j<cnt; j++ ) {
 201       Node *n = b->_nodes[j];
 202       dump( n );
 203       tty->print("\t%s\t",n->Name());
 204 
 205       // Dump the inputs
 206       uint k;                   // Exit value of loop
 207       for( k=0; k<n->req(); k++ ) // For all required inputs
 208         if( n->in(k) ) dump( n->in(k) );
 209         else tty->print("_ ");
 210       int any_prec = 0;
 211       for( ; k<n->len(); k++ )          // For all precedence inputs
 212         if( n->in(k) ) {
 213           if( !any_prec++ ) tty->print(" |");
 214           dump( n->in(k) );
 215         }
 216 
 217       // Dump node-specific info
 218       n->dump_spec(tty);
 219       tty->print("\n");
 220 
 221     }
 222     tty->print("\n");
 223   }
 224 }
 225 #endif
 226 
 227 //------------------------------combine_these_two------------------------------
 228 // Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
 229 void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) {
 230   uint lr1 = _phc.Find(n1);
 231   uint lr2 = _phc.Find(n2);
 232   if( lr1 != lr2 &&             // Different live ranges already AND
 233       !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
 234     LRG *lrg1 = &_phc.lrgs(lr1);
 235     LRG *lrg2 = &_phc.lrgs(lr2);
 236     // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
 237 
 238     // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
 239     // and in general that's a bad thing.  However, int->oop conversions only
 240     // happen at GC points, so the lifetime of the misclassified raw-pointer
 241     // is from the CheckCastPP (that converts it to an oop) backwards up
 242     // through a merge point and into the slow-path call, and around the
 243     // diamond up to the heap-top check and back down into the slow-path call.
 244     // The misclassified raw pointer is NOT live across the slow-path call,
 245     // and so does not appear in any GC info, so the fact that it is
 246     // misclassified is OK.
 247 
 248     if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
 249         // Compatible final mask
 250         lrg1->mask().overlap( lrg2->mask() ) ) {
 251       // Merge larger into smaller.
 252       if( lr1 > lr2 ) {
 253         uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
 254         Node   *n =   n1;   n1 =   n2;   n2 =    n;
 255         LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
 256       }
 257       // Union lr2 into lr1
 258       _phc.Union( n1, n2 );
 259       if (lrg1->_maxfreq < lrg2->_maxfreq)
 260         lrg1->_maxfreq = lrg2->_maxfreq;
 261       // Merge in the IFG
 262       _phc._ifg->Union( lr1, lr2 );
 263       // Combine register restrictions
 264       lrg1->AND(lrg2->mask());
 265     }
 266   }
 267 }
 268 
 269 //------------------------------coalesce_driver--------------------------------
 270 // Copy coalescing
 271 void PhaseCoalesce::coalesce_driver( ) {
 272 
 273   verify();
 274   // Coalesce from high frequency to low
 275   for( uint i=0; i<_phc._cfg._num_blocks; i++ )
 276     coalesce( _phc._blks[i] );
 277 
 278 }
 279 
 280 //------------------------------insert_copy_with_overlap-----------------------
 281 // I am inserting copies to come out of SSA form.  In the general case, I am
 282 // doing a parallel renaming.  I'm in the Named world now, so I can't do a
 283 // general parallel renaming.  All the copies now use  "names" (live-ranges)
 284 // to carry values instead of the explicit use-def chains.  Suppose I need to
 285 // insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
 286 // If I insert them in the wrong order then L128 will get clobbered before it
 287 // can get used by the second copy.  This cannot happen in the SSA model;
 288 // direct use-def chains get me the right value.  It DOES happen in the named
 289 // model so I have to handle the reordering of copies.
 290 //
 291 // In general, I need to topo-sort the placed copies to avoid conflicts.
 292 // Its possible to have a closed cycle of copies (e.g., recirculating the same
 293 // values around a loop).  In this case I need a temp to break the cycle.
 294 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
 295 
 296   // Scan backwards for the locations of the last use of the dst_name.
 297   // I am about to clobber the dst_name, so the copy must be inserted
 298   // after the last use.  Last use is really first-use on a backwards scan.
