1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/deoptimization.hpp"
  38 #ifdef TARGET_ARCH_MODEL_x86_32
  39 # include "adfiles/ad_x86_32.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_MODEL_x86_64
  42 # include "adfiles/ad_x86_64.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_MODEL_sparc
  45 # include "adfiles/ad_sparc.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_MODEL_zero
  48 # include "adfiles/ad_zero.hpp"
  49 #endif
  50 
  51 // Portions of code courtesy of Clifford Click
  52 
  53 // Optimization - Graph Style
  54 
  55 // To avoid float value underflow
  56 #define MIN_BLOCK_FREQUENCY 1.e-35f
  57 
  58 //----------------------------schedule_node_into_block-------------------------
  59 // Insert node n into block b. Look for projections of n and make sure they
  60 // are in b also.
  61 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  62   // Set basic block of n, Add n to b,
  63   _bbs.map(n->_idx, b);
  64   b->add_inst(n);
  65 
  66   // After Matching, nearly any old Node may have projections trailing it.
  67   // These are usually machine-dependent flags.  In any case, they might
  68   // float to another block below this one.  Move them up.
  69   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  70     Node*  use  = n->fast_out(i);
  71     if (use->is_Proj()) {
  72       Block* buse = _bbs[use->_idx];
  73       if (buse != b) {              // In wrong block?
  74         if (buse != NULL)
  75           buse->find_remove(use);   // Remove from wrong block
  76         _bbs.map(use->_idx, b);     // Re-insert in this block
  77         b->add_inst(use);
  78       }
  79     }
  80   }
  81 }
  82 
  83 //----------------------------replace_block_proj_ctrl-------------------------
  84 // Nodes that have is_block_proj() nodes as their control need to use
  85 // the appropriate Region for their actual block as their control since
  86 // the projection will be in a predecessor block.
  87 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  88   const Node *in0 = n->in(0);
  89   assert(in0 != NULL, "Only control-dependent");
  90   const Node *p = in0->is_block_proj();
  91   if (p != NULL && p != n) {    // Control from a block projection?
  92     assert(!n->pinned() || n->is_SafePointScalarObject(), "only SafePointScalarObject pinned node is expected here");
  93     // Find trailing Region
  94     Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
  95     uint j = 0;
  96     if (pb->_num_succs != 1) {  // More then 1 successor?
  97       // Search for successor
  98       uint max = pb->_nodes.size();
  99       assert( max > 1, "" );
 100       uint start = max - pb->_num_succs;
 101       // Find which output path belongs to projection
 102       for (j = start; j < max; j++) {
 103         if( pb->_nodes[j] == in0 )
 104           break;
 105       }
 106       assert( j < max, "must find" );
 107       // Change control to match head of successor basic block
 108       j -= start;
 109     }
 110     n->set_req(0, pb->_succs[j]->head());
 111   }
 112 }
 113 
 114 
 115 //------------------------------schedule_pinned_nodes--------------------------
 116 // Set the basic block for Nodes pinned into blocks
 117 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
 118   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
 119   GrowableArray <Node *> spstack(C->unique()+8);
 120   spstack.push(_root);
 121   while ( spstack.is_nonempty() ) {
 122     Node *n = spstack.pop();
 123     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
 124       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
 125         assert( n->in(0), "pinned Node must have Control" );
 126         // Before setting block replace block_proj control edge
 127         replace_block_proj_ctrl(n);
 128         Node *input = n->in(0);
 129         while( !input->is_block_start() )
 130           input = input->in(0);
 131         Block *b = _bbs[input->_idx];  // Basic block of controlling input
 132         schedule_node_into_block(n, b);
 133       }
 134       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
 135         if( n->in(i) != NULL )
 136           spstack.push(n->in(i));
 137       }
 138     }
 139   }
 140 }
 141 
 142 #ifdef ASSERT
 143 // Assert that new input b2 is dominated by all previous inputs.
 144 // Check this by by seeing that it is dominated by b1, the deepest
 145 // input observed until b2.
 146 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
 147   if (b1 == NULL)  return;
 148   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 149   Block* tmp = b2;
 150   while (tmp != b1 && tmp != NULL) {
 151     tmp = tmp->_idom;
 152   }
 153   if (tmp != b1) {
 154     // Detected an unschedulable graph.  Print some nice stuff and die.
 155     tty->print_cr("!!! Unschedulable graph !!!");
 156     for (uint j=0; j<n->len(); j++) { // For all inputs
 157       Node* inn = n->in(j); // Get input
 158       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 159       Block* inb = bbs[inn->_idx];
 160       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 161                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 162       inn->dump();
 163     }
 164     tty->print("Failing node: ");
 165     n->dump();
 166     assert(false, "unscheduable graph");
 167   }
 168 }
 169 #endif
 170 
 171 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 172   // Find the last input dominated by all other inputs.
 173   Block* deepb           = NULL;        // Deepest block so far
 174   int    deepb_dom_depth = 0;
 175   for (uint k = 0; k < n->len(); k++) { // For all inputs
 176     Node* inn = n->in(k);               // Get input
 177     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 178     Block* inb = bbs[inn->_idx];
 179     assert(inb != NULL, "must already have scheduled this input");
 180     if (deepb_dom_depth < (int) inb->_dom_depth) {
 181       // The new inb must be dominated by the previous deepb.
 182       // The various inputs must be linearly ordered in the dom
 183       // tree, or else there will not be a unique deepest block.
 184       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 185       deepb = inb;                      // Save deepest block
 186       deepb_dom_depth = deepb->_dom_depth;
 187     }
 188   }
 189   assert(deepb != NULL, "must be at least one input to n");
 190   return deepb;
 191 }
 192 
 193 
 194 //------------------------------schedule_early---------------------------------
 195 // Find the earliest Block any instruction can be placed in.  Some instructions
 196 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 197 // which all their inputs occur.
 198 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 199   // Allocate stack with enough space to avoid frequent realloc
 200   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 201   // roots.push(_root); _root will be processed among C->top() inputs
 202   roots.push(C->top());
 203   visited.set(C->top()->_idx);
 204 
 205   while (roots.size() != 0) {
 206     // Use local variables nstack_top_n & nstack_top_i to cache values
 207     // on stack's top.
 208     Node *nstack_top_n = roots.pop();
 209     uint  nstack_top_i = 0;
 210 //while_nstack_nonempty:
 211     while (true) {
 212       // Get parent node and next input's index from stack's top.
 213       Node *n = nstack_top_n;
 214       uint  i = nstack_top_i;
 215 
 216       if (i == 0) {
 217         // Fixup some control.  Constants without control get attached
 218         // to root and nodes that use is_block_proj() nodes should be attached
 219         // to the region that starts their block.
 220         const Node *in0 = n->in(0);
 221         if (in0 != NULL) {              // Control-dependent?
 222           replace_block_proj_ctrl(n);
 223         } else {               // n->in(0) == NULL
 224           if (n->req() == 1) { // This guy is a constant with NO inputs?
 225             n->set_req(0, _root);
 226           }
 227         }
 228       }
 229 
 230       // First, visit all inputs and force them to get a block.  If an
 231       // input is already in a block we quit following inputs (to avoid
 232       // cycles). Instead we put that Node on a worklist to be handled
 233       // later (since IT'S inputs may not have a block yet).
 234       bool done = true;              // Assume all n's inputs will be processed
 235       while (i < n->len()) {         // For all inputs
 236         Node *in = n->in(i);         // Get input
 237         ++i;
 238         if (in == NULL) continue;    // Ignore NULL, missing inputs
 239         int is_visited = visited.test_set(in->_idx);
 240         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 241           if (is_visited) {
 242             // assert( !visited.test(in->_idx), "did not schedule early" );
 243             return false;
 244           }
 245           nstack.push(n, i);         // Save parent node and next input's index.
 246           nstack_top_n = in;         // Process current input now.
 247           nstack_top_i = 0;
 248           done = false;              // Not all n's inputs processed.
 249           break; // continue while_nstack_nonempty;
 250         } else if (!is_visited) {    // Input not yet visited?
 251           roots.push(in);            // Visit this guy later, using worklist
 252         }
 253       }
 254       if (done) {
 255         // All of n's inputs have been processed, complete post-processing.
 256 
 257         // Some instructions are pinned into a block.  These include Region,
 258         // Phi, Start, Return, and other control-dependent instructions and
 259         // any projections which depend on them.
 260         if (!n->pinned()) {
 261           // Set earliest legal block.
 262           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 263         } else {
 264           assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge");
 265         }
 266 
 267         if (nstack.is_empty()) {
 268           // Finished all nodes on stack.
 269           // Process next node on the worklist 'roots'.
 270           break;
 271         }
 272         // Get saved parent node and next input's index.
