1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_matcher.cpp.incl"
  27 
  28 OptoReg::Name OptoReg::c_frame_pointer;
  29 
  30 
  31 
  32 const int Matcher::base2reg[Type::lastype] = {
  33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  36   0, 0/*abio*/,
  37   Op_RegP /* Return address */, 0, /* the memories */
  38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  39   0  /*bottom*/
  40 };
  41 
  42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  44 RegMask Matcher::STACK_ONLY_mask;
  45 RegMask Matcher::c_frame_ptr_mask;
  46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  48 
  49 //---------------------------Matcher-------------------------------------------
  50 Matcher::Matcher( Node_List &proj_list ) :
  51   PhaseTransform( Phase::Ins_Select ),
  52 #ifdef ASSERT
  53   _old2new_map(C->comp_arena()),
  54   _new2old_map(C->comp_arena()),
  55 #endif
  56   _shared_nodes(C->comp_arena()),
  57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  58   _swallowed(swallowed),
  59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  61   _must_clone(must_clone), _proj_list(proj_list),
  62   _register_save_policy(register_save_policy),
  63   _c_reg_save_policy(c_reg_save_policy),
  64   _register_save_type(register_save_type),
  65   _ruleName(ruleName),
  66   _allocation_started(false),
  67   _states_arena(Chunk::medium_size),
  68   _visited(&_states_arena),
  69   _shared(&_states_arena),
  70   _dontcare(&_states_arena) {
  71   C->set_matcher(this);
  72 
  73   idealreg2spillmask  [Op_RegI] = NULL;
  74   idealreg2spillmask  [Op_RegN] = NULL;
  75   idealreg2spillmask  [Op_RegL] = NULL;
  76   idealreg2spillmask  [Op_RegF] = NULL;
  77   idealreg2spillmask  [Op_RegD] = NULL;
  78   idealreg2spillmask  [Op_RegP] = NULL;
  79 
  80   idealreg2debugmask  [Op_RegI] = NULL;
  81   idealreg2debugmask  [Op_RegN] = NULL;
  82   idealreg2debugmask  [Op_RegL] = NULL;
  83   idealreg2debugmask  [Op_RegF] = NULL;
  84   idealreg2debugmask  [Op_RegD] = NULL;
  85   idealreg2debugmask  [Op_RegP] = NULL;
  86 
  87   idealreg2mhdebugmask[Op_RegI] = NULL;
  88   idealreg2mhdebugmask[Op_RegN] = NULL;
  89   idealreg2mhdebugmask[Op_RegL] = NULL;
  90   idealreg2mhdebugmask[Op_RegF] = NULL;
  91   idealreg2mhdebugmask[Op_RegD] = NULL;
  92   idealreg2mhdebugmask[Op_RegP] = NULL;
  93 
  94   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
  95 }
  96 
  97 //------------------------------warp_incoming_stk_arg------------------------
  98 // This warps a VMReg into an OptoReg::Name
  99 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 100   OptoReg::Name warped;
 101   if( reg->is_stack() ) {  // Stack slot argument?
 102     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 103     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 104     if( warped >= _in_arg_limit )
 105       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 106     if (!RegMask::can_represent(warped)) {
 107       // the compiler cannot represent this method's calling sequence
 108       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 109       return OptoReg::Bad;
 110     }
 111     return warped;
 112   }
 113   return OptoReg::as_OptoReg(reg);
 114 }
 115 
 116 //---------------------------compute_old_SP------------------------------------
 117 OptoReg::Name Compile::compute_old_SP() {
 118   int fixed    = fixed_slots();
 119   int preserve = in_preserve_stack_slots();
 120   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 121 }
 122 
 123 
 124 
 125 #ifdef ASSERT
 126 void Matcher::verify_new_nodes_only(Node* xroot) {
 127   // Make sure that the new graph only references new nodes
 128   ResourceMark rm;
 129   Unique_Node_List worklist;
 130   VectorSet visited(Thread::current()->resource_area());
 131   worklist.push(xroot);
 132   while (worklist.size() > 0) {
 133     Node* n = worklist.pop();
 134     visited <<= n->_idx;
 135     assert(C->node_arena()->contains(n), "dead node");
 136     for (uint j = 0; j < n->req(); j++) {
 137       Node* in = n->in(j);
 138       if (in != NULL) {
 139         assert(C->node_arena()->contains(in), "dead node");
 140         if (!visited.test(in->_idx)) {
 141           worklist.push(in);
 142         }
 143       }
 144     }
 145   }
 146 }
 147 #endif
 148 
 149 
 150 //---------------------------match---------------------------------------------
 151 void Matcher::match( ) {
 152   if( MaxLabelRootDepth < 100 ) { // Too small?
 153     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 154     MaxLabelRootDepth = 100;
 155   }
 156   // One-time initialization of some register masks.
 157   init_spill_mask( C->root()->in(1) );
 158   _return_addr_mask = return_addr();
 159 #ifdef _LP64
 160   // Pointers take 2 slots in 64-bit land
 161   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 162 #endif
 163 
 164   // Map a Java-signature return type into return register-value
 165   // machine registers for 0, 1 and 2 returned values.
 166   const TypeTuple *range = C->tf()->range();
 167   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 168     // Get ideal-register return type
 169     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 170     // Get machine return register
 171     uint sop = C->start()->Opcode();
 172     OptoRegPair regs = return_value(ireg, false);
 173 
 174     // And mask for same
 175     _return_value_mask = RegMask(regs.first());
 176     if( OptoReg::is_valid(regs.second()) )
 177       _return_value_mask.Insert(regs.second());
 178   }
 179 
 180   // ---------------
 181   // Frame Layout
 182 
 183   // Need the method signature to determine the incoming argument types,
 184   // because the types determine which registers the incoming arguments are
 185   // in, and this affects the matched code.
 186   const TypeTuple *domain = C->tf()->domain();
 187   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 188   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 189   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 190   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 191   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 192   uint i;
 193   for( i = 0; i<argcnt; i++ ) {
 194     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 195   }
 196 
 197   // Pass array of ideal registers and length to USER code (from the AD file)
 198   // that will convert this to an array of register numbers.
 199   const StartNode *start = C->start();
 200   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 201 #ifdef ASSERT
 202   // Sanity check users' calling convention.  Real handy while trying to
 203   // get the initial port correct.
 204   { for (uint i = 0; i<argcnt; i++) {
 205       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 206         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 207         _parm_regs[i].set_bad();
 208         continue;
 209       }
 210       VMReg parm_reg = vm_parm_regs[i].first();
 211       assert(parm_reg->is_valid(), "invalid arg?");
 212       if (parm_reg->is_reg()) {
 213         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 214         assert(can_be_java_arg(opto_parm_reg) ||
 215                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 216                opto_parm_reg == inline_cache_reg(),
 217                "parameters in register must be preserved by runtime stubs");
 218       }
 219       for (uint j = 0; j < i; j++) {
 220         assert(parm_reg != vm_parm_regs[j].first(),
 221                "calling conv. must produce distinct regs");
 222       }
 223     }
 224   }
 225 #endif
 226 
 227   // Do some initial frame layout.
 228 
 229   // Compute the old incoming SP (may be called FP) as
 230   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 231   _old_SP = C->compute_old_SP();
 232   assert( is_even(_old_SP), "must be even" );
 233 
 234   // Compute highest incoming stack argument as
 235   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 236   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 237   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 238   for( i = 0; i < argcnt; i++ ) {
 239     // Permit args to have no register
 240     _calling_convention_mask[i].Clear();
 241     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 242       continue;
 243     }
 244     // calling_convention returns stack arguments as a count of
 245     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 246     // the allocators point of view, taking into account all the
 247     // preserve area, locks & pad2.
 248 
 249     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 250     if( OptoReg::is_valid(reg1))
 251       _calling_convention_mask[i].Insert(reg1);
 252 
 253     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 254     if( OptoReg::is_valid(reg2))
 255       _calling_convention_mask[i].Insert(reg2);
 256 
 257     // Saved biased stack-slot register number
 258     _parm_regs[i].set_pair(reg2, reg1);
 259   }
 260 
 261   // Finally, make sure the incoming arguments take up an even number of
 262   // words, in case the arguments or locals need to contain doubleword stack
 263   // slots.  The rest of the system assumes that stack slot pairs (in
 264   // particular, in the spill area) which look aligned will in fact be
 265   // aligned relative to the stack pointer in the target machine.  Double
 266   // stack slots will always be allocated aligned.
 267   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 268 
 269   // Compute highest outgoing stack argument as
 270   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 271   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 272   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 273 
 274   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 275     // the compiler cannot represent this method's calling sequence
 276     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 277   }
 278 
 279   if (C->failing())  return;  // bailed out on incoming arg failure
 280 
 281   // ---------------
 282   // Collect roots of matcher trees.  Every node for which
 283   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 284   // can be a valid interior of some tree.
 285   find_shared( C->root() );
 286   find_shared( C->top() );
 287 
 288   C->print_method("Before Matching");
 289 
 290   // Create new ideal node ConP #NULL even if it does exist in old space
 291   // to avoid false sharing if the corresponding mach node is not used.
 292   // The corresponding mach node is only used in rare cases for derived
 293   // pointers.
 294   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 295 
 296   // Swap out to old-space; emptying new-space
 297   Arena *old = C->node_arena()->move_contents(C->old_arena());
 298 
 299   // Save debug and profile information for nodes in old space:
 300   _old_node_note_array = C->node_note_array();
 301   if (_old_node_note_array != NULL) {
 302     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 303                            (C->comp_arena(), _old_node_note_array->length(),
 304                             0, NULL));
 305   }
 306 
 307   // Pre-size the new_node table to avoid the need for range checks.
 308   grow_new_node_array(C->unique());
 309 
 310   // Reset node counter so MachNodes start with _idx at 0
 311   int nodes = C->unique(); // save value
 312   C->set_unique(0);
 313 
 314   // Recursively match trees from old space into new space.
 315   // Correct leaves of new-space Nodes; they point to old-space.