 299   uint i = b->end_idx()-1;
 300   while( 1 ) {
 301     Node *n = b->_nodes[i];
 302     // Check for end of virtual copies; this is also the end of the
 303     // parallel renaming effort.
 304     if( n->_idx < _unique ) break;
 305     uint idx = n->is_Copy();
 306     assert( idx || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
 307     if( idx && _phc.Find(n->in(idx)) == dst_name ) break;
 308     i--;
 309   }
 310   uint last_use_idx = i;
 311 
 312   // Also search for any kill of src_name that exits the block.
 313   // Since the copy uses src_name, I have to come before any kill.
 314   uint kill_src_idx = b->end_idx();
 315   // There can be only 1 kill that exits any block and that is
 316   // the last kill.  Thus it is the first kill on a backwards scan.
 317   i = b->end_idx()-1;
 318   while( 1 ) {
 319     Node *n = b->_nodes[i];
 320     // Check for end of virtual copies; this is also the end of the
 321     // parallel renaming effort.
 322     if( n->_idx < _unique ) break;
 323     assert( n->is_Copy() || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
 324     if( _phc.Find(n) == src_name ) {
 325       kill_src_idx = i;
 326       break;
 327     }
 328     i--;
 329   }
 330   // Need a temp?  Last use of dst comes after the kill of src?
 331   if( last_use_idx >= kill_src_idx ) {
 332     // Need to break a cycle with a temp
 333     uint idx = copy->is_Copy();
 334     Node *tmp = copy->clone();
 335     _phc.new_lrg(tmp,_phc._maxlrg++);
 336     // Insert new temp between copy and source
 337     tmp ->set_req(idx,copy->in(idx));
 338     copy->set_req(idx,tmp);
 339     // Save source in temp early, before source is killed
 340     b->_nodes.insert(kill_src_idx,tmp);
 341     _phc._cfg._bbs.map( tmp->_idx, b );
 342     last_use_idx++;
 343   }
 344 
 345   // Insert just after last use
 346   b->_nodes.insert(last_use_idx+1,copy);
 347 }
 348 
 349 //------------------------------insert_copies----------------------------------
 350 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
 351   // We do LRGs compressing and fix a liveout data only here since the other
 352   // place in Split() is guarded by the assert which we never hit.
 353   _phc.compress_uf_map_for_nodes();
 354   // Fix block's liveout data for compressed live ranges.
 355   for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) {
 356     uint compressed_lrg = _phc.Find(lrg);
 357     if( lrg != compressed_lrg ) {
 358       for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) {
 359         IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
 360         if( liveout->member(lrg) ) {
 361           liveout->remove(lrg);
 362           liveout->insert(compressed_lrg);
 363         }
 364       }
 365     }
 366   }
 367 
 368   // All new nodes added are actual copies to replace virtual copies.
 369   // Nodes with index less than '_unique' are original, non-virtual Nodes.
 370   _unique = C->unique();
 371 
 372   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
 373     Block *b = _phc._cfg._blocks[i];
 374     uint cnt = b->num_preds();  // Number of inputs to the Phi
 375 
 376     for( uint l = 1; l<b->_nodes.size(); l++ ) {
 377       Node *n = b->_nodes[l];
 378 
 379       // Do not use removed-copies, use copied value instead
 380       uint ncnt = n->req();
 381       for( uint k = 1; k<ncnt; k++ ) {
 382         Node *copy = n->in(k);
 383         uint cidx = copy->is_Copy();
 384         if( cidx ) {
 385           Node *def = copy->in(cidx);
 386           if( _phc.Find(copy) == _phc.Find(def) )
 387             n->set_req(k,def);
 388         }
 389       }
 390 
 391       // Remove any explicit copies that get coalesced.