 273         nstack_top_n = nstack.node();
 274         nstack_top_i = nstack.index();
 275         nstack.pop();
 276       } //    if (done)
 277     }   // while (true)
 278   }     // while (roots.size() != 0)
 279   return true;
 280 }
 281 
 282 //------------------------------dom_lca----------------------------------------
 283 // Find least common ancestor in dominator tree
 284 // LCA is a current notion of LCA, to be raised above 'this'.
 285 // As a convenient boundary condition, return 'this' if LCA is NULL.
 286 // Find the LCA of those two nodes.
 287 Block* Block::dom_lca(Block* LCA) {
 288   if (LCA == NULL || LCA == this)  return this;
 289 
 290   Block* anc = this;
 291   while (anc->_dom_depth > LCA->_dom_depth)
 292     anc = anc->_idom;           // Walk up till anc is as high as LCA
 293 
 294   while (LCA->_dom_depth > anc->_dom_depth)
 295     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 296 
 297   while (LCA != anc) {          // Walk both up till they are the same
 298     LCA = LCA->_idom;
 299     anc = anc->_idom;
 300   }
 301 
 302   return LCA;
 303 }
 304 
 305 //--------------------------raise_LCA_above_use--------------------------------
 306 // We are placing a definition, and have been given a def->use edge.
 307 // The definition must dominate the use, so move the LCA upward in the
 308 // dominator tree to dominate the use.  If the use is a phi, adjust
 309 // the LCA only with the phi input paths which actually use this def.
 310 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 311   Block* buse = bbs[use->_idx];
 312   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 313   if (!use->is_Phi())  return buse->dom_lca(LCA);
 314   uint pmax = use->req();       // Number of Phi inputs
 315   // Why does not this loop just break after finding the matching input to
 316   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 317   // chains.  Means I cannot distinguish, from the def-use direction, which
 318   // of many use-defs lead from the same use to the same def.  That is, this
 319   // Phi might have several uses of the same def.  Each use appears in a
 320   // different predecessor block.  But when I enter here, I cannot distinguish
 321   // which use-def edge I should find the predecessor block for.  So I find
 322   // them all.  Means I do a little extra work if a Phi uses the same value
 323   // more than once.
 324   for (uint j=1; j<pmax; j++) { // For all inputs
 325     if (use->in(j) == def) {    // Found matching input?
 326       Block* pred = bbs[buse->pred(j)->_idx];
 327       LCA = pred->dom_lca(LCA);
 328     }
 329   }
 330   return LCA;
 331 }
 332 
 333 //----------------------------raise_LCA_above_marks----------------------------
 334 // Return a new LCA that dominates LCA and any of its marked predecessors.
 335 // Search all my parents up to 'early' (exclusive), looking for predecessors
 336 // which are marked with the given index.  Return the LCA (in the dom tree)
 337 // of all marked blocks.  If there are none marked, return the original
 338 // LCA.
 339 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 340                                     Block* early, Block_Array &bbs) {
 341   Block_List worklist;
 342   worklist.push(LCA);
 343   while (worklist.size() > 0) {
 344     Block* mid = worklist.pop();
 345     if (mid == early)  continue;  // stop searching here
 346 
 347     // Test and set the visited bit.
 348     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 349 
 350     // Don't process the current LCA, otherwise the search may terminate early
 351     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 352       // Raise the LCA.
 353       LCA = mid->dom_lca(LCA);
 354       if (LCA == early)  break;   // stop searching everywhere
 355       assert(early->dominates(LCA), "early is high enough");
 356       // Resume searching at that point, skipping intermediate levels.
 357       worklist.push(LCA);
 358       if (LCA == mid)
 359         continue; // Don't mark as visited to avoid early termination.
 360     } else {
 361       // Keep searching through this block's predecessors.
 362       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 363         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 364         worklist.push(mid_parent);
 365       }
 366     }
 367     mid->set_raise_LCA_visited(mark);
 368   }
 369   return LCA;
 370 }
 371 
 372 //--------------------------memory_early_block--------------------------------
 373 // This is a variation of find_deepest_input, the heart of schedule_early.
 374 // Find the "early" block for a load, if we considered only memory and
 375 // address inputs, that is, if other data inputs were ignored.
 376 //
 377 // Because a subset of edges are considered, the resulting block will
 378 // be earlier (at a shallower dom_depth) than the true schedule_early
 379 // point of the node. We compute this earlier block as a more permissive
 380 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 381 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 382   Node* base;
 383   Node* index;
 384   Node* store = load->in(MemNode::Memory);
 385   load->as_Mach()->memory_inputs(base, index);
 386 
 387   assert(base != NodeSentinel && index != NodeSentinel,
 388          "unexpected base/index inputs");
 389 
 390   Node* mem_inputs[4];
 391   int mem_inputs_length = 0;
 392   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 393   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 394   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 395 
 396   // In the comparision below, add one to account for the control input,
 397   // which may be null, but always takes up a spot in the in array.
 398   if (mem_inputs_length + 1 < (int) load->req()) {
 399     // This "load" has more inputs than just the memory, base and index inputs.
 400     // For purposes of checking anti-dependences, we need to start
 401     // from the early block of only the address portion of the instruction,
 402     // and ignore other blocks that may have factored into the wider
 403     // schedule_early calculation.
 404     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 405 
 406     Block* deepb           = NULL;        // Deepest block so far
 407     int    deepb_dom_depth = 0;
 408     for (int i = 0; i < mem_inputs_length; i++) {
 409       Block* inb = bbs[mem_inputs[i]->_idx];
 410       if (deepb_dom_depth < (int) inb->_dom_depth) {
 411         // The new inb must be dominated by the previous deepb.
 412         // The various inputs must be linearly ordered in the dom
 413         // tree, or else there will not be a unique deepest block.
 414         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 415         deepb = inb;                      // Save deepest block
 416         deepb_dom_depth = deepb->_dom_depth;
 417       }
 418     }
 419     early = deepb;
 420   }
 421 
 422   return early;
 423 }
 424 
 425 //--------------------------insert_anti_dependences---------------------------
 426 // A load may need to witness memory that nearby stores can overwrite.
 427 // For each nearby store, either insert an "anti-dependence" edge
 428 // from the load to the store, or else move LCA upward to force the
 429 // load to (eventually) be scheduled in a block above the store.
 430 //
 431 // Do not add edges to stores on distinct control-flow paths;
 432 // only add edges to stores which might interfere.
 433 //
 434 // Return the (updated) LCA.  There will not be any possibly interfering
 435 // store between the load's "early block" and the updated LCA.
 436 // Any stores in the updated LCA will have new precedence edges
 437 // back to the load.  The caller is expected to schedule the load
 438 // in the LCA, in which case the precedence edges will make LCM
 439 // preserve anti-dependences.  The caller may also hoist the load
 440 // above the LCA, if it is not the early block.
 441 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 442   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 443   assert(LCA != NULL, "");
 444   DEBUG_ONLY(Block* LCA_orig = LCA);
 445 
 446   // Compute the alias index.  Loads and stores with different alias indices
 447   // do not need anti-dependence edges.
 448   uint load_alias_idx = C->get_alias_index(load->adr_type());
 449 #ifdef ASSERT
 450   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 451       (PrintOpto || VerifyAliases ||
 452        PrintMiscellaneous && (WizardMode || Verbose))) {
 453     // Load nodes should not consume all of memory.
 454     // Reporting a bottom type indicates a bug in adlc.
 455     // If some particular type of node validly consumes all of memory,
 456     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 457     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 458     load->dump(2);
 459     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 460   }
 461 #endif
 462   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 463          "String compare is only known 'load' that does not conflict with any stores");
 464   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 465          "String equals is a 'load' that does not conflict with any stores");
 466   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 467          "String indexOf is a 'load' that does not conflict with any stores");
 468   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 469          "Arrays equals is a 'load' that do not conflict with any stores");
 470 
 471   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 472     // It is impossible to spoil this load by putting stores before it,
 473     // because we know that the stores will never update the value
 474     // which 'load' must witness.
 475     return LCA;
 476   }
 477 
 478   node_idx_t load_index = load->_idx;
 479 
 480   // Note the earliest legal placement of 'load', as determined by
 481   // by the unique point in the dom tree where all memory effects
 482   // and other inputs are first available.  (Computed by schedule_early.)
 483   // For normal loads, 'early' is the shallowest place (dom graph wise)
 484   // to look for anti-deps between this load and any store.
 485   Block* early = _bbs[load_index];
 486 
 487   // If we are subsuming loads, compute an "early" block that only considers
 488   // memory or address inputs. This block may be different than the
 489   // schedule_early block in that it could be at an even shallower depth in the
 490   // dominator tree, and allow for a broader discovery of anti-dependences.
