1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_loopTransform.cpp.incl"
  27 
  28 //------------------------------is_loop_exit-----------------------------------
  29 // Given an IfNode, return the loop-exiting projection or NULL if both
  30 // arms remain in the loop.
  31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  32   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  33   PhaseIdealLoop *phase = _phase;
  34   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  35   // we need loop unswitching instead of peeling.
  36   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  37     return iff->raw_out(0);
  38   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  39     return iff->raw_out(1);
  40   return NULL;
  41 }
  42 
  43 
  44 //=============================================================================
  45 
  46 
  47 //------------------------------record_for_igvn----------------------------
  48 // Put loop body on igvn work list
  49 void IdealLoopTree::record_for_igvn() {
  50   for( uint i = 0; i < _body.size(); i++ ) {
  51     Node *n = _body.at(i);
  52     _phase->_igvn._worklist.push(n);
  53   }
  54 }
  55 
  56 //------------------------------compute_profile_trip_cnt----------------------------
  57 // Compute loop trip count from profile data as
  58 //    (backedge_count + loop_exit_count) / loop_exit_count
  59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
  60   if (!_head->is_CountedLoop()) {
  61     return;
  62   }
  63   CountedLoopNode* head = _head->as_CountedLoop();
  64   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
  65     return; // Already computed
  66   }
  67   float trip_cnt = (float)max_jint; // default is big
  68 
  69   Node* back = head->in(LoopNode::LoopBackControl);
  70   while (back != head) {
  71     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
  72         back->in(0) &&
  73         back->in(0)->is_If() &&
  74         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
  75         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
  76       break;
  77     }
  78     back = phase->idom(back);
  79   }
  80   if (back != head) {
  81     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
  82            back->in(0), "if-projection exists");
  83     IfNode* back_if = back->in(0)->as_If();
  84     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
  85 
  86     // Now compute a loop exit count
  87     float loop_exit_cnt = 0.0f;
  88     for( uint i = 0; i < _body.size(); i++ ) {
  89       Node *n = _body[i];
  90       if( n->is_If() ) {
  91         IfNode *iff = n->as_If();
  92         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
  93           Node *exit = is_loop_exit(iff);
  94           if( exit ) {
  95             float exit_prob = iff->_prob;
  96             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
  97             if (exit_prob > PROB_MIN) {
  98               float exit_cnt = iff->_fcnt * exit_prob;
  99               loop_exit_cnt += exit_cnt;
 100             }
 101           }
 102         }
 103       }
 104     }
 105     if (loop_exit_cnt > 0.0f) {
 106       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 107     } else {
 108       // No exit count so use
 109       trip_cnt = loop_back_cnt;
 110     }
 111   }
 112 #ifndef PRODUCT
 113   if (TraceProfileTripCount) {
 114     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 115   }
 116 #endif
 117   head->set_profile_trip_cnt(trip_cnt);
 118 }
 119 
 120 //---------------------is_invariant_addition-----------------------------
 121 // Return nonzero index of invariant operand for an Add or Sub
 122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 124   int op = n->Opcode();
 125   if (op == Op_AddI || op == Op_SubI) {
 126     bool in1_invar = this->is_invariant(n->in(1));
 127     bool in2_invar = this->is_invariant(n->in(2));
 128     if (in1_invar && !in2_invar) return 1;
 129     if (!in1_invar && in2_invar) return 2;
 130   }
 131   return 0;
 132 }
 133 
 134 //---------------------reassociate_add_sub-----------------------------
 135 // Reassociate invariant add and subtract expressions:
 136 //
 137 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 138 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 139 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 140 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 141 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 142 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 143 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 144 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 145 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 146 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 147 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 148 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 149 //
 150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 151   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 152   if (is_invariant(n1)) return NULL;
 153   int inv1_idx = is_invariant_addition(n1, phase);
 154   if (!inv1_idx) return NULL;
 155   // Don't mess with add of constant (igvn moves them to expression tree root.)
 156   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 157   Node* inv1 = n1->in(inv1_idx);
 158   Node* n2 = n1->in(3 - inv1_idx);
 159   int inv2_idx = is_invariant_addition(n2, phase);
 160   if (!inv2_idx) return NULL;
 161   Node* x    = n2->in(3 - inv2_idx);
 162   Node* inv2 = n2->in(inv2_idx);
 163 
 164   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 165   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 166   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 167   if (n1->is_Sub() && inv1_idx == 1) {
 168     neg_x    = !neg_x;
 169     neg_inv2 = !neg_inv2;
 170   }
 171   Node* inv1_c = phase->get_ctrl(inv1);
 172   Node* inv2_c = phase->get_ctrl(inv2);
 173   Node* n_inv1;
 174   if (neg_inv1) {
 175     Node *zero = phase->_igvn.intcon(0);
 176     phase->set_ctrl(zero, phase->C->root());
 177     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
 178     phase->register_new_node(n_inv1, inv1_c);
 179   } else {
 180     n_inv1 = inv1;
 181   }
 182   Node* inv;
 183   if (neg_inv2) {
 184     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
 185   } else {
 186     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
 187   }
 188   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 189 
 190   Node* addx;
 191   if (neg_x) {
 192     addx = new (phase->C, 3) SubINode(inv, x);
 193   } else {
 194     addx = new (phase->C, 3) AddINode(x, inv);
 195   }
 196   phase->register_new_node(addx, phase->get_ctrl(x));
 197   phase->_igvn.replace_node(n1, addx);
 198   return addx;
 199 }
 200 
 201 //---------------------reassociate_invariants-----------------------------
 202 // Reassociate invariant expressions:
 203 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 204   for (int i = _body.size() - 1; i >= 0; i--) {
 205     Node *n = _body.at(i);
 206     for (int j = 0; j < 5; j++) {
 207       Node* nn = reassociate_add_sub(n, phase);
 208       if (nn == NULL) break;
 209       n = nn; // again
 210     };
 211   }
 212 }
 213 
 214 //------------------------------policy_peeling---------------------------------
 215 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 216 // make some loop-invariant test (usually a null-check) happen before the loop.
 217 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 218   Node *test = ((IdealLoopTree*)this)->tail();
 219   int  body_size = ((IdealLoopTree*)this)->_body.size();
 220   int  uniq      = phase->C->unique();
 221   // Peeling does loop cloning which can result in O(N^2) node construction
 222   if( body_size > 255 /* Prevent overflow for large body_size */
 223       || (body_size * body_size + uniq > MaxNodeLimit) ) {
 224     return false;           // too large to safely clone
 225   }
 226   while( test != _head ) {      // Scan till run off top of loop
 227     if( test->is_If() ) {       // Test?
 228       Node *ctrl = phase->get_ctrl(test->in(1));
 229       if (ctrl->is_top())
 230         return false;           // Found dead test on live IF?  No peeling!
 231       // Standard IF only has one input value to check for loop invariance
 232       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 233       // Condition is not a member of this loop?
 234       if( !is_member(phase->get_loop(ctrl)) &&
 235           is_loop_exit(test) )
 236         return true;            // Found reason to peel!
 237     }
 238     // Walk up dominators to loop _head looking for test which is
 239     // executed on every path thru loop.
 240     test = phase->idom(test);
 241   }
 242   return false;
 243 }
 244 
 245 //------------------------------peeled_dom_test_elim---------------------------
 246 // If we got the effect of peeling, either by actually peeling or by making
 247 // a pre-loop which must execute at least once, we can remove all
 248 // loop-invariant dominated tests in the main body.
 249 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 250   bool progress = true;
 251   while( progress ) {
 252     progress = false;           // Reset for next iteration
 253     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 254     Node *test = prev->in(0);
 255     while( test != loop->_head ) { // Scan till run off top of loop
 256 
 257       int p_op = prev->Opcode();
 258       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 259           test->is_If() &&      // Test?
 260           !test->in(1)->is_Con() && // And not already obvious?
 261           // Condition is not a member of this loop?
 262           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 263         // Walk loop body looking for instances of this test
 264         for( uint i = 0; i < loop->_body.size(); i++ ) {
 265           Node *n = loop->_body.at(i);
 266           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 267             // IfNode was dominated by version in peeled loop body
 268             progress = true;
 269             dominated_by( old_new[prev->_idx], n );
 270           }
 271         }
 272       }
 273       prev = test;
 274       test = idom(test);
 275     } // End of scan tests in loop
 276 
 277   } // End of while( progress )
 278 }
 279 
 280 //------------------------------do_peeling-------------------------------------
 281 // Peel the first iteration of the given loop.
 282 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 283 //         The pre-loop illegally has 2 control users (old & new loops).
 284 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 285 //         Do this by making the old-loop fall-in edges act as if they came
 286 //         around the loopback from the prior iteration (follow the old-loop
 287 //         backedges) and then map to the new peeled iteration.  This leaves
 288 //         the pre-loop with only 1 user (the new peeled iteration), but the
 289 //         peeled-loop backedge has 2 users.
 290 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 291 //         extra backedge user.
 292 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 293 
 294   C->set_major_progress();
 295   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 296   // 'pre' loop from the main and the 'pre' can no longer have it's
 297   // iterations adjusted.  Therefore, we need to declare this loop as
 298   // no longer a 'main' loop; it will need new pre and post loops before
 299   // we can do further RCE.
 300   Node *h = loop->_head;
 301   if( h->is_CountedLoop() ) {
 302     CountedLoopNode *cl = h->as_CountedLoop();
 303     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 304     cl->set_trip_count(cl->trip_count() - 1);
 305     if( cl->is_main_loop() ) {
 306       cl->set_normal_loop();
 307 #ifndef PRODUCT
 308       if( PrintOpto && VerifyLoopOptimizations ) {
 309         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 310         loop->dump_head();
 311       }
 312 #endif
 313     }
 314   }
 315 
 316   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 317   //         The pre-loop illegally has 2 control users (old & new loops).
 318   clone_loop( loop, old_new, dom_depth(loop->_head) );
 319 
 320 
 321   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 322   //         Do this by making the old-loop fall-in edges act as if they came
 323   //         around the loopback from the prior iteration (follow the old-loop
 324   //         backedges) and then map to the new peeled iteration.  This leaves
 325   //         the pre-loop with only 1 user (the new peeled iteration), but the
 326   //         peeled-loop backedge has 2 users.
 327   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
 328     Node* old = loop->_head->fast_out(j);
 329     if( old->in(0) == loop->_head && old->req() == 3 &&
 330         (old->is_Loop() || old->is_Phi()) ) {
 331       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 332       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
 333         // Then loop body backedge value remains the same.
 334         new_exit_value = old->in(LoopNode::LoopBackControl);
 335       _igvn.hash_delete(old);
 336       old->set_req(LoopNode::EntryControl, new_exit_value);
 337     }
 338   }
 339 
 340 
 341   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 342   //         extra backedge user.
 343   Node *nnn = old_new[loop->_head->_idx];
 344   _igvn.hash_delete(nnn);
 345   nnn->set_req(LoopNode::LoopBackControl, C->top());
 346   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
 347     Node* use = nnn->fast_out(j2);
 348     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
 349       _igvn.hash_delete(use);
 350       use->set_req(LoopNode::LoopBackControl, C->top());
 351     }
 352   }
 353 
 354 
 355   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 356   int dd = dom_depth(loop->_head);
 357   set_idom(loop->_head, loop->_head->in(1), dd);
 358   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 359     Node *old = loop->_body.at(j3);
 360     Node *nnn = old_new[old->_idx];
 361     if (!has_ctrl(nnn))
 362       set_idom(nnn, idom(nnn), dd-1);
 363     // While we're at it, remove any SafePoints from the peeled code
 364     if( old->Opcode() == Op_SafePoint ) {
 365       Node *nnn = old_new[old->_idx];
 366       lazy_replace(nnn,nnn->in(TypeFunc::Control));
 367     }
 368   }
 369 
 370   // Now force out all loop-invariant dominating tests.  The optimizer
 371   // finds some, but we _know_ they are all useless.