 392       uint cidx = n->is_Copy();
 393       if( cidx ) {
 394         Node *def = n->in(cidx);
 395         if( _phc.Find(n) == _phc.Find(def) ) {
 396           n->replace_by(def);
 397           n->set_req(cidx,NULL);
 398           b->_nodes.remove(l);
 399           l--;
 400           continue;
 401         }
 402       }
 403 
 404       if( n->is_Phi() ) {
 405         // Get the chosen name for the Phi
 406         uint phi_name = _phc.Find( n );
 407         // Ignore the pre-allocated specials
 408         if( !phi_name ) continue;
 409         // Check for mismatch inputs to Phi
 410         for( uint j = 1; j<cnt; j++ ) {
 411           Node *m = n->in(j);
 412           uint src_name = _phc.Find(m);
 413           if( src_name != phi_name ) {
 414             Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
 415             Node *copy;
 416             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 417             // Rematerialize constants instead of copying them
 418             if( m->is_Mach() && m->as_Mach()->is_Con() &&
 419                 m->as_Mach()->rematerialize() ) {
 420               copy = m->clone();
 421               // Insert the copy in the predecessor basic block
 422               pred->add_inst(copy);
 423               // Copy any flags as well
 424               _phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg );
 425             } else {
 426               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 427               copy = new (C) MachSpillCopyNode(m,*rm,*rm);
 428               // Find a good place to insert.  Kinda tricky, use a subroutine
 429               insert_copy_with_overlap(pred,copy,phi_name,src_name);
 430             }
 431             // Insert the copy in the use-def chain
 432             n->set_req( j, copy );
 433             _phc._cfg._bbs.map( copy->_idx, pred );
 434             // Extend ("register allocate") the names array for the copy.
 435             _phc._names.extend( copy->_idx, phi_name );
 436           } // End of if Phi names do not match
 437         } // End of for all inputs to Phi
 438       } else { // End of if Phi
 439 
 440         // Now check for 2-address instructions
 441         uint idx;
 442         if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
 443           // Get the chosen name for the Node
 444           uint name = _phc.Find( n );
 445           assert( name, "no 2-address specials" );
 446           // Check for name mis-match on the 2-address input
 447           Node *m = n->in(idx);
 448           if( _phc.Find(m) != name ) {
 449             Node *copy;
 450             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 451             // At this point it is unsafe to extend live ranges (6550579).
 452             // Rematerialize only constants as we do for Phi above.
 453             if( m->is_Mach() && m->as_Mach()->is_Con() &&
 454                 m->as_Mach()->rematerialize() ) {
 455               copy = m->clone();
 456               // Insert the copy in the basic block, just before us
 457               b->_nodes.insert( l++, copy );
 458               if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) )
 459                 l++;
 460             } else {
 461               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 462               copy = new (C) MachSpillCopyNode( m, *rm, *rm );
 463               // Insert the copy in the basic block, just before us
 464               b->_nodes.insert( l++, copy );
 465             }
 466             // Insert the copy in the use-def chain
 467             n->set_req(idx, copy );
 468             // Extend ("register allocate") the names array for the copy.
 469             _phc._names.extend( copy->_idx, name );
 470             _phc._cfg._bbs.map( copy->_idx, b );
 471           }
 472 
 473         } // End of is two-adr
 474 
 475         // Insert a copy at a debug use for a lrg which has high frequency
 476         if( b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs) ) {
 477           // Walk the debug inputs to the node and check for lrg freq
 478           JVMState* jvms = n->jvms();
 479           uint debug_start = jvms ? jvms->debug_start() : 999999;
 480           uint debug_end   = jvms ? jvms->debug_end()   : 999999;
 481           for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
 482             // Do not split monitors; they are only needed for debug table
 483             // entries and need no code.
 484             if( jvms->is_monitor_use(inpidx) ) continue;
 485             Node *inp = n->in(inpidx);
 486             uint nidx = _phc.n2lidx(inp);
 487             LRG &lrg = lrgs(nidx);
 488 
 489             // If this lrg has a high frequency use/def
 490             if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
 491               // If the live range is also live out of this block (like it
 492               // would be for a fast/slow idiom), the normal spill mechanism
 493               // does an excellent job.  If it is not live out of this block
 494               // (like it would be for debug info to uncommon trap) splitting
 495               // the live range now allows a better allocation in the high
 496               // frequency blocks.
 497               //   Build_IFG_virtual has converted the live sets to
 498               // live-IN info, not live-OUT info.
 499               uint k;
 500               for( k=0; k < b->_num_succs; k++ )
 501                 if( _phc._live->live(b->_succs[k])->member( nidx ) )
 502                   break;      // Live in to some successor block?