 491   if (C->subsume_loads()) {
 492     early = memory_early_block(load, early, _bbs);
 493   }
 494 
 495   ResourceArea *area = Thread::current()->resource_area();
 496   Node_List worklist_mem(area);     // prior memory state to store
 497   Node_List worklist_store(area);   // possible-def to explore
 498   Node_List worklist_visited(area); // visited mergemem nodes
 499   Node_List non_early_stores(area); // all relevant stores outside of early
 500   bool must_raise_LCA = false;
 501 
 502 #ifdef TRACK_PHI_INPUTS
 503   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 504   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 505   // original memory state.  This indicates a PhiNode for which should not
 506   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 507   // may be overly conservative.
 508   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 509   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 510 #endif
 511 
 512   // 'load' uses some memory state; look for users of the same state.
 513   // Recurse through MergeMem nodes to the stores that use them.
 514 
 515   // Each of these stores is a possible definition of memory
 516   // that 'load' needs to use.  We need to force 'load'
 517   // to occur before each such store.  When the store is in
 518   // the same block as 'load', we insert an anti-dependence
 519   // edge load->store.
 520 
 521   // The relevant stores "nearby" the load consist of a tree rooted
 522   // at initial_mem, with internal nodes of type MergeMem.
 523   // Therefore, the branches visited by the worklist are of this form:
 524   //    initial_mem -> (MergeMem ->)* store
 525   // The anti-dependence constraints apply only to the fringe of this tree.
 526 
 527   Node* initial_mem = load->in(MemNode::Memory);
 528   worklist_store.push(initial_mem);
 529   worklist_visited.push(initial_mem);
 530   worklist_mem.push(NULL);
 531   while (worklist_store.size() > 0) {
 532     // Examine a nearby store to see if it might interfere with our load.
 533     Node* mem   = worklist_mem.pop();
 534     Node* store = worklist_store.pop();
 535     uint op = store->Opcode();
 536 
 537     // MergeMems do not directly have anti-deps.
 538     // Treat them as internal nodes in a forward tree of memory states,
 539     // the leaves of which are each a 'possible-def'.
 540     if (store == initial_mem    // root (exclusive) of tree we are searching
 541         || op == Op_MergeMem    // internal node of tree we are searching
 542         ) {
 543       mem = store;   // It's not a possibly interfering store.
 544       if (store == initial_mem)
 545         initial_mem = NULL;  // only process initial memory once
 546 
 547       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 548         store = mem->fast_out(i);
 549         if (store->is_MergeMem()) {
 550           // Be sure we don't get into combinatorial problems.
 551           // (Allow phis to be repeated; they can merge two relevant states.)
 552           uint j = worklist_visited.size();
 553           for (; j > 0; j--) {
 554             if (worklist_visited.at(j-1) == store)  break;
 555           }
 556           if (j > 0)  continue; // already on work list; do not repeat
 557           worklist_visited.push(store);
 558         }
 559         worklist_mem.push(mem);
 560         worklist_store.push(store);
 561       }
 562       continue;
 563     }
 564 
 565     if (op == Op_MachProj || op == Op_Catch)   continue;
 566     if (store->needs_anti_dependence_check())  continue;  // not really a store
 567 
 568     // Compute the alias index.  Loads and stores with different alias
 569     // indices do not need anti-dependence edges.  Wide MemBar's are
 570     // anti-dependent on everything (except immutable memories).
 571     const TypePtr* adr_type = store->adr_type();
 572     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 573 
 574     // Most slow-path runtime calls do NOT modify Java memory, but
 575     // they can block and so write Raw memory.
 576     if (store->is_Mach()) {
 577       MachNode* mstore = store->as_Mach();
 578       if (load_alias_idx != Compile::AliasIdxRaw) {
 579         // Check for call into the runtime using the Java calling
 580         // convention (and from there into a wrapper); it has no
 581         // _method.  Can't do this optimization for Native calls because
 582         // they CAN write to Java memory.
 583         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 584           assert(mstore->is_MachSafePoint(), "");
 585           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 586           assert(ms->is_MachCallJava(), "");
 587           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 588           if (mcj->_method == NULL) {
 589             // These runtime calls do not write to Java visible memory
 590             // (other than Raw) and so do not require anti-dependence edges.
 591             continue;
 592           }
 593         }
 594         // Same for SafePoints: they read/write Raw but only read otherwise.
 595         // This is basically a workaround for SafePoints only defining control
 596         // instead of control + memory.
 597         if (mstore->ideal_Opcode() == Op_SafePoint)
 598           continue;
 599       } else {
 600         // Some raw memory, such as the load of "top" at an allocation,
 601         // can be control dependent on the previous safepoint. See
 602         // comments in GraphKit::allocate_heap() about control input.
 603         // Inserting an anti-dep between such a safepoint and a use
 604         // creates a cycle, and will cause a subsequent failure in
 605         // local scheduling.  (BugId 4919904)
 606         // (%%% How can a control input be a safepoint and not a projection??)
 607         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 608           continue;
 609       }
 610     }
 611 
 612     // Identify a block that the current load must be above,
 613     // or else observe that 'store' is all the way up in the
 614     // earliest legal block for 'load'.  In the latter case,
 615     // immediately insert an anti-dependence edge.
 616     Block* store_block = _bbs[store->_idx];
 617     assert(store_block != NULL, "unused killing projections skipped above");
 618 
 619     if (store->is_Phi()) {
 620       // 'load' uses memory which is one (or more) of the Phi's inputs.
 621       // It must be scheduled not before the Phi, but rather before
 622       // each of the relevant Phi inputs.
 623       //
 624       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 625       // we mark each corresponding predecessor block and do a combined
 626       // hoisting operation later (raise_LCA_above_marks).
 627       //
 628       // Do not assert(store_block != early, "Phi merging memory after access")
 629       // PhiNode may be at start of block 'early' with backedge to 'early'
 630       DEBUG_ONLY(bool found_match = false);
 631       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 632         if (store->in(j) == mem) {   // Found matching input?
 633           DEBUG_ONLY(found_match = true);
 634           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 635           if (pred_block != early) {
 636             // If any predecessor of the Phi matches the load's "early block",
 637             // we do not need a precedence edge between the Phi and 'load'
 638             // since the load will be forced into a block preceding the Phi.
 639             pred_block->set_raise_LCA_mark(load_index);
 640             assert(!LCA_orig->dominates(pred_block) ||
 641                    early->dominates(pred_block), "early is high enough");
 642             must_raise_LCA = true;
 643           } else {
 644             // anti-dependent upon PHI pinned below 'early', no edge needed
 645             LCA = early;             // but can not schedule below 'early'
 646           }
 647         }
 648       }
 649       assert(found_match, "no worklist bug");
 650 #ifdef TRACK_PHI_INPUTS
 651 #ifdef ASSERT
 652       // This assert asks about correct handling of PhiNodes, which may not
 653       // have all input edges directly from 'mem'. See BugId 4621264
 654       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 655       // Increment by exactly one even if there are multiple copies of 'mem'
 656       // coming into the phi, because we will run this block several times
 657       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 658       phi_inputs.at_put(store->_idx, num_mem_inputs);
 659       assert(PhiNode::Input + num_mem_inputs < store->req(),
 660              "Expect at least one phi input will not be from original memory state");
 661 #endif //ASSERT
 662 #endif //TRACK_PHI_INPUTS
 663     } else if (store_block != early) {
 664       // 'store' is between the current LCA and earliest possible block.
 665       // Label its block, and decide later on how to raise the LCA
 666       // to include the effect on LCA of this store.
 667       // If this store's block gets chosen as the raised LCA, we
 668       // will find him on the non_early_stores list and stick him
 669       // with a precedence edge.
 670       // (But, don't bother if LCA is already raised all the way.)
 671       if (LCA != early) {
 672         store_block->set_raise_LCA_mark(load_index);
 673         must_raise_LCA = true;
 674         non_early_stores.push(store);
 675       }
 676     } else {
 677       // Found a possibly-interfering store in the load's 'early' block.
 678       // This means 'load' cannot sink at all in the dominator tree.
 679       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 680       assert(store != load->in(0), "dependence cycle found");
 681       if (verify) {
 682         assert(store->find_edge(load) != -1, "missing precedence edge");
 683       } else {
 684         store->add_prec(load);
 685       }
 686       LCA = early;
 687       // This turns off the process of gathering non_early_stores.
 688     }
 689   }
 690   // (Worklist is now empty; all nearby stores have been visited.)
 691 
 692   // Finished if 'load' must be scheduled in its 'early' block.
 693   // If we found any stores there, they have already been given
 694   // precedence edges.
 695   if (LCA == early)  return LCA;
 696 
 697   // We get here only if there are no possibly-interfering stores
 698   // in the load's 'early' block.  Move LCA up above all predecessors
 699   // which contain stores we have noted.
 700   //
 701   // The raised LCA block can be a home to such interfering stores,
 702   // but its predecessors must not contain any such stores.
 703   //
 704   // The raised LCA will be a lower bound for placing the load,
 705   // preventing the load from sinking past any block containing
 706   // a store that may invalidate the memory state required by 'load'.
 707   if (must_raise_LCA)
 708     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 709   if (LCA == early)  return LCA;
 710 
 711   // Insert anti-dependence edges from 'load' to each store
 712   // in the non-early LCA block.