 372   peeled_dom_test_elim(loop,old_new);
 373 
 374   loop->record_for_igvn();
 375 }
 376 
 377 //------------------------------policy_maximally_unroll------------------------
 378 // Return exact loop trip count, or 0 if not maximally unrolling
 379 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 380   CountedLoopNode *cl = _head->as_CountedLoop();
 381   assert( cl->is_normal_loop(), "" );
 382 
 383   Node *init_n = cl->init_trip();
 384   Node *limit_n = cl->limit();
 385 
 386   // Non-constant bounds
 387   if( init_n   == NULL || !init_n->is_Con()  ||
 388       limit_n  == NULL || !limit_n->is_Con() ||
 389       // protect against stride not being a constant
 390       !cl->stride_is_con() ) {
 391     return false;
 392   }
 393   int init   = init_n->get_int();
 394   int limit  = limit_n->get_int();
 395   int span   = limit - init;
 396   int stride = cl->stride_con();
 397 
 398   if (init >= limit || stride > span) {
 399     // return a false (no maximally unroll) and the regular unroll/peel
 400     // route will make a small mess which CCP will fold away.
 401     return false;
 402   }
 403   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
 404   assert( (int)trip_count*stride == span, "must divide evenly" );
 405 
 406   // Real policy: if we maximally unroll, does it get too big?
 407   // Allow the unrolled mess to get larger than standard loop
 408   // size.  After all, it will no longer be a loop.
 409   uint body_size    = _body.size();
 410   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 411   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 412   cl->set_trip_count(trip_count);
 413   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
 414     uint new_body_size = body_size * trip_count;
 415     if (new_body_size <= unroll_limit &&
 416         body_size == new_body_size / trip_count &&
 417         // Unrolling can result in a large amount of node construction
 418         new_body_size < MaxNodeLimit - phase->C->unique()) {
 419       return true;    // maximally unroll
 420     }
 421   }
 422 
 423   return false;               // Do not maximally unroll
 424 }
 425 
 426 
 427 //------------------------------policy_unroll----------------------------------
 428 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 429 // the loop is a CountedLoop and the body is small enough.
 430 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
 431 
 432   CountedLoopNode *cl = _head->as_CountedLoop();
 433   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
 434 
 435   // protect against stride not being a constant
 436   if( !cl->stride_is_con() ) return false;
 437 
 438   // protect against over-unrolling
 439   if( cl->trip_count() <= 1 ) return false;
 440 
 441   int future_unroll_ct = cl->unrolled_count() * 2;
 442 
 443   // Don't unroll if the next round of unrolling would push us
 444   // over the expected trip count of the loop.  One is subtracted
 445   // from the expected trip count because the pre-loop normally
 446   // executes 1 iteration.
 447   if (UnrollLimitForProfileCheck > 0 &&
 448       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 449       future_unroll_ct        > UnrollLimitForProfileCheck &&
 450       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 451     return false;
 452   }
 453 
 454   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 455   //   the residual iterations are more than 10% of the trip count
 456   //   and rounds of "unroll,optimize" are not making significant progress
 457   //   Progress defined as current size less than 20% larger than previous size.
 458   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 459       future_unroll_ct > LoopUnrollMin &&
 460       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 461       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 462     return false;
 463   }
 464 
 465   Node *init_n = cl->init_trip();
 466   Node *limit_n = cl->limit();
 467   // Non-constant bounds.
 468   // Protect against over-unrolling when init or/and limit are not constant
 469   // (so that trip_count's init value is maxint) but iv range is known.
 470   if( init_n   == NULL || !init_n->is_Con()  ||
 471       limit_n  == NULL || !limit_n->is_Con() ) {
 472     Node* phi = cl->phi();
 473     if( phi != NULL ) {
 474       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 475       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 476       int next_stride = cl->stride_con() * 2; // stride after this unroll
 477       if( next_stride > 0 ) {
 478         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 479             iv_type->_lo + next_stride >  iv_type->_hi ) {
 480           return false;  // over-unrolling
 481         }
 482       } else if( next_stride < 0 ) {
 483         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 484             iv_type->_hi + next_stride <  iv_type->_lo ) {
 485           return false;  // over-unrolling
 486         }
 487       }
 488     }
 489   }
 490 
 491   // Adjust body_size to determine if we unroll or not
 492   uint body_size = _body.size();
 493   // Key test to unroll CaffeineMark's Logic test
 494   int xors_in_loop = 0;
 495   // Also count ModL, DivL and MulL which expand mightly
 496   for( uint k = 0; k < _body.size(); k++ ) {
 497     switch( _body.at(k)->Opcode() ) {
 498     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
 499     case Op_ModL: body_size += 30; break;
 500     case Op_DivL: body_size += 30; break;
 501     case Op_MulL: body_size += 10; break;
 502     }
 503   }
 504 
 505   // Check for being too big
 506   if( body_size > (uint)LoopUnrollLimit ) {
 507     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 508     // Normal case: loop too big
 509     return false;
 510   }
 511 
 512   // Check for stride being a small enough constant
 513   if( abs(cl->stride_con()) > (1<<3) ) return false;
 514 
 515   // Unroll once!  (Each trip will soon do double iterations)
 516   return true;
 517 }
 518 
 519 //------------------------------policy_align-----------------------------------
 520 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 521 // expression that does the alignment.  Note that only one array base can be
 522 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 523 // if we vectorize short memory ops into longer memory ops, we may want to
 524 // increase alignment.
 525 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 526   return false;
 527 }
 528 
 529 //------------------------------policy_range_check-----------------------------
 530 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 531 // Actually we do iteration-splitting, a more powerful form of RCE.
 532 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 533   if( !RangeCheckElimination ) return false;
 534 
 535   CountedLoopNode *cl = _head->as_CountedLoop();
 536   // If we unrolled with no intention of doing RCE and we later
 537   // changed our minds, we got no pre-loop.  Either we need to
 538   // make a new pre-loop, or we gotta disallow RCE.
 539   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
 540   Node *trip_counter = cl->phi();
 541 
 542   // Check loop body for tests of trip-counter plus loop-invariant vs
 543   // loop-invariant.
 544   for( uint i = 0; i < _body.size(); i++ ) {
 545     Node *iff = _body[i];
 546     if( iff->Opcode() == Op_If ) { // Test?
 547 
 548       // Comparing trip+off vs limit
 549       Node *bol = iff->in(1);
 550       if( bol->req() != 2 ) continue; // dead constant test
 551       if (!bol->is_Bool()) {
 552         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 553         continue;
 554       }
 555       Node *cmp = bol->in(1);
 556 
 557       Node *rc_exp = cmp->in(1);
 558       Node *limit = cmp->in(2);
 559 
 560       Node *limit_c = phase->get_ctrl(limit);
 561       if( limit_c == phase->C->top() )
 562         return false;           // Found dead test on live IF?  No RCE!
 563       if( is_member(phase->get_loop(limit_c) ) ) {
 564         // Compare might have operands swapped; commute them
 565         rc_exp = cmp->in(2);
 566         limit  = cmp->in(1);
 567         limit_c = phase->get_ctrl(limit);
 568         if( is_member(phase->get_loop(limit_c) ) )
 569           continue;             // Both inputs are loop varying; cannot RCE
 570       }
 571 
 572       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 573         continue;
 574       }
 575       // Yeah!  Found a test like 'trip+off vs limit'
 576       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 577       // we need loop unswitching instead of iteration splitting.
 578       if( is_loop_exit(iff) )
 579         return true;            // Found reason to split iterations
 580     } // End of is IF
 581   }
 582 
 583   return false;
 584 }
 585 
 586 //------------------------------policy_peel_only-------------------------------
 587 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 588 // for unrolling loops with NO array accesses.
 589 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 590 
 591   for( uint i = 0; i < _body.size(); i++ )
 592     if( _body[i]->is_Mem() )
 593       return false;
 594 
 595   // No memory accesses at all!
 596   return true;
 597 }
 598 
 599 //------------------------------clone_up_backedge_goo--------------------------
 600 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 601 // version of n in preheader_ctrl block and return that, otherwise return n.
 602 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
 603   if( get_ctrl(n) != back_ctrl ) return n;
 604 
 605   Node *x = NULL;               // If required, a clone of 'n'
 606   // Check for 'n' being pinned in the backedge.
 607   if( n->in(0) && n->in(0) == back_ctrl ) {
 608     x = n->clone();             // Clone a copy of 'n' to preheader
 609     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 610   }
 611 
 612   // Recursive fixup any other input edges into x.
 613   // If there are no changes we can just return 'n', otherwise
 614   // we need to clone a private copy and change it.
 615   for( uint i = 1; i < n->req(); i++ ) {
 616     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
 617     if( g != n->in(i) ) {
 618       if( !x )
 619         x = n->clone();
 620       x->set_req(i, g);
 621     }
 622   }
 623   if( x ) {                     // x can legally float to pre-header location
 624     register_new_node( x, preheader_ctrl );
 625     return x;
 626   } else {                      // raise n to cover LCA of uses
 627     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 628   }
 629   return n;
 630 }
 631 
 632 //------------------------------insert_pre_post_loops--------------------------
 633 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 634 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 635 // alignment.  Useful to unroll loops that do no array accesses.
 636 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 637 
 638   C->set_major_progress();
 639 
 640   // Find common pieces of the loop being guarded with pre & post loops
 641   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 642   assert( main_head->is_normal_loop(), "" );
 643   CountedLoopEndNode *main_end = main_head->loopexit();
 644   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 645   uint dd_main_head = dom_depth(main_head);
 646   uint max = main_head->outcnt();
 647 
 648   Node *pre_header= main_head->in(LoopNode::EntryControl);
 649   Node *init      = main_head->init_trip();
 650   Node *incr      = main_end ->incr();
 651   Node *limit     = main_end ->limit();
 652   Node *stride    = main_end ->stride();
 653   Node *cmp       = main_end ->cmp_node();
 654   BoolTest::mask b_test = main_end->test_trip();
 655 
 656   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
 657   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
 658   if( bol->outcnt() != 1 ) {
 659     bol = bol->clone();
 660     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
 661     _igvn.hash_delete(main_end);
 662     main_end->set_req(CountedLoopEndNode::TestValue, bol);
 663   }
 664   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
 665   if( cmp->outcnt() != 1 ) {
 666     cmp = cmp->clone();
 667     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
 668     _igvn.hash_delete(bol);
 669     bol->set_req(1, cmp);
 670   }
 671 
 672   //------------------------------
 673   // Step A: Create Post-Loop.
 674   Node* main_exit = main_end->proj_out(false);
 675   assert( main_exit->Opcode() == Op_IfFalse, "" );
 676   int dd_main_exit = dom_depth(main_exit);
 677 
 678   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 679   // loop pre-header illegally has 2 control users (old & new loops).
 680   clone_loop( loop, old_new, dd_main_exit );
 681   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 682   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 683   post_head->set_post_loop(main_head);
 684 
 685   // Reduce the post-loop trip count.
 686   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 687   post_end->_prob = PROB_FAIR;
 688 
 689   // Build the main-loop normal exit.
 690   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
 691   _igvn.register_new_node_with_optimizer( new_main_exit );
 692   set_idom(new_main_exit, main_end, dd_main_exit );
 693   set_loop(new_main_exit, loop->_parent);
 694 
 695   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 696   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 697   // (the main-loop trip-counter exit value) because we will be changing
 698   // the exit value (via unrolling) so we cannot constant-fold away the zero
 699   // trip guard until all unrolling is done.
 700   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
 701   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
 702   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
 703   register_new_node( zer_opaq, new_main_exit );
 704   register_new_node( zer_cmp , new_main_exit );
 705   register_new_node( zer_bol , new_main_exit );
 706 
 707   // Build the IfNode
 708   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 709   _igvn.register_new_node_with_optimizer( zer_iff );
 710   set_idom(zer_iff, new_main_exit, dd_main_exit);
 711   set_loop(zer_iff, loop->_parent);
 712 
 713   // Plug in the false-path, taken if we need to skip post-loop
 714   _igvn.hash_delete( main_exit );
 715   main_exit->set_req(0, zer_iff);
 716   _igvn._worklist.push(main_exit);
 717   set_idom(main_exit, zer_iff, dd_main_exit);
 718   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 719   // Make the true-path, must enter the post loop
 720   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
 721   _igvn.register_new_node_with_optimizer( zer_taken );
 722   set_idom(zer_taken, zer_iff, dd_main_exit);
 723   set_loop(zer_taken, loop->_parent);
 724   // Plug in the true path
 725   _igvn.hash_delete( post_head );
 726   post_head->set_req(LoopNode::EntryControl, zer_taken);
 727   set_idom(post_head, zer_taken, dd_main_exit);
 728 
 729   // Step A3: Make the fall-in values to the post-loop come from the
 730   // fall-out values of the main-loop.
