1 /*
   2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_loopnode.cpp.incl"
  27 
  28 //=============================================================================
  29 //------------------------------is_loop_iv-------------------------------------
  30 // Determine if a node is Counted loop induction variable.
  31 // The method is declared in node.hpp.
  32 const Node* Node::is_loop_iv() const {
  33   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  34       this->as_Phi()->region()->is_CountedLoop() &&
  35       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  36     return this;
  37   } else {
  38     return NULL;
  39   }
  40 }
  41 
  42 //=============================================================================
  43 //------------------------------dump_spec--------------------------------------
  44 // Dump special per-node info
  45 #ifndef PRODUCT
  46 void LoopNode::dump_spec(outputStream *st) const {
  47   if( is_inner_loop () ) st->print( "inner " );
  48   if( is_partial_peel_loop () ) st->print( "partial_peel " );
  49   if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
  50 }
  51 #endif
  52 
  53 //------------------------------get_early_ctrl---------------------------------
  54 // Compute earliest legal control
  55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  56   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  57   uint i;
  58   Node *early;
  59   if( n->in(0) ) {
  60     early = n->in(0);
  61     if( !early->is_CFG() ) // Might be a non-CFG multi-def
  62       early = get_ctrl(early);        // So treat input as a straight data input
  63     i = 1;
  64   } else {
  65     early = get_ctrl(n->in(1));
  66     i = 2;
  67   }
  68   uint e_d = dom_depth(early);
  69   assert( early, "" );
  70   for( ; i < n->req(); i++ ) {
  71     Node *cin = get_ctrl(n->in(i));
  72     assert( cin, "" );
  73     // Keep deepest dominator depth
  74     uint c_d = dom_depth(cin);
  75     if( c_d > e_d ) {           // Deeper guy?
  76       early = cin;              // Keep deepest found so far
  77       e_d = c_d;
  78     } else if( c_d == e_d &&    // Same depth?
  79                early != cin ) { // If not equal, must use slower algorithm
  80       // If same depth but not equal, one _must_ dominate the other
  81       // and we want the deeper (i.e., dominated) guy.
  82       Node *n1 = early;
  83       Node *n2 = cin;
  84       while( 1 ) {
  85         n1 = idom(n1);          // Walk up until break cycle
  86         n2 = idom(n2);
  87         if( n1 == cin ||        // Walked early up to cin
  88             dom_depth(n2) < c_d )
  89           break;                // early is deeper; keep him
  90         if( n2 == early ||      // Walked cin up to early
  91             dom_depth(n1) < c_d ) {
  92           early = cin;          // cin is deeper; keep him
  93           break;
  94         }
  95       }
  96       e_d = dom_depth(early);   // Reset depth register cache
  97     }
  98   }
  99 
 100   // Return earliest legal location
 101   assert(early == find_non_split_ctrl(early), "unexpected early control");
 102 
 103   return early;
 104 }
 105 
 106 //------------------------------set_early_ctrl---------------------------------
 107 // Set earliest legal control
 108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 109   Node *early = get_early_ctrl(n);
 110 
 111   // Record earliest legal location
 112   set_ctrl(n, early);
 113 }
 114 
 115 //------------------------------set_subtree_ctrl-------------------------------
 116 // set missing _ctrl entries on new nodes
 117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 118   // Already set?  Get out.
 119   if( _nodes[n->_idx] ) return;
 120   // Recursively set _nodes array to indicate where the Node goes
 121   uint i;
 122   for( i = 0; i < n->req(); ++i ) {
 123     Node *m = n->in(i);
 124     if( m && m != C->root() )
 125       set_subtree_ctrl( m );
 126   }
 127 
 128   // Fixup self
 129   set_early_ctrl( n );
 130 }
 131 
 132 //------------------------------is_counted_loop--------------------------------
 133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 134   PhaseGVN *gvn = &_igvn;
 135 
 136   // Counted loop head must be a good RegionNode with only 3 not NULL
 137   // control input edges: Self, Entry, LoopBack.
 138   if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
 139     return NULL;
 140 
 141   Node *init_control = x->in(LoopNode::EntryControl);
 142   Node *back_control = x->in(LoopNode::LoopBackControl);
 143   if( init_control == NULL || back_control == NULL )    // Partially dead
 144     return NULL;
 145   // Must also check for TOP when looking for a dead loop
 146   if( init_control->is_top() || back_control->is_top() )
 147     return NULL;
 148 
 149   // Allow funny placement of Safepoint
 150   if( back_control->Opcode() == Op_SafePoint )
 151     back_control = back_control->in(TypeFunc::Control);
 152 
 153   // Controlling test for loop
 154   Node *iftrue = back_control;
 155   uint iftrue_op = iftrue->Opcode();
 156   if( iftrue_op != Op_IfTrue &&
 157       iftrue_op != Op_IfFalse )
 158     // I have a weird back-control.  Probably the loop-exit test is in
 159     // the middle of the loop and I am looking at some trailing control-flow
 160     // merge point.  To fix this I would have to partially peel the loop.
 161     return NULL; // Obscure back-control
 162 
 163   // Get boolean guarding loop-back test
 164   Node *iff = iftrue->in(0);
 165   if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
 166   BoolNode *test = iff->in(1)->as_Bool();
 167   BoolTest::mask bt = test->_test._test;
 168   float cl_prob = iff->as_If()->_prob;
 169   if( iftrue_op == Op_IfFalse ) {
 170     bt = BoolTest(bt).negate();
 171     cl_prob = 1.0 - cl_prob;
 172   }
 173   // Get backedge compare
 174   Node *cmp = test->in(1);
 175   int cmp_op = cmp->Opcode();
 176   if( cmp_op != Op_CmpI )
 177     return NULL;                // Avoid pointer & float compares
 178 
 179   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 180   Node *incr  = cmp->in(1);
 181   Node *limit = cmp->in(2);
 182 
 183   // ---------
 184   // need 'loop()' test to tell if limit is loop invariant
 185   // ---------
 186 
 187   if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
 188     Node *tmp = incr;           // Then reverse order into the CmpI
 189     incr = limit;
 190     limit = tmp;
 191     bt = BoolTest(bt).commute(); // And commute the exit test
 192   }
 193   if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
 194     return NULL;
 195 
 196   // Trip-counter increment must be commutative & associative.
 197   uint incr_op = incr->Opcode();
 198   if( incr_op == Op_Phi && incr->req() == 3 ) {
 199     incr = incr->in(2);         // Assume incr is on backedge of Phi
 200     incr_op = incr->Opcode();
 201   }
 202   Node* trunc1 = NULL;
 203   Node* trunc2 = NULL;
 204   const TypeInt* iv_trunc_t = NULL;
 205   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 206     return NULL; // Funny increment opcode
 207   }
 208 
 209   // Get merge point
 210   Node *xphi = incr->in(1);
 211   Node *stride = incr->in(2);
 212   if( !stride->is_Con() ) {     // Oops, swap these
 213     if( !xphi->is_Con() )       // Is the other guy a constant?
 214       return NULL;              // Nope, unknown stride, bail out
 215     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 216     xphi = stride;
 217     stride = tmp;
 218   }
 219   //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
 220   if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
 221   PhiNode *phi = xphi->as_Phi();
 222 
 223   // Stride must be constant
 224   const Type *stride_t = stride->bottom_type();
 225   int stride_con = stride_t->is_int()->get_con();
 226   assert( stride_con, "missed some peephole opt" );
 227 
 228   // Phi must be of loop header; backedge must wrap to increment
 229   if( phi->region() != x ) return NULL;
 230   if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 231       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
 232     return NULL;
 233   }
 234   Node *init_trip = phi->in(LoopNode::EntryControl);
 235   //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
 236 
 237   // If iv trunc type is smaller than int, check for possible wrap.
 238   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 239     assert(trunc1 != NULL, "must have found some truncation");
 240 
 241     // Get a better type for the phi (filtered thru if's)
 242     const TypeInt* phi_ft = filtered_type(phi);
 243 
 244     // Can iv take on a value that will wrap?
 245     //
 246     // Ensure iv's limit is not within "stride" of the wrap value.
 247     //
 248     // Example for "short" type
 249     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 250     //    If the stride is +10, then the last value of the induction
 251     //    variable before the increment (phi_ft->_hi) must be
 252     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 253     //    ensure no truncation occurs after the increment.
 254 
 255     if (stride_con > 0) {
 256       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 257           iv_trunc_t->_lo > phi_ft->_lo) {
 258         return NULL;  // truncation may occur
 259       }
 260     } else if (stride_con < 0) {
 261       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 262           iv_trunc_t->_hi < phi_ft->_hi) {
 263         return NULL;  // truncation may occur
 264       }
 265     }
 266     // No possibility of wrap so truncation can be discarded
 267     // Promote iv type to Int
 268   } else {
 269     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 270   }
 271 
 272   // =================================================
 273   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 274   //
 275   // Canonicalize the condition on the test.  If we can exactly determine
 276   // the trip-counter exit value, then set limit to that value and use
 277   // a '!=' test.  Otherwise use condition '<' for count-up loops and
 278   // '>' for count-down loops.  If the condition is inverted and we will
 279   // be rolling through MININT to MAXINT, then bail out.
 280 
 281   C->print_method("Before CountedLoop", 3);
 282 
 283   // Check for SafePoint on backedge and remove
 284   Node *sfpt = x->in(LoopNode::LoopBackControl);
 285   if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 286     lazy_replace( sfpt, iftrue );
 287     loop->_tail = iftrue;
 288   }
 289 
 290 
 291   // If compare points to incr, we are ok.  Otherwise the compare
 292   // can directly point to the phi; in this case adjust the compare so that
 293   // it points to the incr by adjusting the limit.
 294   if( cmp->in(1) == phi || cmp->in(2) == phi )
 295     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
 296 
 297   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 298   // Final value for iterator should be: trip_count * stride + init_trip.
 299   const Type *limit_t = limit->bottom_type();
 300   const Type *init_t = init_trip->bottom_type();
 301   Node *one_p = gvn->intcon( 1);
 302   Node *one_m = gvn->intcon(-1);
 303 
 304   Node *trip_count = NULL;
 305   Node *hook = new (C, 6) Node(6);
 306   switch( bt ) {
 307   case BoolTest::eq:
 308     return NULL;                // Bail out, but this loop trips at most twice!
 309   case BoolTest::ne:            // Ahh, the case we desire
 310     if( stride_con == 1 )
 311       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 312     else if( stride_con == -1 )
 313       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
 314     else
 315       return NULL;              // Odd stride; must prove we hit limit exactly
 316     set_subtree_ctrl( trip_count );
 317     //_loop.map(trip_count->_idx,loop(limit));
 318     break;
 319   case BoolTest::le:            // Maybe convert to '<' case
 320     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
 321     set_subtree_ctrl( limit );
 322     hook->init_req(4, limit);
 323 
 324     bt = BoolTest::lt;
 325     // Make the new limit be in the same loop nest as the old limit
 326     //_loop.map(limit->_idx,limit_loop);
 327     // Fall into next case
 328   case BoolTest::lt: {          // Maybe convert to '!=' case
 329     if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
 330     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 331     set_subtree_ctrl( range );
 332     hook->init_req(0, range);
 333 
 334     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 335     set_subtree_ctrl( bias );
 336     hook->init_req(1, bias);
 337 
 338     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
 339     set_subtree_ctrl( bias1 );
 340     hook->init_req(2, bias1);
 341 
 342     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 343     set_subtree_ctrl( trip_count );
 344     hook->init_req(3, trip_count);
 345     break;
 346   }
 347 
 348   case BoolTest::ge:            // Maybe convert to '>' case
 349     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
 350     set_subtree_ctrl( limit );
 351     hook->init_req(4 ,limit);
 352 
 353     bt = BoolTest::gt;
 354     // Make the new limit be in the same loop nest as the old limit
 355     //_loop.map(limit->_idx,limit_loop);
 356     // Fall into next case
 357   case BoolTest::gt: {          // Maybe convert to '!=' case
 358     if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
 359     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 360     set_subtree_ctrl( range );
 361     hook->init_req(0, range);
 362 
 363     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 364     set_subtree_ctrl( bias );
 365     hook->init_req(1, bias);
 366 
 367     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
 368     set_subtree_ctrl( bias1 );
 369     hook->init_req(2, bias1);
 370 
 371     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 372     set_subtree_ctrl( trip_count );
 373     hook->init_req(3, trip_count);
 374     break;
 375   }
 376   }
 377 
 378   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
 379   set_subtree_ctrl( span );
 380   hook->init_req(5, span);
 381 
 382   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
 383   set_subtree_ctrl( limit );
 384 
 385   // Build a canonical trip test.
 386   // Clone code, as old values may be in use.
 387   incr = incr->clone();
 388   incr->set_req(1,phi);
 389   incr->set_req(2,stride);
 390   incr = _igvn.register_new_node_with_optimizer(incr);
 391   set_early_ctrl( incr );
 392   _igvn.hash_delete(phi);
 393   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 394 
 395   // If phi type is more restrictive than Int, raise to
 396   // Int to prevent (almost) infinite recursion in igvn
 397   // which can only handle integer types for constants or minint..maxint.
 398   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 399     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 400     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 401     nphi = _igvn.register_new_node_with_optimizer(nphi);
 402     set_ctrl(nphi, get_ctrl(phi));
 403     _igvn.replace_node(phi, nphi);
 404     phi = nphi->as_Phi();
 405   }
 406   cmp = cmp->clone();
 407   cmp->set_req(1,incr);
 408   cmp->set_req(2,limit);
 409   cmp = _igvn.register_new_node_with_optimizer(cmp);
 410   set_ctrl(cmp, iff->in(0));
 411 
 412   Node *tmp = test->clone();
 413   assert( tmp->is_Bool(), "" );
 414   test = (BoolNode*)tmp;
 415   (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
 416   test->set_req(1,cmp);
 417   _igvn.register_new_node_with_optimizer(test);
 418   set_ctrl(test, iff->in(0));
 419   // If the exit test is dead, STOP!