 316   _visited.Clear();             // Clear visit bits for xform call
 317   C->set_cached_top_node(xform( C->top(), nodes ));
 318   if (!C->failing()) {
 319     Node* xroot =        xform( C->root(), 1 );
 320     if (xroot == NULL) {
 321       Matcher::soft_match_failure();  // recursive matching process failed
 322       C->record_method_not_compilable("instruction match failed");
 323     } else {
 324       // During matching shared constants were attached to C->root()
 325       // because xroot wasn't available yet, so transfer the uses to
 326       // the xroot.
 327       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 328         Node* n = C->root()->fast_out(j);
 329         if (C->node_arena()->contains(n)) {
 330           assert(n->in(0) == C->root(), "should be control user");
 331           n->set_req(0, xroot);
 332           --j;
 333           --jmax;
 334         }
 335       }
 336 
 337       // Generate new mach node for ConP #NULL
 338       assert(new_ideal_null != NULL, "sanity");
 339       _mach_null = match_tree(new_ideal_null);
 340       // Don't set control, it will confuse GCM since there are no uses.
 341       // The control will be set when this node is used first time
 342       // in find_base_for_derived().
 343       assert(_mach_null != NULL, "");
 344 
 345       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 346 
 347 #ifdef ASSERT
 348       verify_new_nodes_only(xroot);
 349 #endif
 350     }
 351   }
 352   if (C->top() == NULL || C->root() == NULL) {
 353     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 354   }
 355   if (C->failing()) {
 356     // delete old;
 357     old->destruct_contents();
 358     return;
 359   }
 360   assert( C->top(), "" );
 361   assert( C->root(), "" );
 362   validate_null_checks();
 363 
 364   // Now smoke old-space
 365   NOT_DEBUG( old->destruct_contents() );
 366 
 367   // ------------------------
 368   // Set up save-on-entry registers
 369   Fixup_Save_On_Entry( );
 370 }
 371 
 372 
 373 //------------------------------Fixup_Save_On_Entry----------------------------
 374 // The stated purpose of this routine is to take care of save-on-entry
 375 // registers.  However, the overall goal of the Match phase is to convert into
 376 // machine-specific instructions which have RegMasks to guide allocation.
 377 // So what this procedure really does is put a valid RegMask on each input
 378 // to the machine-specific variations of all Return, TailCall and Halt
 379 // instructions.  It also adds edgs to define the save-on-entry values (and of
 380 // course gives them a mask).
 381 
 382 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 383   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 384   // Do all the pre-defined register masks
 385   rms[TypeFunc::Control  ] = RegMask::Empty;
 386   rms[TypeFunc::I_O      ] = RegMask::Empty;
 387   rms[TypeFunc::Memory   ] = RegMask::Empty;
 388   rms[TypeFunc::ReturnAdr] = ret_adr;
 389   rms[TypeFunc::FramePtr ] = fp;
 390   return rms;
 391 }
 392 
 393 //---------------------------init_first_stack_mask-----------------------------
 394 // Create the initial stack mask used by values spilling to the stack.
 395 // Disallow any debug info in outgoing argument areas by setting the
 396 // initial mask accordingly.
 397 void Matcher::init_first_stack_mask() {
 398 
 399   // Allocate storage for spill masks as masks for the appropriate load type.
 400   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 401 
 402   idealreg2spillmask  [Op_RegN] = &rms[0];
 403   idealreg2spillmask  [Op_RegI] = &rms[1];
 404   idealreg2spillmask  [Op_RegL] = &rms[2];
 405   idealreg2spillmask  [Op_RegF] = &rms[3];
 406   idealreg2spillmask  [Op_RegD] = &rms[4];
 407   idealreg2spillmask  [Op_RegP] = &rms[5];
 408 
 409   idealreg2debugmask  [Op_RegN] = &rms[6];
 410   idealreg2debugmask  [Op_RegI] = &rms[7];
 411   idealreg2debugmask  [Op_RegL] = &rms[8];
 412   idealreg2debugmask  [Op_RegF] = &rms[9];
 413   idealreg2debugmask  [Op_RegD] = &rms[10];
 414   idealreg2debugmask  [Op_RegP] = &rms[11];
 415 
 416   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 417   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 418   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 419   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 420   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 421   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 422 
 423   OptoReg::Name i;
 424 
 425   // At first, start with the empty mask
 426   C->FIRST_STACK_mask().Clear();
 427 
 428   // Add in the incoming argument area
 429   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 430   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 431     C->FIRST_STACK_mask().Insert(i);
 432 
 433   // Add in all bits past the outgoing argument area
 434   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 435             "must be able to represent all call arguments in reg mask");
 436   init = _out_arg_limit;
 437   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 438     C->FIRST_STACK_mask().Insert(i);
 439 
 440   // Finally, set the "infinite stack" bit.
 441   C->FIRST_STACK_mask().set_AllStack();
 442 
 443   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 444 #ifdef _LP64
 445   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 446    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 447 #endif
 448   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 449    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 450   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 451    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 452   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 453    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 454   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 455    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 456   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 457    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 458 
 459    if (UseFPUForSpilling) {
 460      // This mask logic assumes that the spill operations are
 461      // symmetric and that the registers involved are the same size.
 462      // On sparc for instance we may have to use 64 bit moves will
 463      // kill 2 registers when used with F0-F31.
 464      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 465      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 466 #ifdef _LP64
 467      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 468      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 469      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 470      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 471 #else
 472      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 473 #endif
 474    }
 475 
 476   // Make up debug masks.  Any spill slot plus callee-save registers.
 477   // Caller-save registers are assumed to be trashable by the various
 478   // inline-cache fixup routines.
 479   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 480   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 481   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 482   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 483   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 484   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 485 
 486   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 487   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 488   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 489   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 490   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 491   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 492 
 493   // Prevent stub compilations from attempting to reference
 494   // callee-saved registers from debug info
 495   bool exclude_soe = !Compile::current()->is_method_compilation();
 496 
 497   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 498     // registers the caller has to save do not work
 499     if( _register_save_policy[i] == 'C' ||
 500         _register_save_policy[i] == 'A' ||
 501         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 502       idealreg2debugmask  [Op_RegN]->Remove(i);
 503       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 504       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 505       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 506       idealreg2debugmask  [Op_RegD]->Remove(i);
 507       idealreg2debugmask  [Op_RegP]->Remove(i);
 508 
 509       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 510       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 511       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 512       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 513       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 514       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 515     }
 516   }
 517 
 518   // Subtract the register we use to save the SP for MethodHandle
 519   // invokes to from the debug mask.
 520   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 521   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 522   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 523   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 524   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 525   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 526   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 527 }
 528 
 529 //---------------------------is_save_on_entry----------------------------------
 530 bool Matcher::is_save_on_entry( int reg ) {
 531   return
 532     _register_save_policy[reg] == 'E' ||
 533     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 534     // Also save argument registers in the trampolining stubs
 535     (C->save_argument_registers() && is_spillable_arg(reg));
 536 }
 537 
 538 //---------------------------Fixup_Save_On_Entry-------------------------------
 539 void Matcher::Fixup_Save_On_Entry( ) {
 540   init_first_stack_mask();
 541 
 542   Node *root = C->root();       // Short name for root
 543   // Count number of save-on-entry registers.
 544   uint soe_cnt = number_of_saved_registers();
 545   uint i;
 546 
 547   // Find the procedure Start Node
 548   StartNode *start = C->start();
 549   assert( start, "Expect a start node" );
 550 
 551   // Save argument registers in the trampolining stubs
 552   if( C->save_argument_registers() )
 553     for( i = 0; i < _last_Mach_Reg; i++ )
 554       if( is_spillable_arg(i) )
 555         soe_cnt++;
 556 
 557   // Input RegMask array shared by all Returns.
 558   // The type for doubles and longs has a count of 2, but
 559   // there is only 1 returned value
 560   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 561   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 562   // Returns have 0 or 1 returned values depending on call signature.
 563   // Return register is specified by return_value in the AD file.
 564   if (ret_edge_cnt > TypeFunc::Parms)
 565     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 566 
 567   // Input RegMask array shared by all Rethrows.
 568   uint reth_edge_cnt = TypeFunc::Parms+1;
 569   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 570   // Rethrow takes exception oop only, but in the argument 0 slot.
 571   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 572 #ifdef _LP64
 573   // Need two slots for ptrs in 64-bit land
 574   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 575 #endif
 576 
 577   // Input RegMask array shared by all TailCalls
 578   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 579   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 580 
 581   // Input RegMask array shared by all TailJumps
 582   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 583   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 584 
 585   // TailCalls have 2 returned values (target & moop), whose masks come
 586   // from the usual MachNode/MachOper mechanism.  Find a sample
 587   // TailCall to extract these masks and put the correct masks into
 588   // the tail_call_rms array.
 589   for( i=1; i < root->req(); i++ ) {
 590     MachReturnNode *m = root->in(i)->as_MachReturn();
 591     if( m->ideal_Opcode() == Op_TailCall ) {
 592       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 593       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 594       break;
 595     }
 596   }
 597 
 598   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 599   // from the usual MachNode/MachOper mechanism.  Find a sample
 600   // TailJump to extract these masks and put the correct masks into
 601   // the tail_jump_rms array.
 602   for( i=1; i < root->req(); i++ ) {
 603     MachReturnNode *m = root->in(i)->as_MachReturn();
 604     if( m->ideal_Opcode() == Op_TailJump ) {
 605       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 606       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 607       break;
 608     }
 609   }
 610 
 611   // Input RegMask array shared by all Halts
 612   uint halt_edge_cnt = TypeFunc::Parms;
 613   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 614 
 615   // Capture the return input masks into each exit flavor
 616   for( i=1; i < root->req(); i++ ) {
 617     MachReturnNode *exit = root->in(i)->as_MachReturn();
 618     switch( exit->ideal_Opcode() ) {
 619       case Op_Return   : exit->_in_rms = ret_rms;  break;
 620       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 621       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 622       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 623       case Op_Halt     : exit->_in_rms = halt_rms; break;
 624       default          : ShouldNotReachHere();
 625     }
 626   }
 627 
 628   // Next unused projection number from Start.