 731   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 732     Node* main_phi = main_head->fast_out(i);
 733     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
 734       Node *post_phi = old_new[main_phi->_idx];
 735       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
 736                                               post_head->init_control(),
 737                                               main_phi->in(LoopNode::LoopBackControl));
 738       _igvn.hash_delete(post_phi);
 739       post_phi->set_req( LoopNode::EntryControl, fallmain );
 740     }
 741   }
 742 
 743   // Update local caches for next stanza
 744   main_exit = new_main_exit;
 745 
 746 
 747   //------------------------------
 748   // Step B: Create Pre-Loop.
 749 
 750   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
 751   // loop pre-header illegally has 2 control users (old & new loops).
 752   clone_loop( loop, old_new, dd_main_head );
 753   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
 754   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
 755   pre_head->set_pre_loop(main_head);
 756   Node *pre_incr = old_new[incr->_idx];
 757 
 758   // Reduce the pre-loop trip count.
 759   pre_end->_prob = PROB_FAIR;
 760 
 761   // Find the pre-loop normal exit.
 762   Node* pre_exit = pre_end->proj_out(false);
 763   assert( pre_exit->Opcode() == Op_IfFalse, "" );
 764   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
 765   _igvn.register_new_node_with_optimizer( new_pre_exit );
 766   set_idom(new_pre_exit, pre_end, dd_main_head);
 767   set_loop(new_pre_exit, loop->_parent);
 768 
 769   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
 770   // pre-loop, the main-loop may not execute at all.  Later in life this
 771   // zero-trip guard will become the minimum-trip guard when we unroll
 772   // the main-loop.
 773   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
 774   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
 775   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
 776   register_new_node( min_opaq, new_pre_exit );
 777   register_new_node( min_cmp , new_pre_exit );
 778   register_new_node( min_bol , new_pre_exit );
 779 
 780   // Build the IfNode (assume the main-loop is executed always).
 781   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
 782   _igvn.register_new_node_with_optimizer( min_iff );
 783   set_idom(min_iff, new_pre_exit, dd_main_head);
 784   set_loop(min_iff, loop->_parent);
 785 
 786   // Plug in the false-path, taken if we need to skip main-loop
 787   _igvn.hash_delete( pre_exit );
 788   pre_exit->set_req(0, min_iff);
 789   set_idom(pre_exit, min_iff, dd_main_head);
 790   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
 791   // Make the true-path, must enter the main loop
 792   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
 793   _igvn.register_new_node_with_optimizer( min_taken );
 794   set_idom(min_taken, min_iff, dd_main_head);
 795   set_loop(min_taken, loop->_parent);
 796   // Plug in the true path
 797   _igvn.hash_delete( main_head );
 798   main_head->set_req(LoopNode::EntryControl, min_taken);
 799   set_idom(main_head, min_taken, dd_main_head);
 800 
 801   // Step B3: Make the fall-in values to the main-loop come from the
 802   // fall-out values of the pre-loop.
 803   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
 804     Node* main_phi = main_head->fast_out(i2);
 805     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
 806       Node *pre_phi = old_new[main_phi->_idx];
 807       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
 808                                              main_head->init_control(),
 809                                              pre_phi->in(LoopNode::LoopBackControl));
 810       _igvn.hash_delete(main_phi);
 811       main_phi->set_req( LoopNode::EntryControl, fallpre );
 812     }
 813   }
 814 
 815   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
 816   // RCE and alignment may change this later.
 817   Node *cmp_end = pre_end->cmp_node();
 818   assert( cmp_end->in(2) == limit, "" );
 819   Node *pre_limit = new (C, 3) AddINode( init, stride );
 820 
 821   // Save the original loop limit in this Opaque1 node for
 822   // use by range check elimination.
 823   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
 824 
 825   register_new_node( pre_limit, pre_head->in(0) );
 826   register_new_node( pre_opaq , pre_head->in(0) );
 827 
 828   // Since no other users of pre-loop compare, I can hack limit directly
 829   assert( cmp_end->outcnt() == 1, "no other users" );
 830   _igvn.hash_delete(cmp_end);
 831   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
 832 
 833   // Special case for not-equal loop bounds:
 834   // Change pre loop test, main loop test, and the
 835   // main loop guard test to use lt or gt depending on stride
 836   // direction:
 837   // positive stride use <
 838   // negative stride use >
 839 
 840   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
 841 
 842     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
 843     // Modify pre loop end condition
 844     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
 845     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
 846     register_new_node( new_bol0, pre_head->in(0) );
 847     _igvn.hash_delete(pre_end);
 848     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
 849     // Modify main loop guard condition
 850     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
 851     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
 852     register_new_node( new_bol1, new_pre_exit );
 853     _igvn.hash_delete(min_iff);
 854     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
 855     // Modify main loop end condition
 856     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
 857     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
 858     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
 859     _igvn.hash_delete(main_end);
 860     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
 861   }
 862 
 863   // Flag main loop
 864   main_head->set_main_loop();
 865   if( peel_only ) main_head->set_main_no_pre_loop();
 866 
 867   // It's difficult to be precise about the trip-counts
 868   // for the pre/post loops.  They are usually very short,
 869   // so guess that 4 trips is a reasonable value.
 870   post_head->set_profile_trip_cnt(4.0);
 871   pre_head->set_profile_trip_cnt(4.0);
 872 
 873   // Now force out all loop-invariant dominating tests.  The optimizer
 874   // finds some, but we _know_ they are all useless.
 875   peeled_dom_test_elim(loop,old_new);
 876 }
 877 
 878 //------------------------------is_invariant-----------------------------
 879 // Return true if n is invariant
 880 bool IdealLoopTree::is_invariant(Node* n) const {
 881   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
 882   if (n_c->is_top()) return false;
 883   return !is_member(_phase->get_loop(n_c));
 884 }
 885 
 886 
 887 //------------------------------do_unroll--------------------------------------
 888 // Unroll the loop body one step - make each trip do 2 iterations.
 889 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
 890   assert( LoopUnrollLimit, "" );
 891 #ifndef PRODUCT
 892   if( PrintOpto && VerifyLoopOptimizations ) {
 893     tty->print("Unrolling ");
 894     loop->dump_head();
 895   }
 896 #endif
 897   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
 898   CountedLoopEndNode *loop_end = loop_head->loopexit();
 899   assert( loop_end, "" );
 900 
 901   // Remember loop node count before unrolling to detect
 902   // if rounds of unroll,optimize are making progress
 903   loop_head->set_node_count_before_unroll(loop->_body.size());
 904 
 905   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
 906   Node *limit = loop_head->limit();
 907   Node *init  = loop_head->init_trip();
 908   Node *strid = loop_head->stride();
 909 
 910   Node *opaq = NULL;
 911   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
 912     assert( loop_head->is_main_loop(), "" );
 913     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
 914     Node *iff = ctrl->in(0);
 915     assert( iff->Opcode() == Op_If, "" );
 916     Node *bol = iff->in(1);
 917     assert( bol->Opcode() == Op_Bool, "" );
 918     Node *cmp = bol->in(1);
 919     assert( cmp->Opcode() == Op_CmpI, "" );
 920     opaq = cmp->in(2);
 921     // Occasionally it's possible for a pre-loop Opaque1 node to be
 922     // optimized away and then another round of loop opts attempted.
 923     // We can not optimize this particular loop in that case.
 924     if( opaq->Opcode() != Op_Opaque1 )
 925       return;                   // Cannot find pre-loop!  Bail out!
 926   }
 927 
 928   C->set_major_progress();
 929 
 930   // Adjust max trip count. The trip count is intentionally rounded
 931   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
 932   // the main, unrolled, part of the loop will never execute as it is protected
 933   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
 934   // and later determined that part of the unrolled loop was dead.
 935   loop_head->set_trip_count(loop_head->trip_count() / 2);
 936 
 937   // Double the count of original iterations in the unrolled loop body.
 938   loop_head->double_unrolled_count();
 939 
 940   // -----------
 941   // Step 2: Cut back the trip counter for an unroll amount of 2.
 942   // Loop will normally trip (limit - init)/stride_con.  Since it's a
 943   // CountedLoop this is exact (stride divides limit-init exactly).
 944   // We are going to double the loop body, so we want to knock off any
 945   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
 946   Node *span = new (C, 3) SubINode( limit, init );
 947   register_new_node( span, ctrl );
 948   Node *trip = new (C, 3) DivINode( 0, span, strid );
 949   register_new_node( trip, ctrl );
 950   Node *mtwo = _igvn.intcon(-2);
 951   set_ctrl(mtwo, C->root());
 952   Node *rond = new (C, 3) AndINode( trip, mtwo );
 953   register_new_node( rond, ctrl );
 954   Node *spn2 = new (C, 3) MulINode( rond, strid );
 955   register_new_node( spn2, ctrl );
 956   Node *lim2 = new (C, 3) AddINode( spn2, init );
 957   register_new_node( lim2, ctrl );
 958 
 959   // Hammer in the new limit
 960   Node *ctrl2 = loop_end->in(0);
 961   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
 962   register_new_node( cmp2, ctrl2 );
 963   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
 964   register_new_node( bol2, ctrl2 );
 965   _igvn.hash_delete(loop_end);
 966   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
 967 
 968   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
 969   // Make it a 1-trip test (means at least 2 trips).
 970   if( adjust_min_trip ) {
 971     // Guard test uses an 'opaque' node which is not shared.  Hence I
 972     // can edit it's inputs directly.  Hammer in the new limit for the
 973     // minimum-trip guard.
 974     assert( opaq->outcnt() == 1, "" );
 975     _igvn.hash_delete(opaq);
 976     opaq->set_req(1, lim2);
 977   }
 978 
 979   // ---------
 980   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
 981   // represents the odd iterations; since the loop trips an even number of
 982   // times its backedge is never taken.  Kill the backedge.
 983   uint dd = dom_depth(loop_head);
 984   clone_loop( loop, old_new, dd );
 985 
 986   // Make backedges of the clone equal to backedges of the original.
 987   // Make the fall-in from the original come from the fall-out of the clone.
 988   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
 989     Node* phi = loop_head->fast_out(j);
 990     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
 991       Node *newphi = old_new[phi->_idx];
 992       _igvn.hash_delete( phi );
 993       _igvn.hash_delete( newphi );
 994 
 995       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
 996       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
 997       phi   ->set_req(LoopNode::LoopBackControl, C->top());
 998     }
 999   }
1000   Node *clone_head = old_new[loop_head->_idx];
1001   _igvn.hash_delete( clone_head );
1002   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1003   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1004   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1005   loop->_head = clone_head;     // New loop header
1006 
1007   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1008   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1009 
1010   // Kill the clone's backedge
1011   Node *newcle = old_new[loop_end->_idx];
1012   _igvn.hash_delete( newcle );
1013   Node *one = _igvn.intcon(1);
1014   set_ctrl(one, C->root());
1015   newcle->set_req(1, one);
1016   // Force clone into same loop body
1017   uint max = loop->_body.size();
1018   for( uint k = 0; k < max; k++ ) {
1019     Node *old = loop->_body.at(k);
1020     Node *nnn = old_new[old->_idx];
1021     loop->_body.push(nnn);
1022     if (!has_ctrl(old))
1023       set_loop(nnn, loop);
1024   }
1025 
1026   loop->record_for_igvn();
1027 }
1028 
1029 //------------------------------do_maximally_unroll----------------------------
1030 
1031 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1032   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1033   assert( cl->trip_count() > 0, "");
1034 
1035   // If loop is tripping an odd number of times, peel odd iteration
1036   if( (cl->trip_count() & 1) == 1 ) {
1037     do_peeling( loop, old_new );
1038   }
1039 
1040   // Now its tripping an even number of times remaining.  Double loop body.
