1 /*
   2  * Copyright (c) 2006, 2007, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 //------------------------------OptoReg----------------------------------------
  26 // We eventually need Registers for the Real World.  Registers are essentially
  27 // non-SSA names.  A Register is represented as a number.  Non-regular values
  28 // (e.g., Control, Memory, I/O) use the Special register.  The actual machine
  29 // registers (as described in the ADL file for a machine) start at zero.
  30 // Stack-slots (spill locations) start at the nest Chunk past the last machine
  31 // register.
  32 //
  33 // Note that stack spill-slots are treated as a very large register set.
  34 // They have all the correct properties for a Register: not aliased (unique
  35 // named).  There is some simple mapping from a stack-slot register number
  36 // to the actual location on the stack; this mapping depends on the calling
  37 // conventions and is described in the ADL.
  38 //
  39 // Note that Name is not enum. C++ standard defines that the range of enum
  40 // is the range of smallest bit-field that can represent all enumerators
  41 // declared in the enum. The result of assigning a value to enum is undefined
  42 // if the value is outside the enumeration's valid range. OptoReg::Name is
  43 // typedef'ed as int, because it needs to be able to represent spill-slots.
  44 //
  45 class OptoReg VALUE_OBJ_CLASS_SPEC {
  46 
  47  friend class C2Compiler;
  48  public:
  49   typedef int Name;
  50   enum {
  51     // Chunk 0
  52     Physical = AdlcVMDeps::Physical, // Start of physical regs
  53     // A few oddballs at the edge of the world
  54     Special = -2,               // All special (not allocated) values
  55     Bad = -1                    // Not a register
  56   };
  57 
  58  private:
  59 
  60  static const VMReg opto2vm[REG_COUNT];
  61  static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
  62 
  63  public:
  64 
  65   // Stack pointer register
  66   static OptoReg::Name c_frame_pointer;
  67 
  68 
  69 
  70   // Increment a register number.  As in:
  71   //    "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
  72   static Name add( Name x, int y ) { return Name(x+y); }
  73 
  74   // (We would like to have an operator+ for RegName, but it is not
  75   // a class, so this would be illegal in C++.)
  76 
  77   static void dump( int );
  78 
  79   // Get the stack slot number of an OptoReg::Name
  80   static unsigned int reg2stack( OptoReg::Name r) {
  81     assert( r >= stack0(), " must be");
  82     return r - stack0();
  83   }
  84 
  85   // convert a stack slot number into an OptoReg::Name
  86   static OptoReg::Name stack2reg( int idx) {
  87     return Name(stack0() + idx);
  88   }
  89 
  90   static bool is_stack(Name n) {
  91     return n >= stack0();
  92   }
  93 
  94   static bool is_valid(Name n) {
  95     return (n != Bad);
  96   }
  97 
  98   static bool is_reg(Name n) {
  99     return  is_valid(n) && !is_stack(n);
 100   }
 101 
 102   static VMReg as_VMReg(OptoReg::Name n) {
 103     if (is_reg(n)) {
 104       // Must use table, it'd be nice if Bad was indexable...
 105       return opto2vm[n];
 106     } else {
 107       assert(!is_stack(n), "must un warp");
 108       return VMRegImpl::Bad();
 109     }
 110   }
 111 
 112   // Can un-warp a stack slot or convert a register or Bad
 113   static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
 114     if (is_reg(n)) {
 115       // Must use table, it'd be nice if Bad was indexable...
 116       return opto2vm[n];
 117     } else if (is_stack(n)) {
 118       int stack_slot = reg2stack(n);
 119       if (stack_slot < arg_count) {
 120         return VMRegImpl::stack2reg(stack_slot + frame_size);
 121       }
 122       return VMRegImpl::stack2reg(stack_slot - arg_count);
 123       // return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
 124     } else {
 125       return VMRegImpl::Bad();
 126     }
 127   }
 128 
 129   static OptoReg::Name as_OptoReg(VMReg r) {
 130     if (r->is_stack()) {
 131       assert(false, "must warp");
 132       return stack2reg(r->reg2stack());
 133     } else if (r->is_valid()) {
 134       // Must use table, it'd be nice if Bad was indexable...
 135       return vm2opto[r->value()];
 136     } else {
 137       return Bad;
 138     }
 139   }
 140 
 141   static OptoReg::Name stack0() {
 142     return VMRegImpl::stack0->value();
 143   }
 144 
 145   static const char* regname(OptoReg::Name n) {
 146     return as_VMReg(n)->name();
 147   }
 148 
 149 };
 150 
 151 //---------------------------OptoRegPair-------------------------------------------
 152 // Pairs of 32-bit registers for the allocator.
 153 // This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
 154 // via the calling convention code which is shared between the compilers.
 155 // Since C2 uses OptoRegs for register allocation it is more efficient to use
 156 // VMRegPair internally for nodes that can contain a pair of OptoRegs rather
 157 // than use VMRegPair and continually be converting back and forth. So normally
 158 // C2 will take in a VMRegPair from the calling convention code and immediately
 159 // convert them to an OptoRegPair and stay in the OptoReg world. The only over
 160 // conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
 161 // is not a high bandwidth spot and so it is not an issue.
 162 // Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
 163 // is that there are "physical" OptoRegs that are not representable in the VMReg
 164 // world, notably flags. [ But by design there is "space" in the VMReg world
 165 // for such registers they just may not be concrete ]. So if we were to use VMRegPair
 166 // then the VMReg world would have to have a representation for these registers
 167 // so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
 168 // stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
 169 // and converting that will return OptoReg::Bad losing the identity of the OptoReg.
 170 
 171 class OptoRegPair {
 172 private:
 173   short _second;
 174   short _first;
 175 public:
 176   void set_bad (                   ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
 177   void set1    ( OptoReg::Name n  ) { _second = OptoReg::Bad; _first = n; }
 178   void set2    ( OptoReg::Name n  ) { _second = n + 1;       _first = n; }
 179   void set_pair( OptoReg::Name second, OptoReg::Name first    ) { _second= second;    _first= first; }
 180   void set_ptr ( OptoReg::Name ptr ) {
 181 #ifdef _LP64
 182     _second = ptr+1;
 183 #else
 184     _second = OptoReg::Bad;
 185 #endif
 186     _first = ptr;
 187   }
 188 
 189   OptoReg::Name second() const { return _second; }
 190   OptoReg::Name first() const { return _first; }
 191   OptoRegPair(OptoReg::Name second, OptoReg::Name first) {  _second = second; _first = first; }
 192   OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
 193   OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
 194 };