1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_live.cpp.incl"
  27 
  28 
  29 
  30 //=============================================================================
  31 //------------------------------PhaseLive--------------------------------------
  32 // Compute live-in/live-out.  We use a totally incremental algorithm.  The LIVE
  33 // problem is monotonic.  The steady-state solution looks like this: pull a
  34 // block from the worklist.  It has a set of delta's - values which are newly
  35 // live-in from the block.  Push these to the live-out sets of all predecessor
  36 // blocks.  At each predecessor, the new live-out values are ANDed with what is
  37 // already live-out (extra stuff is added to the live-out sets).  Then the
  38 // remaining new live-out values are ANDed with what is locally defined.
  39 // Leftover bits become the new live-in for the predecessor block, and the pred
  40 // block is put on the worklist.
  41 //   The locally live-in stuff is computed once and added to predecessor
  42 // live-out sets.  This separate compilation is done in the outer loop below.
  43 PhaseLive::PhaseLive( const PhaseCFG &cfg, LRG_List &names, Arena *arena ) : Phase(LIVE), _cfg(cfg), _names(names), _arena(arena), _live(0) {
  44 }
  45 
  46 void PhaseLive::compute(uint maxlrg) {
  47   _maxlrg   = maxlrg;
  48   _worklist = new (_arena) Block_List();
  49 
  50   // Init the sparse live arrays.  This data is live on exit from here!
  51   // The _live info is the live-out info.
  52   _live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*_cfg._num_blocks);
  53   uint i;
  54   for( i=0; i<_cfg._num_blocks; i++ ) {
  55     _live[i].initialize(_maxlrg);
  56   }
  57 
  58   // Init the sparse arrays for delta-sets.
  59   ResourceMark rm;              // Nuke temp storage on exit
  60 
  61   // Does the memory used by _defs and _deltas get reclaimed?  Does it matter?  TT
  62 
  63   // Array of values defined locally in blocks
  64   _defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg._num_blocks);
  65   for( i=0; i<_cfg._num_blocks; i++ ) {
  66     _defs[i].initialize(_maxlrg);
  67   }
  68 
  69   // Array of delta-set pointers, indexed by block pre_order-1.
  70   _deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg._num_blocks);
  71   memset( _deltas, 0, sizeof(IndexSet*)* _cfg._num_blocks);
  72 
  73   _free_IndexSet = NULL;
  74 
  75   // Blocks having done pass-1
  76   VectorSet first_pass(Thread::current()->resource_area());
  77 
  78   // Outer loop: must compute local live-in sets and push into predecessors.
  79   uint iters = _cfg._num_blocks;        // stat counters
  80   for( uint j=_cfg._num_blocks; j>0; j-- ) {
  81     Block *b = _cfg._blocks[j-1];
  82 
  83     // Compute the local live-in set.  Start with any new live-out bits.
  84     IndexSet *use = getset( b );
  85     IndexSet *def = &_defs[b->_pre_order-1];
  86     DEBUG_ONLY(IndexSet *def_outside = getfreeset();)
  87     uint i;
  88     for( i=b->_nodes.size(); i>1; i-- ) {
  89       Node *n = b->_nodes[i-1];
  90       if( n->is_Phi() ) break;
  91 
  92       uint r = _names[n->_idx];
  93       assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block");
  94       def->insert( r );
  95       use->remove( r );
  96       uint cnt = n->req();
  97       for( uint k=1; k<cnt; k++ ) {
  98         Node *nk = n->in(k);
  99         uint nkidx = nk->_idx;
 100         if( _cfg._bbs[nkidx] != b ) {
 101           uint u = _names[nkidx];
 102           use->insert( u );
 103           DEBUG_ONLY(def_outside->insert( u );)
 104         }
 105       }
 106     }
 107 #ifdef ASSERT
 108     def_outside->set_next(_free_IndexSet);
 109     _free_IndexSet = def_outside;     // Drop onto free list
 110 #endif
 111     // Remove anything defined by Phis and the block start instruction
 112     for( uint k=i; k>0; k-- ) {
 113       uint r = _names[b->_nodes[k-1]->_idx];
 114       def->insert( r );
 115       use->remove( r );
 116     }
 117 
 118     // Push these live-in things to predecessors
 119     for( uint l=1; l<b->num_preds(); l++ ) {
 120       Block *p = _cfg._bbs[b->pred(l)->_idx];
 121       add_liveout( p, use, first_pass );
 122 
 123       // PhiNode uses go in the live-out set of prior blocks.
 124       for( uint k=i; k>0; k-- )
 125         add_liveout( p, _names[b->_nodes[k-1]->in(l)->_idx], first_pass );
 126     }
 127     freeset( b );
 128     first_pass.set(b->_pre_order);
 129 
 130     // Inner loop: blocks that picked up new live-out values to be propagated
 131     while( _worklist->size() ) {
 132         // !!!!!