 629   int proj_cnt = C->tf()->domain()->cnt();
 630 
 631   // Do all the save-on-entry registers.  Make projections from Start for
 632   // them, and give them a use at the exit points.  To the allocator, they
 633   // look like incoming register arguments.
 634   for( i = 0; i < _last_Mach_Reg; i++ ) {
 635     if( is_save_on_entry(i) ) {
 636 
 637       // Add the save-on-entry to the mask array
 638       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 639       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 640       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 641       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 642       // Halts need the SOE registers, but only in the stack as debug info.
 643       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 644       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 645 
 646       Node *mproj;
 647 
 648       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 649       // into a single RegD.
 650       if( (i&1) == 0 &&
 651           _register_save_type[i  ] == Op_RegF &&
 652           _register_save_type[i+1] == Op_RegF &&
 653           is_save_on_entry(i+1) ) {
 654         // Add other bit for double
 655         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 656         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 657         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 658         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 659         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 660         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 661         proj_cnt += 2;          // Skip 2 for doubles
 662       }
 663       else if( (i&1) == 1 &&    // Else check for high half of double
 664                _register_save_type[i-1] == Op_RegF &&
 665                _register_save_type[i  ] == Op_RegF &&
 666                is_save_on_entry(i-1) ) {
 667         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 668         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 669         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 670         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 671         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 672         mproj = C->top();
 673       }
 674       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 675       // into a single RegL.
 676       else if( (i&1) == 0 &&
 677           _register_save_type[i  ] == Op_RegI &&
 678           _register_save_type[i+1] == Op_RegI &&
 679         is_save_on_entry(i+1) ) {
 680         // Add other bit for long
 681         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 682         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 683         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 684         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 685         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 686         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 687         proj_cnt += 2;          // Skip 2 for longs
 688       }
 689       else if( (i&1) == 1 &&    // Else check for high half of long
 690                _register_save_type[i-1] == Op_RegI &&
 691                _register_save_type[i  ] == Op_RegI &&
 692                is_save_on_entry(i-1) ) {
 693         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 694         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 695         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 696         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 697         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 698         mproj = C->top();
 699       } else {
 700         // Make a projection for it off the Start
 701         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 702       }
 703 
 704       ret_edge_cnt ++;
 705       reth_edge_cnt ++;
 706       tail_call_edge_cnt ++;
 707       tail_jump_edge_cnt ++;
 708       halt_edge_cnt ++;
 709 
 710       // Add a use of the SOE register to all exit paths
 711       for( uint j=1; j < root->req(); j++ )
 712         root->in(j)->add_req(mproj);
 713     } // End of if a save-on-entry register
 714   } // End of for all machine registers
 715 }
 716 
 717 //------------------------------init_spill_mask--------------------------------
 718 void Matcher::init_spill_mask( Node *ret ) {
 719   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 720 
 721   OptoReg::c_frame_pointer = c_frame_pointer();
 722   c_frame_ptr_mask = c_frame_pointer();
 723 #ifdef _LP64
 724   // pointers are twice as big
 725   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 726 #endif
 727 
 728   // Start at OptoReg::stack0()
 729   STACK_ONLY_mask.Clear();
 730   OptoReg::Name init = OptoReg::stack2reg(0);
 731   // STACK_ONLY_mask is all stack bits
 732   OptoReg::Name i;
 733   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 734     STACK_ONLY_mask.Insert(i);
 735   // Also set the "infinite stack" bit.
 736   STACK_ONLY_mask.set_AllStack();
 737 
 738   // Copy the register names over into the shared world
 739   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 740     // SharedInfo::regName[i] = regName[i];
 741     // Handy RegMasks per machine register
 742     mreg2regmask[i].Insert(i);
 743   }
 744 
 745   // Grab the Frame Pointer
 746   Node *fp  = ret->in(TypeFunc::FramePtr);
 747   Node *mem = ret->in(TypeFunc::Memory);
 748   const TypePtr* atp = TypePtr::BOTTOM;
 749   // Share frame pointer while making spill ops
 750   set_shared(fp);
 751 
 752   // Compute generic short-offset Loads
 753 #ifdef _LP64
 754   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 755 #endif
 756   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 757   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 758   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 759   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 760   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 761   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 762          spillD != NULL && spillP != NULL, "");
 763 
 764   // Get the ADLC notion of the right regmask, for each basic type.
 765 #ifdef _LP64
 766   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 767 #endif
 768   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 769   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 770   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 771   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 772   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 773 }
 774 
 775 #ifdef ASSERT
 776 static void match_alias_type(Compile* C, Node* n, Node* m) {
 777   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 778   const TypePtr* nat = n->adr_type();
 779   const TypePtr* mat = m->adr_type();
 780   int nidx = C->get_alias_index(nat);
 781   int midx = C->get_alias_index(mat);
 782   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 783   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 784     for (uint i = 1; i < n->req(); i++) {
 785       Node* n1 = n->in(i);
 786       const TypePtr* n1at = n1->adr_type();
 787       if (n1at != NULL) {
 788         nat = n1at;
 789         nidx = C->get_alias_index(n1at);
 790       }
 791     }
 792   }
 793   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 794   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 795     switch (n->Opcode()) {
 796     case Op_PrefetchRead:
 797     case Op_PrefetchWrite:
 798       nidx = Compile::AliasIdxRaw;
 799       nat = TypeRawPtr::BOTTOM;
 800       break;
 801     }
 802   }
 803   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 804     switch (n->Opcode()) {
 805     case Op_ClearArray:
 806       midx = Compile::AliasIdxRaw;
 807       mat = TypeRawPtr::BOTTOM;
 808       break;
 809     }
 810   }
 811   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 812     switch (n->Opcode()) {
 813     case Op_Return:
 814     case Op_Rethrow:
 815     case Op_Halt:
 816     case Op_TailCall:
 817     case Op_TailJump:
 818       nidx = Compile::AliasIdxBot;
 819       nat = TypePtr::BOTTOM;
 820       break;
 821     }
 822   }
 823   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 824     switch (n->Opcode()) {
 825     case Op_StrComp:
 826     case Op_StrEquals:
 827     case Op_StrIndexOf:
 828     case Op_AryEq:
 829     case Op_MemBarVolatile:
 830     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 831       nidx = Compile::AliasIdxTop;
 832       nat = NULL;
 833       break;
 834     }
 835   }
 836   if (nidx != midx) {
 837     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 838       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 839       n->dump();
 840       m->dump();
 841     }
 842     assert(C->subsume_loads() && C->must_alias(nat, midx),
 843            "must not lose alias info when matching");
 844   }
 845 }
 846 #endif
 847 
 848 
 849 //------------------------------MStack-----------------------------------------
 850 // State and MStack class used in xform() and find_shared() iterative methods.
 851 enum Node_State { Pre_Visit,  // node has to be pre-visited
 852                       Visit,  // visit node
 853                  Post_Visit,  // post-visit node
 854              Alt_Post_Visit   // alternative post-visit path
 855                 };
 856 
 857 class MStack: public Node_Stack {
 858   public:
 859     MStack(int size) : Node_Stack(size) { }
 860 
 861     void push(Node *n, Node_State ns) {
 862       Node_Stack::push(n, (uint)ns);
 863     }
 864     void push(Node *n, Node_State ns, Node *parent, int indx) {
 865       ++_inode_top;
 866       if ((_inode_top + 1) >= _inode_max) grow();
 867       _inode_top->node = parent;
 868       _inode_top->indx = (uint)indx;
 869       ++_inode_top;
 870       _inode_top->node = n;
 871       _inode_top->indx = (uint)ns;
 872     }
 873     Node *parent() {
 874       pop();
 875       return node();
 876     }
 877     Node_State state() const {
 878       return (Node_State)index();
 879     }
 880     void set_state(Node_State ns) {
 881       set_index((uint)ns);
 882     }
 883 };
 884 
 885 
 886 //------------------------------xform------------------------------------------
 887 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 888 // Node in new-space.  Given a new-space Node, recursively walk his children.
 889 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 890 Node *Matcher::xform( Node *n, int max_stack ) {
 891   // Use one stack to keep both: child's node/state and parent's node/index
 892   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 893   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 894 
 895   while (mstack.is_nonempty()) {
 896     n = mstack.node();          // Leave node on stack
 897     Node_State nstate = mstack.state();
 898     if (nstate == Visit) {
 899       mstack.set_state(Post_Visit);
 900       Node *oldn = n;
 901       // Old-space or new-space check
 902       if (!C->node_arena()->contains(n)) {
 903         // Old space!
 904         Node* m;
 905         if (has_new_node(n)) {  // Not yet Label/Reduced
 906           m = new_node(n);
 907         } else {
 908           if (!is_dontcare(n)) { // Matcher can match this guy
 909             // Calls match special.  They match alone with no children.
 910             // Their children, the incoming arguments, match normally.
 911             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 912             if (C->failing())  return NULL;
 913             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 914           } else {                  // Nothing the matcher cares about
 915             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 916               // Convert to machine-dependent projection
 917               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 918 #ifdef ASSERT
 919               _new2old_map.map(m->_idx, n);
 920 #endif
 921               if (m->in(0) != NULL) // m might be top
 922                 collect_null_checks(m, n);
 923             } else {                // Else just a regular 'ol guy
 924               m = n->clone();       // So just clone into new-space
 925 #ifdef ASSERT
 926               _new2old_map.map(m->_idx, n);
 927 #endif
 928               // Def-Use edges will be added incrementally as Uses
 929               // of this node are matched.
 930               assert(m->outcnt() == 0, "no Uses of this clone yet");
 931             }
 932           }
 933 
 934           set_new_node(n, m);       // Map old to new
 935           if (_old_node_note_array != NULL) {
 936             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 937                                                   n->_idx);
 938             C->set_node_notes_at(m->_idx, nn);
 939           }
 940           debug_only(match_alias_type(C, n, m));
 941         }
 942         n = m;    // n is now a new-space node
 943         mstack.set_node(n);
 944       }
 945 
 946       // New space!
 947       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 948 
 949       int i;
 950       // Put precedence edges on stack first (match them last).
 951       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 952         Node *m = oldn->in(i);
 953         if (m == NULL) break;
 954         // set -1 to call add_prec() instead of set_req() during Step1
 955         mstack.push(m, Visit, n, -1);
 956       }
 957 
 958       // For constant debug info, I'd rather have unmatched constants.