 420   if( test == NULL ) return NULL;
 421   _igvn.hash_delete(iff);
 422   iff->set_req_X( 1, test, &_igvn );
 423 
 424   // Replace the old IfNode with a new LoopEndNode
 425   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
 426   IfNode *le = lex->as_If();
 427   uint dd = dom_depth(iff);
 428   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 429   set_loop(le, loop);
 430 
 431   // Get the loop-exit control
 432   Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 433 
 434   // Need to swap loop-exit and loop-back control?
 435   if( iftrue_op == Op_IfFalse ) {
 436     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
 437     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
 438 
 439     loop->_tail = back_control = ift2;
 440     set_loop(ift2, loop);
 441     set_loop(iff2, get_loop(if_f));
 442 
 443     // Lazy update of 'get_ctrl' mechanism.
 444     lazy_replace_proj( if_f  , iff2 );
 445     lazy_replace_proj( iftrue, ift2 );
 446 
 447     // Swap names
 448     if_f   = iff2;
 449     iftrue = ift2;
 450   } else {
 451     _igvn.hash_delete(if_f  );
 452     _igvn.hash_delete(iftrue);
 453     if_f  ->set_req_X( 0, le, &_igvn );
 454     iftrue->set_req_X( 0, le, &_igvn );
 455   }
 456 
 457   set_idom(iftrue, le, dd+1);
 458   set_idom(if_f,   le, dd+1);
 459 
 460   // Now setup a new CountedLoopNode to replace the existing LoopNode
 461   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
 462   // The following assert is approximately true, and defines the intention
 463   // of can_be_counted_loop.  It fails, however, because phase->type
 464   // is not yet initialized for this loop and its parts.
 465   //assert(l->can_be_counted_loop(this), "sanity");
 466   _igvn.register_new_node_with_optimizer(l);
 467   set_loop(l, loop);
 468   loop->_head = l;
 469   // Fix all data nodes placed at the old loop head.
 470   // Uses the lazy-update mechanism of 'get_ctrl'.
 471   lazy_replace( x, l );
 472   set_idom(l, init_control, dom_depth(x));
 473 
 474   // Check for immediately preceding SafePoint and remove
 475   Node *sfpt2 = le->in(0);
 476   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
 477     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 478 
 479   // Free up intermediate goo
 480   _igvn.remove_dead_node(hook);
 481 
 482   C->print_method("After CountedLoop", 3);
 483 
 484   // Return trip counter
 485   return trip_count;
 486 }
 487 
 488 
 489 //------------------------------Ideal------------------------------------------
 490 // Return a node which is more "ideal" than the current node.
 491 // Attempt to convert into a counted-loop.
 492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 493   if (!can_be_counted_loop(phase)) {
 494     phase->C->set_major_progress();
 495   }
 496   return RegionNode::Ideal(phase, can_reshape);
 497 }
 498 
 499 
 500 //=============================================================================
 501 //------------------------------Ideal------------------------------------------
 502 // Return a node which is more "ideal" than the current node.
 503 // Attempt to convert into a counted-loop.
 504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 505   return RegionNode::Ideal(phase, can_reshape);
 506 }
 507 
 508 //------------------------------dump_spec--------------------------------------
 509 // Dump special per-node info
 510 #ifndef PRODUCT
 511 void CountedLoopNode::dump_spec(outputStream *st) const {
 512   LoopNode::dump_spec(st);
 513   if( stride_is_con() ) {
 514     st->print("stride: %d ",stride_con());
 515   } else {
 516     st->print("stride: not constant ");
 517   }
 518   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
 519   if( is_main_loop() ) st->print("main of N%d", _idx );
 520   if( is_post_loop() ) st->print("post of N%d", _main_idx );
 521 }
 522 #endif
 523 
 524 //=============================================================================
 525 int CountedLoopEndNode::stride_con() const {
 526   return stride()->bottom_type()->is_int()->get_con();
 527 }
 528 
 529 
 530 //----------------------match_incr_with_optional_truncation--------------------
 531 // Match increment with optional truncation:
 532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
 533 // Return NULL for failure. Success returns the increment node.
 534 Node* CountedLoopNode::match_incr_with_optional_truncation(
 535                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
 536   // Quick cutouts:
 537   if (expr == NULL || expr->req() != 3)  return false;
 538 
 539   Node *t1 = NULL;
 540   Node *t2 = NULL;
 541   const TypeInt* trunc_t = TypeInt::INT;
 542   Node* n1 = expr;
 543   int   n1op = n1->Opcode();
 544 
 545   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
 546   if (n1op == Op_AndI &&
 547       n1->in(2)->is_Con() &&
 548       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
 549     // %%% This check should match any mask of 2**K-1.
 550     t1 = n1;
 551     n1 = t1->in(1);
 552     n1op = n1->Opcode();
 553     trunc_t = TypeInt::CHAR;
 554   } else if (n1op == Op_RShiftI &&
 555              n1->in(1) != NULL &&
 556              n1->in(1)->Opcode() == Op_LShiftI &&
 557              n1->in(2) == n1->in(1)->in(2) &&
 558              n1->in(2)->is_Con()) {
 559     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
 560     // %%% This check should match any shift in [1..31].
 561     if (shift == 16 || shift == 8) {
 562       t1 = n1;
 563       t2 = t1->in(1);
 564       n1 = t2->in(1);
 565       n1op = n1->Opcode();
 566       if (shift == 16) {
 567         trunc_t = TypeInt::SHORT;
 568       } else if (shift == 8) {
 569         trunc_t = TypeInt::BYTE;
 570       }
 571     }
 572   }
 573 
 574   // If (maybe after stripping) it is an AddI, we won:
 575   if (n1op == Op_AddI) {
 576     *trunc1 = t1;
 577     *trunc2 = t2;
 578     *trunc_type = trunc_t;
 579     return n1;
 580   }
 581 
 582   // failed
 583   return NULL;
 584 }
 585 
 586 
 587 //------------------------------filtered_type--------------------------------
 588 // Return a type based on condition control flow
 589 // A successful return will be a type that is restricted due
 590 // to a series of dominating if-tests, such as:
 591 //    if (i < 10) {
 592 //       if (i > 0) {
 593 //          here: "i" type is [1..10)
 594 //       }
 595 //    }
 596 // or a control flow merge
 597 //    if (i < 10) {
 598 //       do {
 599 //          phi( , ) -- at top of loop type is [min_int..10)
 600 //         i = ?
 601 //       } while ( i < 10)
 602 //
 603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
 604   assert(n && n->bottom_type()->is_int(), "must be int");
 605   const TypeInt* filtered_t = NULL;
 606   if (!n->is_Phi()) {
 607     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
 608     filtered_t = filtered_type_from_dominators(n, n_ctrl);
 609 
 610   } else {
 611     Node* phi    = n->as_Phi();
 612     Node* region = phi->in(0);
 613     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
 614     if (region && region != C->top()) {
 615       for (uint i = 1; i < phi->req(); i++) {
 616         Node* val   = phi->in(i);
 617         Node* use_c = region->in(i);
 618         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
 619         if (val_t != NULL) {
 620           if (filtered_t == NULL) {
 621             filtered_t = val_t;
 622           } else {
 623             filtered_t = filtered_t->meet(val_t)->is_int();
 624           }
 625         }
 626       }
 627     }
 628   }
 629   const TypeInt* n_t = _igvn.type(n)->is_int();
 630   if (filtered_t != NULL) {
 631     n_t = n_t->join(filtered_t)->is_int();
 632   }
 633   return n_t;
 634 }
 635 
 636 
 637 //------------------------------filtered_type_from_dominators--------------------------------
 638 // Return a possibly more restrictive type for val based on condition control flow of dominators
 639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
 640   if (val->is_Con()) {
 641      return val->bottom_type()->is_int();
 642   }
 643   uint if_limit = 10; // Max number of dominating if's visited
 644   const TypeInt* rtn_t = NULL;
 645 
 646   if (use_ctrl && use_ctrl != C->top()) {
 647     Node* val_ctrl = get_ctrl(val);
 648     uint val_dom_depth = dom_depth(val_ctrl);
 649     Node* pred = use_ctrl;
 650     uint if_cnt = 0;
 651     while (if_cnt < if_limit) {
 652       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
 653         if_cnt++;
 654         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
 655         if (if_t != NULL) {
 656           if (rtn_t == NULL) {
 657             rtn_t = if_t;
 658           } else {
 659             rtn_t = rtn_t->join(if_t)->is_int();
 660           }
 661         }
 662       }
 663       pred = idom(pred);
 664       if (pred == NULL || pred == C->top()) {
 665         break;
 666       }
 667       // Stop if going beyond definition block of val
 668       if (dom_depth(pred) < val_dom_depth) {
 669         break;
 670       }
 671     }
 672   }
 673   return rtn_t;
 674 }
 675 
 676 
 677 //------------------------------dump_spec--------------------------------------
 678 // Dump special per-node info
 679 #ifndef PRODUCT
 680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
 681   if( in(TestValue)->is_Bool() ) {
 682     BoolTest bt( test_trip()); // Added this for g++.
 683 
 684     st->print("[");
 685     bt.dump_on(st);
 686     st->print("]");
 687   }
 688   st->print(" ");
 689   IfNode::dump_spec(st);
 690 }
 691 #endif
 692 
 693 //=============================================================================
 694 //------------------------------is_member--------------------------------------
 695 // Is 'l' a member of 'this'?
 696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
 697   while( l->_nest > _nest ) l = l->_parent;
 698   return l == this;
 699 }
 700 
 701 //------------------------------set_nest---------------------------------------
 702 // Set loop tree nesting depth.  Accumulate _has_call bits.
 703 int IdealLoopTree::set_nest( uint depth ) {
 704   _nest = depth;
 705   int bits = _has_call;
 706   if( _child ) bits |= _child->set_nest(depth+1);
 707   if( bits ) _has_call = 1;
 708   if( _next  ) bits |= _next ->set_nest(depth  );
 709   return bits;
 710 }
 711 
 712 //------------------------------split_fall_in----------------------------------
 713 // Split out multiple fall-in edges from the loop header.  Move them to a
 714 // private RegionNode before the loop.  This becomes the loop landing pad.
 715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
 716   PhaseIterGVN &igvn = phase->_igvn;
 717   uint i;
 718 
 719   // Make a new RegionNode to be the landing pad.
 720   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
 721   phase->set_loop(landing_pad,_parent);
 722   // Gather all the fall-in control paths into the landing pad
 723   uint icnt = fall_in_cnt;
 724   uint oreq = _head->req();
 725   for( i = oreq-1; i>0; i-- )
 726     if( !phase->is_member( this, _head->in(i) ) )
 727       landing_pad->set_req(icnt--,_head->in(i));
 728 
 729   // Peel off PhiNode edges as well
 730   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 731     Node *oj = _head->fast_out(j);
 732     if( oj->is_Phi() ) {
 733       PhiNode* old_phi = oj->as_Phi();
 734       assert( old_phi->region() == _head, "" );
 735       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
 736       Node *p = PhiNode::make_blank(landing_pad, old_phi);
 737       uint icnt = fall_in_cnt;
 738       for( i = oreq-1; i>0; i-- ) {
 739         if( !phase->is_member( this, _head->in(i) ) ) {
 740           p->init_req(icnt--, old_phi->in(i));
 741           // Go ahead and clean out old edges from old phi
 742           old_phi->del_req(i);
 743         }
 744       }
 745       // Search for CSE's here, because ZKM.jar does a lot of
 746       // loop hackery and we need to be a little incremental
 747       // with the CSE to avoid O(N^2) node blow-up.
 748       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
 749       if( p2 ) {                // Found CSE
 750         p->destruct();          // Recover useless new node
 751         p = p2;                 // Use old node
 752       } else {
 753         igvn.register_new_node_with_optimizer(p, old_phi);
 754       }
 755       // Make old Phi refer to new Phi.
 756       old_phi->add_req(p);
 757       // Check for the special case of making the old phi useless and
 758       // disappear it.  In JavaGrande I have a case where this useless
 759       // Phi is the loop limit and prevents recognizing a CountedLoop
 760       // which in turn prevents removing an empty loop.
 761       Node *id_old_phi = old_phi->Identity( &igvn );
 762       if( id_old_phi != old_phi ) { // Found a simple identity?
 763         // Note that I cannot call 'replace_node' here, because
 764         // that will yank the edge from old_phi to the Region and
 765         // I'm mid-iteration over the Region's uses.
 766         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
 767           Node* use = old_phi->last_out(i);
 768           igvn.hash_delete(use);
 769           igvn._worklist.push(use);
 770           uint uses_found = 0;
 771           for (uint j = 0; j < use->len(); j++) {
 772             if (use->in(j) == old_phi) {
 773               if (j < use->req()) use->set_req (j, id_old_phi);
 774               else                use->set_prec(j, id_old_phi);
 775               uses_found++;
 776             }
 777           }
 778           i -= uses_found;    // we deleted 1 or more copies of this edge
 779         }
 780       }
 781       igvn._worklist.push(old_phi);
 782     }
 783   }
 784   // Finally clean out the fall-in edges from the RegionNode
 785   for( i = oreq-1; i>0; i-- ) {
 786     if( !phase->is_member( this, _head->in(i) ) ) {
 787       _head->del_req(i);
 788     }
 789   }
 790   // Transform landing pad
 791   igvn.register_new_node_with_optimizer(landing_pad, _head);
 792   // Insert landing pad into the header
 793   _head->add_req(landing_pad);
 794 }
 795 
 796 //------------------------------split_outer_loop-------------------------------
 797 // Split out the outermost loop from this shared header.