 133 // #ifdef ASSERT
 134       iters++;
 135 // #endif
 136       Block *b = _worklist->pop();
 137       IndexSet *delta = getset(b);
 138       assert( delta->count(), "missing delta set" );
 139 
 140       // Add new-live-in to predecessors live-out sets
 141       for( uint l=1; l<b->num_preds(); l++ )
 142         add_liveout( _cfg._bbs[b->pred(l)->_idx], delta, first_pass );
 143 
 144       freeset(b);
 145     } // End of while-worklist-not-empty
 146 
 147   } // End of for-all-blocks-outer-loop
 148 
 149   // We explicitly clear all of the IndexSets which we are about to release.
 150   // This allows us to recycle their internal memory into IndexSet's free list.
 151 
 152   for( i=0; i<_cfg._num_blocks; i++ ) {
 153     _defs[i].clear();
 154     if (_deltas[i]) {
 155       // Is this always true?
 156       _deltas[i]->clear();
 157     }
 158   }
 159   IndexSet *free = _free_IndexSet;
 160   while (free != NULL) {
 161     IndexSet *temp = free;
 162     free = free->next();
 163     temp->clear();
 164   }
 165 
 166 }
 167 
 168 //------------------------------stats------------------------------------------
 169 #ifndef PRODUCT
 170 void PhaseLive::stats(uint iters) const {
 171 }
 172 #endif
 173 
 174 //------------------------------getset-----------------------------------------
 175 // Get an IndexSet for a block.  Return existing one, if any.  Make a new
 176 // empty one if a prior one does not exist.
 177 IndexSet *PhaseLive::getset( Block *p ) {
 178   IndexSet *delta = _deltas[p->_pre_order-1];
 179   if( !delta )                  // Not on worklist?
 180     // Get a free set; flag as being on worklist
 181     delta = _deltas[p->_pre_order-1] = getfreeset();
 182   return delta;                 // Return set of new live-out items
 183 }
 184 
 185 //------------------------------getfreeset-------------------------------------
 186 // Pull from free list, or allocate.  Internal allocation on the returned set
 187 // is always from thread local storage.
 188 IndexSet *PhaseLive::getfreeset( ) {
 189   IndexSet *f = _free_IndexSet;
 190   if( !f ) {
 191     f = new IndexSet;
 192 //    f->set_arena(Thread::current()->resource_area());
 193     f->initialize(_maxlrg, Thread::current()->resource_area());
 194   } else {
 195     // Pull from free list
 196     _free_IndexSet = f->next();
 197   //f->_cnt = 0;                        // Reset to empty
 198 //    f->set_arena(Thread::current()->resource_area());
 199     f->initialize(_maxlrg, Thread::current()->resource_area());
 200   }
 201   return f;
 202 }
 203 
 204 //------------------------------freeset----------------------------------------
 205 // Free an IndexSet from a block.
 206 void PhaseLive::freeset( const Block *p ) {
 207   IndexSet *f = _deltas[p->_pre_order-1];
 208   f->set_next(_free_IndexSet);
 209   _free_IndexSet = f;           // Drop onto free list
 210   _deltas[p->_pre_order-1] = NULL;
 211 }
 212 
 213 //------------------------------add_liveout------------------------------------
 214 // Add a live-out value to a given blocks live-out set.  If it is new, then
 215 // also add it to the delta set and stick the block on the worklist.
 216 void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) {
 217   IndexSet *live = &_live[p->_pre_order-1];
 218   if( live->insert(r) ) {       // If actually inserted...
 219     // We extended the live-out set.  See if the value is generated locally.
 220     // If it is not, then we must extend the live-in set.
 221     if( !_defs[p->_pre_order-1].member( r ) ) {
 222       if( !_deltas[p->_pre_order-1] && // Not on worklist?
 223           first_pass.test(p->_pre_order) )
 224         _worklist->push(p);     // Actually go on worklist if already 1st pass
 225       getset(p)->insert(r);
 226     }
 227   }
 228 }
 229 
 230 
 231 //------------------------------add_liveout------------------------------------
 232 // Add a vector of live-out values to a given blocks live-out set.
 233 void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) {
 234   IndexSet *live = &_live[p->_pre_order-1];
 235   IndexSet *defs = &_defs[p->_pre_order-1];
 236   IndexSet *on_worklist = _deltas[p->_pre_order-1];
 237   IndexSet *delta = on_worklist ? on_worklist : getfreeset();
 238 
 239   IndexSetIterator elements(lo);
 240   uint r;
 241   while ((r = elements.next()) != 0) {
 242     if( live->insert(r) &&      // If actually inserted...