 959       int cnt = n->req();
 960       JVMState* jvms = n->jvms();
 961       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 962 
 963       // Now do only debug info.  Clone constants rather than matching.
 964       // Constants are represented directly in the debug info without
 965       // the need for executable machine instructions.
 966       // Monitor boxes are also represented directly.
 967       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 968         Node *m = n->in(i);          // Get input
 969         int op = m->Opcode();
 970         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 971         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 972             op == Op_ConF || op == Op_ConD || op == Op_ConL
 973             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
 974             ) {
 975           m = m->clone();
 976 #ifdef ASSERT
 977           _new2old_map.map(m->_idx, n);
 978 #endif
 979           mstack.push(m, Post_Visit, n, i); // Don't need to visit
 980           mstack.push(m->in(0), Visit, m, 0);
 981         } else {
 982           mstack.push(m, Visit, n, i);
 983         }
 984       }
 985 
 986       // And now walk his children, and convert his inputs to new-space.
 987       for( ; i >= 0; --i ) { // For all normal inputs do
 988         Node *m = n->in(i);  // Get input
 989         if(m != NULL)
 990           mstack.push(m, Visit, n, i);
 991       }
 992 
 993     }
 994     else if (nstate == Post_Visit) {
 995       // Set xformed input
 996       Node *p = mstack.parent();
 997       if (p != NULL) { // root doesn't have parent
 998         int i = (int)mstack.index();
 999         if (i >= 0)
1000           p->set_req(i, n); // required input
1001         else if (i == -1)
1002           p->add_prec(n);   // precedence input
1003         else
1004           ShouldNotReachHere();
1005       }
1006       mstack.pop(); // remove processed node from stack
1007     }
1008     else {
1009       ShouldNotReachHere();
1010     }
1011   } // while (mstack.is_nonempty())
1012   return n; // Return new-space Node
1013 }
1014 
1015 //------------------------------warp_outgoing_stk_arg------------------------
1016 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1017   // Convert outgoing argument location to a pre-biased stack offset
1018   if (reg->is_stack()) {
1019     OptoReg::Name warped = reg->reg2stack();
1020     // Adjust the stack slot offset to be the register number used
1021     // by the allocator.
1022     warped = OptoReg::add(begin_out_arg_area, warped);
1023     // Keep track of the largest numbered stack slot used for an arg.
1024     // Largest used slot per call-site indicates the amount of stack
1025     // that is killed by the call.
1026     if( warped >= out_arg_limit_per_call )
1027       out_arg_limit_per_call = OptoReg::add(warped,1);
1028     if (!RegMask::can_represent(warped)) {
1029       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1030       return OptoReg::Bad;
1031     }
1032     return warped;
1033   }
1034   return OptoReg::as_OptoReg(reg);
1035 }
1036 
1037 
1038 //------------------------------match_sfpt-------------------------------------
1039 // Helper function to match call instructions.  Calls match special.
1040 // They match alone with no children.  Their children, the incoming
1041 // arguments, match normally.
1042 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1043   MachSafePointNode *msfpt = NULL;
1044   MachCallNode      *mcall = NULL;
1045   uint               cnt;
1046   // Split out case for SafePoint vs Call
1047   CallNode *call;
1048   const TypeTuple *domain;
1049   ciMethod*        method = NULL;
1050   bool             is_method_handle_invoke = false;  // for special kill effects
1051   if( sfpt->is_Call() ) {
1052     call = sfpt->as_Call();
1053     domain = call->tf()->domain();
1054     cnt = domain->cnt();
1055 
1056     // Match just the call, nothing else
1057     MachNode *m = match_tree(call);
1058     if (C->failing())  return NULL;
1059     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1060 
1061     // Copy data from the Ideal SafePoint to the machine version
1062     mcall = m->as_MachCall();
1063 
1064     mcall->set_tf(         call->tf());
1065     mcall->set_entry_point(call->entry_point());
1066     mcall->set_cnt(        call->cnt());
1067 
1068     if( mcall->is_MachCallJava() ) {
1069       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1070       const CallJavaNode *call_java =  call->as_CallJava();
1071       method = call_java->method();
1072       mcall_java->_method = method;
1073       mcall_java->_bci = call_java->_bci;
1074       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1075       is_method_handle_invoke = call_java->is_method_handle_invoke();
1076       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1077       if( mcall_java->is_MachCallStaticJava() )
1078         mcall_java->as_MachCallStaticJava()->_name =
1079          call_java->as_CallStaticJava()->_name;
1080       if( mcall_java->is_MachCallDynamicJava() )
1081         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1082          call_java->as_CallDynamicJava()->_vtable_index;
1083     }
1084     else if( mcall->is_MachCallRuntime() ) {
1085       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1086     }
1087     msfpt = mcall;
1088   }
1089   // This is a non-call safepoint
1090   else {
1091     call = NULL;
1092     domain = NULL;
1093     MachNode *mn = match_tree(sfpt);
1094     if (C->failing())  return NULL;
1095     msfpt = mn->as_MachSafePoint();
1096     cnt = TypeFunc::Parms;
1097   }
1098 
1099   // Advertise the correct memory effects (for anti-dependence computation).
1100   msfpt->set_adr_type(sfpt->adr_type());
1101 
1102   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1103   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1104   // Empty them all.
1105   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1106 
1107   // Do all the pre-defined non-Empty register masks
1108   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1109   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1110 
1111   // Place first outgoing argument can possibly be put.
1112   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1113   assert( is_even(begin_out_arg_area), "" );
1114   // Compute max outgoing register number per call site.
1115   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1116   // Calls to C may hammer extra stack slots above and beyond any arguments.
1117   // These are usually backing store for register arguments for varargs.
1118   if( call != NULL && call->is_CallRuntime() )
1119     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1120 
1121 
1122   // Do the normal argument list (parameters) register masks
1123   int argcnt = cnt - TypeFunc::Parms;
1124   if( argcnt > 0 ) {          // Skip it all if we have no args
1125     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1126     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1127     int i;
1128     for( i = 0; i < argcnt; i++ ) {
1129       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1130     }
1131     // V-call to pick proper calling convention
1132     call->calling_convention( sig_bt, parm_regs, argcnt );
1133 
1134 #ifdef ASSERT
1135     // Sanity check users' calling convention.  Really handy during
1136     // the initial porting effort.  Fairly expensive otherwise.
1137     { for (int i = 0; i<argcnt; i++) {
1138       if( !parm_regs[i].first()->is_valid() &&
1139           !parm_regs[i].second()->is_valid() ) continue;
1140       VMReg reg1 = parm_regs[i].first();
1141       VMReg reg2 = parm_regs[i].second();
1142       for (int j = 0; j < i; j++) {
1143         if( !parm_regs[j].first()->is_valid() &&
1144             !parm_regs[j].second()->is_valid() ) continue;
1145         VMReg reg3 = parm_regs[j].first();
1146         VMReg reg4 = parm_regs[j].second();
1147         if( !reg1->is_valid() ) {
1148           assert( !reg2->is_valid(), "valid halvsies" );
1149         } else if( !reg3->is_valid() ) {
1150           assert( !reg4->is_valid(), "valid halvsies" );
1151         } else {
1152           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1153           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1154           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1155           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1156           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1157           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1158         }
1159       }
1160     }
1161     }
1162 #endif
1163 
1164     // Visit each argument.  Compute its outgoing register mask.
1165     // Return results now can have 2 bits returned.
1166     // Compute max over all outgoing arguments both per call-site
1167     // and over the entire method.
1168     for( i = 0; i < argcnt; i++ ) {
1169       // Address of incoming argument mask to fill in
1170       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1171       if( !parm_regs[i].first()->is_valid() &&
1172           !parm_regs[i].second()->is_valid() ) {
1173         continue;               // Avoid Halves
1174       }
1175       // Grab first register, adjust stack slots and insert in mask.
1176       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1177       if (OptoReg::is_valid(reg1))
1178         rm->Insert( reg1 );
1179       // Grab second register (if any), adjust stack slots and insert in mask.
1180       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1181       if (OptoReg::is_valid(reg2))
1182         rm->Insert( reg2 );
1183     } // End of for all arguments
1184 
1185     // Compute number of stack slots needed to restore stack in case of
1186     // Pascal-style argument popping.
1187     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1188   }
1189 
1190   if (is_method_handle_invoke) {
1191     // Kill some extra stack space in case method handles want to do
1192     // a little in-place argument insertion.
1193     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1194     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1195     // Do not update mcall->_argsize because (a) the extra space is not
1196     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1197   }
1198 
1199   // Compute the max stack slot killed by any call.  These will not be
1200   // available for debug info, and will be used to adjust FIRST_STACK_mask
1201   // after all call sites have been visited.
1202   if( _out_arg_limit < out_arg_limit_per_call)
1203     _out_arg_limit = out_arg_limit_per_call;
1204 
1205   if (mcall) {
1206     // Kill the outgoing argument area, including any non-argument holes and
1207     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1208     // Since the max-per-method covers the max-per-call-site and debug info
1209     // is excluded on the max-per-method basis, debug info cannot land in
1210     // this killed area.
1211     uint r_cnt = mcall->tf()->range()->cnt();
1212     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1213     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1214       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1215     } else {
1216       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1217         proj->_rout.Insert(OptoReg::Name(i));
1218     }
1219     if( proj->_rout.is_NotEmpty() )
1220       _proj_list.push(proj);
1221   }
1222   // Transfer the safepoint information from the call to the mcall
1223   // Move the JVMState list
1224   msfpt->set_jvms(sfpt->jvms());
1225   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1226     jvms->set_map(sfpt);
1227   }
1228 
1229   // Debug inputs begin just after the last incoming parameter
1230   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1231           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1232 
1233   // Move the OopMap
1234   msfpt->_oop_map = sfpt->_oop_map;
1235 
1236   // Registers killed by the call are set in the local scheduling pass
1237   // of Global Code Motion.