 798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
 799   PhaseIterGVN &igvn = phase->_igvn;
 800 
 801   // Find index of outermost loop; it should also be my tail.
 802   uint outer_idx = 1;
 803   while( _head->in(outer_idx) != _tail ) outer_idx++;
 804 
 805   // Make a LoopNode for the outermost loop.
 806   Node *ctl = _head->in(LoopNode::EntryControl);
 807   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
 808   outer = igvn.register_new_node_with_optimizer(outer, _head);
 809   phase->set_created_loop_node();
 810   // Outermost loop falls into '_head' loop
 811   _head->set_req(LoopNode::EntryControl, outer);
 812   _head->del_req(outer_idx);
 813   // Split all the Phis up between '_head' loop and 'outer' loop.
 814   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 815     Node *out = _head->fast_out(j);
 816     if( out->is_Phi() ) {
 817       PhiNode *old_phi = out->as_Phi();
 818       assert( old_phi->region() == _head, "" );
 819       Node *phi = PhiNode::make_blank(outer, old_phi);
 820       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
 821       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
 822       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
 823       // Make old Phi point to new Phi on the fall-in path
 824       igvn.hash_delete(old_phi);
 825       old_phi->set_req(LoopNode::EntryControl, phi);
 826       old_phi->del_req(outer_idx);
 827       igvn._worklist.push(old_phi);
 828     }
 829   }
 830 
 831   // Use the new loop head instead of the old shared one
 832   _head = outer;
 833   phase->set_loop(_head, this);
 834 }
 835 
 836 //------------------------------fix_parent-------------------------------------
 837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
 838   loop->_parent = parent;
 839   if( loop->_child ) fix_parent( loop->_child, loop   );
 840   if( loop->_next  ) fix_parent( loop->_next , parent );
 841 }
 842 
 843 //------------------------------estimate_path_freq-----------------------------
 844 static float estimate_path_freq( Node *n ) {
 845   // Try to extract some path frequency info
 846   IfNode *iff;
 847   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
 848     uint nop = n->Opcode();
 849     if( nop == Op_SafePoint ) {   // Skip any safepoint
 850       n = n->in(0);
 851       continue;
 852     }
 853     if( nop == Op_CatchProj ) {   // Get count from a prior call
 854       // Assume call does not always throw exceptions: means the call-site
 855       // count is also the frequency of the fall-through path.
 856       assert( n->is_CatchProj(), "" );
 857       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
 858         return 0.0f;            // Assume call exception path is rare
 859       Node *call = n->in(0)->in(0)->in(0);
 860       assert( call->is_Call(), "expect a call here" );
 861       const JVMState *jvms = ((CallNode*)call)->jvms();
 862       ciMethodData* methodData = jvms->method()->method_data();
 863       if (!methodData->is_mature())  return 0.0f; // No call-site data
 864       ciProfileData* data = methodData->bci_to_data(jvms->bci());
 865       if ((data == NULL) || !data->is_CounterData()) {
 866         // no call profile available, try call's control input
 867         n = n->in(0);
 868         continue;
 869       }
 870       return data->as_CounterData()->count()/FreqCountInvocations;
 871     }
 872     // See if there's a gating IF test
 873     Node *n_c = n->in(0);
 874     if( !n_c->is_If() ) break;       // No estimate available
 875     iff = n_c->as_If();
 876     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
 877       // Compute how much count comes on this path
 878       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
 879     // Have no count info.  Skip dull uncommon-trap like branches.
 880     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
 881         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
 882       break;
 883     // Skip through never-taken branch; look for a real loop exit.
 884     n = iff->in(0);
 885   }
 886   return 0.0f;                  // No estimate available
 887 }
 888 
 889 //------------------------------merge_many_backedges---------------------------
 890 // Merge all the backedges from the shared header into a private Region.
 891 // Feed that region as the one backedge to this loop.
 892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
 893   uint i;
 894 
 895   // Scan for the top 2 hottest backedges
 896   float hotcnt = 0.0f;
 897   float warmcnt = 0.0f;
 898   uint hot_idx = 0;
 899   // Loop starts at 2 because slot 1 is the fall-in path
 900   for( i = 2; i < _head->req(); i++ ) {
 901     float cnt = estimate_path_freq(_head->in(i));
 902     if( cnt > hotcnt ) {       // Grab hottest path
 903       warmcnt = hotcnt;
 904       hotcnt = cnt;
 905       hot_idx = i;
 906     } else if( cnt > warmcnt ) { // And 2nd hottest path
 907       warmcnt = cnt;
 908     }
 909   }
 910 
 911   // See if the hottest backedge is worthy of being an inner loop
 912   // by being much hotter than the next hottest backedge.
 913   if( hotcnt <= 0.0001 ||
 914       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
 915 
 916   // Peel out the backedges into a private merge point; peel
 917   // them all except optionally hot_idx.
 918   PhaseIterGVN &igvn = phase->_igvn;
 919 
 920   Node *hot_tail = NULL;
 921   // Make a Region for the merge point
 922   Node *r = new (phase->C, 1) RegionNode(1);
 923   for( i = 2; i < _head->req(); i++ ) {
 924     if( i != hot_idx )
 925       r->add_req( _head->in(i) );
 926     else hot_tail = _head->in(i);
 927   }
 928   igvn.register_new_node_with_optimizer(r, _head);
 929   // Plug region into end of loop _head, followed by hot_tail
 930   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
 931   _head->set_req(2, r);
 932   if( hot_idx ) _head->add_req(hot_tail);
 933 
 934   // Split all the Phis up between '_head' loop and the Region 'r'
 935   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 936     Node *out = _head->fast_out(j);
 937     if( out->is_Phi() ) {
 938       PhiNode* n = out->as_Phi();
 939       igvn.hash_delete(n);      // Delete from hash before hacking edges
 940       Node *hot_phi = NULL;
 941       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
 942       // Check all inputs for the ones to peel out
 943       uint j = 1;
 944       for( uint i = 2; i < n->req(); i++ ) {
 945         if( i != hot_idx )
 946           phi->set_req( j++, n->in(i) );
 947         else hot_phi = n->in(i);
 948       }
 949       // Register the phi but do not transform until whole place transforms
 950       igvn.register_new_node_with_optimizer(phi, n);
 951       // Add the merge phi to the old Phi
 952       while( n->req() > 3 ) n->del_req( n->req()-1 );
 953       n->set_req(2, phi);
 954       if( hot_idx ) n->add_req(hot_phi);
 955     }
 956   }
 957 
 958 
 959   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
 960   // of self loop tree.  Turn self into a loop headed by _head and with
 961   // tail being the new merge point.
 962   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
 963   phase->set_loop(_tail,ilt);   // Adjust tail
 964   _tail = r;                    // Self's tail is new merge point
 965   phase->set_loop(r,this);
 966   ilt->_child = _child;         // New guy has my children
 967   _child = ilt;                 // Self has new guy as only child
 968   ilt->_parent = this;          // new guy has self for parent
 969   ilt->_nest = _nest;           // Same nesting depth (for now)
 970 
 971   // Starting with 'ilt', look for child loop trees using the same shared
 972   // header.  Flatten these out; they will no longer be loops in the end.
 973   IdealLoopTree **pilt = &_child;
 974   while( ilt ) {
 975     if( ilt->_head == _head ) {
 976       uint i;
 977       for( i = 2; i < _head->req(); i++ )
 978         if( _head->in(i) == ilt->_tail )
 979           break;                // Still a loop
 980       if( i == _head->req() ) { // No longer a loop
 981         // Flatten ilt.  Hang ilt's "_next" list from the end of
 982         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
 983         IdealLoopTree **cp = &ilt->_child;
 984         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
 985         *cp = ilt->_next;       // Hang next list at end of child list
 986         *pilt = ilt->_child;    // Move child up to replace ilt
 987         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
 988         ilt = ilt->_child;      // Repeat using new ilt
 989         continue;               // do not advance over ilt->_child
 990       }
 991       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
 992       phase->set_loop(_head,ilt);
 993     }
 994     pilt = &ilt->_child;        // Advance to next
 995     ilt = *pilt;
 996   }
 997 
 998   if( _child ) fix_parent( _child, this );
 999 }
1000 
1001 //------------------------------beautify_loops---------------------------------
1002 // Split shared headers and insert loop landing pads.
1003 // Insert a LoopNode to replace the RegionNode.
1004 // Return TRUE if loop tree is structurally changed.
1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1006   bool result = false;
1007   // Cache parts in locals for easy
1008   PhaseIterGVN &igvn = phase->_igvn;
1009 
1010   phase->C->print_method("Before beautify loops", 3);
1011 
1012   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1013 
1014   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1015   int fall_in_cnt = 0;
1016   for( uint i = 1; i < _head->req(); i++ )
1017     if( !phase->is_member( this, _head->in(i) ) )
1018       fall_in_cnt++;
1019   assert( fall_in_cnt, "at least 1 fall-in path" );
1020   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1021     split_fall_in( phase, fall_in_cnt );
1022 
1023   // Swap inputs to the _head and all Phis to move the fall-in edge to
1024   // the left.
1025   fall_in_cnt = 1;
1026   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1027     fall_in_cnt++;
1028   if( fall_in_cnt > 1 ) {
1029     // Since I am just swapping inputs I do not need to update def-use info
1030     Node *tmp = _head->in(1);
1031     _head->set_req( 1, _head->in(fall_in_cnt) );
1032     _head->set_req( fall_in_cnt, tmp );
1033     // Swap also all Phis
1034     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1035       Node* phi = _head->fast_out(i);
1036       if( phi->is_Phi() ) {
1037         igvn.hash_delete(phi); // Yank from hash before hacking edges
1038         tmp = phi->in(1);
1039         phi->set_req( 1, phi->in(fall_in_cnt) );
1040         phi->set_req( fall_in_cnt, tmp );
1041       }
1042     }
1043   }
1044   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1045   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1046 
1047   // If I am a shared header (multiple backedges), peel off the many
1048   // backedges into a private merge point and use the merge point as
1049   // the one true backedge.
1050   if( _head->req() > 3 ) {
1051     // Merge the many backedges into a single backedge.
1052     merge_many_backedges( phase );
1053     result = true;
1054   }
1055 
1056   // If I am a shared header (multiple backedges), peel off myself loop.
1057   // I better be the outermost loop.
1058   if( _head->req() > 3 ) {
1059     split_outer_loop( phase );
1060     result = true;
1061 
1062   } else if( !_head->is_Loop() && !_irreducible ) {
1063     // Make a new LoopNode to replace the old loop head
1064     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
1065     l = igvn.register_new_node_with_optimizer(l, _head);
1066     phase->set_created_loop_node();
1067     // Go ahead and replace _head
1068     phase->_igvn.replace_node( _head, l );
1069     _head = l;
1070     phase->set_loop(_head, this);
1071   }
1072 
1073   // Now recursively beautify nested loops
1074   if( _child ) result |= _child->beautify_loops( phase );
1075   if( _next  ) result |= _next ->beautify_loops( phase );
1076   return result;
1077 }
1078 
1079 //------------------------------allpaths_check_safepts----------------------------
1080 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1081 // encountered.  Helper for check_safepts.
1082 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1083   assert(stack.size() == 0, "empty stack");
1084   stack.push(_tail);
1085   visited.Clear();
1086   visited.set(_tail->_idx);
1087   while (stack.size() > 0) {
1088     Node* n = stack.pop();
1089     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1090       // Terminate this path
1091     } else if (n->Opcode() == Op_SafePoint) {
1092       if (_phase->get_loop(n) != this) {
1093         if (_required_safept == NULL) _required_safept = new Node_List();
1094         _required_safept->push(n);  // save the one closest to the tail
1095       }
1096       // Terminate this path
1097     } else {
1098       uint start = n->is_Region() ? 1 : 0;
1099       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1100       for (uint i = start; i < end; i++) {
1101         Node* in = n->in(i);
1102         assert(in->is_CFG(), "must be");
1103         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1104           stack.push(in);
1105         }
1106       }
1107     }
1108   }
1109 }
1110 
1111 //------------------------------check_safepts----------------------------
1112 // Given dominators, try to find loops with calls that must always be
1113 // executed (call dominates loop tail).  These loops do not need non-call
1114 // safepoints (ncsfpt).
1115 //
1116 // A complication is that a safepoint in a inner loop may be needed
1117 // by an outer loop. In the following, the inner loop sees it has a
1118 // call (block 3) on every path from the head (block 2) to the
1119 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1120 // in block 2, _but_ this leaves the outer loop without a safepoint.
1121 //
1122 //          entry  0
1123 //                 |
1124 //                 v
1125 // outer 1,2    +->1
1126 //              |  |
1127 //              |  v
1128 //              |  2<---+  ncsfpt in 2
1129 //              |_/|\   |
1130 //                 | v  |
1131 // inner 2,3      /  3  |  call in 3
1132 //               /   |  |
1133 //              v    +--+
1134 //        exit  4
1135 //
1136 //
1137 // This method creates a list (_required_safept) of ncsfpt nodes that must
1138 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1139 // is first looked for in the lists for the outer loops of the current loop.