 243         !defs->member( r ) )    // and not defined locally
 244       delta->insert(r);         // Then add to live-in set
 245   }
 246 
 247   if( delta->count() ) {                // If actually added things
 248     _deltas[p->_pre_order-1] = delta; // Flag as on worklist now
 249     if( !on_worklist &&         // Not on worklist?
 250         first_pass.test(p->_pre_order) )
 251       _worklist->push(p);       // Actually go on worklist if already 1st pass
 252   } else {                      // Nothing there; just free it
 253     delta->set_next(_free_IndexSet);
 254     _free_IndexSet = delta;     // Drop onto free list
 255   }
 256 }
 257 
 258 #ifndef PRODUCT
 259 //------------------------------dump-------------------------------------------
 260 // Dump the live-out set for a block
 261 void PhaseLive::dump( const Block *b ) const {
 262   tty->print("Block %d: ",b->_pre_order);
 263   tty->print("LiveOut: ");  _live[b->_pre_order-1].dump();
 264   uint cnt = b->_nodes.size();
 265   for( uint i=0; i<cnt; i++ ) {
 266     tty->print("L%d/", _names[b->_nodes[i]->_idx] );
 267     b->_nodes[i]->dump();
 268   }
 269   tty->print("\n");
 270 }
 271 
 272 //------------------------------verify_base_ptrs-------------------------------
 273 // Verify that base pointers and derived pointers are still sane.
 274 void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
 275 #ifdef ASSERT
 276   Unique_Node_List worklist(a);
 277   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 278     Block *b = _cfg._blocks[i];
 279     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
 280       Node *n = b->_nodes[j-1];
 281       if( n->is_Phi() ) break;
 282       // Found a safepoint?
 283       if( n->is_MachSafePoint() ) {
 284         MachSafePointNode *sfpt = n->as_MachSafePoint();
 285         JVMState* jvms = sfpt->jvms();
 286         if (jvms != NULL) {
 287           // Now scan for a live derived pointer
 288           if (jvms->oopoff() < sfpt->req()) {
 289             // Check each derived/base pair
 290             for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
 291               Node *check = sfpt->in(idx);
 292               bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
 293               // search upwards through spills and spill phis for AddP
 294               worklist.clear();
 295               worklist.push(check);
 296               uint k = 0;
 297               while( k < worklist.size() ) {
 298                 check = worklist.at(k);
 299                 assert(check,"Bad base or derived pointer");
 300                 // See PhaseChaitin::find_base_for_derived() for all cases.
 301                 int isc = check->is_Copy();
 302                 if( isc ) {
 303                   worklist.push(check->in(isc));
 304                 } else if( check->is_Phi() ) {
 305                   for (uint m = 1; m < check->req(); m++)
 306                     worklist.push(check->in(m));
 307                 } else if( check->is_Con() ) {
 308                   if (is_derived) {
 309                     // Derived is NULL+offset
 310                     assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer");
 311                   } else {
 312                     assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer");
 313                     // Base either ConP(NULL) or loadConP
 314                     if (check->is_Mach()) {
 315                       assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer");
 316                     } else {
 317                       assert(check->Opcode() == Op_ConP &&
 318                              check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer");
 319                     }
 320                   }
 321                 } else if( check->bottom_type()->is_ptr()->_offset == 0 ) {
 322                   if(check->is_Proj() || check->is_Mach() &&
 323                      (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
 324                       check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
 325                       check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
 326                       check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
 327 #ifdef _LP64
 328                       UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP ||
 329                       UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN ||
 330 #endif
 331                       check->as_Mach()->ideal_Opcode() == Op_LoadP ||
 332                       check->as_Mach()->ideal_Opcode() == Op_LoadKlass)) {
 333                     // Valid nodes
 334                   } else {
 335                     check->dump();
 336                     assert(false,"Bad base or derived pointer");
 337                   }
 338                 } else {
 339                   assert(is_derived,"Bad base pointer");
 340                   assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer");
 341                 }
 342                 k++;
 343                 assert(k < 100000,"Derived pointer checking in infinite loop");
 344               } // End while
 345             }
 346           } // End of check for derived pointers
 347         } // End of Kcheck for debug info
 348       } // End of if found a safepoint
 349     } // End of forall instructions in block
 350   } // End of forall blocks
 351 #endif
 352 }
 353 
 354 //------------------------------verify-------------------------------------
 355 // Verify that graphs and base pointers are still sane.
 356 void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const {
 357 #ifdef ASSERT
 358   if( VerifyOpto || VerifyRegisterAllocator ) {
 359     _cfg.verify();
 360     verify_base_ptrs(a);
 361     if(verify_ifg)
 362       _ifg->verify(this);
 363   }
 364 #endif
 365 }
 366 
 367 #endif