 503               if( k < b->_num_succs )
 504                 continue;     // Live out; do not pre-split
 505               // Split the lrg at this use
 506               const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
 507               Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
 508               // Insert the copy in the use-def chain
 509               n->set_req(inpidx, copy );
 510               // Insert the copy in the basic block, just before us
 511               b->_nodes.insert( l++, copy );
 512               // Extend ("register allocate") the names array for the copy.
 513               _phc.new_lrg( copy, _phc._maxlrg++ );
 514               _phc._cfg._bbs.map( copy->_idx, b );
 515               //tty->print_cr("Split a debug use in Aggressive Coalesce");
 516             }  // End of if high frequency use/def
 517           }  // End of for all debug inputs
 518         }  // End of if low frequency safepoint
 519 
 520       } // End of if Phi
 521 
 522     } // End of for all instructions
 523   } // End of for all blocks
 524 }
 525 
 526 //=============================================================================
 527 //------------------------------coalesce---------------------------------------
 528 // Aggressive (but pessimistic) copy coalescing of a single block
 529 
 530 // The following coalesce pass represents a single round of aggressive
 531 // pessimistic coalesce.  "Aggressive" means no attempt to preserve
 532 // colorability when coalescing.  This occasionally means more spills, but
 533 // it also means fewer rounds of coalescing for better code - and that means
 534 // faster compiles.
 535 
 536 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
 537 // reaching for the least fixed point to boot).  This is typically solved
 538 // with a few more rounds of coalescing, but the compiler must run fast.  We
 539 // could optimistically coalescing everything touching PhiNodes together
 540 // into one big live range, then check for self-interference.  Everywhere
 541 // the live range interferes with self it would have to be split.  Finding
 542 // the right split points can be done with some heuristics (based on
 543 // expected frequency of edges in the live range).  In short, it's a real
 544 // research problem and the timeline is too short to allow such research.
 545 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
 546 // in another pass, (3) per each self-conflict, split, (4) split by finding
 547 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
 548 // according to the GCM algorithm (or just exec freq on CFG edges).
 549 
 550 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
 551   // Copies are still "virtual" - meaning we have not made them explicitly
 552   // copies.  Instead, Phi functions of successor blocks have mis-matched
 553   // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
 554   // up the live-ranges.  Check for Phis in successor blocks.
 555   uint i;
 556   for( i=0; i<b->_num_succs; i++ ) {
 557     Block *bs = b->_succs[i];
 558     // Find index of 'b' in 'bs' predecessors
 559     uint j=1;
 560     while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
 561     // Visit all the Phis in successor block
 562     for( uint k = 1; k<bs->_nodes.size(); k++ ) {
 563       Node *n = bs->_nodes[k];
 564       if( !n->is_Phi() ) break;
 565       combine_these_two( n, n->in(j) );
 566     }
 567   } // End of for all successor blocks
 568 
 569 
 570   // Check _this_ block for 2-address instructions and copies.
 571   uint cnt = b->end_idx();
 572   for( i = 1; i<cnt; i++ ) {
 573     Node *n = b->_nodes[i];
 574     uint idx;
 575     // 2-address instructions have a virtual Copy matching their input
 576     // to their output
 577     if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
 578       MachNode *mach = n->as_Mach();
 579       combine_these_two( mach, mach->in(idx) );
 580     }
 581   } // End of for all instructions in block
 582 }
 583 
 584 //=============================================================================
 585 //------------------------------PhaseConservativeCoalesce----------------------
 586 PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) {
 587   _ulr.initialize(_phc._maxlrg);
 588 }
 589 
 590 //------------------------------verify-----------------------------------------
 591 void PhaseConservativeCoalesce::verify() {
 592 #ifdef ASSERT
 593   _phc.set_was_low();
 594 #endif
 595 }
 596 
 597 //------------------------------union_helper-----------------------------------
 598 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
 599   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 600   // union-find tree
 601   _phc.Union( lr1_node, lr2_node );
 602 
 603   // Single-def live range ONLY if both live ranges are single-def.
 604   // If both are single def, then src_def powers one live range
 605   // and def_copy powers the other.  After merging, src_def powers
 606   // the combined live range.