 713   // Mine the non_early_stores list for such stores.
 714   if (LCA->raise_LCA_mark() == load_index) {
 715     while (non_early_stores.size() > 0) {
 716       Node* store = non_early_stores.pop();
 717       Block* store_block = _bbs[store->_idx];
 718       if (store_block == LCA) {
 719         // add anti_dependence from store to load in its own block
 720         assert(store != load->in(0), "dependence cycle found");
 721         if (verify) {
 722           assert(store->find_edge(load) != -1, "missing precedence edge");
 723         } else {
 724           store->add_prec(load);
 725         }
 726       } else {
 727         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 728         // Any other stores we found must be either inside the new LCA
 729         // or else outside the original LCA.  In the latter case, they
 730         // did not interfere with any use of 'load'.
 731         assert(LCA->dominates(store_block)
 732                || !LCA_orig->dominates(store_block), "no stray stores");
 733       }
 734     }
 735   }
 736 
 737   // Return the highest block containing stores; any stores
 738   // within that block have been given anti-dependence edges.
 739   return LCA;
 740 }
 741 
 742 // This class is used to iterate backwards over the nodes in the graph.
 743 
 744 class Node_Backward_Iterator {
 745 
 746 private:
 747   Node_Backward_Iterator();
 748 
 749 public:
 750   // Constructor for the iterator
 751   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 752 
 753   // Postincrement operator to iterate over the nodes
 754   Node *next();
 755 
 756 private:
 757   VectorSet   &_visited;
 758   Node_List   &_stack;
 759   Block_Array &_bbs;
 760 };
 761 
 762 // Constructor for the Node_Backward_Iterator
 763 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 764   : _visited(visited), _stack(stack), _bbs(bbs) {
 765   // The stack should contain exactly the root
 766   stack.clear();
 767   stack.push(root);
 768 
 769   // Clear the visited bits
 770   visited.Clear();
 771 }
 772 
 773 // Iterator for the Node_Backward_Iterator
 774 Node *Node_Backward_Iterator::next() {
 775 
 776   // If the _stack is empty, then just return NULL: finished.
 777   if ( !_stack.size() )
 778     return NULL;
 779 
 780   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 781   // made stateless, so I do not need to record the index 'i' on my _stack.
 782   // Instead I visit all users each time, scanning for unvisited users.
 783   // I visit unvisited not-anti-dependence users first, then anti-dependent
 784   // children next.
 785   Node *self = _stack.pop();
 786 
 787   // I cycle here when I am entering a deeper level of recursion.
 788   // The key variable 'self' was set prior to jumping here.
 789   while( 1 ) {
 790 
 791     _visited.set(self->_idx);
 792 
 793     // Now schedule all uses as late as possible.
 794     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 795     uint src_rpo = _bbs[src]->_rpo;
 796 
 797     // Schedule all nodes in a post-order visit
 798     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 799 
 800     // Scan for unvisited nodes
 801     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 802       // For all uses, schedule late
 803       Node* n = self->fast_out(i); // Use
 804 
 805       // Skip already visited children
 806       if ( _visited.test(n->_idx) )
 807         continue;
 808 
 809       // do not traverse backward control edges
 810       Node *use = n->is_Proj() ? n->in(0) : n;
 811       uint use_rpo = _bbs[use->_idx]->_rpo;
 812 
 813       if ( use_rpo < src_rpo )
 814         continue;
 815 
 816       // Phi nodes always precede uses in a basic block
 817       if ( use_rpo == src_rpo && use->is_Phi() )
 818         continue;
 819 
 820       unvisited = n;      // Found unvisited
 821 
 822       // Check for possible-anti-dependent
 823       if( !n->needs_anti_dependence_check() )
 824         break;            // Not visited, not anti-dep; schedule it NOW
 825     }
 826 
 827     // Did I find an unvisited not-anti-dependent Node?
 828     if ( !unvisited )
 829       break;                  // All done with children; post-visit 'self'
 830 
 831     // Visit the unvisited Node.  Contains the obvious push to
 832     // indicate I'm entering a deeper level of recursion.  I push the
 833     // old state onto the _stack and set a new state and loop (recurse).
 834     _stack.push(self);
 835     self = unvisited;
 836   } // End recursion loop
 837 
 838   return self;
 839 }
 840 
 841 //------------------------------ComputeLatenciesBackwards----------------------
 842 // Compute the latency of all the instructions.
 843 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 844 #ifndef PRODUCT
 845   if (trace_opto_pipelining())
 846     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 847 #endif
 848 
 849   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 850   Node *n;
 851 
 852   // Walk over all the nodes from last to first
 853   while (n = iter.next()) {
 854     // Set the latency for the definitions of this instruction
 855     partial_latency_of_defs(n);
 856   }
 857 } // end ComputeLatenciesBackwards
 858 
 859 //------------------------------partial_latency_of_defs------------------------
 860 // Compute the latency impact of this node on all defs.  This computes
 861 // a number that increases as we approach the beginning of the routine.
 862 void PhaseCFG::partial_latency_of_defs(Node *n) {
 863   // Set the latency for this instruction
 864 #ifndef PRODUCT
 865   if (trace_opto_pipelining()) {
 866     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 867                n->_idx, _node_latency->at_grow(n->_idx));
 868     dump();
 869   }
 870 #endif
 871 
 872   if (n->is_Proj())
 873     n = n->in(0);
 874 
 875   if (n->is_Root())
 876     return;
 877 
 878   uint nlen = n->len();
 879   uint use_latency = _node_latency->at_grow(n->_idx);
 880   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 881 
 882   for ( uint j=0; j<nlen; j++ ) {
 883     Node *def = n->in(j);
 884 
 885     if (!def || def == n)
 886       continue;
 887 
 888     // Walk backwards thru projections
 889     if (def->is_Proj())
 890       def = def->in(0);
 891 
 892 #ifndef PRODUCT
 893     if (trace_opto_pipelining()) {
 894       tty->print("#    in(%2d): ", j);
 895       def->dump();
 896     }
 897 #endif
 898 
 899     // If the defining block is not known, assume it is ok
 900     Block *def_block = _bbs[def->_idx];
 901     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 902 
 903     if ( (use_pre_order <  def_pre_order) ||
 904          (use_pre_order == def_pre_order && n->is_Phi()) )
 905       continue;
 906 
 907     uint delta_latency = n->latency(j);
 908     uint current_latency = delta_latency + use_latency;
 909 
 910     if (_node_latency->at_grow(def->_idx) < current_latency) {
 911       _node_latency->at_put_grow(def->_idx, current_latency);
 912     }
 913 
 914 #ifndef PRODUCT
 915     if (trace_opto_pipelining()) {
 916       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 917                     use_latency, j, delta_latency, current_latency, def->_idx,
 918                     _node_latency->at_grow(def->_idx));
 919     }
 920 #endif
 921   }
 922 }
 923 
 924 //------------------------------latency_from_use-------------------------------
 925 // Compute the latency of a specific use
 926 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 927   // If self-reference, return no latency
 928   if (use == n || use->is_Root())
 929     return 0;
 930 
 931   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 932   uint latency = 0;
 933 
 934   // If the use is not a projection, then it is simple...
 935   if (!use->is_Proj()) {
 936 #ifndef PRODUCT
 937     if (trace_opto_pipelining()) {
 938       tty->print("#    out(): ");
 939       use->dump();
 940     }
 941 #endif
 942 
 943     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 944 
 945     if (use_pre_order < def_pre_order)
 946       return 0;
 947 
 948     if (use_pre_order == def_pre_order && use->is_Phi())
 949       return 0;
 950 
 951     uint nlen = use->len();
 952     uint nl = _node_latency->at_grow(use->_idx);
 953 
 954     for ( uint j=0; j<nlen; j++ ) {
 955       if (use->in(j) == n) {
 956         // Change this if we want local latencies
 957         uint ul = use->latency(j);
 958         uint  l = ul + nl;
 959         if (latency < l) latency = l;
 960 #ifndef PRODUCT
 961         if (trace_opto_pipelining()) {
 962           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 963                         nl, j, ul, l, latency);
 964         }
 965 #endif
 966       }
 967     }
 968   } else {
 969     // This is a projection, just grab the latency of the use(s)
 970     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 971       uint l = latency_from_use(use, def, use->fast_out(j));
 972       if (latency < l) latency = l;
 973     }
 974   }
 975 
 976   return latency;
 977 }
 978 
 979 //------------------------------latency_from_uses------------------------------
 980 // Compute the latency of this instruction relative to all of it's uses.
 981 // This computes a number that increases as we approach the beginning of the
 982 // routine.