1238   return msfpt;
1239 }
1240 
1241 //---------------------------match_tree----------------------------------------
1242 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1243 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1244 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1245 // a Load's result RegMask for memoization in idealreg2regmask[]
1246 MachNode *Matcher::match_tree( const Node *n ) {
1247   assert( n->Opcode() != Op_Phi, "cannot match" );
1248   assert( !n->is_block_start(), "cannot match" );
1249   // Set the mark for all locally allocated State objects.
1250   // When this call returns, the _states_arena arena will be reset
1251   // freeing all State objects.
1252   ResourceMark rm( &_states_arena );
1253 
1254   LabelRootDepth = 0;
1255 
1256   // StoreNodes require their Memory input to match any LoadNodes
1257   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1258 #ifdef ASSERT
1259   Node* save_mem_node = _mem_node;
1260   _mem_node = n->is_Store() ? (Node*)n : NULL;
1261 #endif
1262   // State object for root node of match tree
1263   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1264   State *s = new (&_states_arena) State;
1265   s->_kids[0] = NULL;
1266   s->_kids[1] = NULL;
1267   s->_leaf = (Node*)n;
1268   // Label the input tree, allocating labels from top-level arena
1269   Label_Root( n, s, n->in(0), mem );
1270   if (C->failing())  return NULL;
1271 
1272   // The minimum cost match for the whole tree is found at the root State
1273   uint mincost = max_juint;
1274   uint cost = max_juint;
1275   uint i;
1276   for( i = 0; i < NUM_OPERANDS; i++ ) {
1277     if( s->valid(i) &&                // valid entry and
1278         s->_cost[i] < cost &&         // low cost and
1279         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1280       cost = s->_cost[mincost=i];
1281   }
1282   if (mincost == max_juint) {
1283 #ifndef PRODUCT
1284     tty->print("No matching rule for:");
1285     s->dump();
1286 #endif
1287     Matcher::soft_match_failure();
1288     return NULL;
1289   }
1290   // Reduce input tree based upon the state labels to machine Nodes
1291   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1292 #ifdef ASSERT
1293   _old2new_map.map(n->_idx, m);
1294   _new2old_map.map(m->_idx, (Node*)n);
1295 #endif
1296 
1297   // Add any Matcher-ignored edges
1298   uint cnt = n->req();
1299   uint start = 1;
1300   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1301   if( n->is_AddP() ) {
1302     assert( mem == (Node*)1, "" );
1303     start = AddPNode::Base+1;
1304   }
1305   for( i = start; i < cnt; i++ ) {
1306     if( !n->match_edge(i) ) {
1307       if( i < m->req() )
1308         m->ins_req( i, n->in(i) );
1309       else
1310         m->add_req( n->in(i) );
1311     }
1312   }
1313 
1314   debug_only( _mem_node = save_mem_node; )
1315   return m;
1316 }
1317 
1318 
1319 //------------------------------match_into_reg---------------------------------
1320 // Choose to either match this Node in a register or part of the current
1321 // match tree.  Return true for requiring a register and false for matching
1322 // as part of the current match tree.
1323 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1324 
1325   const Type *t = m->bottom_type();
1326 
1327   if( t->singleton() ) {
1328     // Never force constants into registers.  Allow them to match as
1329     // constants or registers.  Copies of the same value will share
1330     // the same register.  See find_shared_node.
1331     return false;
1332   } else {                      // Not a constant
1333     // Stop recursion if they have different Controls.
1334     // Slot 0 of constants is not really a Control.
1335     if( control && m->in(0) && control != m->in(0) ) {
1336 
1337       // Actually, we can live with the most conservative control we
1338       // find, if it post-dominates the others.  This allows us to
1339       // pick up load/op/store trees where the load can float a little
1340       // above the store.
1341       Node *x = control;
1342       const uint max_scan = 6;   // Arbitrary scan cutoff
1343       uint j;
1344       for( j=0; j<max_scan; j++ ) {
1345         if( x->is_Region() )    // Bail out at merge points
1346           return true;
1347         x = x->in(0);
1348         if( x == m->in(0) )     // Does 'control' post-dominate
1349           break;                // m->in(0)?  If so, we can use it
1350       }
1351       if( j == max_scan )       // No post-domination before scan end?
1352         return true;            // Then break the match tree up
1353     }
1354     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1355       // These are commonly used in address expressions and can
1356       // efficiently fold into them on X64 in some cases.
1357       return false;
1358     }
1359   }
1360 
1361   // Not forceable cloning.  If shared, put it into a register.
1362   return shared;
1363 }
1364 
1365 
1366 //------------------------------Instruction Selection--------------------------
1367 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1368 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1369 // things the Matcher does not match (e.g., Memory), and things with different
1370 // Controls (hence forced into different blocks).  We pass in the Control
1371 // selected for this entire State tree.
1372 
1373 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1374 // Store and the Load must have identical Memories (as well as identical
1375 // pointers).  Since the Matcher does not have anything for Memory (and
1376 // does not handle DAGs), I have to match the Memory input myself.  If the
1377 // Tree root is a Store, I require all Loads to have the identical memory.
1378 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1379   // Since Label_Root is a recursive function, its possible that we might run
1380   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1381   LabelRootDepth++;
1382   if (LabelRootDepth > MaxLabelRootDepth) {
1383     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1384     return NULL;
1385   }
1386   uint care = 0;                // Edges matcher cares about
1387   uint cnt = n->req();
1388   uint i = 0;
1389 
1390   // Examine children for memory state
1391   // Can only subsume a child into your match-tree if that child's memory state
1392   // is not modified along the path to another input.
1393   // It is unsafe even if the other inputs are separate roots.
1394   Node *input_mem = NULL;
1395   for( i = 1; i < cnt; i++ ) {
1396     if( !n->match_edge(i) ) continue;
1397     Node *m = n->in(i);         // Get ith input
1398     assert( m, "expect non-null children" );
1399     if( m->is_Load() ) {
1400       if( input_mem == NULL ) {
1401         input_mem = m->in(MemNode::Memory);
1402       } else if( input_mem != m->in(MemNode::Memory) ) {
1403         input_mem = NodeSentinel;
1404       }
1405     }
1406   }
1407 
1408   for( i = 1; i < cnt; i++ ){// For my children
1409     if( !n->match_edge(i) ) continue;
1410     Node *m = n->in(i);         // Get ith input
1411     // Allocate states out of a private arena
1412     State *s = new (&_states_arena) State;
1413     svec->_kids[care++] = s;
1414     assert( care <= 2, "binary only for now" );
1415 
1416     // Recursively label the State tree.
1417     s->_kids[0] = NULL;
1418     s->_kids[1] = NULL;
1419     s->_leaf = m;
1420 
1421     // Check for leaves of the State Tree; things that cannot be a part of
1422     // the current tree.  If it finds any, that value is matched as a
1423     // register operand.  If not, then the normal matching is used.
1424     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1425         //
1426         // Stop recursion if this is LoadNode and the root of this tree is a
1427         // StoreNode and the load & store have different memories.
1428         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1429         // Can NOT include the match of a subtree when its memory state
1430         // is used by any of the other subtrees
1431         (input_mem == NodeSentinel) ) {
1432 #ifndef PRODUCT
1433       // Print when we exclude matching due to different memory states at input-loads
1434       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1435         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1436         tty->print_cr("invalid input_mem");
1437       }
1438 #endif
1439       // Switch to a register-only opcode; this value must be in a register
1440       // and cannot be subsumed as part of a larger instruction.
1441       s->DFA( m->ideal_reg(), m );
1442 
1443     } else {
1444       // If match tree has no control and we do, adopt it for entire tree
1445       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1446         control = m->in(0);         // Pick up control
1447       // Else match as a normal part of the match tree.
1448       control = Label_Root(m,s,control,mem);
1449       if (C->failing()) return NULL;
1450     }
1451   }
1452 
1453 
1454   // Call DFA to match this node, and return
1455   svec->DFA( n->Opcode(), n );
1456 
1457 #ifdef ASSERT
1458   uint x;
1459   for( x = 0; x < _LAST_MACH_OPER; x++ )
1460     if( svec->valid(x) )
1461       break;
1462 
1463   if (x >= _LAST_MACH_OPER) {
1464     n->dump();
1465     svec->dump();
1466     assert( false, "bad AD file" );
1467   }
1468 #endif
1469   return control;
1470 }
1471 
1472 
1473 // Con nodes reduced using the same rule can share their MachNode
1474 // which reduces the number of copies of a constant in the final
1475 // program.  The register allocator is free to split uses later to
1476 // split live ranges.
1477 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1478   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1479 
1480   // See if this Con has already been reduced using this rule.
1481   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1482   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1483   if (last != NULL && rule == last->rule()) {
1484     // Don't expect control change for DecodeN
1485     if (leaf->is_DecodeN())
1486       return last;
1487     // Get the new space root.
1488     Node* xroot = new_node(C->root());
1489     if (xroot == NULL) {
1490       // This shouldn't happen give the order of matching.
1491       return NULL;
1492     }
1493 
1494     // Shared constants need to have their control be root so they
1495     // can be scheduled properly.
1496     Node* control = last->in(0);
1497     if (control != xroot) {
1498       if (control == NULL || control == C->root()) {
1499         last->set_req(0, xroot);
1500       } else {
1501         assert(false, "unexpected control");
1502         return NULL;
1503       }
1504     }
1505     return last;
1506   }
1507   return NULL;
1508 }
1509 
1510 
1511 //------------------------------ReduceInst-------------------------------------
1512 // Reduce a State tree (with given Control) into a tree of MachNodes.
1513 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1514 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1515 // Each MachNode has a number of complicated MachOper operands; each
1516 // MachOper also covers a further tree of Ideal Nodes.
1517 
1518 // The root of the Ideal match tree is always an instruction, so we enter
1519 // the recursion here.  After building the MachNode, we need to recurse
1520 // the tree checking for these cases:
1521 // (1) Child is an instruction -
1522 //     Build the instruction (recursively), add it as an edge.
1523 //     Build a simple operand (register) to hold the result of the instruction.
1524 // (2) Child is an interior part of an instruction -
1525 //     Skip over it (do nothing)
1526 // (3) Child is the start of a operand -
1527 //     Build the operand, place it inside the instruction
1528 //     Call ReduceOper.