 607   lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
 608                         lrgs(lr2).is_multidef() )
 609     ? NodeSentinel : src_def;
 610   lrgs(lr2)._def = NULL;    // No def for lrg 2
 611   lrgs(lr2).Clear();        // Force empty mask for LRG 2
 612   //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
 613   lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
 614   lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
 615 
 616   if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
 617     lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
 618 
 619   // Copy original value instead.  Intermediate copies go dead, and
 620   // the dst_copy becomes useless.
 621   int didx = dst_copy->is_Copy();
 622   dst_copy->set_req( didx, src_def );
 623   // Add copy to free list
 624   // _phc.free_spillcopy(b->_nodes[bindex]);
 625   assert( b->_nodes[bindex] == dst_copy, "" );
 626   dst_copy->replace_by( dst_copy->in(didx) );
 627   dst_copy->set_req( didx, NULL);
 628   b->_nodes.remove(bindex);
 629   if( bindex < b->_ihrp_index ) b->_ihrp_index--;
 630   if( bindex < b->_fhrp_index ) b->_fhrp_index--;
 631 
 632   // Stretched lr1; add it to liveness of intermediate blocks
 633   Block *b2 = _phc._cfg._bbs[src_copy->_idx];
 634   while( b != b2 ) {
 635     b = _phc._cfg._bbs[b->pred(1)->_idx];
 636     _phc._live->live(b)->insert(lr1);
 637   }
 638 }
 639 
 640 //------------------------------compute_separating_interferences---------------
 641 // Factored code from copy_copy that computes extra interferences from
 642 // lengthening a live range by double-coalescing.
 643 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
 644 
 645   assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
 646   assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
 647   Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
 648   Block *b2 = b;
 649   uint bindex2 = bindex;
 650   while( 1 ) {
 651     // Find previous instruction
 652     bindex2--;                  // Chain backwards 1 instruction
 653     while( bindex2 == 0 ) {     // At block start, find prior block
 654       assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
 655       b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
 656       bindex2 = b2->end_idx()-1;
 657     }
 658     // Get prior instruction
 659     assert(bindex2 < b2->_nodes.size(), "index out of bounds");
 660     Node *x = b2->_nodes[bindex2];
 661     if( x == prev_copy ) {      // Previous copy in copy chain?
 662       if( prev_copy == src_copy)// Found end of chain and all interferences
 663         break;                  // So break out of loop
 664       // Else work back one in copy chain
 665       prev_copy = prev_copy->in(prev_copy->is_Copy());
 666     } else {                    // Else collect interferences
 667       uint lidx = _phc.Find(x);
 668       // Found another def of live-range being stretched?
 669       if( lidx == lr1 ) return max_juint;
 670       if( lidx == lr2 ) return max_juint;
 671 
 672       // If we attempt to coalesce across a bound def
 673       if( lrgs(lidx).is_bound() ) {
 674         // Do not let the coalesced LRG expect to get the bound color
 675         rm.SUBTRACT( lrgs(lidx).mask() );
 676         // Recompute rm_size
 677         rm_size = rm.Size();
 678         //if( rm._flags ) rm_size += 1000000;
 679         if( reg_degree >= rm_size ) return max_juint;
 680       }
 681       if( rm.overlap(lrgs(lidx).mask()) ) {
 682         // Insert lidx into union LRG; returns TRUE if actually inserted
 683         if( _ulr.insert(lidx) ) {
 684           // Infinite-stack neighbors do not alter colorability, as they
 685           // can always color to some other color.
 686           if( !lrgs(lidx).mask().is_AllStack() ) {
 687             // If this coalesce will make any new neighbor uncolorable,
 688             // do not coalesce.
 689             if( lrgs(lidx).just_lo_degree() )
 690               return max_juint;
 691             // Bump our degree
 692             if( ++reg_degree >= rm_size )
 693               return max_juint;
 694           } // End of if not infinite-stack neighbor
 695         } // End of if actually inserted
 696       } // End of if live range overlaps
 697     } // End of else collect interferences for 1 node
 698   } // End of while forever, scan back for interferences
 699   return reg_degree;
 700 }
 701 
 702 //------------------------------update_ifg-------------------------------------
 703 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
 704   // Some original neighbors of lr1 might have gone away
 705   // because the constrained register mask prevented them.