 983 void PhaseCFG::latency_from_uses(Node *n) {
 984   // Set the latency for this instruction
 985 #ifndef PRODUCT
 986   if (trace_opto_pipelining()) {
 987     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
 988                n->_idx, _node_latency->at_grow(n->_idx));
 989     dump();
 990   }
 991 #endif
 992   uint latency=0;
 993   const Node *def = n->is_Proj() ? n->in(0): n;
 994 
 995   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 996     uint l = latency_from_use(n, def, n->fast_out(i));
 997 
 998     if (latency < l) latency = l;
 999   }
1000 
1001   _node_latency->at_put_grow(n->_idx, latency);
1002 }
1003 
1004 //------------------------------hoist_to_cheaper_block-------------------------
1005 // Pick a block for node self, between early and LCA, that is a cheaper
1006 // alternative to LCA.
1007 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1008   const double delta = 1+PROB_UNLIKELY_MAG(4);
1009   Block* least       = LCA;
1010   double least_freq  = least->_freq;
1011   uint target        = _node_latency->at_grow(self->_idx);
1012   uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx);
1013   uint end_latency   = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
1014   bool in_latency    = (target <= start_latency);
1015   const Block* root_block = _bbs[_root->_idx];
1016 
1017   // Turn off latency scheduling if scheduling is just plain off
1018   if (!C->do_scheduling())
1019     in_latency = true;
1020 
1021   // Do not hoist (to cover latency) instructions which target a
1022   // single register.  Hoisting stretches the live range of the
1023   // single register and may force spilling.
1024   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1025   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1026     in_latency = true;
1027 
1028 #ifndef PRODUCT
1029   if (trace_opto_pipelining()) {
1030     tty->print("# Find cheaper block for latency %d: ",
1031       _node_latency->at_grow(self->_idx));
1032     self->dump();
1033     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1034       LCA->_pre_order,
1035       LCA->_nodes[0]->_idx,
1036       start_latency,
1037       LCA->_nodes[LCA->end_idx()]->_idx,
1038       end_latency,
1039       least_freq);
1040   }
1041 #endif
1042 
1043   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1044   // the earliest legal location.  Capture the least execution frequency.
1045   while (LCA != early) {
1046     LCA = LCA->_idom;         // Follow up the dominator tree
1047 
1048     if (LCA == NULL) {
1049       // Bailout without retry
1050       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1051       return least;
1052     }
1053 
1054     // Don't hoist machine instructions to the root basic block
1055     if (mach && LCA == root_block)
1056       break;
1057 
1058     uint start_lat = _node_latency->at_grow(LCA->_nodes[0]->_idx);
1059     uint end_idx   = LCA->end_idx();
1060     uint end_lat   = _node_latency->at_grow(LCA->_nodes[end_idx]->_idx);
1061     double LCA_freq = LCA->_freq;
1062 #ifndef PRODUCT
1063     if (trace_opto_pipelining()) {
1064       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1065         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1066     }
1067 #endif
1068     if (LCA_freq < least_freq              || // Better Frequency
1069         ( !in_latency                   &&    // No block containing latency
1070           LCA_freq < least_freq * delta &&    // No worse frequency
1071           target >= end_lat             &&    // within latency range
1072           !self->is_iteratively_computed() )  // But don't hoist IV increments
1073              // because they may end up above other uses of their phi forcing
1074              // their result register to be different from their input.
1075        ) {
1076       least = LCA;            // Found cheaper block
1077       least_freq = LCA_freq;
1078       start_latency = start_lat;
1079       end_latency = end_lat;
1080       if (target <= start_lat)
1081         in_latency = true;
1082     }
1083   }
1084 
1085 #ifndef PRODUCT
1086   if (trace_opto_pipelining()) {
1087     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1088       least->_pre_order, start_latency, least_freq);
1089   }
1090 #endif
1091 
1092   // See if the latency needs to be updated
1093   if (target < end_latency) {
1094 #ifndef PRODUCT
1095     if (trace_opto_pipelining()) {
1096       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1097     }
1098 #endif
1099     _node_latency->at_put_grow(self->_idx, end_latency);
1100     partial_latency_of_defs(self);
1101   }
1102 
1103   return least;
1104 }
1105 
1106 
1107 //------------------------------schedule_late-----------------------------------
1108 // Now schedule all codes as LATE as possible.  This is the LCA in the
1109 // dominator tree of all USES of a value.  Pick the block with the least
1110 // loop nesting depth that is lowest in the dominator tree.
1111 extern const char must_clone[];
1112 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1113 #ifndef PRODUCT
1114   if (trace_opto_pipelining())
1115     tty->print("\n#---- schedule_late ----\n");
1116 #endif
1117 
1118   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1119   Node *self;
1120 
1121   // Walk over all the nodes from last to first
1122   while (self = iter.next()) {
1123     Block* early = _bbs[self->_idx];   // Earliest legal placement
1124 
1125     if (self->is_top()) {
1126       // Top node goes in bb #2 with other constants.
1127       // It must be special-cased, because it has no out edges.
1128       early->add_inst(self);
1129       continue;
1130     }
1131 
1132     // No uses, just terminate
1133     if (self->outcnt() == 0) {
1134       assert(self->Opcode() == Op_MachProj, "sanity");
1135       continue;                   // Must be a dead machine projection
1136     }
1137 
1138     // If node is pinned in the block, then no scheduling can be done.
1139     if( self->pinned() )          // Pinned in block?
1140       continue;
1141 
1142     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1143     if (mach) {
1144       switch (mach->ideal_Opcode()) {
1145       case Op_CreateEx:
1146         // Don't move exception creation
1147         early->add_inst(self);
1148         continue;
1149         break;
1150       case Op_CheckCastPP:
1151         // Don't move CheckCastPP nodes away from their input, if the input
1152         // is a rawptr (5071820).
1153         Node *def = self->in(1);
1154         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1155           early->add_inst(self);
1156 #ifdef ASSERT
1157           _raw_oops.push(def);
1158 #endif
1159           continue;
1160         }
1161         break;
1162       }
1163     }
1164 
1165     // Gather LCA of all uses
1166     Block *LCA = NULL;
1167     {
1168       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1169         // For all uses, find LCA
1170         Node* use = self->fast_out(i);
1171         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1172       }
1173     }  // (Hide defs of imax, i from rest of block.)
1174 
1175     // Place temps in the block of their use.  This isn't a
1176     // requirement for correctness but it reduces useless
1177     // interference between temps and other nodes.
1178     if (mach != NULL && mach->is_MachTemp()) {
1179       _bbs.map(self->_idx, LCA);
1180       LCA->add_inst(self);
1181       continue;
1182     }
1183 
1184     // Check if 'self' could be anti-dependent on memory
1185     if (self->needs_anti_dependence_check()) {
1186       // Hoist LCA above possible-defs and insert anti-dependences to
1187       // defs in new LCA block.
1188       LCA = insert_anti_dependences(LCA, self);
1189     }
1190 
1191     if (early->_dom_depth > LCA->_dom_depth) {
1192       // Somehow the LCA has moved above the earliest legal point.
1193       // (One way this can happen is via memory_early_block.)
1194       if (C->subsume_loads() == true && !C->failing()) {
1195         // Retry with subsume_loads == false
1196         // If this is the first failure, the sentinel string will "stick"
1197         // to the Compile object, and the C2Compiler will see it and retry.
1198         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1199       } else {
1200         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1201         C->record_method_not_compilable("late schedule failed: incorrect graph");
1202       }
1203       return;
1204     }
1205 
1206     // If there is no opportunity to hoist, then we're done.
1207     bool try_to_hoist = (LCA != early);
1208 
1209     // Must clone guys stay next to use; no hoisting allowed.
1210     // Also cannot hoist guys that alter memory or are otherwise not
1211     // allocatable (hoisting can make a value live longer, leading to
1212     // anti and output dependency problems which are normally resolved
1213     // by the register allocator giving everyone a different register).
1214     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1215       try_to_hoist = false;
1216 
1217     Block* late = NULL;
1218     if (try_to_hoist) {
1219       // Now find the block with the least execution frequency.
1220       // Start at the latest schedule and work up to the earliest schedule
1221       // in the dominator tree.  Thus the Node will dominate all its uses.
1222       late = hoist_to_cheaper_block(LCA, early, self);
1223     } else {
1224       // Just use the LCA of the uses.
1225       late = LCA;
1226     }
1227 
1228     // Put the node into target block
1229     schedule_node_into_block(self, late);
1230 
1231 #ifdef ASSERT
1232     if (self->needs_anti_dependence_check()) {
1233       // since precedence edges are only inserted when we're sure they
1234       // are needed make sure that after placement in a block we don't
1235       // need any new precedence edges.