1041   // Do not adjust pre-guards; they are not needed and do not exist.
1042   if( cl->trip_count() > 0 ) {
1043     do_unroll( loop, old_new, false );
1044   }
1045 }
1046 
1047 //------------------------------dominates_backedge---------------------------------
1048 // Returns true if ctrl is executed on every complete iteration
1049 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1050   assert(ctrl->is_CFG(), "must be control");
1051   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1052   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1053 }
1054 
1055 //------------------------------add_constraint---------------------------------
1056 // Constrain the main loop iterations so the condition:
1057 //    scale_con * I + offset  <  limit
1058 // always holds true.  That is, either increase the number of iterations in
1059 // the pre-loop or the post-loop until the condition holds true in the main
1060 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1061 // stride and scale are constants (offset and limit often are).
1062 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1063 
1064   // Compute "I :: (limit-offset)/scale_con"
1065   Node *con = new (C, 3) SubINode( limit, offset );
1066   register_new_node( con, pre_ctrl );
1067   Node *scale = _igvn.intcon(scale_con);
1068   set_ctrl(scale, C->root());
1069   Node *X = new (C, 3) DivINode( 0, con, scale );
1070   register_new_node( X, pre_ctrl );
1071 
1072   // For positive stride, the pre-loop limit always uses a MAX function
1073   // and the main loop a MIN function.  For negative stride these are
1074   // reversed.
1075 
1076   // Also for positive stride*scale the affine function is increasing, so the
1077   // pre-loop must check for underflow and the post-loop for overflow.
1078   // Negative stride*scale reverses this; pre-loop checks for overflow and
1079   // post-loop for underflow.
1080   if( stride_con*scale_con > 0 ) {
1081     // Compute I < (limit-offset)/scale_con
1082     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
1083     *main_limit = (stride_con > 0)
1084       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
1085       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
1086     register_new_node( *main_limit, pre_ctrl );
1087 
1088   } else {
1089     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
1090     // Add the negation of the main-loop constraint to the pre-loop.
1091     // See footnote [++] below for a derivation of the limit expression.
1092     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
1093     set_ctrl(incr, C->root());
1094     Node *adj = new (C, 3) AddINode( X, incr );
1095     register_new_node( adj, pre_ctrl );
1096     *pre_limit = (scale_con > 0)
1097       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
1098       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
1099     register_new_node( *pre_limit, pre_ctrl );
1100 
1101 //   [++] Here's the algebra that justifies the pre-loop limit expression:
1102 //
1103 //   NOT( scale_con * I + offset  <  limit )
1104 //      ==
1105 //   scale_con * I + offset  >=  limit
1106 //      ==
1107 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
1108 //      ==
1109 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
1110 //      ==
1111 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
1112 //      ==
1113 //   ( if (scale_con > 0) /*common case*/
1114 //       (limit-offset)/scale_con - 1  <  I
1115 //     else
1116 //       (limit-offset)/scale_con + 1  >  I
1117 //    )
1118 //   ( if (scale_con > 0) /*common case*/
1119 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
1120 //     else
1121 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
1122   }
1123 }
1124 
1125 
1126 //------------------------------is_scaled_iv---------------------------------
1127 // Return true if exp is a constant times an induction var
1128 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1129   if (exp == iv) {
1130     if (p_scale != NULL) {
1131       *p_scale = 1;
1132     }
1133     return true;
1134   }
1135   int opc = exp->Opcode();
1136   if (opc == Op_MulI) {
1137     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1138       if (p_scale != NULL) {
1139         *p_scale = exp->in(2)->get_int();
1140       }
1141       return true;
1142     }
1143     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1144       if (p_scale != NULL) {
1145         *p_scale = exp->in(1)->get_int();
1146       }
1147       return true;
1148     }
1149   } else if (opc == Op_LShiftI) {
1150     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1151       if (p_scale != NULL) {
1152         *p_scale = 1 << exp->in(2)->get_int();
1153       }
1154       return true;
1155     }
1156   }
1157   return false;
1158 }
1159 
1160 //-----------------------------is_scaled_iv_plus_offset------------------------------
1161 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1162 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1163   if (is_scaled_iv(exp, iv, p_scale)) {
1164     if (p_offset != NULL) {
1165       Node *zero = _igvn.intcon(0);
1166       set_ctrl(zero, C->root());
1167       *p_offset = zero;
1168     }
1169     return true;
1170   }
1171   int opc = exp->Opcode();
1172   if (opc == Op_AddI) {
1173     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1174       if (p_offset != NULL) {
1175         *p_offset = exp->in(2);
1176       }
1177       return true;
1178     }
1179     if (exp->in(2)->is_Con()) {
1180       Node* offset2 = NULL;
1181       if (depth < 2 &&
1182           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1183                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1184         if (p_offset != NULL) {
1185           Node *ctrl_off2 = get_ctrl(offset2);
1186           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
1187           register_new_node(offset, ctrl_off2);
1188           *p_offset = offset;
1189         }
1190         return true;
1191       }
1192     }
1193   } else if (opc == Op_SubI) {
1194     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1195       if (p_offset != NULL) {
1196         Node *zero = _igvn.intcon(0);
1197         set_ctrl(zero, C->root());
1198         Node *ctrl_off = get_ctrl(exp->in(2));
1199         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
1200         register_new_node(offset, ctrl_off);
1201         *p_offset = offset;
1202       }
1203       return true;
1204     }
1205     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1206       if (p_offset != NULL) {
1207         *p_scale *= -1;
1208         *p_offset = exp->in(1);
1209       }
1210       return true;
1211     }
1212   }
1213   return false;
1214 }
1215 
1216 //------------------------------do_range_check---------------------------------
1217 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1218 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1219 #ifndef PRODUCT
1220   if( PrintOpto && VerifyLoopOptimizations ) {
1221     tty->print("Range Check Elimination ");
1222     loop->dump_head();
1223   }
1224 #endif
1225   assert( RangeCheckElimination, "" );
1226   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1227   assert( cl->is_main_loop(), "" );
1228 
1229   // Find the trip counter; we are iteration splitting based on it
1230   Node *trip_counter = cl->phi();
1231   // Find the main loop limit; we will trim it's iterations
1232   // to not ever trip end tests
1233   Node *main_limit = cl->limit();
1234   // Find the pre-loop limit; we will expand it's iterations to
1235   // not ever trip low tests.
1236   Node *ctrl  = cl->in(LoopNode::EntryControl);
1237   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1238   Node *iffm = ctrl->in(0);
1239   assert( iffm->Opcode() == Op_If, "" );
1240   Node *p_f = iffm->in(0);
1241   assert( p_f->Opcode() == Op_IfFalse, "" );
1242   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1243   assert( pre_end->loopnode()->is_pre_loop(), "" );
1244   Node *pre_opaq1 = pre_end->limit();
1245   // Occasionally it's possible for a pre-loop Opaque1 node to be
1246   // optimized away and then another round of loop opts attempted.
1247   // We can not optimize this particular loop in that case.
1248   if( pre_opaq1->Opcode() != Op_Opaque1 )
1249     return;
1250   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1251   Node *pre_limit = pre_opaq->in(1);
1252 
1253   // Where do we put new limit calculations
1254   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1255 
1256   // Ensure the original loop limit is available from the
1257   // pre-loop Opaque1 node.
1258   Node *orig_limit = pre_opaq->original_loop_limit();
1259   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
1260     return;
1261 
1262   // Need to find the main-loop zero-trip guard
1263   Node *bolzm = iffm->in(1);
1264   assert( bolzm->Opcode() == Op_Bool, "" );
1265   Node *cmpzm = bolzm->in(1);
1266   assert( cmpzm->is_Cmp(), "" );
1267   Node *opqzm = cmpzm->in(2);
1268   if( opqzm->Opcode() != Op_Opaque1 )
1269     return;
1270   assert( opqzm->in(1) == main_limit, "do not understand situation" );
1271 
1272   // Must know if its a count-up or count-down loop
1273 
1274   // protect against stride not being a constant
1275   if ( !cl->stride_is_con() ) {
1276     return;
1277   }
1278   int stride_con = cl->stride_con();
1279   Node *zero = _igvn.intcon(0);
1280   Node *one  = _igvn.intcon(1);
1281   set_ctrl(zero, C->root());
1282   set_ctrl(one,  C->root());
1283 
1284   // Range checks that do not dominate the loop backedge (ie.
1285   // conditionally executed) can lengthen the pre loop limit beyond
1286   // the original loop limit. To prevent this, the pre limit is
1287   // (for stride > 0) MINed with the original loop limit (MAXed
1288   // stride < 0) when some range_check (rc) is conditionally
1289   // executed.
1290   bool conditional_rc = false;
1291 
1292   // Check loop body for tests of trip-counter plus loop-invariant vs
1293   // loop-invariant.
1294   for( uint i = 0; i < loop->_body.size(); i++ ) {
1295     Node *iff = loop->_body[i];
1296     if( iff->Opcode() == Op_If ) { // Test?
1297 
1298       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1299       // we need loop unswitching instead of iteration splitting.
1300       Node *exit = loop->is_loop_exit(iff);
1301       if( !exit ) continue;
1302       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1303 
1304       // Get boolean condition to test
1305       Node *i1 = iff->in(1);
1306       if( !i1->is_Bool() ) continue;
1307       BoolNode *bol = i1->as_Bool();
1308       BoolTest b_test = bol->_test;
1309       // Flip sense of test if exit condition is flipped
1310       if( flip )
1311         b_test = b_test.negate();
1312 
1313       // Get compare
1314       Node *cmp = bol->in(1);
1315 
1316       // Look for trip_counter + offset vs limit
1317       Node *rc_exp = cmp->in(1);
1318       Node *limit  = cmp->in(2);
1319       jint scale_con= 1;        // Assume trip counter not scaled
1320 
1321       Node *limit_c = get_ctrl(limit);
1322       if( loop->is_member(get_loop(limit_c) ) ) {
1323         // Compare might have operands swapped; commute them
1324         b_test = b_test.commute();
1325         rc_exp = cmp->in(2);
1326         limit  = cmp->in(1);
1327         limit_c = get_ctrl(limit);
1328         if( loop->is_member(get_loop(limit_c) ) )
1329           continue;             // Both inputs are loop varying; cannot RCE
1330       }
1331       // Here we know 'limit' is loop invariant
1332 
1333       // 'limit' maybe pinned below the zero trip test (probably from a
1334       // previous round of rce), in which case, it can't be used in the
1335       // zero trip test expression which must occur before the zero test's if.
1336       if( limit_c == ctrl ) {
1337         continue;  // Don't rce this check but continue looking for other candidates.
1338       }
1339 
1340       // Check for scaled induction variable plus an offset
1341       Node *offset = NULL;
1342 
1343       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1344         continue;
1345       }
1346 
1347       Node *offset_c = get_ctrl(offset);
1348       if( loop->is_member( get_loop(offset_c) ) )
1349         continue;               // Offset is not really loop invariant
1350       // Here we know 'offset' is loop invariant.
1351 
1352       // As above for the 'limit', the 'offset' maybe pinned below the
1353       // zero trip test.
1354       if( offset_c == ctrl ) {
1355         continue; // Don't rce this check but continue looking for other candidates.
1356       }
1357 
1358       // At this point we have the expression as:
1359       //   scale_con * trip_counter + offset :: limit
1360       // where scale_con, offset and limit are loop invariant.  Trip_counter
1361       // monotonically increases by stride_con, a constant.  Both (or either)
1362       // stride_con and scale_con can be negative which will flip about the
1363       // sense of the test.
1364 
1365       // Adjust pre and main loop limits to guard the correct iteration set
1366       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1367         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1368           // The overflow limit: scale*I+offset < limit
1369           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
1370           // The underflow limit: 0 <= scale*I+offset.