 706   // Remove lr1 from such neighbors.
 707   IndexSetIterator one(n_lr1);
 708   uint neighbor;
 709   LRG &lrg1 = lrgs(lr1);
 710   while ((neighbor = one.next()) != 0)
 711     if( !_ulr.member(neighbor) )
 712       if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
 713         lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
 714 
 715 
 716   // lr2 is now called (coalesced into) lr1.
 717   // Remove lr2 from the IFG.
 718   IndexSetIterator two(n_lr2);
 719   LRG &lrg2 = lrgs(lr2);
 720   while ((neighbor = two.next()) != 0)
 721     if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
 722       lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
 723 
 724   // Some neighbors of intermediate copies now interfere with the
 725   // combined live range.
 726   IndexSetIterator three(&_ulr);
 727   while ((neighbor = three.next()) != 0)
 728     if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
 729       lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
 730 }
 731 
 732 //------------------------------record_bias------------------------------------
 733 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
 734   // Tag copy bias here
 735   if( !ifg->lrgs(lr1)._copy_bias )
 736     ifg->lrgs(lr1)._copy_bias = lr2;
 737   if( !ifg->lrgs(lr2)._copy_bias )
 738     ifg->lrgs(lr2)._copy_bias = lr1;
 739 }
 740 
 741 //------------------------------copy_copy--------------------------------------
 742 // See if I can coalesce a series of multiple copies together.  I need the
 743 // final dest copy and the original src copy.  They can be the same Node.
 744 // Compute the compatible register masks.
 745 bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
 746 
 747   if( !dst_copy->is_SpillCopy() ) return false;
 748   if( !src_copy->is_SpillCopy() ) return false;
 749   Node *src_def = src_copy->in(src_copy->is_Copy());
 750   uint lr1 = _phc.Find(dst_copy);
 751   uint lr2 = _phc.Find(src_def );
 752 
 753   // Same live ranges already?
 754   if( lr1 == lr2 ) return false;
 755 
 756   // Interfere?
 757   if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false;
 758 
 759   // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
 760   if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast
 761     return false;
 762 
 763   // Coalescing between an aligned live range and a mis-aligned live range?
 764   // No, no!  Alignment changes how we count degree.
 765   if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj )
 766     return false;
 767 
 768   // Sort; use smaller live-range number
 769   Node *lr1_node = dst_copy;
 770   Node *lr2_node = src_def;
 771   if( lr1 > lr2 ) {
 772     uint tmp = lr1; lr1 = lr2; lr2 = tmp;
 773     lr1_node = src_def;  lr2_node = dst_copy;
 774   }
 775 
 776   // Check for compatibility of the 2 live ranges by
 777   // intersecting their allowed register sets.
 778   RegMask rm = lrgs(lr1).mask();
 779   rm.AND(lrgs(lr2).mask());
 780   // Number of bits free
 781   uint rm_size = rm.Size();
 782 
 783   if (UseFPUForSpilling && rm.is_AllStack() ) {
 784     // Don't coalesce when frequency difference is large
 785     Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
 786     Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
 787     if (src_def_b->_freq > 10*dst_b->_freq )
 788       return false;
 789   }
 790 
 791   // If we can use any stack slot, then effective size is infinite
 792   if( rm.is_AllStack() ) rm_size += 1000000;
 793   // Incompatible masks, no way to coalesce
 794   if( rm_size == 0 ) return false;
 795 
 796   // Another early bail-out test is when we are double-coalescing and the
 797   // 2 copies are separated by some control flow.
 798   if( dst_copy != src_copy ) {
 799     Block *src_b = _phc._cfg._bbs[src_copy->_idx];
 800     Block *b2 = b;
 801     while( b2 != src_b ) {
 802       if( b2->num_preds() > 2 ){// Found merge-point
 803         _phc._lost_opp_cflow_coalesce++;
 804         // extra record_bias commented out because Chris believes it is not
 805         // productive.  Since we can record only 1 bias, we want to choose one
 806         // that stands a chance of working and this one probably does not.