1236       verify_anti_dependences(late, self);
1237     }
1238 #endif
1239   } // Loop until all nodes have been visited
1240 
1241 } // end ScheduleLate
1242 
1243 //------------------------------GlobalCodeMotion-------------------------------
1244 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1245   ResourceMark rm;
1246 
1247 #ifndef PRODUCT
1248   if (trace_opto_pipelining()) {
1249     tty->print("\n---- Start GlobalCodeMotion ----\n");
1250   }
1251 #endif
1252 
1253   // Initialize the bbs.map for things on the proj_list
1254   uint i;
1255   for( i=0; i < proj_list.size(); i++ )
1256     _bbs.map(proj_list[i]->_idx, NULL);
1257 
1258   // Set the basic block for Nodes pinned into blocks
1259   Arena *a = Thread::current()->resource_area();
1260   VectorSet visited(a);
1261   schedule_pinned_nodes( visited );
1262 
1263   // Find the earliest Block any instruction can be placed in.  Some
1264   // instructions are pinned into Blocks.  Unpinned instructions can
1265   // appear in last block in which all their inputs occur.
1266   visited.Clear();
1267   Node_List stack(a);
1268   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1269   if (!schedule_early(visited, stack)) {
1270     // Bailout without retry
1271     C->record_method_not_compilable("early schedule failed");
1272     return;
1273   }
1274 
1275   // Build Def-Use edges.
1276   proj_list.push(_root);        // Add real root as another root
1277   proj_list.pop();
1278 
1279   // Compute the latency information (via backwards walk) for all the
1280   // instructions in the graph
1281   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1282 
1283   if( C->do_scheduling() )
1284     ComputeLatenciesBackwards(visited, stack);
1285 
1286   // Now schedule all codes as LATE as possible.  This is the LCA in the
1287   // dominator tree of all USES of a value.  Pick the block with the least
1288   // loop nesting depth that is lowest in the dominator tree.
1289   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1290   schedule_late(visited, stack);
1291   if( C->failing() ) {
1292     // schedule_late fails only when graph is incorrect.
1293     assert(!VerifyGraphEdges, "verification should have failed");
1294     return;
1295   }
1296 
1297   unique = C->unique();
1298 
1299 #ifndef PRODUCT
1300   if (trace_opto_pipelining()) {
1301     tty->print("\n---- Detect implicit null checks ----\n");
1302   }
1303 #endif
1304 
1305   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1306   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1307   // I can generate a memory op if there is not one nearby.
1308   if (C->is_method_compilation()) {
1309     // Don't do it for natives, adapters, or runtime stubs
1310     int allowed_reasons = 0;
1311     // ...and don't do it when there have been too many traps, globally.
1312     for (int reason = (int)Deoptimization::Reason_none+1;
1313          reason < Compile::trapHistLength; reason++) {
1314       assert(reason < BitsPerInt, "recode bit map");
1315       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1316         allowed_reasons |= nth_bit(reason);
1317     }
1318     // By reversing the loop direction we get a very minor gain on mpegaudio.
1319     // Feel free to revert to a forward loop for clarity.
1320     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1321     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1322       Node *proj = matcher._null_check_tests[i  ];
1323       Node *val  = matcher._null_check_tests[i+1];
1324       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1325       // The implicit_null_check will only perform the transformation
1326       // if the null branch is truly uncommon, *and* it leads to an
1327       // uncommon trap.  Combined with the too_many_traps guards
1328       // above, this prevents SEGV storms reported in 6366351,
1329       // by recompiling offending methods without this optimization.
1330     }
1331   }
1332 
1333 #ifndef PRODUCT
1334   if (trace_opto_pipelining()) {
1335     tty->print("\n---- Start Local Scheduling ----\n");
1336   }
1337 #endif
1338 
1339   // Schedule locally.  Right now a simple topological sort.
1340   // Later, do a real latency aware scheduler.
1341   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1342   memset( ready_cnt, -1, C->unique() * sizeof(int) );
1343   visited.Clear();
1344   for (i = 0; i < _num_blocks; i++) {
1345     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1346       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1347         C->record_method_not_compilable("local schedule failed");
1348       }
1349       return;
1350     }
1351   }
1352 
1353   // If we inserted any instructions between a Call and his CatchNode,
1354   // clone the instructions on all paths below the Catch.
1355   for( i=0; i < _num_blocks; i++ )
1356     _blocks[i]->call_catch_cleanup(_bbs);
1357 
1358 #ifndef PRODUCT
1359   if (trace_opto_pipelining()) {
1360     tty->print("\n---- After GlobalCodeMotion ----\n");
1361     for (uint i = 0; i < _num_blocks; i++) {
1362       _blocks[i]->dump();
1363     }
1364   }
1365 #endif
1366   // Dead.
1367   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1368 }
1369 
1370 
1371 //------------------------------Estimate_Block_Frequency-----------------------
1372 // Estimate block frequencies based on IfNode probabilities.
1373 void PhaseCFG::Estimate_Block_Frequency() {
1374 
1375   // Force conditional branches leading to uncommon traps to be unlikely,
1376   // not because we get to the uncommon_trap with less relative frequency,
1377   // but because an uncommon_trap typically causes a deopt, so we only get
1378   // there once.
1379   if (C->do_freq_based_layout()) {
1380     Block_List worklist;
1381     Block* root_blk = _blocks[0];
1382     for (uint i = 1; i < root_blk->num_preds(); i++) {
1383       Block *pb = _bbs[root_blk->pred(i)->_idx];
1384       if (pb->has_uncommon_code()) {
1385         worklist.push(pb);
1386       }
1387     }
1388     while (worklist.size() > 0) {
1389       Block* uct = worklist.pop();
1390       if (uct == _broot) continue;
1391       for (uint i = 1; i < uct->num_preds(); i++) {
1392         Block *pb = _bbs[uct->pred(i)->_idx];
1393         if (pb->_num_succs == 1) {
1394           worklist.push(pb);
1395         } else if (pb->num_fall_throughs() == 2) {
1396           pb->update_uncommon_branch(uct);
1397         }
1398       }
1399     }
1400   }
1401 
1402   // Create the loop tree and calculate loop depth.
1403   _root_loop = create_loop_tree();
1404   _root_loop->compute_loop_depth(0);
1405 
1406   // Compute block frequency of each block, relative to a single loop entry.
1407   _root_loop->compute_freq();
1408 
1409   // Adjust all frequencies to be relative to a single method entry
1410   _root_loop->_freq = 1.0;
1411   _root_loop->scale_freq();
1412 
1413   // Save outmost loop frequency for LRG frequency threshold
1414   _outer_loop_freq = _root_loop->outer_loop_freq();
1415 
1416   // force paths ending at uncommon traps to be infrequent
1417   if (!C->do_freq_based_layout()) {
1418     Block_List worklist;
1419     Block* root_blk = _blocks[0];
1420     for (uint i = 1; i < root_blk->num_preds(); i++) {
1421       Block *pb = _bbs[root_blk->pred(i)->_idx];
1422       if (pb->has_uncommon_code()) {
1423         worklist.push(pb);
1424       }
1425     }
1426     while (worklist.size() > 0) {
1427       Block* uct = worklist.pop();
1428       uct->_freq = PROB_MIN;
1429       for (uint i = 1; i < uct->num_preds(); i++) {
1430         Block *pb = _bbs[uct->pred(i)->_idx];
1431         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1432           worklist.push(pb);
1433         }
1434       }
1435     }
1436   }
1437 
1438 #ifdef ASSERT
1439   for (uint i = 0; i < _num_blocks; i++ ) {
1440     Block *b = _blocks[i];
1441     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1442   }
1443 #endif
1444 
1445 #ifndef PRODUCT
1446   if (PrintCFGBlockFreq) {
1447     tty->print_cr("CFG Block Frequencies");
1448     _root_loop->dump_tree();
1449     if (Verbose) {
1450       tty->print_cr("PhaseCFG dump");
1451       dump();
1452       tty->print_cr("Node dump");
1453       _root->dump(99999);
1454     }
1455   }
1456 #endif
1457 }
1458 
1459 //----------------------------create_loop_tree--------------------------------
1460 // Create a loop tree from the CFG
1461 CFGLoop* PhaseCFG::create_loop_tree() {
1462 
1463 #ifdef ASSERT
1464   assert( _blocks[0] == _broot, "" );
1465   for (uint i = 0; i < _num_blocks; i++ ) {
1466     Block *b = _blocks[i];
1467     // Check that _loop field are clear...we could clear them if not.
1468     assert(b->_loop == NULL, "clear _loop expected");
1469     // Sanity check that the RPO numbering is reflected in the _blocks array.
1470     // It doesn't have to be for the loop tree to be built, but if it is not,
1471     // then the blocks have been reordered since dom graph building...which
1472     // may question the RPO numbering
1473     assert(b->_rpo == i, "unexpected reverse post order number");
1474   }
1475 #endif
1476 
1477   int idct = 0;
1478   CFGLoop* root_loop = new CFGLoop(idct++);
1479 
1480   Block_List worklist;
1481 
1482   // Assign blocks to loops
1483   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1484     Block *b = _blocks[i];
1485 
1486     if (b->head()->is_Loop()) {
1487       Block* loop_head = b;
1488       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1489       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1490       Block* tail = _bbs[tail_n->_idx];
1491 
1492       // Defensively filter out Loop nodes for non-single-entry loops.