1371           // Some math yields: -scale*I-(offset+1) < 0
1372           Node *plus_one = new (C, 3) AddINode( offset, one );
1373           register_new_node( plus_one, pre_ctrl );
1374           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
1375           register_new_node( neg_offset, pre_ctrl );
1376           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
1377           if (!conditional_rc) {
1378             conditional_rc = !loop->dominates_backedge(iff);
1379           }
1380         } else {
1381 #ifndef PRODUCT
1382           if( PrintOpto )
1383             tty->print_cr("missed RCE opportunity");
1384 #endif
1385           continue;             // In release mode, ignore it
1386         }
1387       } else {                  // Otherwise work on normal compares
1388         switch( b_test._test ) {
1389         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
1390           scale_con = -scale_con;
1391           offset = new (C, 3) SubINode( zero, offset );
1392           register_new_node( offset, pre_ctrl );
1393           limit  = new (C, 3) SubINode( zero, limit  );
1394           register_new_node( limit, pre_ctrl );
1395           // Fall into LE case
1396         case BoolTest::le:      // Convert X <= Y to X < Y+1
1397           limit = new (C, 3) AddINode( limit, one );
1398           register_new_node( limit, pre_ctrl );
1399           // Fall into LT case
1400         case BoolTest::lt:
1401           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
1402           if (!conditional_rc) {
1403             conditional_rc = !loop->dominates_backedge(iff);
1404           }
1405           break;
1406         default:
1407 #ifndef PRODUCT
1408           if( PrintOpto )
1409             tty->print_cr("missed RCE opportunity");
1410 #endif
1411           continue;             // Unhandled case
1412         }
1413       }
1414 
1415       // Kill the eliminated test
1416       C->set_major_progress();
1417       Node *kill_con = _igvn.intcon( 1-flip );
1418       set_ctrl(kill_con, C->root());
1419       _igvn.hash_delete(iff);
1420       iff->set_req(1, kill_con);
1421       _igvn._worklist.push(iff);
1422       // Find surviving projection
1423       assert(iff->is_If(), "");
1424       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1425       // Find loads off the surviving projection; remove their control edge
1426       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1427         Node* cd = dp->fast_out(i); // Control-dependent node
1428         if( cd->is_Load() ) {   // Loads can now float around in the loop
1429           _igvn.hash_delete(cd);
1430           // Allow the load to float around in the loop, or before it
1431           // but NOT before the pre-loop.
1432           cd->set_req(0, ctrl);   // ctrl, not NULL
1433           _igvn._worklist.push(cd);
1434           --i;
1435           --imax;
1436         }
1437       }
1438 
1439     } // End of is IF
1440 
1441   }
1442 
1443   // Update loop limits
1444   if (conditional_rc) {
1445     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
1446                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
1447     register_new_node(pre_limit, pre_ctrl);
1448   }
1449   _igvn.hash_delete(pre_opaq);
1450   pre_opaq->set_req(1, pre_limit);
1451 
1452   // Note:: we are making the main loop limit no longer precise;
1453   // need to round up based on stride.
1454   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
1455     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
1456     // Hopefully, compiler will optimize for powers of 2.
1457     Node *ctrl = get_ctrl(main_limit);
1458     Node *stride = cl->stride();
1459     Node *init = cl->init_trip();
1460     Node *span = new (C, 3) SubINode(main_limit,init);
1461     register_new_node(span,ctrl);
1462     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
1463     Node *add = new (C, 3) AddINode(span,rndup);
1464     register_new_node(add,ctrl);
1465     Node *div = new (C, 3) DivINode(0,add,stride);
1466     register_new_node(div,ctrl);
1467     Node *mul = new (C, 3) MulINode(div,stride);
1468     register_new_node(mul,ctrl);
1469     Node *newlim = new (C, 3) AddINode(mul,init);
1470     register_new_node(newlim,ctrl);
1471     main_limit = newlim;
1472   }
1473 
1474   Node *main_cle = cl->loopexit();
1475   Node *main_bol = main_cle->in(1);
1476   // Hacking loop bounds; need private copies of exit test
1477   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
1478     _igvn.hash_delete(main_cle);
1479     main_bol = main_bol->clone();// Clone a private BoolNode
1480     register_new_node( main_bol, main_cle->in(0) );
1481     main_cle->set_req(1,main_bol);
1482   }
1483   Node *main_cmp = main_bol->in(1);
1484   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
1485     _igvn.hash_delete(main_bol);
1486     main_cmp = main_cmp->clone();// Clone a private CmpNode
1487     register_new_node( main_cmp, main_cle->in(0) );
1488     main_bol->set_req(1,main_cmp);
1489   }
1490   // Hack the now-private loop bounds
1491   _igvn.hash_delete(main_cmp);
1492   main_cmp->set_req(2, main_limit);
1493   _igvn._worklist.push(main_cmp);
1494   // The OpaqueNode is unshared by design
1495   _igvn.hash_delete(opqzm);
1496   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
1497   opqzm->set_req(1,main_limit);
1498   _igvn._worklist.push(opqzm);
1499 }
1500 
1501 //------------------------------DCE_loop_body----------------------------------
1502 // Remove simplistic dead code from loop body
1503 void IdealLoopTree::DCE_loop_body() {
1504   for( uint i = 0; i < _body.size(); i++ )
1505     if( _body.at(i)->outcnt() == 0 )
1506       _body.map( i--, _body.pop() );
1507 }
1508 
1509 
1510 //------------------------------adjust_loop_exit_prob--------------------------
1511 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
1512 // Replace with a 1-in-10 exit guess.
1513 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
1514   Node *test = tail();
1515   while( test != _head ) {
1516     uint top = test->Opcode();
1517     if( top == Op_IfTrue || top == Op_IfFalse ) {
1518       int test_con = ((ProjNode*)test)->_con;
1519       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
1520       IfNode *iff = test->in(0)->as_If();
1521       if( iff->outcnt() == 2 ) {        // Ignore dead tests
1522         Node *bol = iff->in(1);
1523         if( bol && bol->req() > 1 && bol->in(1) &&
1524             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
1525              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
1526              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
1527              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
1528              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
1529              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
1530              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
1531           return;               // Allocation loops RARELY take backedge
1532         // Find the OTHER exit path from the IF
1533         Node* ex = iff->proj_out(1-test_con);
1534         float p = iff->_prob;
1535         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
1536           if( top == Op_IfTrue ) {
1537             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
1538               iff->_prob = PROB_STATIC_FREQUENT;
1539             }
1540           } else {
1541             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
1542               iff->_prob = PROB_STATIC_INFREQUENT;
1543             }
1544           }
1545         }
1546       }
1547     }
1548     test = phase->idom(test);
1549   }
1550 }
1551 
1552 
1553 //------------------------------policy_do_remove_empty_loop--------------------
1554 // Micro-benchmark spamming.  Policy is to always remove empty loops.
1555 // The 'DO' part is to replace the trip counter with the value it will
1556 // have on the last iteration.  This will break the loop.
1557 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
1558   // Minimum size must be empty loop
1559   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
1560 
1561   if( !_head->is_CountedLoop() ) return false;     // Dead loop
1562   CountedLoopNode *cl = _head->as_CountedLoop();
1563   if( !cl->loopexit() ) return false; // Malformed loop
1564   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
1565     return false;             // Infinite loop
1566 #ifndef PRODUCT
1567   if( PrintOpto )
1568     tty->print_cr("Removing empty loop");
1569 #endif
1570 #ifdef ASSERT
1571   // Ensure only one phi which is the iv.
1572   Node* iv = NULL;
1573   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
1574     Node* n = cl->fast_out(i);
1575     if (n->Opcode() == Op_Phi) {
1576       assert(iv == NULL, "Too many phis" );
1577       iv = n;
1578     }
1579   }
1580   assert(iv == cl->phi(), "Wrong phi" );
1581 #endif
1582   // Replace the phi at loop head with the final value of the last
1583   // iteration.  Then the CountedLoopEnd will collapse (backedge never
1584   // taken) and all loop-invariant uses of the exit values will be correct.
1585   Node *phi = cl->phi();
1586   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
1587   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
1588   phase->_igvn.replace_node(phi,final);
1589   phase->C->set_major_progress();
1590   return true;
1591 }
1592 
1593 
1594 //=============================================================================
1595 //------------------------------iteration_split_impl---------------------------
1596 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
1597   // Check and remove empty loops (spam micro-benchmarks)
1598   if( policy_do_remove_empty_loop(phase) )
1599     return true;  // Here we removed an empty loop
1600 
1601   bool should_peel = policy_peeling(phase); // Should we peel?
1602 
1603   bool should_unswitch = policy_unswitching(phase);
1604 
1605   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
1606   // This removes loop-invariant tests (usually null checks).
1607   if( !_head->is_CountedLoop() ) { // Non-counted loop
1608     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
1609       // Partial peel succeeded so terminate this round of loop opts
1610       return false;
1611     }
1612     if( should_peel ) {            // Should we peel?
1613 #ifndef PRODUCT
1614       if (PrintOpto) tty->print_cr("should_peel");
1615 #endif
1616       phase->do_peeling(this,old_new);
1617     } else if( should_unswitch ) {
1618       phase->do_unswitching(this, old_new);
1619     }
1620     return true;
1621   }
1622   CountedLoopNode *cl = _head->as_CountedLoop();
1623 
1624   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
1625 
1626   // Do nothing special to pre- and post- loops
1627   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
1628 
1629   // Compute loop trip count from profile data
1630   compute_profile_trip_cnt(phase);
1631 
1632   // Before attempting fancy unrolling, RCE or alignment, see if we want
1633   // to completely unroll this loop or do loop unswitching.
1634   if( cl->is_normal_loop() ) {
1635     if (should_unswitch) {
1636       phase->do_unswitching(this, old_new);
1637       return true;
1638     }
1639     bool should_maximally_unroll =  policy_maximally_unroll(phase);
1640     if( should_maximally_unroll ) {
1641       // Here we did some unrolling and peeling.  Eventually we will
1642       // completely unroll this loop and it will no longer be a loop.
1643       phase->do_maximally_unroll(this,old_new);
1644       return true;
1645     }
1646   }
1647 
1648 
1649   // Counted loops may be peeled, may need some iterations run up
1650   // front for RCE, and may want to align loop refs to a cache
1651   // line.  Thus we clone a full loop up front whose trip count is
1652   // at least 1 (if peeling), but may be several more.
1653 
1654   // The main loop will start cache-line aligned with at least 1
1655   // iteration of the unrolled body (zero-trip test required) and
1656   // will have some range checks removed.
1657 
1658   // A post-loop will finish any odd iterations (leftover after
1659   // unrolling), plus any needed for RCE purposes.
1660 
1661   bool should_unroll = policy_unroll(phase);
1662 
1663   bool should_rce = policy_range_check(phase);
1664 
1665   bool should_align = policy_align(phase);
1666 
1667   // If not RCE'ing (iteration splitting) or Aligning, then we do not
1668   // need a pre-loop.  We may still need to peel an initial iteration but
1669   // we will not be needing an unknown number of pre-iterations.
1670   //
1671   // Basically, if may_rce_align reports FALSE first time through,
1672   // we will not be able to later do RCE or Aligning on this loop.
1673   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
1674 
1675   // If we have any of these conditions (RCE, alignment, unrolling) met, then
1676   // we switch to the pre-/main-/post-loop model.  This model also covers
1677   // peeling.
1678   if( should_rce || should_align || should_unroll ) {
1679     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
1680       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
1681 
1682     // Adjust the pre- and main-loop limits to let the pre and post loops run
1683     // with full checks, but the main-loop with no checks.  Remove said
1684     // checks from the main body.
1685     if( should_rce )
1686       phase->do_range_check(this,old_new);
1687 
1688     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
1689     // twice as many iterations as before) and the main body limit (only do
1690     // an even number of trips).  If we are peeling, we might enable some RCE
1691     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
1692     // peeling.
1693       if( should_unroll && !should_peel )
1694         phase->do_unroll(this,old_new, true);
1695 
1696     // Adjust the pre-loop limits to align the main body
1697     // iterations.