1140 //
1141 // The insights into the problem:
1142 //  A) counted loops are okay
1143 //  B) innermost loops are okay (only an inner loop can delete
1144 //     a ncsfpt needed by an outer loop)
1145 //  C) a loop is immune from an inner loop deleting a safepoint
1146 //     if the loop has a call on the idom-path
1147 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1148 //     idom-path that is not in a nested loop
1149 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1150 //     loop needs to be prevented from deletion by an inner loop
1151 //
1152 // There are two analyses:
1153 //  1) The first, and cheaper one, scans the loop body from
1154 //     tail to head following the idom (immediate dominator)
1155 //     chain, looking for the cases (C,D,E) above.
1156 //     Since inner loops are scanned before outer loops, there is summary
1157 //     information about inner loops.  Inner loops can be skipped over
1158 //     when the tail of an inner loop is encountered.
1159 //
1160 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1161 //     the idom path (which is rare), scans all predecessor control paths
1162 //     from the tail to the head, terminating a path when a call or sfpt
1163 //     is encountered, to find the ncsfpt's that are closest to the tail.
1164 //
1165 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1166   // Bottom up traversal
1167   IdealLoopTree* ch = _child;
1168   while (ch != NULL) {
1169     ch->check_safepts(visited, stack);
1170     ch = ch->_next;
1171   }
1172 
1173   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1174     bool  has_call         = false; // call on dom-path
1175     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1176     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1177     // Scan the dom-path nodes from tail to head
1178     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1179       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1180         has_call = true;
1181         _has_sfpt = 1;          // Then no need for a safept!
1182         break;
1183       } else if (n->Opcode() == Op_SafePoint) {
1184         if (_phase->get_loop(n) == this) {
1185           has_local_ncsfpt = true;
1186           break;
1187         }
1188         if (nonlocal_ncsfpt == NULL) {
1189           nonlocal_ncsfpt = n; // save the one closest to the tail
1190         }
1191       } else {
1192         IdealLoopTree* nlpt = _phase->get_loop(n);
1193         if (this != nlpt) {
1194           // If at an inner loop tail, see if the inner loop has already
1195           // recorded seeing a call on the dom-path (and stop.)  If not,
1196           // jump to the head of the inner loop.
1197           assert(is_member(nlpt), "nested loop");
1198           Node* tail = nlpt->_tail;
1199           if (tail->in(0)->is_If()) tail = tail->in(0);
1200           if (n == tail) {
1201             // If inner loop has call on dom-path, so does outer loop
1202             if (nlpt->_has_sfpt) {
1203               has_call = true;
1204               _has_sfpt = 1;
1205               break;
1206             }
1207             // Skip to head of inner loop
1208             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1209             n = nlpt->_head;
1210           }
1211         }
1212       }
1213     }
1214     // Record safept's that this loop needs preserved when an
1215     // inner loop attempts to delete it's safepoints.
1216     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1217       if (nonlocal_ncsfpt != NULL) {
1218         if (_required_safept == NULL) _required_safept = new Node_List();
1219         _required_safept->push(nonlocal_ncsfpt);
1220       } else {
1221         // Failed to find a suitable safept on the dom-path.  Now use
1222         // an all paths walk from tail to head, looking for safepoints to preserve.
1223         allpaths_check_safepts(visited, stack);
1224       }
1225     }
1226   }
1227 }
1228 
1229 //---------------------------is_deleteable_safept----------------------------
1230 // Is safept not required by an outer loop?
1231 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1232   assert(sfpt->Opcode() == Op_SafePoint, "");
1233   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1234   while (lp != NULL) {
1235     Node_List* sfpts = lp->_required_safept;
1236     if (sfpts != NULL) {
1237       for (uint i = 0; i < sfpts->size(); i++) {
1238         if (sfpt == sfpts->at(i))
1239           return false;
1240       }
1241     }
1242     lp = lp->_parent;
1243   }
1244   return true;
1245 }
1246 
1247 //------------------------------counted_loop-----------------------------------
1248 // Convert to counted loops where possible
1249 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1250 
1251   // For grins, set the inner-loop flag here
1252   if( !_child ) {
1253     if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
1254   }
1255 
1256   if( _head->is_CountedLoop() ||
1257       phase->is_counted_loop( _head, this ) ) {
1258     _has_sfpt = 1;              // Indicate we do not need a safepoint here
1259 
1260     // Look for a safepoint to remove
1261     for (Node* n = tail(); n != _head; n = phase->idom(n))
1262       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1263           phase->is_deleteable_safept(n))
1264         phase->lazy_replace(n,n->in(TypeFunc::Control));
1265 
1266     CountedLoopNode *cl = _head->as_CountedLoop();
1267     Node *incr = cl->incr();
1268     if( !incr ) return;         // Dead loop?
1269     Node *init = cl->init_trip();
1270     Node *phi  = cl->phi();
1271     // protect against stride not being a constant
1272     if( !cl->stride_is_con() ) return;
1273     int stride_con = cl->stride_con();
1274 
1275     // Look for induction variables
1276 
1277     // Visit all children, looking for Phis
1278     for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1279       Node *out = cl->out(i);
1280       // Look for other phis (secondary IVs). Skip dead ones
1281       if (!out->is_Phi() || out == phi || !phase->has_node(out)) continue;
1282       PhiNode* phi2 = out->as_Phi();
1283       Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1284       // Look for induction variables of the form:  X += constant
1285       if( phi2->region() != _head ||
1286           incr2->req() != 3 ||
1287           incr2->in(1) != phi2 ||
1288           incr2 == incr ||
1289           incr2->Opcode() != Op_AddI ||
1290           !incr2->in(2)->is_Con() )
1291         continue;
1292 
1293       // Check for parallel induction variable (parallel to trip counter)
1294       // via an affine function.  In particular, count-down loops with
1295       // count-up array indices are common. We only RCE references off
1296       // the trip-counter, so we need to convert all these to trip-counter
1297       // expressions.
1298       Node *init2 = phi2->in( LoopNode::EntryControl );
1299       int stride_con2 = incr2->in(2)->get_int();
1300 
1301       // The general case here gets a little tricky.  We want to find the
1302       // GCD of all possible parallel IV's and make a new IV using this
1303       // GCD for the loop.  Then all possible IVs are simple multiples of
1304       // the GCD.  In practice, this will cover very few extra loops.
1305       // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1306       // where +/-1 is the common case, but other integer multiples are
1307       // also easy to handle.
1308       int ratio_con = stride_con2/stride_con;
1309 
1310       if( ratio_con * stride_con == stride_con2 ) { // Check for exact
1311         // Convert to using the trip counter.  The parallel induction
1312         // variable differs from the trip counter by a loop-invariant
1313         // amount, the difference between their respective initial values.
1314         // It is scaled by the 'ratio_con'.
1315         Compile* C = phase->C;
1316         Node* ratio = phase->_igvn.intcon(ratio_con);
1317         phase->set_ctrl(ratio, C->root());
1318         Node* ratio_init = new (C, 3) MulINode(init, ratio);
1319         phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
1320         phase->set_early_ctrl(ratio_init);
1321         Node* diff = new (C, 3) SubINode(init2, ratio_init);
1322         phase->_igvn.register_new_node_with_optimizer(diff, init2);
1323         phase->set_early_ctrl(diff);
1324         Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
1325         phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
1326         phase->set_ctrl(ratio_idx, cl);
1327         Node* add  = new (C, 3) AddINode(ratio_idx, diff);
1328         phase->_igvn.register_new_node_with_optimizer(add);
1329         phase->set_ctrl(add, cl);
1330         phase->_igvn.replace_node( phi2, add );
1331         // Sometimes an induction variable is unused
1332         if (add->outcnt() == 0) {
1333           phase->_igvn.remove_dead_node(add);
1334         }
1335         --i; // deleted this phi; rescan starting with next position
1336         continue;
1337       }
1338     }
1339   } else if (_parent != NULL && !_irreducible) {
1340     // Not a counted loop.
1341     // Look for a safepoint on the idom-path to remove, preserving the first one
1342     bool found = false;
1343     Node* n = tail();
1344     for (; n != _head && !found; n = phase->idom(n)) {
1345       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
1346         found = true; // Found one
1347     }
1348     // Skip past it and delete the others
1349     for (; n != _head; n = phase->idom(n)) {
1350       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1351           phase->is_deleteable_safept(n))
1352         phase->lazy_replace(n,n->in(TypeFunc::Control));
1353     }
1354   }
1355 
1356   // Recursively
1357   if( _child ) _child->counted_loop( phase );
1358   if( _next  ) _next ->counted_loop( phase );
1359 }
1360 
1361 #ifndef PRODUCT
1362 //------------------------------dump_head--------------------------------------
1363 // Dump 1 liner for loop header info
1364 void IdealLoopTree::dump_head( ) const {
1365   for( uint i=0; i<_nest; i++ )
1366     tty->print("  ");
1367   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1368   if( _irreducible ) tty->print(" IRREDUCIBLE");
1369   if( _head->is_CountedLoop() ) {
1370     CountedLoopNode *cl = _head->as_CountedLoop();
1371     tty->print(" counted");
1372     if( cl->is_pre_loop () ) tty->print(" pre" );
1373     if( cl->is_main_loop() ) tty->print(" main");
1374     if( cl->is_post_loop() ) tty->print(" post");
1375   }
1376   tty->cr();
1377 }
1378 
1379 //------------------------------dump-------------------------------------------
1380 // Dump loops by loop tree
1381 void IdealLoopTree::dump( ) const {
1382   dump_head();
1383   if( _child ) _child->dump();
1384   if( _next  ) _next ->dump();
1385 }
1386 
1387 #endif
1388 
1389 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1390   if (loop == root) {
1391     if (loop->_child != NULL) {
1392       log->begin_head("loop_tree");
1393       log->end_head();
1394       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1395       log->tail("loop_tree");
1396       assert(loop->_next == NULL, "what?");
1397     }
1398   } else {
1399     Node* head = loop->_head;
1400     log->begin_head("loop");
1401     log->print(" idx='%d' ", head->_idx);
1402     if (loop->_irreducible) log->print("irreducible='1' ");
1403     if (head->is_Loop()) {
1404       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1405       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1406     }
1407     if (head->is_CountedLoop()) {
1408       CountedLoopNode* cl = head->as_CountedLoop();
1409       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1410       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1411       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1412     }
1413     log->end_head();
1414     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1415     log->tail("loop");
1416     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1417   }
1418 }
1419 
1420 //---------------------collect_potentially_useful_predicates-----------------------
1421 // Helper function to collect potentially useful predicates to prevent them from
1422 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1423 void PhaseIdealLoop::collect_potentially_useful_predicates(
1424                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1425   if (loop->_child) { // child
1426     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1427   }
1428 
1429   // self (only loops that we can apply loop predication may use their predicates)
1430   if (loop->_head->is_Loop()     &&
1431       !loop->_irreducible        &&
1432       !loop->tail()->is_top()) {
1433     LoopNode *lpn  = loop->_head->as_Loop();
1434     Node* entry = lpn->in(LoopNode::EntryControl);
1435     ProjNode *predicate_proj = find_predicate_insertion_point(entry);
1436     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
1437       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
1438       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1439     }
1440   }
1441 
1442   if ( loop->_next ) { // sibling
1443     collect_potentially_useful_predicates(loop->_next, useful_predicates);
1444   }
1445 }
1446 
1447 //------------------------eliminate_useless_predicates-----------------------------
1448 // Eliminate all inserted predicates if they could not be used by loop predication.
1449 void PhaseIdealLoop::eliminate_useless_predicates() {
1450   if (C->predicate_count() == 0) return; // no predicate left
1451 
1452   Unique_Node_List useful_predicates; // to store useful predicates
1453   if (C->has_loops()) {
1454     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1455   }
1456 
1457   for (int i = C->predicate_count(); i > 0; i--) {
1458      Node * n = C->predicate_opaque1_node(i-1);
1459      assert(n->Opcode() == Op_Opaque1, "must be");
1460      if (!useful_predicates.member(n)) { // not in the useful list
1461        _igvn.replace_node(n, n->in(1));
1462      }
1463   }
1464 }
1465 
1466 //=============================================================================
1467 //----------------------------build_and_optimize-------------------------------
1468 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
1469 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
1470 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
1471   int old_progress = C->major_progress();
1472 
1473   // Reset major-progress flag for the driver's heuristics
1474   C->clear_major_progress();
1475 
1476 #ifndef PRODUCT
1477   // Capture for later assert
1478   uint unique = C->unique();
1479   _loop_invokes++;
1480   _loop_work += unique;
1481 #endif
1482 
1483   // True if the method has at least 1 irreducible loop
1484   _has_irreducible_loops = false;
1485 
1486   _created_loop_node = false;
1487 
1488   Arena *a = Thread::current()->resource_area();
1489   VectorSet visited(a);
1490   // Pre-grow the mapping from Nodes to IdealLoopTrees.
1491   _nodes.map(C->unique(), NULL);
1492   memset(_nodes.adr(), 0, wordSize * C->unique());
1493 
1494   // Pre-build the top-level outermost loop tree entry
1495   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
1496   // Do not need a safepoint at the top level
1497   _ltree_root->_has_sfpt = 1;
1498 
1499   // Empty pre-order array
1500   allocate_preorders();
1501 
1502   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
1503   // IdealLoopTree entries.  Data nodes are NOT walked.
1504   build_loop_tree();
1505   // Check for bailout, and return
1506   if (C->failing()) {
1507     return;
1508   }
1509 
1510   // No loops after all
1511   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
1512 
1513   // There should always be an outer loop containing the Root and Return nodes.
1514   // If not, we have a degenerate empty program.  Bail out in this case.