1493       // For all reasonable loops, the head occurs before the tail in RPO.
1494       if (i <= tail->_rpo) {
1495 
1496         // The tail and (recursive) predecessors of the tail
1497         // are made members of a new loop.
1498 
1499         assert(worklist.size() == 0, "nonempty worklist");
1500         CFGLoop* nloop = new CFGLoop(idct++);
1501         assert(loop_head->_loop == NULL, "just checking");
1502         loop_head->_loop = nloop;
1503         // Add to nloop so push_pred() will skip over inner loops
1504         nloop->add_member(loop_head);
1505         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1506 
1507         while (worklist.size() > 0) {
1508           Block* member = worklist.pop();
1509           if (member != loop_head) {
1510             for (uint j = 1; j < member->num_preds(); j++) {
1511               nloop->push_pred(member, j, worklist, _bbs);
1512             }
1513           }
1514         }
1515       }
1516     }
1517   }
1518 
1519   // Create a member list for each loop consisting
1520   // of both blocks and (immediate child) loops.
1521   for (uint i = 0; i < _num_blocks; i++) {
1522     Block *b = _blocks[i];
1523     CFGLoop* lp = b->_loop;
1524     if (lp == NULL) {
1525       // Not assigned to a loop. Add it to the method's pseudo loop.
1526       b->_loop = root_loop;
1527       lp = root_loop;
1528     }
1529     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1530       lp->add_member(b);
1531     }
1532     if (lp != root_loop) {
1533       if (lp->parent() == NULL) {
1534         // Not a nested loop. Make it a child of the method's pseudo loop.
1535         root_loop->add_nested_loop(lp);
1536       }
1537       if (b == lp->head()) {
1538         // Add nested loop to member list of parent loop.
1539         lp->parent()->add_member(lp);
1540       }
1541     }
1542   }
1543 
1544   return root_loop;
1545 }
1546 
1547 //------------------------------push_pred--------------------------------------
1548 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1549   Node* pred_n = blk->pred(i);
1550   Block* pred = node_to_blk[pred_n->_idx];
1551   CFGLoop *pred_loop = pred->_loop;
1552   if (pred_loop == NULL) {
1553     // Filter out blocks for non-single-entry loops.
1554     // For all reasonable loops, the head occurs before the tail in RPO.
1555     if (pred->_rpo > head()->_rpo) {
1556       pred->_loop = this;
1557       worklist.push(pred);
1558     }
1559   } else if (pred_loop != this) {
1560     // Nested loop.
1561     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1562       pred_loop = pred_loop->_parent;
1563     }
1564     // Make pred's loop be a child
1565     if (pred_loop->_parent == NULL) {
1566       add_nested_loop(pred_loop);
1567       // Continue with loop entry predecessor.
1568       Block* pred_head = pred_loop->head();
1569       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1570       assert(pred_head != head(), "loop head in only one loop");
1571       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1572     } else {
1573       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1574     }
1575   }
1576 }
1577 
1578 //------------------------------add_nested_loop--------------------------------
1579 // Make cl a child of the current loop in the loop tree.
1580 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1581   assert(_parent == NULL, "no parent yet");
1582   assert(cl != this, "not my own parent");
1583   cl->_parent = this;
1584   CFGLoop* ch = _child;
1585   if (ch == NULL) {
1586     _child = cl;
1587   } else {
1588     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1589     ch->_sibling = cl;
1590   }
1591 }
1592 
1593 //------------------------------compute_loop_depth-----------------------------
1594 // Store the loop depth in each CFGLoop object.
1595 // Recursively walk the children to do the same for them.
1596 void CFGLoop::compute_loop_depth(int depth) {
1597   _depth = depth;
1598   CFGLoop* ch = _child;
1599   while (ch != NULL) {
1600     ch->compute_loop_depth(depth + 1);
1601     ch = ch->_sibling;
1602   }
1603 }
1604 
1605 //------------------------------compute_freq-----------------------------------
1606 // Compute the frequency of each block and loop, relative to a single entry
1607 // into the dominating loop head.
1608 void CFGLoop::compute_freq() {
1609   // Bottom up traversal of loop tree (visit inner loops first.)
1610   // Set loop head frequency to 1.0, then transitively
1611   // compute frequency for all successors in the loop,
1612   // as well as for each exit edge.  Inner loops are
1613   // treated as single blocks with loop exit targets
1614   // as the successor blocks.
1615 
1616   // Nested loops first
1617   CFGLoop* ch = _child;
1618   while (ch != NULL) {
1619     ch->compute_freq();
1620     ch = ch->_sibling;
1621   }
1622   assert (_members.length() > 0, "no empty loops");
1623   Block* hd = head();
1624   hd->_freq = 1.0f;
1625   for (int i = 0; i < _members.length(); i++) {
1626     CFGElement* s = _members.at(i);
1627     float freq = s->_freq;
1628     if (s->is_block()) {
1629       Block* b = s->as_Block();
1630       for (uint j = 0; j < b->_num_succs; j++) {
1631         Block* sb = b->_succs[j];
1632         update_succ_freq(sb, freq * b->succ_prob(j));
1633       }
1634     } else {
1635       CFGLoop* lp = s->as_CFGLoop();
1636       assert(lp->_parent == this, "immediate child");
1637       for (int k = 0; k < lp->_exits.length(); k++) {
1638         Block* eb = lp->_exits.at(k).get_target();
1639         float prob = lp->_exits.at(k).get_prob();
1640         update_succ_freq(eb, freq * prob);
1641       }
1642     }
1643   }
1644 
1645   // For all loops other than the outer, "method" loop,
1646   // sum and normalize the exit probability. The "method" loop
1647   // should keep the initial exit probability of 1, so that
1648   // inner blocks do not get erroneously scaled.
1649   if (_depth != 0) {
1650     // Total the exit probabilities for this loop.
1651     float exits_sum = 0.0f;
1652     for (int i = 0; i < _exits.length(); i++) {
1653       exits_sum += _exits.at(i).get_prob();
1654     }
1655 
1656     // Normalize the exit probabilities. Until now, the
1657     // probabilities estimate the possibility of exit per
1658     // a single loop iteration; afterward, they estimate
1659     // the probability of exit per loop entry.
1660     for (int i = 0; i < _exits.length(); i++) {
1661       Block* et = _exits.at(i).get_target();
1662       float new_prob = 0.0f;
1663       if (_exits.at(i).get_prob() > 0.0f) {
1664         new_prob = _exits.at(i).get_prob() / exits_sum;
1665       }
1666       BlockProbPair bpp(et, new_prob);
1667       _exits.at_put(i, bpp);
1668     }
1669 
1670     // Save the total, but guard against unreasonable probability,
1671     // as the value is used to estimate the loop trip count.
1672     // An infinite trip count would blur relative block
1673     // frequencies.
1674     if (exits_sum > 1.0f) exits_sum = 1.0;
1675     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1676     _exit_prob = exits_sum;
1677   }
1678 }
1679 
1680 //------------------------------succ_prob-------------------------------------
1681 // Determine the probability of reaching successor 'i' from the receiver block.
1682 float Block::succ_prob(uint i) {
1683   int eidx = end_idx();
1684   Node *n = _nodes[eidx];  // Get ending Node
1685 
1686   int op = n->Opcode();
1687   if (n->is_Mach()) {
1688     if (n->is_MachNullCheck()) {
1689       // Can only reach here if called after lcm. The original Op_If is gone,
1690       // so we attempt to infer the probability from one or both of the
1691       // successor blocks.
1692       assert(_num_succs == 2, "expecting 2 successors of a null check");
1693       // If either successor has only one predecessor, then the
1694       // probability estimate can be derived using the
1695       // relative frequency of the successor and this block.
1696       if (_succs[i]->num_preds() == 2) {
1697         return _succs[i]->_freq / _freq;
1698       } else if (_succs[1-i]->num_preds() == 2) {
1699         return 1 - (_succs[1-i]->_freq / _freq);
1700       } else {
1701         // Estimate using both successor frequencies
1702         float freq = _succs[i]->_freq;
1703         return freq / (freq + _succs[1-i]->_freq);
1704       }
1705     }
1706     op = n->as_Mach()->ideal_Opcode();
1707   }
1708 
1709 
1710   // Switch on branch type
1711   switch( op ) {
1712   case Op_CountedLoopEnd:
1713   case Op_If: {
1714     assert (i < 2, "just checking");
1715     // Conditionals pass on only part of their frequency
1716     float prob  = n->as_MachIf()->_prob;
1717     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1718     // If succ[i] is the FALSE branch, invert path info
1719     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1720       return 1.0f - prob; // not taken
1721     } else {
1722       return prob; // taken
1723     }
1724   }
1725 
1726   case Op_Jump:
1727     // Divide the frequency between all successors evenly
1728     return 1.0f/_num_succs;
1729 
1730   case Op_Catch: {
1731     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1732     if (ci->_con == CatchProjNode::fall_through_index) {
1733       // Fall-thru path gets the lion's share.