 807         //record_bias( _phc._lrgs, lr1, lr2 );
 808         return false;           // To hard to find all interferences
 809       }
 810       b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
 811     }
 812   }
 813 
 814   // Union the two interference sets together into '_ulr'
 815   uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
 816 
 817   if( reg_degree >= rm_size ) {
 818     record_bias( _phc._ifg, lr1, lr2 );
 819     return false;
 820   }
 821 
 822   // Now I need to compute all the interferences between dst_copy and
 823   // src_copy.  I'm not willing visit the entire interference graph, so
 824   // I limit my search to things in dst_copy's block or in a straight
 825   // line of previous blocks.  I give up at merge points or when I get
 826   // more interferences than my degree.  I can stop when I find src_copy.
 827   if( dst_copy != src_copy ) {
 828     reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
 829     if( reg_degree == max_juint ) {
 830       record_bias( _phc._ifg, lr1, lr2 );
 831       return false;
 832     }
 833   } // End of if dst_copy & src_copy are different
 834 
 835 
 836   // ---- THE COMBINED LRG IS COLORABLE ----
 837 
 838   // YEAH - Now coalesce this copy away
 839   assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
 840 
 841   IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
 842   IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
 843 
 844   // Update the interference graph
 845   update_ifg(lr1, lr2, n_lr1, n_lr2);
 846 
 847   _ulr.remove(lr1);
 848 
 849   // Uncomment the following code to trace Coalescing in great detail.
 850   //
 851   //if (false) {
 852   //  tty->cr();
 853   //  tty->print_cr("#######################################");
 854   //  tty->print_cr("union %d and %d", lr1, lr2);
 855   //  n_lr1->dump();
 856   //  n_lr2->dump();
 857   //  tty->print_cr("resulting set is");
 858   //  _ulr.dump();
 859   //}
 860 
 861   // Replace n_lr1 with the new combined live range.  _ulr will use
 862   // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
 863   // send its internal memory to the free list.
 864   _ulr.swap(n_lr1);
 865   _ulr.clear();
 866   n_lr2->clear();
 867 
 868   lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
 869   lrgs(lr2).set_degree( 0 );
 870 
 871   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 872   // union-find tree
 873   union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
 874   // Combine register restrictions
 875   lrgs(lr1).set_mask(rm);
 876   lrgs(lr1).compute_set_mask_size();
 877   lrgs(lr1)._cost += lrgs(lr2)._cost;
 878   lrgs(lr1)._area += lrgs(lr2)._area;
 879 
 880   // While its uncommon to successfully coalesce live ranges that started out
 881   // being not-lo-degree, it can happen.  In any case the combined coalesced
 882   // live range better Simplify nicely.
 883   lrgs(lr1)._was_lo = 1;
 884 
 885   // kinda expensive to do all the time
 886   //tty->print_cr("warning: slow verify happening");
 887   //_phc._ifg->verify( &_phc );
 888   return true;
 889 }
 890 
 891 //------------------------------coalesce---------------------------------------
 892 // Conservative (but pessimistic) copy coalescing of a single block
 893 void PhaseConservativeCoalesce::coalesce( Block *b ) {
 894   // Bail out on infrequent blocks
 895   if( b->is_uncommon(_phc._cfg._bbs) )
 896     return;
 897   // Check this block for copies.
 898   for( uint i = 1; i<b->end_idx(); i++ ) {
 899     // Check for actual copies on inputs.  Coalesce a copy into its
 900     // input if use and copy's input are compatible.
 901     Node *copy1 = b->_nodes[i];
 902     uint idx1 = copy1->is_Copy();
 903     if( !idx1 ) continue;       // Not a copy
 904 
 905     if( copy_copy(copy1,copy1,b,i) ) {
 906       i--;                      // Retry, same location in block
 907       PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
 908       continue;
 909     }
 910 
 911     /* do not attempt pairs.  About 1/2 of all pairs can be removed by
 912        post-alloc.  The other set are too few to bother.
 913     Node *copy2 = copy1->in(idx1);
 914     uint idx2 = copy2->is_Copy();
 915     if( !idx2 ) continue;
 916     if( copy_copy(copy1,copy2,b,i) ) {
 917       i--;                      // Retry, same location in block
 918       PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success
 919       continue;
 920     }
 921     */
 922   }
 923 }