1515   if (!has_node(C->root())) {
1516     if (!_verify_only) {
1517       C->clear_major_progress();
1518       C->record_method_not_compilable("empty program detected during loop optimization");
1519     }
1520     return;
1521   }
1522 
1523   // Nothing to do, so get out
1524   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
1525     _igvn.optimize();           // Cleanup NeverBranches
1526     return;
1527   }
1528 
1529   // Set loop nesting depth
1530   _ltree_root->set_nest( 0 );
1531 
1532   // Split shared headers and insert loop landing pads.
1533   // Do not bother doing this on the Root loop of course.
1534   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
1535     if( _ltree_root->_child->beautify_loops( this ) ) {
1536       // Re-build loop tree!
1537       _ltree_root->_child = NULL;
1538       _nodes.clear();
1539       reallocate_preorders();
1540       build_loop_tree();
1541       // Check for bailout, and return
1542       if (C->failing()) {
1543         return;
1544       }
1545       // Reset loop nesting depth
1546       _ltree_root->set_nest( 0 );
1547 
1548       C->print_method("After beautify loops", 3);
1549     }
1550   }
1551 
1552   // Build Dominators for elision of NULL checks & loop finding.
1553   // Since nodes do not have a slot for immediate dominator, make
1554   // a persistent side array for that info indexed on node->_idx.
1555   _idom_size = C->unique();
1556   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
1557   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
1558   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
1559   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
1560 
1561   Dominators();
1562 
1563   if (!_verify_only) {
1564     // As a side effect, Dominators removed any unreachable CFG paths
1565     // into RegionNodes.  It doesn't do this test against Root, so
1566     // we do it here.
1567     for( uint i = 1; i < C->root()->req(); i++ ) {
1568       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
1569         _igvn.hash_delete(C->root());
1570         C->root()->del_req(i);
1571         _igvn._worklist.push(C->root());
1572         i--;                      // Rerun same iteration on compressed edges
1573       }
1574     }
1575 
1576     // Given dominators, try to find inner loops with calls that must
1577     // always be executed (call dominates loop tail).  These loops do
1578     // not need a separate safepoint.
1579     Node_List cisstack(a);
1580     _ltree_root->check_safepts(visited, cisstack);
1581   }
1582 
1583   // Walk the DATA nodes and place into loops.  Find earliest control
1584   // node.  For CFG nodes, the _nodes array starts out and remains
1585   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
1586   // _nodes array holds the earliest legal controlling CFG node.
1587 
1588   // Allocate stack with enough space to avoid frequent realloc
1589   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
1590   Node_Stack nstack( a, stack_size );
1591 
1592   visited.Clear();
1593   Node_List worklist(a);
1594   // Don't need C->root() on worklist since
1595   // it will be processed among C->top() inputs
1596   worklist.push( C->top() );
1597   visited.set( C->top()->_idx ); // Set C->top() as visited now
1598   build_loop_early( visited, worklist, nstack );
1599 
1600   // Given early legal placement, try finding counted loops.  This placement
1601   // is good enough to discover most loop invariants.
1602   if( !_verify_me && !_verify_only )
1603     _ltree_root->counted_loop( this );
1604 
1605   // Find latest loop placement.  Find ideal loop placement.
1606   visited.Clear();
1607   init_dom_lca_tags();
1608   // Need C->root() on worklist when processing outs
1609   worklist.push( C->root() );
1610   NOT_PRODUCT( C->verify_graph_edges(); )
1611   worklist.push( C->top() );
1612   build_loop_late( visited, worklist, nstack );
1613 
1614   if (_verify_only) {
1615     // restore major progress flag
1616     for (int i = 0; i < old_progress; i++)
1617       C->set_major_progress();
1618     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
1619     assert(_igvn._worklist.size() == 0, "shouldn't push anything");
1620     return;
1621   }
1622 
1623   // some parser-inserted loop predicates could never be used by loop
1624   // predication. Eliminate them before loop optimization
1625   if (UseLoopPredicate) {
1626     eliminate_useless_predicates();
1627   }
1628 
1629   // clear out the dead code
1630   while(_deadlist.size()) {
1631     _igvn.remove_globally_dead_node(_deadlist.pop());
1632   }
1633 
1634 #ifndef PRODUCT
1635   C->verify_graph_edges();
1636   if( _verify_me ) {             // Nested verify pass?
1637     // Check to see if the verify mode is broken
1638     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
1639     return;
1640   }
1641   if( VerifyLoopOptimizations ) verify();
1642 #endif
1643 
1644   if (ReassociateInvariants) {
1645     // Reassociate invariants and prep for split_thru_phi
1646     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1647       IdealLoopTree* lpt = iter.current();
1648       if (!lpt->is_counted() || !lpt->is_inner()) continue;
1649 
1650       lpt->reassociate_invariants(this);
1651 
1652       // Because RCE opportunities can be masked by split_thru_phi,
1653       // look for RCE candidates and inhibit split_thru_phi
1654       // on just their loop-phi's for this pass of loop opts
1655       if (SplitIfBlocks && do_split_ifs) {
1656         if (lpt->policy_range_check(this)) {
1657           lpt->_rce_candidate = 1; // = true
1658         }
1659       }
1660     }
1661   }
1662 
1663   // Check for aggressive application of split-if and other transforms
1664   // that require basic-block info (like cloning through Phi's)
1665   if( SplitIfBlocks && do_split_ifs ) {
1666     visited.Clear();
1667     split_if_with_blocks( visited, nstack );
1668     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
1669   }
1670 
1671   // Perform loop predication before iteration splitting
1672   if (do_loop_pred && C->has_loops() && !C->major_progress()) {
1673     _ltree_root->_child->loop_predication(this);
1674   }
1675 
1676   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
1677     if (do_intrinsify_fill()) {
1678       C->set_major_progress();
1679     }
1680   }
1681 
1682   // Perform iteration-splitting on inner loops.  Split iterations to avoid
1683   // range checks or one-shot null checks.
1684 
1685   // If split-if's didn't hack the graph too bad (no CFG changes)
1686   // then do loop opts.
1687   if (C->has_loops() && !C->major_progress()) {
1688     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
1689     _ltree_root->_child->iteration_split( this, worklist );
1690     // No verify after peeling!  GCM has hoisted code out of the loop.
1691     // After peeling, the hoisted code could sink inside the peeled area.
1692     // The peeling code does not try to recompute the best location for
1693     // all the code before the peeled area, so the verify pass will always
1694     // complain about it.
1695   }
1696   // Do verify graph edges in any case
1697   NOT_PRODUCT( C->verify_graph_edges(); );
1698 
1699   if (!do_split_ifs) {
1700     // We saw major progress in Split-If to get here.  We forced a
1701     // pass with unrolling and not split-if, however more split-if's
1702     // might make progress.  If the unrolling didn't make progress
1703     // then the major-progress flag got cleared and we won't try
1704     // another round of Split-If.  In particular the ever-common
1705     // instance-of/check-cast pattern requires at least 2 rounds of
1706     // Split-If to clear out.
1707     C->set_major_progress();
1708   }
1709 
1710   // Repeat loop optimizations if new loops were seen
1711   if (created_loop_node()) {
1712     C->set_major_progress();
1713   }
1714 
1715   // Convert scalar to superword operations
1716 
1717   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
1718     // SuperWord transform
1719     SuperWord sw(this);
1720     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1721       IdealLoopTree* lpt = iter.current();
1722       if (lpt->is_counted()) {
1723         sw.transform_loop(lpt);
1724       }
1725     }
1726   }
1727 
1728   // Cleanup any modified bits
1729   _igvn.optimize();
1730 
1731   // disable assert until issue with split_flow_path is resolved (6742111)
1732   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
1733   //        "shouldn't introduce irreducible loops");
1734 
1735   if (C->log() != NULL) {
1736     log_loop_tree(_ltree_root, _ltree_root, C->log());
1737   }
1738 }
1739 
1740 #ifndef PRODUCT
1741 //------------------------------print_statistics-------------------------------
1742 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
1743 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
1744 void PhaseIdealLoop::print_statistics() {
1745   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
1746 }
1747 
1748 //------------------------------verify-----------------------------------------
1749 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
1750 static int fail;                // debug only, so its multi-thread dont care
1751 void PhaseIdealLoop::verify() const {
1752   int old_progress = C->major_progress();
1753   ResourceMark rm;
1754   PhaseIdealLoop loop_verify( _igvn, this );
1755   VectorSet visited(Thread::current()->resource_area());
1756 
1757   fail = 0;
1758   verify_compare( C->root(), &loop_verify, visited );
1759   assert( fail == 0, "verify loops failed" );
1760   // Verify loop structure is the same
1761   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
1762   // Reset major-progress.  It was cleared by creating a verify version of
1763   // PhaseIdealLoop.
1764   for( int i=0; i<old_progress; i++ )
1765     C->set_major_progress();
1766 }
1767 
1768 //------------------------------verify_compare---------------------------------
1769 // Make sure me and the given PhaseIdealLoop agree on key data structures
1770 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
1771   if( !n ) return;
1772   if( visited.test_set( n->_idx ) ) return;
1773   if( !_nodes[n->_idx] ) {      // Unreachable
1774     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
1775     return;
1776   }
1777 
1778   uint i;
1779   for( i = 0; i < n->req(); i++ )
1780     verify_compare( n->in(i), loop_verify, visited );
1781 
1782   // Check the '_nodes' block/loop structure
1783   i = n->_idx;
1784   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
1785     if( _nodes[i] != loop_verify->_nodes[i] &&
1786         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
1787       tty->print("Mismatched control setting for: ");
1788       n->dump();
1789       if( fail++ > 10 ) return;
1790       Node *c = get_ctrl_no_update(n);
1791       tty->print("We have it as: ");
1792       if( c->in(0) ) c->dump();
1793         else tty->print_cr("N%d",c->_idx);
1794       tty->print("Verify thinks: ");
1795       if( loop_verify->has_ctrl(n) )
1796         loop_verify->get_ctrl_no_update(n)->dump();
1797       else
1798         loop_verify->get_loop_idx(n)->dump();
1799       tty->cr();
1800     }
1801   } else {                    // We have a loop
1802     IdealLoopTree *us = get_loop_idx(n);
1803     if( loop_verify->has_ctrl(n) ) {
1804       tty->print("Mismatched loop setting for: ");
1805       n->dump();
1806       if( fail++ > 10 ) return;
1807       tty->print("We have it as: ");
1808       us->dump();
1809       tty->print("Verify thinks: ");
1810       loop_verify->get_ctrl_no_update(n)->dump();
1811       tty->cr();
1812     } else if (!C->major_progress()) {
1813       // Loop selection can be messed up if we did a major progress
1814       // operation, like split-if.  Do not verify in that case.
1815       IdealLoopTree *them = loop_verify->get_loop_idx(n);
1816       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
1817         tty->print("Unequals loops for: ");
1818         n->dump();
1819         if( fail++ > 10 ) return;
1820         tty->print("We have it as: ");
1821         us->dump();
1822         tty->print("Verify thinks: ");
1823         them->dump();
1824         tty->cr();
1825       }
1826     }
1827   }
1828 
1829   // Check for immediate dominators being equal
1830   if( i >= _idom_size ) {
1831     if( !n->is_CFG() ) return;
1832     tty->print("CFG Node with no idom: ");
1833     n->dump();
1834     return;
1835   }
1836   if( !n->is_CFG() ) return;
1837   if( n == C->root() ) return; // No IDOM here
1838 
1839   assert(n->_idx == i, "sanity");
1840   Node *id = idom_no_update(n);
1841   if( id != loop_verify->idom_no_update(n) ) {
1842     tty->print("Unequals idoms for: ");
1843     n->dump();
1844     if( fail++ > 10 ) return;
1845     tty->print("We have it as: ");
1846     id->dump();
1847     tty->print("Verify thinks: ");
1848     loop_verify->idom_no_update(n)->dump();
1849     tty->cr();
1850   }
1851 
1852 }
1853 
1854 //------------------------------verify_tree------------------------------------
1855 // Verify that tree structures match.  Because the CFG can change, siblings
1856 // within the loop tree can be reordered.  We attempt to deal with that by
1857 // reordering the verify's loop tree if possible.
1858 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
1859   assert( _parent == parent, "Badly formed loop tree" );
1860 
1861   // Siblings not in same order?  Attempt to re-order.
1862   if( _head != loop->_head ) {
1863     // Find _next pointer to update
1864     IdealLoopTree **pp = &loop->_parent->_child;
1865     while( *pp != loop )
1866       pp = &((*pp)->_next);
1867     // Find proper sibling to be next
1868     IdealLoopTree **nn = &loop->_next;
1869     while( (*nn) && (*nn)->_head != _head )
1870       nn = &((*nn)->_next);
1871 
1872     // Check for no match.
1873     if( !(*nn) ) {
1874       // Annoyingly, irreducible loops can pick different headers
1875       // after a major_progress operation, so the rest of the loop
1876       // tree cannot be matched.
1877       if (_irreducible && Compile::current()->major_progress())  return;
1878       assert( 0, "failed to match loop tree" );
1879     }
1880 
1881     // Move (*nn) to (*pp)
1882     IdealLoopTree *hit = *nn;
1883     *nn = hit->_next;
1884     hit->_next = loop;
1885     *pp = loop;
1886     loop = hit;
1887     // Now try again to verify
1888   }
1889 
1890   assert( _head  == loop->_head , "mismatched loop head" );
1891   Node *tail = _tail;           // Inline a non-updating version of
1892   while( !tail->in(0) )         // the 'tail()' call.