1529 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1530   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1531 
1532   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1533   if (shared_node != NULL) {
1534     return shared_node;
1535   }
1536 
1537   // Build the object to represent this state & prepare for recursive calls
1538   MachNode *mach = s->MachNodeGenerator( rule, C );
1539   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1540   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1541   Node *leaf = s->_leaf;
1542   // Check for instruction or instruction chain rule
1543   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1544     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1545            "duplicating node that's already been matched");
1546     // Instruction
1547     mach->add_req( leaf->in(0) ); // Set initial control
1548     // Reduce interior of complex instruction
1549     ReduceInst_Interior( s, rule, mem, mach, 1 );
1550   } else {
1551     // Instruction chain rules are data-dependent on their inputs
1552     mach->add_req(0);             // Set initial control to none
1553     ReduceInst_Chain_Rule( s, rule, mem, mach );
1554   }
1555 
1556   // If a Memory was used, insert a Memory edge
1557   if( mem != (Node*)1 ) {
1558     mach->ins_req(MemNode::Memory,mem);
1559 #ifdef ASSERT
1560     // Verify adr type after matching memory operation
1561     const MachOper* oper = mach->memory_operand();
1562     if (oper != NULL && oper != (MachOper*)-1) {
1563       // It has a unique memory operand.  Find corresponding ideal mem node.
1564       Node* m = NULL;
1565       if (leaf->is_Mem()) {
1566         m = leaf;
1567       } else {
1568         m = _mem_node;
1569         assert(m != NULL && m->is_Mem(), "expecting memory node");
1570       }
1571       const Type* mach_at = mach->adr_type();
1572       // DecodeN node consumed by an address may have different type
1573       // then its input. Don't compare types for such case.
1574       if (m->adr_type() != mach_at &&
1575           (m->in(MemNode::Address)->is_DecodeN() ||
1576            m->in(MemNode::Address)->is_AddP() &&
1577            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1578            m->in(MemNode::Address)->is_AddP() &&
1579            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1580            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1581         mach_at = m->adr_type();
1582       }
1583       if (m->adr_type() != mach_at) {
1584         m->dump();
1585         tty->print_cr("mach:");
1586         mach->dump(1);
1587       }
1588       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1589     }
1590 #endif
1591   }
1592 
1593   // If the _leaf is an AddP, insert the base edge
1594   if( leaf->is_AddP() )
1595     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1596 
1597   uint num_proj = _proj_list.size();
1598 
1599   // Perform any 1-to-many expansions required
1600   MachNode *ex = mach->Expand(s,_proj_list, mem);
1601   if( ex != mach ) {
1602     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1603     if( ex->in(1)->is_Con() )
1604       ex->in(1)->set_req(0, C->root());
1605     // Remove old node from the graph
1606     for( uint i=0; i<mach->req(); i++ ) {
1607       mach->set_req(i,NULL);
1608     }
1609 #ifdef ASSERT
1610     _new2old_map.map(ex->_idx, s->_leaf);
1611 #endif
1612   }
1613 
1614   // PhaseChaitin::fixup_spills will sometimes generate spill code
1615   // via the matcher.  By the time, nodes have been wired into the CFG,
1616   // and any further nodes generated by expand rules will be left hanging
1617   // in space, and will not get emitted as output code.  Catch this.
1618   // Also, catch any new register allocation constraints ("projections")
1619   // generated belatedly during spill code generation.
1620   if (_allocation_started) {
1621     guarantee(ex == mach, "no expand rules during spill generation");
1622     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1623   }
1624 
1625   if (leaf->is_Con() || leaf->is_DecodeN()) {
1626     // Record the con for sharing
1627     _shared_nodes.map(leaf->_idx, ex);
1628   }
1629 
1630   return ex;
1631 }
1632 
1633 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1634   // 'op' is what I am expecting to receive
1635   int op = _leftOp[rule];
1636   // Operand type to catch childs result
1637   // This is what my child will give me.
1638   int opnd_class_instance = s->_rule[op];
1639   // Choose between operand class or not.
1640   // This is what I will receive.
1641   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1642   // New rule for child.  Chase operand classes to get the actual rule.
1643   int newrule = s->_rule[catch_op];
1644 
1645   if( newrule < NUM_OPERANDS ) {
1646     // Chain from operand or operand class, may be output of shared node
1647     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1648             "Bad AD file: Instruction chain rule must chain from operand");
1649     // Insert operand into array of operands for this instruction
1650     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1651 
1652     ReduceOper( s, newrule, mem, mach );
1653   } else {
1654     // Chain from the result of an instruction
1655     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1656     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1657     Node *mem1 = (Node*)1;
1658     debug_only(Node *save_mem_node = _mem_node;)
1659     mach->add_req( ReduceInst(s, newrule, mem1) );
1660     debug_only(_mem_node = save_mem_node;)
1661   }
1662   return;
1663 }
1664 
1665 
1666 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1667   if( s->_leaf->is_Load() ) {
1668     Node *mem2 = s->_leaf->in(MemNode::Memory);
1669     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1670     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1671     mem = mem2;
1672   }
1673   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1674     if( mach->in(0) == NULL )
1675       mach->set_req(0, s->_leaf->in(0));
1676   }
1677 
1678   // Now recursively walk the state tree & add operand list.
1679   for( uint i=0; i<2; i++ ) {   // binary tree
1680     State *newstate = s->_kids[i];
1681     if( newstate == NULL ) break;      // Might only have 1 child
1682     // 'op' is what I am expecting to receive
1683     int op;
1684     if( i == 0 ) {
1685       op = _leftOp[rule];
1686     } else {
1687       op = _rightOp[rule];
1688     }
1689     // Operand type to catch childs result
1690     // This is what my child will give me.
1691     int opnd_class_instance = newstate->_rule[op];
1692     // Choose between operand class or not.
1693     // This is what I will receive.
1694     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1695     // New rule for child.  Chase operand classes to get the actual rule.
1696     int newrule = newstate->_rule[catch_op];
1697 
1698     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1699       // Operand/operandClass
1700       // Insert operand into array of operands for this instruction
1701       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1702       ReduceOper( newstate, newrule, mem, mach );
1703 
1704     } else {                    // Child is internal operand or new instruction
1705       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1706         // internal operand --> call ReduceInst_Interior
1707         // Interior of complex instruction.  Do nothing but recurse.
1708         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1709       } else {
1710         // instruction --> call build operand(  ) to catch result
1711         //             --> ReduceInst( newrule )
1712         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1713         Node *mem1 = (Node*)1;
1714         debug_only(Node *save_mem_node = _mem_node;)
1715         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1716         debug_only(_mem_node = save_mem_node;)
1717       }
1718     }
1719     assert( mach->_opnds[num_opnds-1], "" );
1720   }
1721   return num_opnds;
1722 }
1723 
1724 // This routine walks the interior of possible complex operands.
1725 // At each point we check our children in the match tree:
1726 // (1) No children -
1727 //     We are a leaf; add _leaf field as an input to the MachNode
1728 // (2) Child is an internal operand -
1729 //     Skip over it ( do nothing )
1730 // (3) Child is an instruction -
1731 //     Call ReduceInst recursively and
1732 //     and instruction as an input to the MachNode
1733 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1734   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1735   State *kid = s->_kids[0];
1736   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1737 
1738   // Leaf?  And not subsumed?
1739   if( kid == NULL && !_swallowed[rule] ) {
1740     mach->add_req( s->_leaf );  // Add leaf pointer
1741     return;                     // Bail out
1742   }
1743 
1744   if( s->_leaf->is_Load() ) {
1745     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1746     mem = s->_leaf->in(MemNode::Memory);
1747     debug_only(_mem_node = s->_leaf;)
1748   }
1749   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1750     if( !mach->in(0) )
1751       mach->set_req(0,s->_leaf->in(0));
1752     else {
1753       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1754     }
1755   }
1756 
1757   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1758     int newrule;
1759     if( i == 0 )
1760       newrule = kid->_rule[_leftOp[rule]];
1761     else
1762       newrule = kid->_rule[_rightOp[rule]];
1763 
1764     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1765       // Internal operand; recurse but do nothing else
1766       ReduceOper( kid, newrule, mem, mach );
1767 
1768     } else {                    // Child is a new instruction
1769       // Reduce the instruction, and add a direct pointer from this
1770       // machine instruction to the newly reduced one.
1771       Node *mem1 = (Node*)1;
1772       debug_only(Node *save_mem_node = _mem_node;)
1773       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1774       debug_only(_mem_node = save_mem_node;)
1775     }
1776   }
1777 }
1778 
1779 
1780 // -------------------------------------------------------------------------
1781 // Java-Java calling convention
1782 // (what you use when Java calls Java)
1783 
1784 //------------------------------find_receiver----------------------------------
1785 // For a given signature, return the OptoReg for parameter 0.
1786 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1787   VMRegPair regs;
1788   BasicType sig_bt = T_OBJECT;
1789   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1790   // Return argument 0 register.  In the LP64 build pointers
1791   // take 2 registers, but the VM wants only the 'main' name.
1792   return OptoReg::as_OptoReg(regs.first());
1793 }
1794 
1795 // A method-klass-holder may be passed in the inline_cache_reg
1796 // and then expanded into the inline_cache_reg and a method_oop register
1797 //   defined in ad_<arch>.cpp
1798 
1799 
1800 //------------------------------find_shared------------------------------------
1801 // Set bits if Node is shared or otherwise a root
1802 void Matcher::find_shared( Node *n ) {
1803   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1804   MStack mstack(C->unique() * 2);
1805   // Mark nodes as address_visited if they are inputs to an address expression
1806   VectorSet address_visited(Thread::current()->resource_area());
1807   mstack.push(n, Visit);     // Don't need to pre-visit root node
1808   while (mstack.is_nonempty()) {
1809     n = mstack.node();       // Leave node on stack
1810     Node_State nstate = mstack.state();
1811     uint nop = n->Opcode();
1812     if (nstate == Pre_Visit) {
1813       if (address_visited.test(n->_idx)) { // Visited in address already?
1814         // Flag as visited and shared now.