1698     if( should_align )
1699       Unimplemented();
1700 
1701   } else {                      // Else we have an unchanged counted loop
1702     if( should_peel )           // Might want to peel but do nothing else
1703       phase->do_peeling(this,old_new);
1704   }
1705   return true;
1706 }
1707 
1708 
1709 //=============================================================================
1710 //------------------------------iteration_split--------------------------------
1711 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
1712   // Recursively iteration split nested loops
1713   if( _child && !_child->iteration_split( phase, old_new ))
1714     return false;
1715 
1716   // Clean out prior deadwood
1717   DCE_loop_body();
1718 
1719 
1720   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
1721   // Replace with a 1-in-10 exit guess.
1722   if( _parent /*not the root loop*/ &&
1723       !_irreducible &&
1724       // Also ignore the occasional dead backedge
1725       !tail()->is_top() ) {
1726     adjust_loop_exit_prob(phase);
1727   }
1728 
1729 
1730   // Gate unrolling, RCE and peeling efforts.
1731   if( !_child &&                // If not an inner loop, do not split
1732       !_irreducible &&
1733       _allow_optimizations &&
1734       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
1735     if (!_has_call) {
1736         if (!iteration_split_impl( phase, old_new )) {
1737           return false;
1738         }
1739     } else if (policy_unswitching(phase)) {
1740       phase->do_unswitching(this, old_new);
1741     }
1742   }
1743 
1744   // Minor offset re-organization to remove loop-fallout uses of
1745   // trip counter.
1746   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
1747   if( _next && !_next->iteration_split( phase, old_new ))
1748     return false;
1749   return true;
1750 }
1751 
1752 //-------------------------------is_uncommon_trap_proj----------------------------
1753 // Return true if proj is the form of "proj->[region->..]call_uct"
1754 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
1755   int path_limit = 10;
1756   assert(proj, "invalid argument");
1757   Node* out = proj;
1758   for (int ct = 0; ct < path_limit; ct++) {
1759     out = out->unique_ctrl_out();
1760     if (out == NULL || out->is_Root() || out->is_Start())
1761       return false;
1762     if (out->is_CallStaticJava()) {
1763       int req = out->as_CallStaticJava()->uncommon_trap_request();
1764       if (req != 0) {
1765         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
1766         if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
1767            return true;
1768         }
1769       }
1770       return false; // don't do further after call
1771     }
1772   }
1773   return false;
1774 }
1775 
1776 //-------------------------------is_uncommon_trap_if_pattern-------------------------
1777 // Return true  for "if(test)-> proj -> ...
1778 //                          |
1779 //                          V
1780 //                      other_proj->[region->..]call_uct"
1781 //
1782 // "must_reason_predicate" means the uct reason must be Reason_predicate
1783 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
1784   Node *in0 = proj->in(0);
1785   if (!in0->is_If()) return false;
1786   // Variation of a dead If node.
1787   if (in0->outcnt() < 2)  return false;
1788   IfNode* iff = in0->as_If();
1789 
1790   // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
1791   if (must_reason_predicate) {
1792     if (iff->in(1)->Opcode() != Op_Conv2B ||
1793        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
1794       return false;
1795     }
1796   }
1797 
1798   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
1799   return is_uncommon_trap_proj(other_proj, must_reason_predicate);
1800 }
1801 
1802 //------------------------------create_new_if_for_predicate------------------------
1803 // create a new if above the uct_if_pattern for the predicate to be promoted.
1804 //
1805 //          before                                after
1806 //        ----------                           ----------
1807 //           ctrl                                 ctrl
1808 //            |                                     |
1809 //            |                                     |
1810 //            v                                     v
1811 //           iff                                 new_iff
1812 //          /    \                                /      \
1813 //         /      \                              /        \
1814 //        v        v                            v          v
1815 //  uncommon_proj cont_proj                   if_uct     if_cont
1816 // \      |        |                           |          |
1817 //  \     |        |                           |          |
1818 //   v    v        v                           |          v
1819 //     rgn       loop                          |         iff
1820 //      |                                      |        /     \
1821 //      |                                      |       /       \
1822 //      v                                      |      v         v
1823 // uncommon_trap                               | uncommon_proj cont_proj
1824 //                                           \  \    |           |
1825 //                                            \  \   |           |
1826 //                                             v  v  v           v
1827 //                                               rgn           loop
1828 //                                                |
1829 //                                                |
1830 //                                                v
1831 //                                           uncommon_trap
1832 //
1833 //
1834 // We will create a region to guard the uct call if there is no one there.
1835 // The true projecttion (if_cont) of the new_iff is returned.
1836 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
1837   assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
1838   IfNode* iff = cont_proj->in(0)->as_If();
1839 
1840   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
1841   Node     *rgn   = uncommon_proj->unique_ctrl_out();
1842   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
1843 
1844   if (!rgn->is_Region()) { // create a region to guard the call
1845     assert(rgn->is_Call(), "must be call uct");
1846     CallNode* call = rgn->as_Call();
1847     rgn = new (C, 1) RegionNode(1);
1848     _igvn.set_type(rgn, rgn->bottom_type());
1849     rgn->add_req(uncommon_proj);
1850     set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
1851     _igvn.hash_delete(call);
1852     call->set_req(0, rgn);
1853   }
1854 
1855   // Create new_iff
1856   uint  iffdd  = dom_depth(iff);
1857   IdealLoopTree* lp = get_loop(iff);
1858   IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
1859   register_node(new_iff, lp, idom(iff), iffdd);
1860   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
1861   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
1862   if (cont_proj->is_IfFalse()) {
1863     // Swap
1864     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
1865   }
1866   register_node(if_cont, lp, new_iff, iffdd);
1867   register_node(if_uct, get_loop(rgn), new_iff, iffdd);
1868 
1869   // if_cont to iff
1870   _igvn.hash_delete(iff);
1871   iff->set_req(0, if_cont);
1872   set_idom(iff, if_cont, dom_depth(iff));
1873 
1874   // if_uct to rgn
1875   _igvn.hash_delete(rgn);
1876   rgn->add_req(if_uct);
1877   Node* ridom = idom(rgn);
1878   Node* nrdom = dom_lca(ridom, new_iff);
1879   set_idom(rgn, nrdom, dom_depth(rgn));
1880 
1881   // rgn must have no phis
1882   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
1883 
1884   return if_cont->as_Proj();
1885 }
1886 
1887 //------------------------------find_predicate_insertion_point--------------------------
1888 // Find a good location to insert a predicate
1889 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
1890   if (start_c == C->root() || !start_c->is_Proj())
1891     return NULL;
1892   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
1893     return start_c->as_Proj();
1894   }
1895   return NULL;
1896 }
1897 
1898 //------------------------------Invariance-----------------------------------
1899 // Helper class for loop_predication_impl to compute invariance on the fly and
1900 // clone invariants.
1901 class Invariance : public StackObj {
1902   VectorSet _visited, _invariant;
1903   Node_Stack _stack;
1904   VectorSet _clone_visited;
1905   Node_List _old_new; // map of old to new (clone)
1906   IdealLoopTree* _lpt;
1907   PhaseIdealLoop* _phase;
1908 
1909   // Helper function to set up the invariance for invariance computation
1910   // If n is a known invariant, set up directly. Otherwise, look up the
1911   // the possibility to push n onto the stack for further processing.
1912   void visit(Node* use, Node* n) {
1913     if (_lpt->is_invariant(n)) { // known invariant
1914       _invariant.set(n->_idx);
1915     } else if (!n->is_CFG()) {
1916       Node *n_ctrl = _phase->ctrl_or_self(n);
1917       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
1918       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
1919         _stack.push(n, n->in(0) == NULL ? 1 : 0);
1920       }
1921     }
1922   }
1923 
1924   // Compute invariance for "the_node" and (possibly) all its inputs recursively
1925   // on the fly
1926   void compute_invariance(Node* n) {
1927     assert(_visited.test(n->_idx), "must be");
1928     visit(n, n);
1929     while (_stack.is_nonempty()) {
1930       Node*  n = _stack.node();
1931       uint idx = _stack.index();
1932       if (idx == n->req()) { // all inputs are processed
1933         _stack.pop();
1934         // n is invariant if it's inputs are all invariant
1935         bool all_inputs_invariant = true;
1936         for (uint i = 0; i < n->req(); i++) {
1937           Node* in = n->in(i);
1938           if (in == NULL) continue;
1939           assert(_visited.test(in->_idx), "must have visited input");
1940           if (!_invariant.test(in->_idx)) { // bad guy
1941             all_inputs_invariant = false;
1942             break;
1943           }
1944         }
1945         if (all_inputs_invariant) {
1946           _invariant.set(n->_idx); // I am a invariant too
1947         }
1948       } else { // process next input
1949         _stack.set_index(idx + 1);
1950         Node* m = n->in(idx);
1951         if (m != NULL && !_visited.test_set(m->_idx)) {
1952           visit(n, m);
1953         }
1954       }
1955     }
1956   }
1957 
1958   // Helper function to set up _old_new map for clone_nodes.
1959   // If n is a known invariant, set up directly ("clone" of n == n).
1960   // Otherwise, push n onto the stack for real cloning.
1961   void clone_visit(Node* n) {
1962     assert(_invariant.test(n->_idx), "must be invariant");
1963     if (_lpt->is_invariant(n)) { // known invariant
1964       _old_new.map(n->_idx, n);
1965     } else{ // to be cloned
1966       assert (!n->is_CFG(), "should not see CFG here");
1967       _stack.push(n, n->in(0) == NULL ? 1 : 0);
1968     }
1969   }
1970 
1971   // Clone "n" and (possibly) all its inputs recursively
1972   void clone_nodes(Node* n, Node* ctrl) {
1973     clone_visit(n);
1974     while (_stack.is_nonempty()) {
1975       Node*  n = _stack.node();
1976       uint idx = _stack.index();
1977       if (idx == n->req()) { // all inputs processed, clone n!
1978         _stack.pop();
1979         // clone invariant node
1980         Node* n_cl = n->clone();
1981         _old_new.map(n->_idx, n_cl);
1982         _phase->register_new_node(n_cl, ctrl);
1983         for (uint i = 0; i < n->req(); i++) {
1984           Node* in = n_cl->in(i);
1985           if (in == NULL) continue;
1986           n_cl->set_req(i, _old_new[in->_idx]);
1987         }
1988       } else { // process next input
1989         _stack.set_index(idx + 1);
1990         Node* m = n->in(idx);
1991         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
1992           clone_visit(m); // visit the input
1993         }
1994       }
1995     }
1996   }
1997 
1998  public:
1999   Invariance(Arena* area, IdealLoopTree* lpt) :
2000     _lpt(lpt), _phase(lpt->_phase),
2001     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
2002     _clone_visited(area), _old_new(area)
2003   {}
2004 
2005   // Map old to n for invariance computation and clone
2006   void map_ctrl(Node* old, Node* n) {
2007     assert(old->is_CFG() && n->is_CFG(), "must be");
2008     _old_new.map(old->_idx, n); // "clone" of old is n
2009     _invariant.set(old->_idx);  // old is invariant
2010     _clone_visited.set(old->_idx);
2011   }
2012 
2013   // Driver function to compute invariance
2014   bool is_invariant(Node* n) {
2015     if (!_visited.test_set(n->_idx))
2016       compute_invariance(n);
2017     return (_invariant.test(n->_idx) != 0);
2018   }
2019 
2020   // Driver function to clone invariant
2021   Node* clone(Node* n, Node* ctrl) {
2022     assert(ctrl->is_CFG(), "must be");
2023     assert(_invariant.test(n->_idx), "must be an invariant");
2024     if (!_clone_visited.test(n->_idx))
2025       clone_nodes(n, ctrl);
2026     return _old_new[n->_idx];
2027   }
2028 };
2029 
2030 //------------------------------is_range_check_if -----------------------------------
2031 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
2032 // Note: this function is particularly designed for loop predication. We require load_range
2033 //       and offset to be loop invariant computed on the fly by "invar"
2034 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
2035   if (!is_loop_exit(iff)) {
2036     return false;
2037   }
2038   if (!iff->in(1)->is_Bool()) {
2039     return false;
2040   }
2041   const BoolNode *bol = iff->in(1)->as_Bool();
2042   if (bol->_test._test != BoolTest::lt) {
2043     return false;
2044   }
2045   if (!bol->in(1)->is_Cmp()) {
2046     return false;
2047   }
2048   const CmpNode *cmp = bol->in(1)->as_Cmp();
2049   if (cmp->Opcode() != Op_CmpU ) {
2050     return false;
2051   }
2052   Node* range = cmp->in(2);
2053   if (range->Opcode() != Op_LoadRange) {
2054     const TypeInt* tint = phase->_igvn.type(range)->isa_int();
2055     if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
2056       // Allow predication on positive values that aren't LoadRanges.