1893     tail = tail->in(1);
1894   assert( tail == loop->_tail, "mismatched loop tail" );
1895 
1896   // Counted loops that are guarded should be able to find their guards
1897   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
1898     CountedLoopNode *cl = _head->as_CountedLoop();
1899     Node *init = cl->init_trip();
1900     Node *ctrl = cl->in(LoopNode::EntryControl);
1901     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1902     Node *iff  = ctrl->in(0);
1903     assert( iff->Opcode() == Op_If, "" );
1904     Node *bol  = iff->in(1);
1905     assert( bol->Opcode() == Op_Bool, "" );
1906     Node *cmp  = bol->in(1);
1907     assert( cmp->Opcode() == Op_CmpI, "" );
1908     Node *add  = cmp->in(1);
1909     Node *opaq;
1910     if( add->Opcode() == Op_Opaque1 ) {
1911       opaq = add;
1912     } else {
1913       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
1914       assert( add == init, "" );
1915       opaq = cmp->in(2);
1916     }
1917     assert( opaq->Opcode() == Op_Opaque1, "" );
1918 
1919   }
1920 
1921   if (_child != NULL)  _child->verify_tree(loop->_child, this);
1922   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
1923   // Innermost loops need to verify loop bodies,
1924   // but only if no 'major_progress'
1925   int fail = 0;
1926   if (!Compile::current()->major_progress() && _child == NULL) {
1927     for( uint i = 0; i < _body.size(); i++ ) {
1928       Node *n = _body.at(i);
1929       if (n->outcnt() == 0)  continue; // Ignore dead
1930       uint j;
1931       for( j = 0; j < loop->_body.size(); j++ )
1932         if( loop->_body.at(j) == n )
1933           break;
1934       if( j == loop->_body.size() ) { // Not found in loop body
1935         // Last ditch effort to avoid assertion: Its possible that we
1936         // have some users (so outcnt not zero) but are still dead.
1937         // Try to find from root.
1938         if (Compile::current()->root()->find(n->_idx)) {
1939           fail++;
1940           tty->print("We have that verify does not: ");
1941           n->dump();
1942         }
1943       }
1944     }
1945     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
1946       Node *n = loop->_body.at(i2);
1947       if (n->outcnt() == 0)  continue; // Ignore dead
1948       uint j;
1949       for( j = 0; j < _body.size(); j++ )
1950         if( _body.at(j) == n )
1951           break;
1952       if( j == _body.size() ) { // Not found in loop body
1953         // Last ditch effort to avoid assertion: Its possible that we
1954         // have some users (so outcnt not zero) but are still dead.
1955         // Try to find from root.
1956         if (Compile::current()->root()->find(n->_idx)) {
1957           fail++;
1958           tty->print("Verify has that we do not: ");
1959           n->dump();
1960         }
1961       }
1962     }
1963     assert( !fail, "loop body mismatch" );
1964   }
1965 }
1966 
1967 #endif
1968 
1969 //------------------------------set_idom---------------------------------------
1970 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
1971   uint idx = d->_idx;
1972   if (idx >= _idom_size) {
1973     uint newsize = _idom_size<<1;
1974     while( idx >= newsize ) {
1975       newsize <<= 1;
1976     }
1977     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
1978     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
1979     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
1980     _idom_size = newsize;
1981   }
1982   _idom[idx] = n;
1983   _dom_depth[idx] = dom_depth;
1984 }
1985 
1986 //------------------------------recompute_dom_depth---------------------------------------
1987 // The dominator tree is constructed with only parent pointers.
1988 // This recomputes the depth in the tree by first tagging all
1989 // nodes as "no depth yet" marker.  The next pass then runs up
1990 // the dom tree from each node marked "no depth yet", and computes
1991 // the depth on the way back down.
1992 void PhaseIdealLoop::recompute_dom_depth() {
1993   uint no_depth_marker = C->unique();
1994   uint i;
1995   // Initialize depth to "no depth yet"
1996   for (i = 0; i < _idom_size; i++) {
1997     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
1998      _dom_depth[i] = no_depth_marker;
1999     }
2000   }
2001   if (_dom_stk == NULL) {
2002     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
2003     if (init_size < 10) init_size = 10;
2004     _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
2005   }
2006   // Compute new depth for each node.
2007   for (i = 0; i < _idom_size; i++) {
2008     uint j = i;
2009     // Run up the dom tree to find a node with a depth
2010     while (_dom_depth[j] == no_depth_marker) {
2011       _dom_stk->push(j);
2012       j = _idom[j]->_idx;
2013     }
2014     // Compute the depth on the way back down this tree branch
2015     uint dd = _dom_depth[j] + 1;
2016     while (_dom_stk->length() > 0) {
2017       uint j = _dom_stk->pop();
2018       _dom_depth[j] = dd;
2019       dd++;
2020     }
2021   }
2022 }
2023 
2024 //------------------------------sort-------------------------------------------
2025 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2026 // loop tree, not the root.
2027 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2028   if( !innermost ) return loop; // New innermost loop
2029 
2030   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2031   assert( loop_preorder, "not yet post-walked loop" );
2032   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2033   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2034 
2035   // Insert at start of list
2036   while( l ) {                  // Insertion sort based on pre-order
2037     if( l == loop ) return innermost; // Already on list!
2038     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2039     assert( l_preorder, "not yet post-walked l" );
2040     // Check header pre-order number to figure proper nesting
2041     if( loop_preorder > l_preorder )
2042       break;                    // End of insertion
2043     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2044     // Since I split shared headers, you'd think this could not happen.
2045     // BUT: I must first do the preorder numbering before I can discover I
2046     // have shared headers, so the split headers all get the same preorder
2047     // number as the RegionNode they split from.
2048     if( loop_preorder == l_preorder &&
2049         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2050       break;                    // Also check for shared headers (same pre#)
2051     pp = &l->_parent;           // Chain up list
2052     l = *pp;
2053   }
2054   // Link into list
2055   // Point predecessor to me
2056   *pp = loop;
2057   // Point me to successor
2058   IdealLoopTree *p = loop->_parent;
2059   loop->_parent = l;            // Point me to successor
2060   if( p ) sort( p, innermost ); // Insert my parents into list as well
2061   return innermost;
2062 }
2063 
2064 //------------------------------build_loop_tree--------------------------------
2065 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2066 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2067 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2068 // tightest enclosing IdealLoopTree for post-walked.
2069 //
2070 // During my forward walk I do a short 1-layer lookahead to see if I can find
2071 // a loop backedge with that doesn't have any work on the backedge.  This
2072 // helps me construct nested loops with shared headers better.
2073 //
2074 // Once I've done the forward recursion, I do the post-work.  For each child
2075 // I check to see if there is a backedge.  Backedges define a loop!  I
2076 // insert an IdealLoopTree at the target of the backedge.
2077 //
2078 // During the post-work I also check to see if I have several children
2079 // belonging to different loops.  If so, then this Node is a decision point
2080 // where control flow can choose to change loop nests.  It is at this
2081 // decision point where I can figure out how loops are nested.  At this
2082 // time I can properly order the different loop nests from my children.
2083 // Note that there may not be any backedges at the decision point!
2084 //
2085 // Since the decision point can be far removed from the backedges, I can't
2086 // order my loops at the time I discover them.  Thus at the decision point
2087 // I need to inspect loop header pre-order numbers to properly nest my
2088 // loops.  This means I need to sort my childrens' loops by pre-order.
2089 // The sort is of size number-of-control-children, which generally limits
2090 // it to size 2 (i.e., I just choose between my 2 target loops).
2091 void PhaseIdealLoop::build_loop_tree() {
2092   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2093   GrowableArray <Node *> bltstack(C->unique() >> 1);
2094   Node *n = C->root();
2095   bltstack.push(n);
2096   int pre_order = 1;
2097   int stack_size;
2098 
2099   while ( ( stack_size = bltstack.length() ) != 0 ) {
2100     n = bltstack.top(); // Leave node on stack
2101     if ( !is_visited(n) ) {
2102       // ---- Pre-pass Work ----
2103       // Pre-walked but not post-walked nodes need a pre_order number.
2104 
2105       set_preorder_visited( n, pre_order ); // set as visited
2106 
2107       // ---- Scan over children ----
2108       // Scan first over control projections that lead to loop headers.
2109       // This helps us find inner-to-outer loops with shared headers better.
2110 
2111       // Scan children's children for loop headers.
2112       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2113         Node* m = n->raw_out(i);       // Child
2114         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2115           // Scan over children's children to find loop
2116           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2117             Node* l = m->fast_out(j);
2118             if( is_visited(l) &&       // Been visited?
2119                 !is_postvisited(l) &&  // But not post-visited
2120                 get_preorder(l) < pre_order ) { // And smaller pre-order
2121               // Found!  Scan the DFS down this path before doing other paths
2122               bltstack.push(m);
2123               break;
2124             }
2125           }
2126         }
2127       }
2128       pre_order++;
2129     }
2130     else if ( !is_postvisited(n) ) {
2131       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2132       // such as com.sun.rsasign.am::a.
2133       // For non-recursive version, first, process current children.
2134       // On next iteration, check if additional children were added.
2135       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2136         Node* u = n->raw_out(k);
2137         if ( u->is_CFG() && !is_visited(u) ) {
2138           bltstack.push(u);
2139         }
2140       }
2141       if ( bltstack.length() == stack_size ) {
2142         // There were no additional children, post visit node now
2143         (void)bltstack.pop(); // Remove node from stack
2144         pre_order = build_loop_tree_impl( n, pre_order );
2145         // Check for bailout
2146         if (C->failing()) {
2147           return;
2148         }
2149         // Check to grow _preorders[] array for the case when
2150         // build_loop_tree_impl() adds new nodes.
2151         check_grow_preorders();
2152       }
2153     }
2154     else {
2155       (void)bltstack.pop(); // Remove post-visited node from stack
2156     }
2157   }
2158 }
2159 
2160 //------------------------------build_loop_tree_impl---------------------------
2161 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2162   // ---- Post-pass Work ----
2163   // Pre-walked but not post-walked nodes need a pre_order number.
2164 
2165   // Tightest enclosing loop for this Node
2166   IdealLoopTree *innermost = NULL;
2167 
2168   // For all children, see if any edge is a backedge.  If so, make a loop
2169   // for it.  Then find the tightest enclosing loop for the self Node.
2170   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2171     Node* m = n->fast_out(i);   // Child
2172     if( n == m ) continue;      // Ignore control self-cycles
2173     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2174 
2175     IdealLoopTree *l;           // Child's loop
2176     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2177       // Found a backedge
2178       assert( get_preorder(m) < pre_order, "should be backedge" );
2179       // Check for the RootNode, which is already a LoopNode and is allowed
2180       // to have multiple "backedges".
2181       if( m == C->root()) {     // Found the root?
2182         l = _ltree_root;        // Root is the outermost LoopNode
2183       } else {                  // Else found a nested loop
2184         // Insert a LoopNode to mark this loop.
2185         l = new IdealLoopTree(this, m, n);
2186       } // End of Else found a nested loop
2187       if( !has_loop(m) )        // If 'm' does not already have a loop set
2188         set_loop(m, l);         // Set loop header to loop now
2189 
2190     } else {                    // Else not a nested loop
2191       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2192       l = get_loop(m);          // Get previously determined loop
2193       // If successor is header of a loop (nest), move up-loop till it
2194       // is a member of some outer enclosing loop.  Since there are no
2195       // shared headers (I've split them already) I only need to go up
2196       // at most 1 level.
2197       while( l && l->_head == m ) // Successor heads loop?
2198         l = l->_parent;         // Move up 1 for me
2199       // If this loop is not properly parented, then this loop
2200       // has no exit path out, i.e. its an infinite loop.
2201       if( !l ) {
2202         // Make loop "reachable" from root so the CFG is reachable.  Basically
2203         // insert a bogus loop exit that is never taken.  'm', the loop head,
2204         // points to 'n', one (of possibly many) fall-in paths.  There may be
2205         // many backedges as well.
2206 
2207         // Here I set the loop to be the root loop.  I could have, after
2208         // inserting a bogus loop exit, restarted the recursion and found my
2209         // new loop exit.  This would make the infinite loop a first-class
2210         // loop and it would then get properly optimized.  What's the use of
2211         // optimizing an infinite loop?
2212         l = _ltree_root;        // Oops, found infinite loop
2213 
2214         if (!_verify_only) {
2215           // Insert the NeverBranch between 'm' and it's control user.
2216           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
2217           _igvn.register_new_node_with_optimizer(iff);
2218           set_loop(iff, l);
2219           Node *if_t = new (C, 1) CProjNode( iff, 0 );
2220           _igvn.register_new_node_with_optimizer(if_t);
2221           set_loop(if_t, l);
2222 
2223           Node* cfg = NULL;       // Find the One True Control User of m
2224           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2225             Node* x = m->fast_out(j);
2226             if (x->is_CFG() && x != m && x != iff)
2227               { cfg = x; break; }
2228           }
2229           assert(cfg != NULL, "must find the control user of m");
2230           uint k = 0;             // Probably cfg->in(0)
2231           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2232           cfg->set_req( k, if_t ); // Now point to NeverBranch
2233 
2234           // Now create the never-taken loop exit
2235           Node *if_f = new (C, 1) CProjNode( iff, 1 );
2236           _igvn.register_new_node_with_optimizer(if_f);
2237           set_loop(if_f, l);
2238           // Find frame ptr for Halt.  Relies on the optimizer
2239           // V-N'ing.  Easier and quicker than searching through
2240           // the program structure.