1815         set_visited(n);
1816       }
1817       if (is_visited(n)) {   // Visited already?
1818         // Node is shared and has no reason to clone.  Flag it as shared.
1819         // This causes it to match into a register for the sharing.
1820         set_shared(n);       // Flag as shared and
1821         mstack.pop();        // remove node from stack
1822         continue;
1823       }
1824       nstate = Visit; // Not already visited; so visit now
1825     }
1826     if (nstate == Visit) {
1827       mstack.set_state(Post_Visit);
1828       set_visited(n);   // Flag as visited now
1829       bool mem_op = false;
1830 
1831       switch( nop ) {  // Handle some opcodes special
1832       case Op_Phi:             // Treat Phis as shared roots
1833       case Op_Parm:
1834       case Op_Proj:            // All handled specially during matching
1835       case Op_SafePointScalarObject:
1836         set_shared(n);
1837         set_dontcare(n);
1838         break;
1839       case Op_If:
1840       case Op_CountedLoopEnd:
1841         mstack.set_state(Alt_Post_Visit); // Alternative way
1842         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1843         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1844         // Bool and CmpX side-by-side, because it can only get at constants
1845         // that are at the leaves of Match trees, and the Bool's condition acts
1846         // as a constant here.
1847         mstack.push(n->in(1), Visit);         // Clone the Bool
1848         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1849         continue; // while (mstack.is_nonempty())
1850       case Op_ConvI2D:         // These forms efficiently match with a prior
1851       case Op_ConvI2F:         //   Load but not a following Store
1852         if( n->in(1)->is_Load() &&        // Prior load
1853             n->outcnt() == 1 &&           // Not already shared
1854             n->unique_out()->is_Store() ) // Following store
1855           set_shared(n);       // Force it to be a root
1856         break;
1857       case Op_ReverseBytesI:
1858       case Op_ReverseBytesL:
1859         if( n->in(1)->is_Load() &&        // Prior load
1860             n->outcnt() == 1 )            // Not already shared
1861           set_shared(n);                  // Force it to be a root
1862         break;
1863       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1864       case Op_IfFalse:
1865       case Op_IfTrue:
1866       case Op_MachProj:
1867       case Op_MergeMem:
1868       case Op_Catch:
1869       case Op_CatchProj:
1870       case Op_CProj:
1871       case Op_JumpProj:
1872       case Op_JProj:
1873       case Op_NeverBranch:
1874         set_dontcare(n);
1875         break;
1876       case Op_Jump:
1877         mstack.push(n->in(1), Visit);         // Switch Value
1878         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1879         continue;                             // while (mstack.is_nonempty())
1880       case Op_StrComp:
1881       case Op_StrEquals:
1882       case Op_StrIndexOf:
1883       case Op_AryEq:
1884         set_shared(n); // Force result into register (it will be anyways)
1885         break;
1886       case Op_ConP: {  // Convert pointers above the centerline to NUL
1887         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1888         const TypePtr* tp = tn->type()->is_ptr();
1889         if (tp->_ptr == TypePtr::AnyNull) {
1890           tn->set_type(TypePtr::NULL_PTR);
1891         }
1892         break;
1893       }
1894       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1895         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1896         const TypePtr* tp = tn->type()->make_ptr();
1897         if (tp && tp->_ptr == TypePtr::AnyNull) {
1898           tn->set_type(TypeNarrowOop::NULL_PTR);
1899         }
1900         break;
1901       }
1902       case Op_Binary:         // These are introduced in the Post_Visit state.
1903         ShouldNotReachHere();
1904         break;
1905       case Op_ClearArray:
1906       case Op_SafePoint:
1907         mem_op = true;
1908         break;
1909       default:
1910         if( n->is_Store() ) {
1911           // Do match stores, despite no ideal reg
1912           mem_op = true;
1913           break;
1914         }
1915         if( n->is_Mem() ) { // Loads and LoadStores
1916           mem_op = true;
1917           // Loads must be root of match tree due to prior load conflict
1918           if( C->subsume_loads() == false )
1919             set_shared(n);
1920         }
1921         // Fall into default case
1922         if( !n->ideal_reg() )
1923           set_dontcare(n);  // Unmatchable Nodes
1924       } // end_switch
1925 
1926       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1927         Node *m = n->in(i); // Get ith input
1928         if (m == NULL) continue;  // Ignore NULLs
1929         uint mop = m->Opcode();
1930 
1931         // Must clone all producers of flags, or we will not match correctly.
1932         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1933         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1934         // are also there, so we may match a float-branch to int-flags and
1935         // expect the allocator to haul the flags from the int-side to the
1936         // fp-side.  No can do.
1937         if( _must_clone[mop] ) {
1938           mstack.push(m, Visit);
1939           continue; // for(int i = ...)
1940         }
1941 
1942         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1943           // Bases used in addresses must be shared but since
1944           // they are shared through a DecodeN they may appear
1945           // to have a single use so force sharing here.
1946           set_shared(m->in(AddPNode::Base)->in(1));
1947         }
1948 
1949         // Clone addressing expressions as they are "free" in memory access instructions
1950         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1951           // Some inputs for address expression are not put on stack
1952           // to avoid marking them as shared and forcing them into register
1953           // if they are used only in address expressions.
1954           // But they should be marked as shared if there are other uses
1955           // besides address expressions.
1956 
1957           Node *off = m->in(AddPNode::Offset);
1958           if( off->is_Con() &&
1959               // When there are other uses besides address expressions
1960               // put it on stack and mark as shared.
1961               !is_visited(m) ) {
1962             address_visited.test_set(m->_idx); // Flag as address_visited
1963             Node *adr = m->in(AddPNode::Address);
1964 
1965             // Intel, ARM and friends can handle 2 adds in addressing mode
1966             if( clone_shift_expressions && adr->is_AddP() &&
1967                 // AtomicAdd is not an addressing expression.
1968                 // Cheap to find it by looking for screwy base.
1969                 !adr->in(AddPNode::Base)->is_top() &&
1970                 // Are there other uses besides address expressions?
1971                 !is_visited(adr) ) {
1972               address_visited.set(adr->_idx); // Flag as address_visited
1973               Node *shift = adr->in(AddPNode::Offset);
1974               // Check for shift by small constant as well
1975               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1976                   shift->in(2)->get_int() <= 3 &&
1977                   // Are there other uses besides address expressions?
1978                   !is_visited(shift) ) {
1979                 address_visited.set(shift->_idx); // Flag as address_visited
1980                 mstack.push(shift->in(2), Visit);
1981                 Node *conv = shift->in(1);
1982 #ifdef _LP64
1983                 // Allow Matcher to match the rule which bypass
1984                 // ConvI2L operation for an array index on LP64
1985                 // if the index value is positive.
1986                 if( conv->Opcode() == Op_ConvI2L &&
1987                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
1988                     // Are there other uses besides address expressions?
1989                     !is_visited(conv) ) {
1990                   address_visited.set(conv->_idx); // Flag as address_visited
1991                   mstack.push(conv->in(1), Pre_Visit);
1992                 } else
1993 #endif
1994                 mstack.push(conv, Pre_Visit);
1995               } else {
1996                 mstack.push(shift, Pre_Visit);
1997               }
1998               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1999               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2000             } else {  // Sparc, Alpha, PPC and friends
2001               mstack.push(adr, Pre_Visit);
2002             }
2003 
2004             // Clone X+offset as it also folds into most addressing expressions
2005             mstack.push(off, Visit);
2006             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2007             continue; // for(int i = ...)
2008           } // if( off->is_Con() )
2009         }   // if( mem_op &&
2010         mstack.push(m, Pre_Visit);
2011       }     // for(int i = ...)
2012     }
2013     else if (nstate == Alt_Post_Visit) {
2014       mstack.pop(); // Remove node from stack
2015       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2016       // shared and all users of the Bool need to move the Cmp in parallel.
2017       // This leaves both the Bool and the If pointing at the Cmp.  To
2018       // prevent the Matcher from trying to Match the Cmp along both paths
2019       // BoolNode::match_edge always returns a zero.
2020 
2021       // We reorder the Op_If in a pre-order manner, so we can visit without
2022       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2023       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2024     }
2025     else if (nstate == Post_Visit) {
2026       mstack.pop(); // Remove node from stack
2027 
2028       // Now hack a few special opcodes
2029       switch( n->Opcode() ) {       // Handle some opcodes special
2030       case Op_StorePConditional:
2031       case Op_StoreIConditional:
2032       case Op_StoreLConditional:
2033       case Op_CompareAndSwapI:
2034       case Op_CompareAndSwapL:
2035       case Op_CompareAndSwapP:
2036       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2037         Node *newval = n->in(MemNode::ValueIn );
2038         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2039         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2040         n->set_req(MemNode::ValueIn,pair);
2041         n->del_req(LoadStoreNode::ExpectedIn);
2042         break;
2043       }
2044       case Op_CMoveD:              // Convert trinary to binary-tree
2045       case Op_CMoveF:
2046       case Op_CMoveI:
2047       case Op_CMoveL:
2048       case Op_CMoveN:
2049       case Op_CMoveP: {
2050         // Restructure into a binary tree for Matching.  It's possible that
2051         // we could move this code up next to the graph reshaping for IfNodes
2052         // or vice-versa, but I do not want to debug this for Ladybird.
2053         // 10/2/2000 CNC.
2054         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2055         n->set_req(1,pair1);
2056         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2057         n->set_req(2,pair2);
2058         n->del_req(3);
2059         break;
2060       }
2061       case Op_StrEquals: {
2062         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2063         n->set_req(2,pair1);
2064         n->set_req(3,n->in(4));
2065         n->del_req(4);
2066         break;
2067       }
2068       case Op_StrComp:
2069       case Op_StrIndexOf: {
2070         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2071         n->set_req(2,pair1);
2072         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2073         n->set_req(3,pair2);
2074         n->del_req(5);
2075         n->del_req(4);
2076         break;
2077       }
2078       default:
2079         break;
2080       }
2081     }
2082     else {
2083       ShouldNotReachHere();
2084     }
2085   } // end of while (mstack.is_nonempty())
2086 }
2087 
2088 #ifdef ASSERT
2089 // machine-independent root to machine-dependent root
2090 void Matcher::dump_old2new_map() {
2091   _old2new_map.dump();
2092 }
2093 #endif
2094 
2095 //---------------------------collect_null_checks-------------------------------
2096 // Find null checks in the ideal graph; write a machine-specific node for
2097 // it.  Used by later implicit-null-check handling.  Actually collects
2098 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2099 // value being tested.