2057       // This allows optimization of loops where the length of the
2058       // array is a known value and doesn't need to be loaded back
2059       // from the array.
2060       return false;
2061     }
2062   }
2063   if (!invar.is_invariant(range)) {
2064     return false;
2065   }
2066   Node *iv     = _head->as_CountedLoop()->phi();
2067   int   scale  = 0;
2068   Node *offset = NULL;
2069   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
2070     return false;
2071   }
2072   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
2073     return false;
2074   }
2075   return true;
2076 }
2077 
2078 //------------------------------rc_predicate-----------------------------------
2079 // Create a range check predicate
2080 //
2081 // for (i = init; i < limit; i += stride) {
2082 //    a[scale*i+offset]
2083 // }
2084 //
2085 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
2086 // as "max(scale*i + offset) u< a.length".
2087 //
2088 // There are two cases for max(scale*i + offset):
2089 // (1) stride*scale > 0
2090 //   max(scale*i + offset) = scale*(limit-stride) + offset
2091 // (2) stride*scale < 0
2092 //   max(scale*i + offset) = scale*init + offset
2093 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
2094                                        int scale, Node* offset,
2095                                        Node* init, Node* limit, Node* stride,
2096                                        Node* range, bool upper) {
2097   DEBUG_ONLY(ttyLocker ttyl);
2098   if (TraceLoopPredicate) tty->print("rc_predicate ");
2099 
2100   Node* max_idx_expr  = init;
2101   int stride_con = stride->get_int();
2102   if ((stride_con > 0) == (scale > 0) == upper) {
2103     max_idx_expr = new (C, 3) SubINode(limit, stride);
2104     register_new_node(max_idx_expr, ctrl);
2105     if (TraceLoopPredicate) tty->print("(limit - stride) ");
2106   } else {
2107     if (TraceLoopPredicate) tty->print("init ");
2108   }
2109 
2110   if (scale != 1) {
2111     ConNode* con_scale = _igvn.intcon(scale);
2112     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
2113     register_new_node(max_idx_expr, ctrl);
2114     if (TraceLoopPredicate) tty->print("* %d ", scale);
2115   }
2116 
2117   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
2118     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
2119     register_new_node(max_idx_expr, ctrl);
2120     if (TraceLoopPredicate)
2121       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
2122       else tty->print("+ offset ");
2123   }
2124 
2125   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
2126   register_new_node(cmp, ctrl);
2127   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
2128   register_new_node(bol, ctrl);
2129 
2130   if (TraceLoopPredicate) tty->print_cr("<u range");
2131   return bol;
2132 }
2133 
2134 //------------------------------ loop_predication_impl--------------------------
2135 // Insert loop predicates for null checks and range checks
2136 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
2137   if (!UseLoopPredicate) return false;
2138 
2139   if (!loop->_head->is_Loop()) {
2140     // Could be a simple region when irreducible loops are present.
2141     return false;
2142   }
2143 
2144   CountedLoopNode *cl = NULL;
2145   if (loop->_head->is_CountedLoop()) {
2146     cl = loop->_head->as_CountedLoop();
2147     // do nothing for iteration-splitted loops
2148     if (!cl->is_normal_loop()) return false;
2149   }
2150 
2151   // Too many traps seen?
2152   bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
2153   int tc = C->trap_count(Deoptimization::Reason_predicate);
2154   if (tmt || tc > 0) {
2155     if (TraceLoopPredicate) {
2156       tty->print_cr("too many predicate traps: %d", tc);
2157       C->method()->print(); // which method has too many predicate traps
2158       tty->print_cr("");
2159     }
2160     return false;
2161   }
2162 
2163   LoopNode *lpn  = loop->_head->as_Loop();
2164   Node* entry = lpn->in(LoopNode::EntryControl);
2165 
2166   ProjNode *predicate_proj = find_predicate_insertion_point(entry);
2167   if (!predicate_proj){
2168 #ifndef PRODUCT
2169     if (TraceLoopPredicate) {
2170       tty->print("missing predicate:");
2171       loop->dump_head();
2172     }
2173 #endif
2174     return false;
2175   }
2176 
2177   ConNode* zero = _igvn.intcon(0);
2178   set_ctrl(zero, C->root());
2179   Node *cond_false = new (C, 2) Conv2BNode(zero);
2180   register_new_node(cond_false, C->root());
2181   ConNode* one = _igvn.intcon(1);
2182   set_ctrl(one, C->root());
2183   Node *cond_true = new (C, 2) Conv2BNode(one);
2184   register_new_node(cond_true, C->root());
2185 
2186   ResourceArea *area = Thread::current()->resource_area();
2187   Invariance invar(area, loop);
2188 
2189   // Create list of if-projs such that a newer proj dominates all older
2190   // projs in the list, and they all dominate loop->tail()
2191   Node_List if_proj_list(area);
2192   LoopNode *head  = loop->_head->as_Loop();
2193   Node *current_proj = loop->tail(); //start from tail
2194   while ( current_proj != head ) {
2195     if (loop == get_loop(current_proj) && // still in the loop ?
2196         current_proj->is_Proj()        && // is a projection  ?
2197         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
2198       if_proj_list.push(current_proj);
2199     }
2200     current_proj = idom(current_proj);
2201   }
2202 
2203   bool hoisted = false; // true if at least one proj is promoted
2204   while (if_proj_list.size() > 0) {
2205     // Following are changed to nonnull when a predicate can be hoisted
2206     ProjNode* new_predicate_proj = NULL;
2207 
2208     ProjNode* proj = if_proj_list.pop()->as_Proj();
2209     IfNode*   iff  = proj->in(0)->as_If();
2210 
2211     if (!is_uncommon_trap_if_pattern(proj)) {
2212       if (loop->is_loop_exit(iff)) {
2213         // stop processing the remaining projs in the list because the execution of them
2214         // depends on the condition of "iff" (iff->in(1)).
2215         break;
2216       } else {
2217         // Both arms are inside the loop. There are two cases:
2218         // (1) there is one backward branch. In this case, any remaining proj
2219         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
2220         //     does not determine the execution the remining projs directly, and we
2221         //     can safely continue.
2222         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
2223         //     does not dominate loop->tail(), so it can not be in the if_proj list.
2224         continue;
2225       }
2226     }
2227 
2228     Node*     test = iff->in(1);
2229     if (!test->is_Bool()){ //Conv2B, ...
2230       continue;
2231     }
2232     BoolNode* bol = test->as_Bool();
2233     if (invar.is_invariant(bol)) {
2234       // Invariant test
2235       new_predicate_proj = create_new_if_for_predicate(predicate_proj);
2236       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
2237       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
2238 
2239       // Negate test if necessary
2240       bool negated = false;
2241       if (proj->_con != predicate_proj->_con) {
2242         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
2243         register_new_node(new_predicate_bol, ctrl);
2244         negated = true;
2245       }
2246       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
2247       _igvn.hash_delete(new_predicate_iff);
2248       new_predicate_iff->set_req(1, new_predicate_bol);
2249       if (TraceLoopPredicate) tty->print_cr("invariant if%s: %d", negated ? " negated" : "", new_predicate_iff->_idx);
2250 
2251     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
2252       assert(proj->_con == predicate_proj->_con, "must match");
2253 
2254       // Range check for counted loops
2255       const Node*    cmp    = bol->in(1)->as_Cmp();
2256       Node*          idx    = cmp->in(1);
2257       assert(!invar.is_invariant(idx), "index is variant");
2258       assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
2259       Node* rng = cmp->in(2);
2260       assert(invar.is_invariant(rng), "range must be invariant");
2261       int scale    = 1;
2262       Node* offset = zero;
2263       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
2264       assert(ok, "must be index expression");
2265 
2266       Node* init    = cl->init_trip();
2267       Node* limit   = cl->limit();
2268       Node* stride  = cl->stride();
2269 
2270       // Build if's for the upper and lower bound tests.  The
2271       // lower_bound test will dominate the upper bound test and all
2272       // cloned or created nodes will use the lower bound test as
2273       // their declared control.
2274       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj);
2275       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj);
2276       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
2277       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
2278 
2279       // Perform cloning to keep Invariance state correct since the
2280       // late schedule will place invariant things in the loop.
2281       rng = invar.clone(rng, ctrl);
2282       if (offset && offset != zero) {
2283         assert(invar.is_invariant(offset), "offset must be loop invariant");
2284         offset = invar.clone(offset, ctrl);
2285       }
2286 
2287       // Test the lower bound
2288       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
2289       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
2290       _igvn.hash_delete(lower_bound_iff);
2291       lower_bound_iff->set_req(1, lower_bound_bol);
2292       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
2293 
2294       // Test the upper bound
2295       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
2296       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
2297       _igvn.hash_delete(upper_bound_iff);
2298       upper_bound_iff->set_req(1, upper_bound_bol);
2299       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
2300 
2301       // Fall through into rest of the clean up code which will move
2302       // any dependent nodes onto the upper bound test.
2303       new_predicate_proj = upper_bound_proj;
2304     } else {
2305       // The other proj of the "iff" is a uncommon trap projection, and we can assume
2306       // the other proj will not be executed ("executed" means uct raised).
2307       continue;
2308     }
2309 
2310     // Success - attach condition (new_predicate_bol) to predicate if
2311     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
2312 
2313     // Eliminate the old if in the loop body
2314     _igvn.hash_delete(iff);
2315     iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
2316 
2317     Node* ctrl = new_predicate_proj; // new control
2318     ProjNode* dp = proj;     // old control
2319     assert(get_loop(dp) == loop, "guaranteed at the time of collecting proj");
2320     // Find nodes (depends only on the test) off the surviving projection;
2321     // move them outside the loop with the control of proj_clone
2322     for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2323       Node* cd = dp->fast_out(i); // Control-dependent node
2324       if (cd->depends_only_on_test()) {
2325         assert(cd->in(0) == dp, "");
2326         _igvn.hash_delete(cd);
2327         cd->set_req(0, ctrl); // ctrl, not NULL
2328         set_early_ctrl(cd);
2329         _igvn._worklist.push(cd);
2330         IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
2331         if (new_loop != loop) {
2332           if (!loop->_child) loop->_body.yank(cd);
2333           if (!new_loop->_child ) new_loop->_body.push(cd);
2334         }
2335         --i;
2336         --imax;
2337       }
2338     }
2339 
2340     hoisted = true;
2341     C->set_major_progress();
2342   } // end while
2343 
2344 #ifndef PRODUCT
2345   // report that the loop predication has been actually performed
2346   // for this loop
2347   if (TraceLoopPredicate && hoisted) {
2348     tty->print("Loop Predication Performed:");
2349     loop->dump_head();
2350   }
2351 #endif
2352 
2353   return hoisted;
2354 }
2355 
2356 //------------------------------loop_predication--------------------------------
2357 // driver routine for loop predication optimization
2358 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
2359   bool hoisted = false;
2360   // Recursively promote predicates
2361   if ( _child ) {
2362     hoisted = _child->loop_predication( phase);
2363   }
2364 
2365   // self
2366   if (!_irreducible && !tail()->is_top()) {
2367     hoisted |= phase->loop_predication_impl(this);
2368   }
2369 
2370   if ( _next ) { //sibling
2371     hoisted |= _next->loop_predication( phase);
2372   }
2373 
2374   return hoisted;
2375 }
2376 
2377 
2378 // Process all the loops in the loop tree and replace any fill
2379 // patterns with an intrisc version.