2241           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
2242           _igvn.register_new_node_with_optimizer(frame);
2243           // Halt & Catch Fire
2244           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
2245           _igvn.register_new_node_with_optimizer(halt);
2246           set_loop(halt, l);
2247           C->root()->add_req(halt);
2248         }
2249         set_loop(C->root(), _ltree_root);
2250       }
2251     }
2252     // Weeny check for irreducible.  This child was already visited (this
2253     // IS the post-work phase).  Is this child's loop header post-visited
2254     // as well?  If so, then I found another entry into the loop.
2255     if (!_verify_only) {
2256       while( is_postvisited(l->_head) ) {
2257         // found irreducible
2258         l->_irreducible = 1; // = true
2259         l = l->_parent;
2260         _has_irreducible_loops = true;
2261         // Check for bad CFG here to prevent crash, and bailout of compile
2262         if (l == NULL) {
2263           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2264           return pre_order;
2265         }
2266       }
2267     }
2268 
2269     // This Node might be a decision point for loops.  It is only if
2270     // it's children belong to several different loops.  The sort call
2271     // does a trivial amount of work if there is only 1 child or all
2272     // children belong to the same loop.  If however, the children
2273     // belong to different loops, the sort call will properly set the
2274     // _parent pointers to show how the loops nest.
2275     //
2276     // In any case, it returns the tightest enclosing loop.
2277     innermost = sort( l, innermost );
2278   }
2279 
2280   // Def-use info will have some dead stuff; dead stuff will have no
2281   // loop decided on.
2282 
2283   // Am I a loop header?  If so fix up my parent's child and next ptrs.
2284   if( innermost && innermost->_head == n ) {
2285     assert( get_loop(n) == innermost, "" );
2286     IdealLoopTree *p = innermost->_parent;
2287     IdealLoopTree *l = innermost;
2288     while( p && l->_head == n ) {
2289       l->_next = p->_child;     // Put self on parents 'next child'
2290       p->_child = l;            // Make self as first child of parent
2291       l = p;                    // Now walk up the parent chain
2292       p = l->_parent;
2293     }
2294   } else {
2295     // Note that it is possible for a LoopNode to reach here, if the
2296     // backedge has been made unreachable (hence the LoopNode no longer
2297     // denotes a Loop, and will eventually be removed).
2298 
2299     // Record tightest enclosing loop for self.  Mark as post-visited.
2300     set_loop(n, innermost);
2301     // Also record has_call flag early on
2302     if( innermost ) {
2303       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2304         // Do not count uncommon calls
2305         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2306           Node *iff = n->in(0)->in(0);
2307           if( !iff->is_If() ||
2308               (n->in(0)->Opcode() == Op_IfFalse &&
2309                (1.0 - iff->as_If()->_prob) >= 0.01) ||
2310               (iff->as_If()->_prob >= 0.01) )
2311             innermost->_has_call = 1;
2312         }
2313       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2314         // Disable loop optimizations if the loop has a scalar replaceable
2315         // allocation. This disabling may cause a potential performance lost
2316         // if the allocation is not eliminated for some reason.
2317         innermost->_allow_optimizations = false;
2318         innermost->_has_call = 1; // = true
2319       }
2320     }
2321   }
2322 
2323   // Flag as post-visited now
2324   set_postvisited(n);
2325   return pre_order;
2326 }
2327 
2328 
2329 //------------------------------build_loop_early-------------------------------
2330 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2331 // First pass computes the earliest controlling node possible.  This is the
2332 // controlling input with the deepest dominating depth.
2333 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2334   while (worklist.size() != 0) {
2335     // Use local variables nstack_top_n & nstack_top_i to cache values
2336     // on nstack's top.
2337     Node *nstack_top_n = worklist.pop();
2338     uint  nstack_top_i = 0;
2339 //while_nstack_nonempty:
2340     while (true) {
2341       // Get parent node and next input's index from stack's top.
2342       Node  *n = nstack_top_n;
2343       uint   i = nstack_top_i;
2344       uint cnt = n->req(); // Count of inputs
2345       if (i == 0) {        // Pre-process the node.
2346         if( has_node(n) &&            // Have either loop or control already?
2347             !has_ctrl(n) ) {          // Have loop picked out already?
2348           // During "merge_many_backedges" we fold up several nested loops
2349           // into a single loop.  This makes the members of the original
2350           // loop bodies pointing to dead loops; they need to move up
2351           // to the new UNION'd larger loop.  I set the _head field of these
2352           // dead loops to NULL and the _parent field points to the owning
2353           // loop.  Shades of UNION-FIND algorithm.
2354           IdealLoopTree *ilt;
2355           while( !(ilt = get_loop(n))->_head ) {
2356             // Normally I would use a set_loop here.  But in this one special
2357             // case, it is legal (and expected) to change what loop a Node
2358             // belongs to.
2359             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
2360           }
2361           // Remove safepoints ONLY if I've already seen I don't need one.
2362           // (the old code here would yank a 2nd safepoint after seeing a
2363           // first one, even though the 1st did not dominate in the loop body
2364           // and thus could be avoided indefinitely)
2365           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
2366               is_deleteable_safept(n)) {
2367             Node *in = n->in(TypeFunc::Control);
2368             lazy_replace(n,in);       // Pull safepoint now
2369             // Carry on with the recursion "as if" we are walking
2370             // only the control input
2371             if( !visited.test_set( in->_idx ) ) {
2372               worklist.push(in);      // Visit this guy later, using worklist
2373             }
2374             // Get next node from nstack:
2375             // - skip n's inputs processing by setting i > cnt;
2376             // - we also will not call set_early_ctrl(n) since
2377             //   has_node(n) == true (see the condition above).
2378             i = cnt + 1;
2379           }
2380         }
2381       } // if (i == 0)
2382 
2383       // Visit all inputs
2384       bool done = true;       // Assume all n's inputs will be processed
2385       while (i < cnt) {
2386         Node *in = n->in(i);
2387         ++i;
2388         if (in == NULL) continue;
2389         if (in->pinned() && !in->is_CFG())
2390           set_ctrl(in, in->in(0));
2391         int is_visited = visited.test_set( in->_idx );
2392         if (!has_node(in)) {  // No controlling input yet?
2393           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
2394           assert( !is_visited, "visit only once" );
2395           nstack.push(n, i);  // Save parent node and next input's index.
2396           nstack_top_n = in;  // Process current input now.
2397           nstack_top_i = 0;
2398           done = false;       // Not all n's inputs processed.
2399           break; // continue while_nstack_nonempty;
2400         } else if (!is_visited) {
2401           // This guy has a location picked out for him, but has not yet
2402           // been visited.  Happens to all CFG nodes, for instance.
2403           // Visit him using the worklist instead of recursion, to break
2404           // cycles.  Since he has a location already we do not need to
2405           // find his location before proceeding with the current Node.
2406           worklist.push(in);  // Visit this guy later, using worklist
2407         }
2408       }
2409       if (done) {
2410         // All of n's inputs have been processed, complete post-processing.
2411 
2412         // Compute earliest point this Node can go.
2413         // CFG, Phi, pinned nodes already know their controlling input.
2414         if (!has_node(n)) {
2415           // Record earliest legal location
2416           set_early_ctrl( n );
2417         }
2418         if (nstack.is_empty()) {
2419           // Finished all nodes on stack.
2420           // Process next node on the worklist.
2421           break;
2422         }
2423         // Get saved parent node and next input's index.
2424         nstack_top_n = nstack.node();
2425         nstack_top_i = nstack.index();
2426         nstack.pop();
2427       }
2428     } // while (true)
2429   }
2430 }
2431 
2432 //------------------------------dom_lca_internal--------------------------------
2433 // Pair-wise LCA
2434 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
2435   if( !n1 ) return n2;          // Handle NULL original LCA
2436   assert( n1->is_CFG(), "" );
2437   assert( n2->is_CFG(), "" );
2438   // find LCA of all uses
2439   uint d1 = dom_depth(n1);
2440   uint d2 = dom_depth(n2);
2441   while (n1 != n2) {
2442     if (d1 > d2) {
2443       n1 =      idom(n1);
2444       d1 = dom_depth(n1);
2445     } else if (d1 < d2) {
2446       n2 =      idom(n2);
2447       d2 = dom_depth(n2);
2448     } else {
2449       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2450       // of the tree might have the same depth.  These sections have
2451       // to be searched more carefully.
2452 
2453       // Scan up all the n1's with equal depth, looking for n2.
2454       Node *t1 = idom(n1);
2455       while (dom_depth(t1) == d1) {
2456         if (t1 == n2)  return n2;
2457         t1 = idom(t1);
2458       }
2459       // Scan up all the n2's with equal depth, looking for n1.
2460       Node *t2 = idom(n2);
2461       while (dom_depth(t2) == d2) {
2462         if (t2 == n1)  return n1;
2463         t2 = idom(t2);
2464       }
2465       // Move up to a new dominator-depth value as well as up the dom-tree.
2466       n1 = t1;
2467       n2 = t2;
2468       d1 = dom_depth(n1);
2469       d2 = dom_depth(n2);
2470     }
2471   }
2472   return n1;
2473 }
2474 
2475 //------------------------------compute_idom-----------------------------------
2476 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
2477 // IDOMs are correct.
2478 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
2479   assert( region->is_Region(), "" );
2480   Node *LCA = NULL;
2481   for( uint i = 1; i < region->req(); i++ ) {
2482     if( region->in(i) != C->top() )
2483       LCA = dom_lca( LCA, region->in(i) );
2484   }
2485   return LCA;
2486 }
2487 
2488 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
2489   bool had_error = false;
2490 #ifdef ASSERT
2491   if (early != C->root()) {
2492     // Make sure that there's a dominance path from use to LCA
2493     Node* d = use;
2494     while (d != LCA) {
2495       d = idom(d);
2496       if (d == C->root()) {
2497         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
2498         n->dump();
2499         use->dump();
2500         had_error = true;
2501         break;
2502       }
2503     }
2504   }
2505 #endif
2506   return had_error;
2507 }
2508 
2509 
2510 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
2511   // Compute LCA over list of uses
2512   bool had_error = false;
2513   Node *LCA = NULL;
2514   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
2515     Node* c = n->fast_out(i);
2516     if (_nodes[c->_idx] == NULL)
2517       continue;                 // Skip the occasional dead node
2518     if( c->is_Phi() ) {         // For Phis, we must land above on the path
2519       for( uint j=1; j<c->req(); j++ ) {// For all inputs
2520         if( c->in(j) == n ) {   // Found matching input?
2521           Node *use = c->in(0)->in(j);
2522           if (_verify_only && use->is_top()) continue;
2523           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2524           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2525         }
2526       }
2527     } else {
2528       // For CFG data-users, use is in the block just prior
2529       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
2530       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2531       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2532     }
2533   }
2534   assert(!had_error, "bad dominance");
2535   return LCA;
2536 }
2537 
2538 //------------------------------get_late_ctrl----------------------------------
2539 // Compute latest legal control.
2540 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
2541   assert(early != NULL, "early control should not be NULL");
2542 
2543   Node* LCA = compute_lca_of_uses(n, early);
2544 #ifdef ASSERT
2545   if (LCA == C->root() && LCA != early) {
2546     // def doesn't dominate uses so print some useful debugging output
2547     compute_lca_of_uses(n, early, true);
2548   }
2549 #endif
2550 
2551   // if this is a load, check for anti-dependent stores
2552   // We use a conservative algorithm to identify potential interfering
2553   // instructions and for rescheduling the load.  The users of the memory
2554   // input of this load are examined.  Any use which is not a load and is
2555   // dominated by early is considered a potentially interfering store.
2556   // This can produce false positives.
2557   if (n->is_Load() && LCA != early) {
2558     Node_List worklist;
2559 
2560     Node *mem = n->in(MemNode::Memory);
2561     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2562       Node* s = mem->fast_out(i);
2563       worklist.push(s);
2564     }
2565     while(worklist.size() != 0 && LCA != early) {
2566       Node* s = worklist.pop();
2567       if (s->is_Load()) {
2568         continue;
2569       } else if (s->is_MergeMem()) {
2570         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
2571           Node* s1 = s->fast_out(i);
2572           worklist.push(s1);
2573         }
2574       } else {
2575         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
2576         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
2577         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
2578           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
2579         }
2580       }
2581     }
2582   }
2583 
2584   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
2585   return LCA;
2586 }
2587 
2588 // true if CFG node d dominates CFG node n
2589 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
2590   if (d == n)
2591     return true;
2592   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
2593   uint dd = dom_depth(d);
2594   while (dom_depth(n) >= dd) {
2595     if (n == d)
2596       return true;
2597     n = idom(n);
2598   }
2599   return false;
2600 }
2601 
2602 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
2603 // Pair-wise LCA with tags.
2604 // Tag each index with the node 'tag' currently being processed
2605 // before advancing up the dominator chain using idom().
2606 // Later calls that find a match to 'tag' know that this path has already
2607 // been considered in the current LCA (which is input 'n1' by convention).
2608 // Since get_late_ctrl() is only called once for each node, the tag array
2609 // does not need to be cleared between calls to get_late_ctrl().
2610 // Algorithm trades a larger constant factor for better asymptotic behavior
2611 //
2612 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
2613   uint d1 = dom_depth(n1);
2614   uint d2 = dom_depth(n2);
2615 
2616   do {
2617     if (d1 > d2) {
2618       // current lca is deeper than n2
2619       _dom_lca_tags.map(n1->_idx, tag);
2620       n1 =      idom(n1);
2621       d1 = dom_depth(n1);
2622     } else if (d1 < d2) {
2623       // n2 is deeper than current lca
2624       Node *memo = _dom_lca_tags[n2->_idx];
2625       if( memo == tag ) {
2626         return n1;    // Return the current LCA
2627       }
2628       _dom_lca_tags.map(n2->_idx, tag);
2629       n2 =      idom(n2);
2630       d2 = dom_depth(n2);
2631     } else {
2632       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2633       // of the tree might have the same depth.  These sections have
2634       // to be searched more carefully.