2100 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2101   Node *iff = proj->in(0);
2102   if( iff->Opcode() == Op_If ) {
2103     // During matching If's have Bool & Cmp side-by-side
2104     BoolNode *b = iff->in(1)->as_Bool();
2105     Node *cmp = iff->in(2);
2106     int opc = cmp->Opcode();
2107     if (opc != Op_CmpP && opc != Op_CmpN) return;
2108 
2109     const Type* ct = cmp->in(2)->bottom_type();
2110     if (ct == TypePtr::NULL_PTR ||
2111         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2112 
2113       bool push_it = false;
2114       if( proj->Opcode() == Op_IfTrue ) {
2115         extern int all_null_checks_found;
2116         all_null_checks_found++;
2117         if( b->_test._test == BoolTest::ne ) {
2118           push_it = true;
2119         }
2120       } else {
2121         assert( proj->Opcode() == Op_IfFalse, "" );
2122         if( b->_test._test == BoolTest::eq ) {
2123           push_it = true;
2124         }
2125       }
2126       if( push_it ) {
2127         _null_check_tests.push(proj);
2128         Node* val = cmp->in(1);
2129 #ifdef _LP64
2130         if (val->bottom_type()->isa_narrowoop() &&
2131             !Matcher::narrow_oop_use_complex_address()) {
2132           //
2133           // Look for DecodeN node which should be pinned to orig_proj.
2134           // On platforms (Sparc) which can not handle 2 adds
2135           // in addressing mode we have to keep a DecodeN node and
2136           // use it to do implicit NULL check in address.
2137           //
2138           // DecodeN node was pinned to non-null path (orig_proj) during
2139           // CastPP transformation in final_graph_reshaping_impl().
2140           //
2141           uint cnt = orig_proj->outcnt();
2142           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2143             Node* d = orig_proj->raw_out(i);
2144             if (d->is_DecodeN() && d->in(1) == val) {
2145               val = d;
2146               val->set_req(0, NULL); // Unpin now.
2147               // Mark this as special case to distinguish from
2148               // a regular case: CmpP(DecodeN, NULL).
2149               val = (Node*)(((intptr_t)val) | 1);
2150               break;
2151             }
2152           }
2153         }
2154 #endif
2155         _null_check_tests.push(val);
2156       }
2157     }
2158   }
2159 }
2160 
2161 //---------------------------validate_null_checks------------------------------
2162 // Its possible that the value being NULL checked is not the root of a match
2163 // tree.  If so, I cannot use the value in an implicit null check.
2164 void Matcher::validate_null_checks( ) {
2165   uint cnt = _null_check_tests.size();
2166   for( uint i=0; i < cnt; i+=2 ) {
2167     Node *test = _null_check_tests[i];
2168     Node *val = _null_check_tests[i+1];
2169     bool is_decoden = ((intptr_t)val) & 1;
2170     val = (Node*)(((intptr_t)val) & ~1);
2171     if (has_new_node(val)) {
2172       Node* new_val = new_node(val);
2173       if (is_decoden) {
2174         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2175         // Note: new_val may have a control edge if
2176         // the original ideal node DecodeN was matched before
2177         // it was unpinned in Matcher::collect_null_checks().
2178         // Unpin the mach node and mark it.
2179         new_val->set_req(0, NULL);
2180         new_val = (Node*)(((intptr_t)new_val) | 1);
2181       }
2182       // Is a match-tree root, so replace with the matched value
2183       _null_check_tests.map(i+1, new_val);
2184     } else {
2185       // Yank from candidate list
2186       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2187       _null_check_tests.map(i,_null_check_tests[--cnt]);
2188       _null_check_tests.pop();
2189       _null_check_tests.pop();
2190       i-=2;
2191     }
2192   }
2193 }
2194 
2195 
2196 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2197 // acting as an Acquire and thus we don't need an Acquire here.  We
2198 // retain the Node to act as a compiler ordering barrier.
2199 bool Matcher::prior_fast_lock( const Node *acq ) {
2200   Node *r = acq->in(0);
2201   if( !r->is_Region() || r->req() <= 1 ) return false;
2202   Node *proj = r->in(1);
2203   if( !proj->is_Proj() ) return false;
2204   Node *call = proj->in(0);
2205   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2206     return false;
2207 
2208   return true;
2209 }
2210 
2211 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2212 // acting as a Release and thus we don't need a Release here.  We
2213 // retain the Node to act as a compiler ordering barrier.
2214 bool Matcher::post_fast_unlock( const Node *rel ) {
2215   Compile *C = Compile::current();
2216   assert( rel->Opcode() == Op_MemBarRelease, "" );
2217   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2218   DUIterator_Fast imax, i = mem->fast_outs(imax);
2219   Node *ctrl = NULL;
2220   while( true ) {
2221     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2222     assert( ctrl->is_Proj(), "only projections here" );
2223     ProjNode *proj = (ProjNode*)ctrl;
2224     if( proj->_con == TypeFunc::Control &&
2225         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2226       break;
2227     i++;
2228   }
2229   Node *iff = NULL;
2230   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2231     Node *x = ctrl->fast_out(j);
2232     if( x->is_If() && x->req() > 1 &&
2233         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2234       iff = x;
2235       break;
2236     }
2237   }
2238   if( !iff ) return false;
2239   Node *bol = iff->in(1);
2240   // The iff might be some random subclass of If or bol might be Con-Top
2241   if (!bol->is_Bool())  return false;
2242   assert( bol->req() > 1, "" );
2243   return (bol->in(1)->Opcode() == Op_FastUnlock);
2244 }
2245 
2246 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2247 // atomic instruction acting as a store_load barrier without any
2248 // intervening volatile load, and thus we don't need a barrier here.
2249 // We retain the Node to act as a compiler ordering barrier.
2250 bool Matcher::post_store_load_barrier(const Node *vmb) {
2251   Compile *C = Compile::current();
2252   assert( vmb->is_MemBar(), "" );
2253   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2254   const MemBarNode *mem = (const MemBarNode*)vmb;
2255 
2256   // Get the Proj node, ctrl, that can be used to iterate forward
2257   Node *ctrl = NULL;
2258   DUIterator_Fast imax, i = mem->fast_outs(imax);
2259   while( true ) {
2260     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2261     assert( ctrl->is_Proj(), "only projections here" );
2262     ProjNode *proj = (ProjNode*)ctrl;
2263     if( proj->_con == TypeFunc::Control &&
2264         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2265       break;
2266     i++;
2267   }
2268 
2269   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2270     Node *x = ctrl->fast_out(j);
2271     int xop = x->Opcode();
2272 
2273     // We don't need current barrier if we see another or a lock
2274     // before seeing volatile load.
2275     //
2276     // Op_Fastunlock previously appeared in the Op_* list below.
2277     // With the advent of 1-0 lock operations we're no longer guaranteed
2278     // that a monitor exit operation contains a serializing instruction.
2279 
2280     if (xop == Op_MemBarVolatile ||
2281         xop == Op_FastLock ||
2282         xop == Op_CompareAndSwapL ||
2283         xop == Op_CompareAndSwapP ||
2284         xop == Op_CompareAndSwapN ||
2285         xop == Op_CompareAndSwapI)
2286       return true;
2287 
2288     if (x->is_MemBar()) {
2289       // We must retain this membar if there is an upcoming volatile
2290       // load, which will be preceded by acquire membar.
2291       if (xop == Op_MemBarAcquire)
2292         return false;
2293       // For other kinds of barriers, check by pretending we
2294       // are them, and seeing if we can be removed.
2295       else
2296         return post_store_load_barrier((const MemBarNode*)x);
2297     }
2298 
2299     // Delicate code to detect case of an upcoming fastlock block
2300     if( x->is_If() && x->req() > 1 &&
2301         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2302       Node *iff = x;
2303       Node *bol = iff->in(1);
2304       // The iff might be some random subclass of If or bol might be Con-Top
2305       if (!bol->is_Bool())  return false;
2306       assert( bol->req() > 1, "" );
2307       return (bol->in(1)->Opcode() == Op_FastUnlock);
2308     }
2309     // probably not necessary to check for these
2310     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2311       return false;
2312   }
2313   return false;
2314 }
2315 
2316 //=============================================================================
2317 //---------------------------State---------------------------------------------
2318 State::State(void) {
2319 #ifdef ASSERT
2320   _id = 0;
2321   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2322   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2323   //memset(_cost, -1, sizeof(_cost));
2324   //memset(_rule, -1, sizeof(_rule));
2325 #endif
2326   memset(_valid, 0, sizeof(_valid));
2327 }
2328 
2329 #ifdef ASSERT
2330 State::~State() {
2331   _id = 99;
2332   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2333   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2334   memset(_cost, -3, sizeof(_cost));
2335   memset(_rule, -3, sizeof(_rule));
2336 }
2337 #endif
2338 
2339 #ifndef PRODUCT
2340 //---------------------------dump----------------------------------------------
2341 void State::dump() {
2342   tty->print("\n");
2343   dump(0);
2344 }
2345 
2346 void State::dump(int depth) {
2347   for( int j = 0; j < depth; j++ )
2348     tty->print("   ");
2349   tty->print("--N: ");
2350   _leaf->dump();
2351   uint i;
2352   for( i = 0; i < _LAST_MACH_OPER; i++ )
2353     // Check for valid entry
2354     if( valid(i) ) {
2355       for( int j = 0; j < depth; j++ )
2356         tty->print("   ");
2357         assert(_cost[i] != max_juint, "cost must be a valid value");
2358         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2359         tty->print_cr("%s  %d  %s",
2360                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2361       }
2362   tty->print_cr("");
2363 
2364   for( i=0; i<2; i++ )
2365     if( _kids[i] )
2366       _kids[i]->dump(depth+1);
2367 }
2368 #endif