2380 bool PhaseIdealLoop::do_intrinsify_fill() {
2381   bool changed = false;
2382   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2383     IdealLoopTree* lpt = iter.current();
2384     changed |= intrinsify_fill(lpt);
2385   }
2386   return changed;
2387 }
2388 
2389 
2390 // Examine an inner loop looking for a a single store of an invariant
2391 // value in a unit stride loop,
2392 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2393                                      Node*& shift, Node*& con) {
2394   const char* msg = NULL;
2395   Node* msg_node = NULL;
2396 
2397   store_value = NULL;
2398   con = NULL;
2399   shift = NULL;
2400 
2401   // Process the loop looking for stores.  If there are multiple
2402   // stores or extra control flow give at this point.
2403   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2404   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2405     Node* n = lpt->_body.at(i);
2406     if (n->outcnt() == 0) continue; // Ignore dead
2407     if (n->is_Store()) {
2408       if (store != NULL) {
2409         msg = "multiple stores";
2410         break;
2411       }
2412       int opc = n->Opcode();
2413       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
2414         msg = "oop fills not handled";
2415         break;
2416       }
2417       Node* value = n->in(MemNode::ValueIn);
2418       if (!lpt->is_invariant(value)) {
2419         msg  = "variant store value";
2420       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2421         msg = "not array address";
2422       }
2423       store = n;
2424       store_value = value;
2425     } else if (n->is_If() && n != head->loopexit()) {
2426       msg = "extra control flow";
2427       msg_node = n;
2428     }
2429   }
2430 
2431   if (store == NULL) {
2432     // No store in loop
2433     return false;
2434   }
2435 
2436   if (msg == NULL && head->stride_con() != 1) {
2437     // could handle negative strides too
2438     if (head->stride_con() < 0) {
2439       msg = "negative stride";
2440     } else {
2441       msg = "non-unit stride";
2442     }
2443   }
2444 
2445   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2446     msg = "can't handle store address";
2447     msg_node = store->in(MemNode::Address);
2448   }
2449 
2450   if (msg == NULL &&
2451       (!store->in(MemNode::Memory)->is_Phi() ||
2452        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2453     msg = "store memory isn't proper phi";
2454     msg_node = store->in(MemNode::Memory);
2455   }
2456 
2457   // Make sure there is an appropriate fill routine
2458   BasicType t = store->as_Mem()->memory_type();
2459   const char* fill_name;
2460   if (msg == NULL &&
2461       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2462     msg = "unsupported store";
2463     msg_node = store;
2464   }
2465 
2466   if (msg != NULL) {
2467 #ifndef PRODUCT
2468     if (TraceOptimizeFill) {
2469       tty->print_cr("not fill intrinsic candidate: %s", msg);
2470       if (msg_node != NULL) msg_node->dump();
2471     }
2472 #endif
2473     return false;
2474   }
2475 
2476   // Make sure the address expression can be handled.  It should be
2477   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2478   Node* elements[4];
2479   Node* conv = NULL;
2480   bool found_index = false;
2481   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2482   for (int e = 0; e < count; e++) {
2483     Node* n = elements[e];
2484     if (n->is_Con() && con == NULL) {
2485       con = n;
2486     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2487       Node* value = n->in(1);
2488 #ifdef _LP64
2489       if (value->Opcode() == Op_ConvI2L) {
2490         conv = value;
2491         value = value->in(1);
2492       }
2493 #endif
2494       if (value != head->phi()) {
2495         msg = "unhandled shift in address";
2496       } else {
2497         found_index = true;
2498         shift = n;
2499         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
2500       }
2501     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2502       if (n->in(1) == head->phi()) {
2503         found_index = true;
2504         conv = n;
2505       } else {
2506         msg = "unhandled input to ConvI2L";
2507       }
2508     } else if (n == head->phi()) {
2509       // no shift, check below for allowed cases
2510       found_index = true;
2511     } else {
2512       msg = "unhandled node in address";
2513       msg_node = n;
2514     }
2515   }
2516 
2517   if (count == -1) {
2518     msg = "malformed address expression";
2519     msg_node = store;
2520   }
2521 
2522   if (!found_index) {
2523     msg = "missing use of index";
2524   }
2525 
2526   // byte sized items won't have a shift
2527   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2528     msg = "can't find shift";
2529     msg_node = store;
2530   }
2531 
2532   if (msg != NULL) {
2533 #ifndef PRODUCT
2534     if (TraceOptimizeFill) {
2535       tty->print_cr("not fill intrinsic: %s", msg);
2536       if (msg_node != NULL) msg_node->dump();
2537     }
2538 #endif
2539     return false;
2540   }
2541 
2542   // No make sure all the other nodes in the loop can be handled
2543   VectorSet ok(Thread::current()->resource_area());
2544 
2545   // store related values are ok
2546   ok.set(store->_idx);
2547   ok.set(store->in(MemNode::Memory)->_idx);
2548 
2549   // Loop structure is ok
2550   ok.set(head->_idx);
2551   ok.set(head->loopexit()->_idx);
2552   ok.set(head->phi()->_idx);
2553   ok.set(head->incr()->_idx);
2554   ok.set(head->loopexit()->cmp_node()->_idx);
2555   ok.set(head->loopexit()->in(1)->_idx);
2556 
2557   // Address elements are ok
2558   if (con)   ok.set(con->_idx);
2559   if (shift) ok.set(shift->_idx);
2560   if (conv)  ok.set(conv->_idx);
2561 
2562   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2563     Node* n = lpt->_body.at(i);
2564     if (n->outcnt() == 0) continue; // Ignore dead
2565     if (ok.test(n->_idx)) continue;
2566     // Backedge projection is ok
2567     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
2568     if (!n->is_AddP()) {
2569       msg = "unhandled node";
2570       msg_node = n;
2571       break;
2572     }
2573   }
2574 
2575   // Make sure no unexpected values are used outside the loop
2576   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2577     Node* n = lpt->_body.at(i);
2578     // These values can be replaced with other nodes if they are used
2579     // outside the loop.
2580     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2581     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2582       Node* use = iter.get();
2583       if (!lpt->_body.contains(use)) {
2584         msg = "node is used outside loop";
2585         // lpt->_body.dump();
2586         msg_node = n;
2587         break;
2588       }
2589     }
2590   }
2591 
2592 #ifdef ASSERT
2593   if (TraceOptimizeFill) {
2594     if (msg != NULL) {
2595       tty->print_cr("no fill intrinsic: %s", msg);
2596       if (msg_node != NULL) msg_node->dump();
2597     } else {
2598       tty->print_cr("fill intrinsic for:");
2599     }
2600     store->dump();
2601     if (Verbose) {
2602       lpt->_body.dump();
2603     }
2604   }
2605 #endif
2606 
2607   return msg == NULL;
2608 }
2609 
2610 
2611 
2612 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2613   // Only for counted inner loops
2614   if (!lpt->is_counted() || !lpt->is_inner()) {
2615     return false;
2616   }
2617 
2618   // Must have constant stride
2619   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2620   if (!head->stride_is_con() || !head->is_normal_loop()) {
2621     return false;
2622   }
2623 
2624   // Check that the body only contains a store of a loop invariant
2625   // value that is indexed by the loop phi.
2626   Node* store = NULL;
2627   Node* store_value = NULL;
2628   Node* shift = NULL;
2629   Node* offset = NULL;
2630   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2631     return false;
2632   }
2633 
2634   // Now replace the whole loop body by a call to a fill routine that
2635   // covers the same region as the loop.
2636   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2637 
2638   // Build an expression for the beginning of the copy region
2639   Node* index = head->init_trip();
2640 #ifdef _LP64
2641   index = new (C, 2) ConvI2LNode(index);
2642   _igvn.register_new_node_with_optimizer(index);
2643 #endif
2644   if (shift != NULL) {
2645     // byte arrays don't require a shift but others do.
2646     index = new (C, 3) LShiftXNode(index, shift->in(2));
2647     _igvn.register_new_node_with_optimizer(index);
2648   }
2649   index = new (C, 4) AddPNode(base, base, index);
2650   _igvn.register_new_node_with_optimizer(index);
2651   Node* from = new (C, 4) AddPNode(base, index, offset);
2652   _igvn.register_new_node_with_optimizer(from);
2653   // Compute the number of elements to copy
2654   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
2655   _igvn.register_new_node_with_optimizer(len);
2656 
2657   BasicType t = store->as_Mem()->memory_type();
2658   bool aligned = false;
2659   if (offset != NULL && head->init_trip()->is_Con()) {
2660     int element_size = type2aelembytes(t);
2661     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2662   }
2663 
2664   // Build a call to the fill routine
2665   const char* fill_name;
2666   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2667   assert(fill != NULL, "what?");
2668 
2669   // Convert float/double to int/long for fill routines
2670   if (t == T_FLOAT) {
2671     store_value = new (C, 2) MoveF2INode(store_value);
2672     _igvn.register_new_node_with_optimizer(store_value);
2673   } else if (t == T_DOUBLE) {
2674     store_value = new (C, 2) MoveD2LNode(store_value);
2675     _igvn.register_new_node_with_optimizer(store_value);
2676   }
2677 
2678   Node* mem_phi = store->in(MemNode::Memory);
2679   Node* result_ctrl;
2680   Node* result_mem;
2681   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2682   int size = call_type->domain()->cnt();
2683   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
2684                                                       fill_name, TypeAryPtr::get_array_body_type(t));
2685   call->init_req(TypeFunc::Parms+0, from);
2686   call->init_req(TypeFunc::Parms+1, store_value);
2687 #ifdef _LP64
2688   len = new (C, 2) ConvI2LNode(len);
2689   _igvn.register_new_node_with_optimizer(len);
2690 #endif
2691   call->init_req(TypeFunc::Parms+2, len);
2692 #ifdef _LP64
2693   call->init_req(TypeFunc::Parms+3, C->top());
2694 #endif
2695   call->init_req( TypeFunc::Control, head->init_control());
2696   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
2697   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
2698   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
2699   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
2700   _igvn.register_new_node_with_optimizer(call);
2701   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
2702   _igvn.register_new_node_with_optimizer(result_ctrl);
2703   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
2704   _igvn.register_new_node_with_optimizer(result_mem);
2705 
2706   // If this fill is tightly coupled to an allocation and overwrites
2707   // the whole body, allow it to take over the zeroing.
2708   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2709   if (alloc != NULL && alloc->is_AllocateArray()) {
2710     Node* length = alloc->as_AllocateArray()->Ideal_length();
2711     if (head->limit() == length &&
2712         head->init_trip() == _igvn.intcon(0)) {
2713       if (TraceOptimizeFill) {
2714         tty->print_cr("Eliminated zeroing in allocation");
2715       }
2716       alloc->maybe_set_complete(&_igvn);
2717     } else {
2718 #ifdef ASSERT
2719       if (TraceOptimizeFill) {
2720         tty->print_cr("filling array but bounds don't match");
2721         alloc->dump();
2722         head->init_trip()->dump();
2723         head->limit()->dump();
2724         length->dump();
2725       }
2726 #endif
2727     }
2728   }
2729 
2730   // Redirect the old control and memory edges that are outside the loop.
2731   Node* exit = head->loopexit()->proj_out(0);
2732   // Sometimes the memory phi of the head is used as the outgoing
2733   // state of the loop.  It's safe in this case to replace it with the
2734   // result_mem.
2735   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
2736   _igvn.replace_node(exit, result_ctrl);
2737   _igvn.replace_node(store, result_mem);
2738   // Any uses the increment outside of the loop become the loop limit.
2739   _igvn.replace_node(head->incr(), head->limit());
2740 
2741   // Disconnect the head from the loop.
2742   for (uint i = 0; i < lpt->_body.size(); i++) {
2743     Node* n = lpt->_body.at(i);
2744     _igvn.replace_node(n, C->top());
2745   }
2746 
2747   return true;
2748 }