1734       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1735     } else {
1736       // Presume exceptional paths are equally unlikely
1737       return PROB_UNLIKELY_MAG(5);
1738     }
1739   }
1740 
1741   case Op_Root:
1742   case Op_Goto:
1743     // Pass frequency straight thru to target
1744     return 1.0f;
1745 
1746   case Op_NeverBranch:
1747     return 0.0f;
1748 
1749   case Op_TailCall:
1750   case Op_TailJump:
1751   case Op_Return:
1752   case Op_Halt:
1753   case Op_Rethrow:
1754     // Do not push out freq to root block
1755     return 0.0f;
1756 
1757   default:
1758     ShouldNotReachHere();
1759   }
1760 
1761   return 0.0f;
1762 }
1763 
1764 //------------------------------num_fall_throughs-----------------------------
1765 // Return the number of fall-through candidates for a block
1766 int Block::num_fall_throughs() {
1767   int eidx = end_idx();
1768   Node *n = _nodes[eidx];  // Get ending Node
1769 
1770   int op = n->Opcode();
1771   if (n->is_Mach()) {
1772     if (n->is_MachNullCheck()) {
1773       // In theory, either side can fall-thru, for simplicity sake,
1774       // let's say only the false branch can now.
1775       return 1;
1776     }
1777     op = n->as_Mach()->ideal_Opcode();
1778   }
1779 
1780   // Switch on branch type
1781   switch( op ) {
1782   case Op_CountedLoopEnd:
1783   case Op_If:
1784     return 2;
1785 
1786   case Op_Root:
1787   case Op_Goto:
1788     return 1;
1789 
1790   case Op_Catch: {
1791     for (uint i = 0; i < _num_succs; i++) {
1792       const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1793       if (ci->_con == CatchProjNode::fall_through_index) {
1794         return 1;
1795       }
1796     }
1797     return 0;
1798   }
1799 
1800   case Op_Jump:
1801   case Op_NeverBranch:
1802   case Op_TailCall:
1803   case Op_TailJump:
1804   case Op_Return:
1805   case Op_Halt:
1806   case Op_Rethrow:
1807     return 0;
1808 
1809   default:
1810     ShouldNotReachHere();
1811   }
1812 
1813   return 0;
1814 }
1815 
1816 //------------------------------succ_fall_through-----------------------------
1817 // Return true if a specific successor could be fall-through target.
1818 bool Block::succ_fall_through(uint i) {
1819   int eidx = end_idx();
1820   Node *n = _nodes[eidx];  // Get ending Node
1821 
1822   int op = n->Opcode();
1823   if (n->is_Mach()) {
1824     if (n->is_MachNullCheck()) {
1825       // In theory, either side can fall-thru, for simplicity sake,
1826       // let's say only the false branch can now.
1827       return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
1828     }
1829     op = n->as_Mach()->ideal_Opcode();
1830   }
1831 
1832   // Switch on branch type
1833   switch( op ) {
1834   case Op_CountedLoopEnd:
1835   case Op_If:
1836   case Op_Root:
1837   case Op_Goto:
1838     return true;
1839 
1840   case Op_Catch: {
1841     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1842     return ci->_con == CatchProjNode::fall_through_index;
1843   }
1844 
1845   case Op_Jump:
1846   case Op_NeverBranch:
1847   case Op_TailCall:
1848   case Op_TailJump:
1849   case Op_Return:
1850   case Op_Halt:
1851   case Op_Rethrow:
1852     return false;
1853 
1854   default:
1855     ShouldNotReachHere();
1856   }
1857 
1858   return false;
1859 }
1860 
1861 //------------------------------update_uncommon_branch------------------------
1862 // Update the probability of a two-branch to be uncommon
1863 void Block::update_uncommon_branch(Block* ub) {
1864   int eidx = end_idx();
1865   Node *n = _nodes[eidx];  // Get ending Node
1866 
1867   int op = n->as_Mach()->ideal_Opcode();
1868 
1869   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1870   assert(num_fall_throughs() == 2, "must be a two way branch block");
1871 
1872   // Which successor is ub?
1873   uint s;
1874   for (s = 0; s <_num_succs; s++) {
1875     if (_succs[s] == ub) break;
1876   }
1877   assert(s < 2, "uncommon successor must be found");
1878 
1879   // If ub is the true path, make the proability small, else
1880   // ub is the false path, and make the probability large
1881   bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
1882 
1883   // Get existing probability
1884   float p = n->as_MachIf()->_prob;
1885 
1886   if (invert) p = 1.0 - p;
1887   if (p > PROB_MIN) {
1888     p = PROB_MIN;
1889   }
1890   if (invert) p = 1.0 - p;
1891 
1892   n->as_MachIf()->_prob = p;
1893 }
1894 
1895 //------------------------------update_succ_freq-------------------------------
1896 // Update the appropriate frequency associated with block 'b', a successor of
1897 // a block in this loop.
1898 void CFGLoop::update_succ_freq(Block* b, float freq) {
1899   if (b->_loop == this) {
1900     if (b == head()) {
1901       // back branch within the loop
1902       // Do nothing now, the loop carried frequency will be
1903       // adjust later in scale_freq().
1904     } else {
1905       // simple branch within the loop
1906       b->_freq += freq;
1907     }
1908   } else if (!in_loop_nest(b)) {
1909     // branch is exit from this loop
1910     BlockProbPair bpp(b, freq);
1911     _exits.append(bpp);
1912   } else {
1913     // branch into nested loop
1914     CFGLoop* ch = b->_loop;
1915     ch->_freq += freq;
1916   }
1917 }
1918 
1919 //------------------------------in_loop_nest-----------------------------------
1920 // Determine if block b is in the receiver's loop nest.
1921 bool CFGLoop::in_loop_nest(Block* b) {
1922   int depth = _depth;
1923   CFGLoop* b_loop = b->_loop;
1924   int b_depth = b_loop->_depth;
1925   if (depth == b_depth) {
1926     return true;
1927   }
1928   while (b_depth > depth) {
1929     b_loop = b_loop->_parent;
1930     b_depth = b_loop->_depth;
1931   }
1932   return b_loop == this;
1933 }
1934 
1935 //------------------------------scale_freq-------------------------------------
1936 // Scale frequency of loops and blocks by trip counts from outer loops
1937 // Do a top down traversal of loop tree (visit outer loops first.)
1938 void CFGLoop::scale_freq() {
1939   float loop_freq = _freq * trip_count();
1940   _freq = loop_freq;
1941   for (int i = 0; i < _members.length(); i++) {
1942     CFGElement* s = _members.at(i);
1943     float block_freq = s->_freq * loop_freq;
1944     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1945       block_freq = MIN_BLOCK_FREQUENCY;
1946     s->_freq = block_freq;
1947   }
1948   CFGLoop* ch = _child;
1949   while (ch != NULL) {
1950     ch->scale_freq();
1951     ch = ch->_sibling;
1952   }
1953 }
1954 
1955 // Frequency of outer loop
1956 float CFGLoop::outer_loop_freq() const {
1957   if (_child != NULL) {
1958     return _child->_freq;
1959   }
1960   return _freq;
1961 }
1962 
1963 #ifndef PRODUCT
1964 //------------------------------dump_tree--------------------------------------
1965 void CFGLoop::dump_tree() const {
1966   dump();
1967   if (_child != NULL)   _child->dump_tree();
1968   if (_sibling != NULL) _sibling->dump_tree();
1969 }
1970 
1971 //------------------------------dump-------------------------------------------
1972 void CFGLoop::dump() const {
1973   for (int i = 0; i < _depth; i++) tty->print("   ");
1974   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1975              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1976   for (int i = 0; i < _depth; i++) tty->print("   ");
1977   tty->print("         members:", _id);
1978   int k = 0;
1979   for (int i = 0; i < _members.length(); i++) {
1980     if (k++ >= 6) {
1981       tty->print("\n              ");
1982       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1983       k = 0;
1984     }
1985     CFGElement *s = _members.at(i);
1986     if (s->is_block()) {
1987       Block *b = s->as_Block();
1988       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1989     } else {
1990       CFGLoop* lp = s->as_CFGLoop();
1991       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1992     }
1993   }
1994   tty->print("\n");
1995   for (int i = 0; i < _depth; i++) tty->print("   ");
1996   tty->print("         exits:  ");
1997   k = 0;
1998   for (int i = 0; i < _exits.length(); i++) {
1999     if (k++ >= 7) {
2000       tty->print("\n              ");
2001       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2002       k = 0;
2003     }
2004     Block *blk = _exits.at(i).get_target();
2005     float prob = _exits.at(i).get_prob();
2006     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2007   }
2008   tty->print("\n");
2009 }
2010 #endif