2635 
2636       // Scan up all the n1's with equal depth, looking for n2.
2637       _dom_lca_tags.map(n1->_idx, tag);
2638       Node *t1 = idom(n1);
2639       while (dom_depth(t1) == d1) {
2640         if (t1 == n2)  return n2;
2641         _dom_lca_tags.map(t1->_idx, tag);
2642         t1 = idom(t1);
2643       }
2644       // Scan up all the n2's with equal depth, looking for n1.
2645       _dom_lca_tags.map(n2->_idx, tag);
2646       Node *t2 = idom(n2);
2647       while (dom_depth(t2) == d2) {
2648         if (t2 == n1)  return n1;
2649         _dom_lca_tags.map(t2->_idx, tag);
2650         t2 = idom(t2);
2651       }
2652       // Move up to a new dominator-depth value as well as up the dom-tree.
2653       n1 = t1;
2654       n2 = t2;
2655       d1 = dom_depth(n1);
2656       d2 = dom_depth(n2);
2657     }
2658   } while (n1 != n2);
2659   return n1;
2660 }
2661 
2662 //------------------------------init_dom_lca_tags------------------------------
2663 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
2664 // Intended use does not involve any growth for the array, so it could
2665 // be of fixed size.
2666 void PhaseIdealLoop::init_dom_lca_tags() {
2667   uint limit = C->unique() + 1;
2668   _dom_lca_tags.map( limit, NULL );
2669 #ifdef ASSERT
2670   for( uint i = 0; i < limit; ++i ) {
2671     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
2672   }
2673 #endif // ASSERT
2674 }
2675 
2676 //------------------------------clear_dom_lca_tags------------------------------
2677 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
2678 // Intended use does not involve any growth for the array, so it could
2679 // be of fixed size.
2680 void PhaseIdealLoop::clear_dom_lca_tags() {
2681   uint limit = C->unique() + 1;
2682   _dom_lca_tags.map( limit, NULL );
2683   _dom_lca_tags.clear();
2684 #ifdef ASSERT
2685   for( uint i = 0; i < limit; ++i ) {
2686     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
2687   }
2688 #endif // ASSERT
2689 }
2690 
2691 //------------------------------build_loop_late--------------------------------
2692 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2693 // Second pass finds latest legal placement, and ideal loop placement.
2694 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2695   while (worklist.size() != 0) {
2696     Node *n = worklist.pop();
2697     // Only visit once
2698     if (visited.test_set(n->_idx)) continue;
2699     uint cnt = n->outcnt();
2700     uint   i = 0;
2701     while (true) {
2702       assert( _nodes[n->_idx], "no dead nodes" );
2703       // Visit all children
2704       if (i < cnt) {
2705         Node* use = n->raw_out(i);
2706         ++i;
2707         // Check for dead uses.  Aggressively prune such junk.  It might be
2708         // dead in the global sense, but still have local uses so I cannot
2709         // easily call 'remove_dead_node'.
2710         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
2711           // Due to cycles, we might not hit the same fixed point in the verify
2712           // pass as we do in the regular pass.  Instead, visit such phis as
2713           // simple uses of the loop head.
2714           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
2715             if( !visited.test(use->_idx) )
2716               worklist.push(use);
2717           } else if( !visited.test_set(use->_idx) ) {
2718             nstack.push(n, i); // Save parent and next use's index.
2719             n   = use;         // Process all children of current use.
2720             cnt = use->outcnt();
2721             i   = 0;
2722           }
2723         } else {
2724           // Do not visit around the backedge of loops via data edges.
2725           // push dead code onto a worklist
2726           _deadlist.push(use);
2727         }
2728       } else {
2729         // All of n's children have been processed, complete post-processing.
2730         build_loop_late_post(n);
2731         if (nstack.is_empty()) {
2732           // Finished all nodes on stack.
2733           // Process next node on the worklist.
2734           break;
2735         }
2736         // Get saved parent node and next use's index. Visit the rest of uses.
2737         n   = nstack.node();
2738         cnt = n->outcnt();
2739         i   = nstack.index();
2740         nstack.pop();
2741       }
2742     }
2743   }
2744 }
2745 
2746 //------------------------------build_loop_late_post---------------------------
2747 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2748 // Second pass finds latest legal placement, and ideal loop placement.
2749 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
2750 
2751   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
2752     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
2753   }
2754 
2755   // CFG and pinned nodes already handled
2756   if( n->in(0) ) {
2757     if( n->in(0)->is_top() ) return; // Dead?
2758 
2759     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
2760     // _must_ be pinned (they have to observe their control edge of course).
2761     // Unlike Stores (which modify an unallocable resource, the memory
2762     // state), Mods/Loads can float around.  So free them up.
2763     bool pinned = true;
2764     switch( n->Opcode() ) {
2765     case Op_DivI:
2766     case Op_DivF:
2767     case Op_DivD:
2768     case Op_ModI:
2769     case Op_ModF:
2770     case Op_ModD:
2771     case Op_LoadB:              // Same with Loads; they can sink
2772     case Op_LoadUS:             // during loop optimizations.
2773     case Op_LoadD:
2774     case Op_LoadF:
2775     case Op_LoadI:
2776     case Op_LoadKlass:
2777     case Op_LoadNKlass:
2778     case Op_LoadL:
2779     case Op_LoadS:
2780     case Op_LoadP:
2781     case Op_LoadN:
2782     case Op_LoadRange:
2783     case Op_LoadD_unaligned:
2784     case Op_LoadL_unaligned:
2785     case Op_StrComp:            // Does a bunch of load-like effects
2786     case Op_StrEquals:
2787     case Op_StrIndexOf:
2788     case Op_AryEq:
2789       pinned = false;
2790     }
2791     if( pinned ) {
2792       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
2793       if( !chosen_loop->_child )       // Inner loop?
2794         chosen_loop->_body.push(n); // Collect inner loops
2795       return;
2796     }
2797   } else {                      // No slot zero
2798     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
2799       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
2800       return;
2801     }
2802     assert(!n->is_CFG() || n->outcnt() == 0, "");
2803   }
2804 
2805   // Do I have a "safe range" I can select over?
2806   Node *early = get_ctrl(n);// Early location already computed
2807 
2808   // Compute latest point this Node can go
2809   Node *LCA = get_late_ctrl( n, early );
2810   // LCA is NULL due to uses being dead
2811   if( LCA == NULL ) {
2812 #ifdef ASSERT
2813     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
2814       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
2815     }
2816 #endif
2817     _nodes.map(n->_idx, 0);     // This node is useless
2818     _deadlist.push(n);
2819     return;
2820   }
2821   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
2822 
2823   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
2824   Node *least = legal;          // Best legal position so far
2825   while( early != legal ) {     // While not at earliest legal
2826 #ifdef ASSERT
2827     if (legal->is_Start() && !early->is_Root()) {
2828       // Bad graph. Print idom path and fail.
2829       tty->print_cr( "Bad graph detected in build_loop_late");
2830       tty->print("n: ");n->dump(); tty->cr();
2831       tty->print("early: ");early->dump(); tty->cr();
2832       int ct = 0;
2833       Node *dbg_legal = LCA;
2834       while(!dbg_legal->is_Start() && ct < 100) {
2835         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
2836         ct++;
2837         dbg_legal = idom(dbg_legal);
2838       }
2839       assert(false, "Bad graph detected in build_loop_late");
2840     }
2841 #endif
2842     // Find least loop nesting depth
2843     legal = idom(legal);        // Bump up the IDOM tree
2844     // Check for lower nesting depth
2845     if( get_loop(legal)->_nest < get_loop(least)->_nest )
2846       least = legal;
2847   }
2848   assert(early == legal || legal != C->root(), "bad dominance of inputs");
2849 
2850   // Try not to place code on a loop entry projection
2851   // which can inhibit range check elimination.
2852   if (least != early) {
2853     Node* ctrl_out = least->unique_ctrl_out();
2854     if (ctrl_out && ctrl_out->is_CountedLoop() &&
2855         least == ctrl_out->in(LoopNode::EntryControl)) {
2856       Node* least_dom = idom(least);
2857       if (get_loop(least_dom)->is_member(get_loop(least))) {
2858         least = least_dom;
2859       }
2860     }
2861   }
2862 
2863 #ifdef ASSERT
2864   // If verifying, verify that 'verify_me' has a legal location
2865   // and choose it as our location.
2866   if( _verify_me ) {
2867     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
2868     Node *legal = LCA;
2869     while( early != legal ) {   // While not at earliest legal
2870       if( legal == v_ctrl ) break;  // Check for prior good location
2871       legal = idom(legal)      ;// Bump up the IDOM tree
2872     }
2873     // Check for prior good location
2874     if( legal == v_ctrl ) least = legal; // Keep prior if found
2875   }
2876 #endif
2877 
2878   // Assign discovered "here or above" point
2879   least = find_non_split_ctrl(least);
2880   set_ctrl(n, least);
2881 
2882   // Collect inner loop bodies
2883   IdealLoopTree *chosen_loop = get_loop(least);
2884   if( !chosen_loop->_child )   // Inner loop?
2885     chosen_loop->_body.push(n);// Collect inner loops
2886 }
2887 
2888 #ifndef PRODUCT
2889 //------------------------------dump-------------------------------------------
2890 void PhaseIdealLoop::dump( ) const {
2891   ResourceMark rm;
2892   Arena* arena = Thread::current()->resource_area();
2893   Node_Stack stack(arena, C->unique() >> 2);
2894   Node_List rpo_list;
2895   VectorSet visited(arena);
2896   visited.set(C->top()->_idx);
2897   rpo( C->root(), stack, visited, rpo_list );
2898   // Dump root loop indexed by last element in PO order
2899   dump( _ltree_root, rpo_list.size(), rpo_list );
2900 }
2901 
2902 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
2903   loop->dump_head();
2904 
2905   // Now scan for CFG nodes in the same loop
2906   for( uint j=idx; j > 0;  j-- ) {
2907     Node *n = rpo_list[j-1];
2908     if( !_nodes[n->_idx] )      // Skip dead nodes
2909       continue;
2910     if( get_loop(n) != loop ) { // Wrong loop nest
2911       if( get_loop(n)->_head == n &&    // Found nested loop?
2912           get_loop(n)->_parent == loop )
2913         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
2914       continue;
2915     }
2916 
2917     // Dump controlling node
2918     for( uint x = 0; x < loop->_nest; x++ )
2919       tty->print("  ");
2920     tty->print("C");
2921     if( n == C->root() ) {
2922       n->dump();
2923     } else {
2924       Node* cached_idom   = idom_no_update(n);
2925       Node *computed_idom = n->in(0);
2926       if( n->is_Region() ) {
2927         computed_idom = compute_idom(n);
2928         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
2929         // any MultiBranch ctrl node), so apply a similar transform to
2930         // the cached idom returned from idom_no_update.
2931         cached_idom = find_non_split_ctrl(cached_idom);
2932       }
2933       tty->print(" ID:%d",computed_idom->_idx);
2934       n->dump();
2935       if( cached_idom != computed_idom ) {
2936         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
2937                       computed_idom->_idx, cached_idom->_idx);
2938       }
2939     }
2940     // Dump nodes it controls
2941     for( uint k = 0; k < _nodes.Size(); k++ ) {
2942       // (k < C->unique() && get_ctrl(find(k)) == n)
2943       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
2944         Node *m = C->root()->find(k);
2945         if( m && m->outcnt() > 0 ) {
2946           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
2947             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
2948                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
2949           }
2950           for( uint j = 0; j < loop->_nest; j++ )
2951             tty->print("  ");
2952           tty->print(" ");
2953           m->dump();
2954         }
2955       }
2956     }
2957   }
2958 }
2959 
2960 // Collect a R-P-O for the whole CFG.
2961 // Result list is in post-order (scan backwards for RPO)
2962 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
2963   stk.push(start, 0);
2964   visited.set(start->_idx);
2965 
2966   while (stk.is_nonempty()) {
2967     Node* m   = stk.node();
2968     uint  idx = stk.index();
2969     if (idx < m->outcnt()) {
2970       stk.set_index(idx + 1);
2971       Node* n = m->raw_out(idx);
2972       if (n->is_CFG() && !visited.test_set(n->_idx)) {
2973         stk.push(n, 0);
2974       }
2975     } else {
2976       rpo_list.push(m);
2977       stk.pop();
2978     }
2979   }
2980 }
2981 #endif
2982 
2983 
2984 //=============================================================================
2985 //------------------------------LoopTreeIterator-----------------------------------
2986 
2987 // Advance to next loop tree using a preorder, left-to-right traversal.
2988 void LoopTreeIterator::next() {
2989   assert(!done(), "must not be done.");
2990   if (_curnt->_child != NULL) {
2991     _curnt = _curnt->_child;
2992   } else if (_curnt->_next != NULL) {
2993     _curnt = _curnt->_next;
2994   } else {
2995     while (_curnt != _root && _curnt->_next == NULL) {
2996       _curnt = _curnt->_parent;
2997     }
2998     if (_curnt == _root) {
2999       _curnt = NULL;
3000       assert(done(), "must be done.");
3001     } else {
3002       assert(_curnt->_next != NULL, "must be more to do");
3003       _curnt = _curnt->_next;
3004     }
3005   }
3006 }